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3 INRIA Rhône-Alpes, 655, av. de l’Europe, 38334 Montbonnot, France
Bernard.Espiau@inrialpes.fr

Abstract. In this work we present a novel control design methodology
for under-actuated mechanical systems. As part of the design process we
use the reachability analysis tool d/dt [ABDM99,D00] to see whether
there is a switching sequence which can drive the system to a desired
periodic orbit. Much of the work in the design of the control law is done
manually using classical control techniques (unlike the fully-automatic
approach advocated in [ABD+00]), and d/dt is used to complement
these techniques. We hope this work will contribute to the proliferation
of reachability-based techniques to the control engineer’s tool box.

1 Introduction

The algorithmic approach to the analysis of hybrid systems, first put forward
explicitly in [ACH+95], is inspired by a computer science approach to verifica-
tion of automata. The system under consideration is viewed as a generator of
trajectories and the problem of verification consists of checking whether there
is an individual trajectory which violates some specification, e.g. reaches a bad
state. Likewise, the controller synthesis problem is phrased as restricting sys-
tematically the set of all possible behaviors in order to satisfy a property. The
algorithmic approach consists in making a brute-force search in the state-space,
based only on the description of the system dynamics. Initially this approach
has been applied to restricted classes of hybrid systems where the continuous
dynamics has a constant derivative in every state, see e.g. [AD94] for timed
automata, and [ACH+95,AMP95,HHW97] for hybrid automata. More recently
attempts have been made to lift this approach to systems with non-trivial dy-
namics. In particular, some of the authors were involved in the development of
d/dt, a tool for verification and controller synthesis for hybrid systems with lin-
ear continuous dynamics [ABDM99,D00]. The synthesis algorithm implemented
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in d/dt [ABD+00,D00] suggested a very idealistic scenario for switching-based
control: the user defines the dynamics at the various modes, as well as the con-
trol objective, and the tool automatically generates the appropriate conditions
for mode switching.

This approach attempts to obtain the general-purpose flavor of discrete veri-
fication tools and it is still very remote from control engineering practice. In the
continuous world, every class of systems has its own special character as well as
its corresponding mathematical tricks which are used extensively by engineers
during the controller design process. Coordinate transformations, dimensional-
ity reduction, simplifying assumptions or linearization cannot be captured by
straightforward reachability analysis.

In this paper we show how reachability-based techniques can be combined
with more “knowledge-based” methods in order to derive control strategies for a
non-trivial class of dynamical systems, namely under-actuated mechanical sys-
tems. We propose a general methodology for designing controllers for such sys-
tems and demonstrate it on a double-pendulum example. The complexity of the
system as given initially exceeds the current capabilities of reachability-based
tools: its dynamics is non-linear and control is done using continuous actuation.
Moreover, the system is of dimension n while the dimensionality of the available
control is m < n. The proposed approach to control this system by switching is
based on the following principles.

1. The state-space can be transformed and partitioned via a diffeomorphism φ
into an m-dimensional part e1 and an (n−m)-dimensional part e2.

2. Using standard control techniques, e1 can be controlled to zero. Given this
control, the remaining part is a closed system which defines the dynamics of
e2 (called the Zero dynamics).

3. Each diffeomorphism induces a different control law for its zero dynamics
and hence a particular “mode” for the dynamics of the the uncontrolled
part of the system. We use a parameterized family of diffeomorphisms which
becomes finite after discretizing the parameters.

4. The dynamics of e2 at each mode can be linearized around its equilibrium
point. It is possible to choose the parameters so that the linearized system
has periodic orbits in every mode. It should be kept in mind that the validity
of the linear model is restricted to the neighborhood of the equilibrium.

5. If our goal is to reach a specific periodic orbit, we can achieve it by a sequence
of mode switchings. At each mode, however, a different quantity is controlled
to zero. Hence, when we switch from controlling e1 to controlling e′1, the
latter should already be close to zero. This restricts the parts of the state-
space of the e2 system where switching is allowed and leads to modeling
the system as a hybrid automaton where the transition guards reflect these
constraints.

The role of d/dt is then to check whether, based on the hybrid automaton
representation, it is possible to reach from one orbit to another by mode switching
and how much time it takes.



2 Control of Under-actuated Mechanical Systems

2.1 Under-actuated Mechanical Systems

We consider the class of jointed mechanical systems without flexibilities, the
dynamics of which is given by Lagrange equations:

M(q)q̈ +N(q, q̇) = WΓ (1)

where M is the symmetric positive definite matrix defining the kinetic en-
ergy and N gathers generalized gravity, Coriolis and centrifugal forces; q is the
n−dimensional vector of generalized (joint) coordinates; Γ includes all external
generalized forces and W is a constant matrix.

If we now assume that the generalized forces are only actuation torques/forces
(i.e the system is friction-free and no other potential-based actions occur), then
the system is called under-actuated if rank (W ) < n. Without loss of generality,

we can consider that W =

(

Im
0n−m×n

)

with m < n the number of actuators.

2.2 Zero Dynamics

Let us consider a diffeomorphism φ:

q → φ(q) =

(

e1(q)
e2(q)

)

(2)

where e1 is m-dimensional. Then, the dynamics (1) projected on the constraint
e1 = 0 is called the zero dynamics associated with φ. It is given by:

P (q)(M(q)q̈ +N(q, q̇)) = 0 (3)

with P = In −W (J1M
−1W )−1J1M

−1 the projection operator, in which J1 =
∂e1

∂q
. A control objective can therefore be to bring the system to this zero dynam-

ics, specified by the goal task e1 = 0, and to stabilize it. Since dim (e1) = dim
(Γ ), all the available actuation forces/torques have to be used for that purpose.
In fact, that can be done trough partial decoupling/feedback linearization: it can
be easily seen that using the control

Γ = (J1M
−1W )−1(u− J̇1q̇ + J1M

−1N) (4)

we obtain ë1 = u, assumed that J1M
−1W is nonsingular. It then remains to

specify an adequate input u which stabilizes e1, asymptotically or in finite time,
in order to drive the system to the zero dynamics. Once reached, its motion is
then governed by eq. (3), which is free, since no more control is available. In
many cases, this free motion is a periodic orbit. The idea now is to specify such
a periodic orbit as a final goal, recalling that we can consider the choice of φ
as a way to modify it. The problem addressed in the following is then to study
the reachability of this behavior starting from given initial conditions, using a
sequence φ1, φ2 . . ., i.e successive jumps from an orbit to another one.



2.3 Handling the Periodic Orbits

Let us consider the case wherem = n−1, i.e. the zero dynamics can be expressed
using a single coordinate denoted by x1. When the phase portrait of the system
is a closed curve O, this periodic orbit, which characterizes the zero dynamics,
can be uniquely specified by a pair (φ,X0) where X0 is a point on the orbit, for
example the initial conditions. Let us assume (assumption A0) that the equation
of O in the phase plane is of the form V (x1, ẋ1) − Ṽ = 0, the invariance being
expressed by V̇ = 0. V is a so-called Lyapunov function. For a non-actuated
conservative mechanical system, the natural V is the mechanical energy. Since
it is not the case here, Ṽ can only be called by analogy the “energy” level of the
orbit.

Let us now consider the particular case where the set of φi consists of func-
tions of given analytical form depending on a k-dimensional vector of real param-
eters p. Then p can be considered as an auxiliary control of the system. Giving
some bounds to the parameters and the variables, so that they range over Dp

and DX0 , respectively, the set of all possible orbits for the system is

0 = {O(p,X0) : p ∈ Dp X
0 ∈ DX0}.

When V is known, the set can also be parameterized by p and Ṽ .
The problem we address now is the following: let us define a desired behavior

of the system as a goal orbit O∗; then, given an initial orbit O0 6= O∗, can we
reach O∗ by modifying p? We don’t consider here related problems of automatic
control: existence of the orbits, active stabilization, continuous control of p, which
will be addressed in forthcoming papers. Instead, we focus our attention on
a discrete approach, i.e. to the questions: is there a sequence of intersecting
orbits allowing to reach O∗ through jumps on the parameters and how long
time will it take? Assuming here that these jumps are instantaneous and don’t
disturb the overall behavior (assumption A1), we can therefore forget the effect
of the control (4) and consider for the analysis the related set of zero dynamics
uniquely. We are therefore led back to a problem of reachability analysis of
a hybrid system: each discrete state is an homogeneous differential equation
associated with given values of the parameters; transitions are allowed when
orbits of different modes are compatible with each other, i.e. when continuous
state variables reach some particular values. We will illustrate the approach on
the double pendulum example.

3 The Case of the Double Pendulum

The considered testbed is the double pendulum depicted in Figure 1. The reader
is referred to [EGP99] for details on experimental issues. Terms in eq. (1) write
for this system as:

M =

(

m11 m12

m12 m22

)

(5)



and:

N =

(

N1(q1, q2, q̇1, q̇2)
N2(q1, q2, q̇1, q̇2)

)

=

(

C11 C12

C21 C22

)(

q̇1
q̇2

)

+

(

G1

G2

)

(6)

with:
m11 = m1l

2
1 +m2(l

2
2 + L2

1 + 2L1l2c2)
m12 = m2(l

2
2 + L1l2c2)

m22 = m2l
2
2

C11 = −m2L1l2s2q̇2
C12 = −m2L1l2s2(q̇1 + q̇2)
C21 = m2L1l2s2q̇1
C22 = 0
G1 = g((m1l1 +m2L1)s1 +m2l2s12)
G2 = gm2l2s12

(7)

where si := sin(qi) , ci := cos(qi) , sij := sin(qi + qj). We consider the case

where only the hip is actuated. Therefore W =

(

1
0

)

. Let us now choose the

diffeomorphism φ and the control Γ such that

e1 = q1 − aq2 − b = 0 ; e2 = q2 (8)

where a and b are two real parameters1. Therefore the zero dynamics we have
to consider is simply:

{

(m22 + am12)q̈2 + (aC21 + C22)q̇2 +G2 = 0
q1 = aq2 + b

(9)

where it assumed thatm22+am12 6= 0 (assumption A2, satisfied when − l2
L1+l2

<

a < l2
L1−l2

). This system can be expressed in the single coordinate q2. It is a
second order nonlinear differential equation, for which the natural state vector

isX =

(

x1

x2

)

=

(

q2 − q∗2
q̇2

)

. In order to perform reachability analysis, we have to

linearize the system. Its equilibrium points X∗ =

(

0
0

)

are solutions of G2(q
∗
2) =

0, i.e, for a 6= −1 (assumption A3):

q∗2 = −
b+ kπ

1 + a
(10)

We consider in the following only the case k = 0. The equation of the system
linearized around the center q∗2 is:

ẋ = Ax =

(

0 1
−α 0

)

x (11)

1 Note that expression (8) specifies the desired spatial trajectory of the tip of the
double pendulum, while the “energy” level will set the amplitude and the time
profile of its motion along this trajectory
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Fig. 1. A double pendulum.

where α = l2+
a

1+a
L1cos(

b
1+a

). For ensuring the existence of periodic orbits, the
eigenvalues of A have to be imaginary, which implies that α has to be strictly
positive (assumption A4). The Lyapunov function associated with the system,
i.e the energy level of an orbit is

V =
1

2
(αx2

1 + x2
2) (12)

For the purpose of reachability analysis it is more comfortable to work with
the same system of coordinates in every state, hence we transform the linear
dynamics of equation (11) into an affine dynamics over y = (q2, q̇2):

ẏ = Ay + u =

(

0 1
−α 0

)

y +

(

0
αq∗2

)

(13)

Finally we have to remember that the system is submitted to physical bounds on
the joints: qi ∈ [qmin

i , qmax
i ]. Introducing them in (8) leads to linear constraints

on the parameters.
When we switch from φ to φ′ there might be a transient period until the

system settles in the new zero dynamics. In order to make assumption A1 (tran-
sitions are immediate) realistic we need to make sure that e′1 and ė′1 be already
close to their zero. For q1 this means

|e′1| = |q1 − a′q2 − b′| < ε1 (14)



Since q1 = aq2 + b this reduces to

|(a− a′)q2 + (b− b′)| < ε1 (15)

For q̇2 we need:

|ė′1| = |(a− a′)q̇2| < ε2 (16)

These conditions, which form rectangles in the phase-space of the zero dynamics,
will be used as transition guards in the hybrid automaton model. Note that these
conditions are symmetric, i.e. they are the same, in terms of q2 and q̇2 for the
transitions from (a′, b′) to (a, b). Of course, their global physical interpretation
does depend on the source state of the transition.

The system is modeled as a hybrid automaton with 7 states, each representing
a pair (a, b) of parameters (Figure 2). At each state the dynamics is of the form
ẋ = Ax+ u where A and u for the various states are:

s0 s1 s2 s3 s4 s5 s6

0 1

−0.0479 0

0 1

−0.0878 0

0 1

−0.1167 0

0 1

−0.1982 0

0 1

−0.2326 0

0 1

−0.3143 0

0 1

−0.3555 0

0

0.0011

0

0.0000

0

−0.0012

0

0.0000

0

−0.0039

0

−0.0090

0

−0.0140

The transition guards are computed according to (15) and (16) with ε1 = 0.05
and ε2 = 0.02. In addition, we restrict the transitions to happen between pairs
of “close” states, i.e. |a− a′| ≤ 0.15 and |b− b′| ≤ 0.1.

s0 s1 s2

s3

s4s5s6

b = −0.1

a = −0.32

b = 0.0

a = −0.28
b = 0.05

a = −0.25

b = 0.0

a = −0.15

b = 0.1

a = −0.1

b = 0.2
a = 0.05a = 0.15

b = 0.3

[0.0, 1.0]×
[−0.2, 0.2]

[−3.0,−1.0]×
[−0.4, 0.4]

[−3.333, 0.0]×
[−0.6667, 0.6667]

[−3.75,−1.25]×
[−0.5, 0.5]

[−1.0,−0.333]×
[−0.1333, 0.1333]

[−1.5,−0.5]×
[−0.2, 0.2]

[−0.6667, 0.0]×
[−0.1333, 0.1333]

Fig. 2. The hybrid automaton for the double pendulum. The transition guards
between pairs of states are written as products of intervals.



In order to facilitate the experimentation with d/dt we have augmented the
input syntax to include parameters and formulae referring to them. For example,
state s0 and its outgoing transition is specified as:

state: 0;

matrixA:

0.0 1.0,

[-l2-(a0/(1+a0))*L1*cos(b0/(1+a0))] 0.0;

input: type convex_vert

0.0 [(b0/(1+a0))*(-l2-(a0/(1+a0))*L1*cos(b0/(1+a0)))];

transition:

label go01:

if in guard: type rectangle

[-(-eps1+(b0-b1))/(a0-a1)] [-(eps1+(b0-b1))/(a0-a1)],

[eps2/(a0-a1)] [-eps2/(a0-a1)];

goto 1;

4 Results

The problem we solve with d/dt is the following: given some initial low-energy
orbit (more precisely, a connected set of orbits) is there a sequence of switchings
that brings the system to its target, a higher-energy set of orbits? This problem
is essentially a controller synthesis problem for the eventuality specification, un-
like the safety controller synthesis that we have treated in [ABD+00]. We are
interested in reaching the desired orbit with the least number of mode switchings.

We illustrate informally the synthesis procedure that we employ in order to
derive the switching controller. Consider an initial set of orbits characterized by
the rectangle (in the (q2, q̇2) space) P = [0.7×0.9]× [0.01, 0.02] at state s3 and a
goal orbit characterized by F = [1.05, 1.3]×[0.01, 0.02] at the same state. Starting
from the inital set (s, P ) we calculate, in a breadth-firstmanner, all its successors,
i.e. continuous successors, and then, via intersection with the guards, the discrete
successors. We continue until at some level k of the search tree, there is one or
more paths having a leaf (s,Q) such that Q intersects F . The search graph of the
first iteration is shown in Figure 3 and there are two intersections with the goal
orbit after 4 transitions, along the paths s3, s2, s3, s2, s3 and s3, s2, s1, s2, s3. For
every such path we do backward reachability analysis to find the predecessors
of the goal orbit at every node and, in particular, the subset of P from which
the goal can be reached by taking the k transitions that correspond to the path.
This information is also used to derive the controller by restricting the guards.
In our example we conclude that points satisfying q2 ∈ [0.7552, 0.9] can reach
the goal orbit by following the sequence s3, s2, s3, s2, s3 and those satisfying
q2 ∈ [0.7152, 0.9] can do it following the sequence s3, s2, s1, s2, s3. Note that
from the interval [0.7552, 0.9] both sequences can be taken.

If not all points in P are “covered” by the k-length sequences found in the first
iteration, we restart the procedure from (s, P ′) where P ′ ⊆ P is the subset of P



consisting of the points not covered yet. In our example P ′ consists of the points
satisfying q2 ∈ [0.7, 0.7152]. In the second iteration we find out that the goal orbit
can be reached from any point in P ′ by either one of the three 6-transition se-
quences s3, s2, s3, s2, s3, s2, s3, s3, s2, s3, s2, s1, s2, s3 and s3, s2, s1, s2, s1, s2, s3,
and this concludes the computation. The fact that q̇2 does not matter here is
particular to this example — with other sets of parameters the partition of the
initial set did involve conditions on q̇2. The reachable states which correspond
to the discovery of the sequence s3, s2, s1, s2, s1, s2, s3 in the second iteration are
depicted in Figure 4 and 5.

s3

s3 s4 s4

s1

s1 s1s3 s4 s1

s2 s2

s1

s1

s4s3

s2

s3

s2

s4

Fig. 3. The first iteration of the search tree. The goal orbits were first reached
after 4 transitions along two paths of the tree.

5 Conclusion

We have investigated a new methodology for designing hybrid controllers which
is partially-supported by our reachability analysis tool d/dt. Like [ABD+00] and
[TLS00] this work explores the contribution of the hybrid automaton model to
the alternative formulation and solution of problems in switching-based control.
In this paper we have treated an interesting and open problem in robot control
and provided a partial solution. To improve the performance of the algorithm, we
plan to investigate other search procedures (backward computation and heuristic
search) and validate our results via simulation.



q̇2

q2

q̇2

q2

s3 s3 → s2

q̇2

q2

q̇2

q2

s2 s2 → s1

q̇2

q2

q̇2

q2

s1 s1 → s2

q̇2

q2

q̇2

q2

s2 s2 → s1

Fig. 4. Computation of reachable states for the sequence s3, s2, s1, s2. On the
left we see the reachable set at mode si while at the right we show the intersecion
with the guard from si to sj .



q̇2

q2

q̇2

q2

s1 s1 → s2

q̇2

q2

q̇2

q2

s2 s2 → s3

q̇2

q2

s3

Fig. 5. Computation of reachable states for the sequence s3, s2, s1, s2, s1, s2, s3
continued from Figure 4.
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