
CELIA
The CELIA plug-in

Edition 0.1, 14 January 2011

by Cezara Dragoi and Mihaela Sighireanu

i

Table of Contents

1 CELIA Copying Conditions (LGPL) . 1

2 Introduction . 2

3 Installing . 3
3.1 Requirements . 3
3.2 Configuring . 3
3.3 Compiling . 3
3.4 Executing . 4

4 Inputs . 5

5 Options . 6

6 Outputs . 7

7 References . 9

Chapter 1: CELIA Copying Conditions (LGPL) 1

1 CELIA Copying Conditions (LGPL)

The CELIA tool is copyright c© by the CELIA project, and its partners.
This license applies to all files distributed in the CELIA and CINV tools, including all source

code, libraries, binaries, and documentation.

Version: 14 January 2011

http://www.liafa.jussieu.fr/celia/

2 Introduction

CELIA is a plug-in of the Frama-C platform which performs static analysis of C programs
manipulating (singly linked) lists. More precisely:

• CELIA computes for each line of the program reachable from the main function, an assertion
expressing the properties of the lists in the heap of the program.

• CELIA verifies assertions on the program heap given in the C file.

For this, CELIA does a symbolic reachability analysis based on abstract interpretation tech-
niques [Cousot&Cousot’79] and uses special domains and decision procedures for lists.

CELIA is based on several tools released on LGPL licence:

• Frama-C platform for the parsing, typing, and manipulation of C programs,

• Fixpoint library as symbolic fix-point engine on inter-procedural control flow graphs,

• CINV tool for the abstract domains on lists,

• Apron library for the numerical abstract domains.

Version: 14 January 2011

http://www.frama-c.com/
http://www.frama-c.com/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/index.html
http://www.liafa.jussieu.fr/cinv
http://apron.cri.ensmp.fr/library/

Chapter 3: Installing 3

3 Installing

3.1 Requirements

The installation procedure is also described in the README file of the CELIA distribution. It
requires the following software:

• Project tools: autoconf and automake

• C libraries: GMP and MPFR

• OCaml system,

• Camlidl system,

• Apron library,

• Fixpoint and camllib libraries,

• FRAMA-C platform version (at least) Boron-20100401

To facilitate the installation, CELIA distribution contains packages for:

• Apron library, directory apron-dist

• Fixpoint and camllib libraries, directory interproc-dist

3.2 Configuring

automake tools are used to discover your configuration (Frama-C directory, C compiler, etc.) as
follows:

• Generate configure script by executing in the distribution directory

> autoconf

• Configure the Makefile with the local settings by executing in the same directory

> ./configure

• Set the environment variable CINV to the distribution directory:

> export CINV=‘pwd‘

3.3 Compiling

The distribution file install.sh does the installation procedure.
During the installation, the following steps are done:

• to install FIXPOINT

> make -C interproc-dist all

> make -C interproc-dist install

• to install Apron

> make -C apron-dist all

> make -C apron-dist install

• to compile CINV abstract domains

> make -C shapes all

> make -C shapes ml

• to compile CINV engine

make src/clim.cma

Version: 14 January 2011

http://gmplib.org
http://www.mpfr.org/

• to compile CELIA plug-in

make -C frama-c-plugin frama-c-Celia.byte

The binary of the plug-in, frama-c-Celia.byte, is available in the frama-c-plugin direc-
tory.

3.4 Executing

The CELIA plug-in uses dynamic libraries included in the distribution. To find these libraries,
please set the environment variable LD_LIBRARY_PATH as follows:

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CINV/shapes

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CINV/apron-dist/mlgmpidl/lib

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CINV/apron-dist/apron/lib

The plug-in is called as follows:
frama-c-Celia.opt -celia <input c files>

Version: 14 January 2011

Chapter 4: Inputs 5

4 Inputs

CELIA plug-in shall receive as inputs the list of C files containing:

• the C function to be analyzed called the entry point of the analysis (by default main) and

• all the C functions called by the entry point.

(See the Chapter 5 [Options], page 6 section to change by default value of the entry point.)
The C functions that can be analyzed with CELIA shall satisfy the following constraints:

• they shall use only variables of type int and intlist (the last defined in the file intlist.h),

• the assignment statements for pointer variables shall be elementary, i.e., a pointer can be
assigned only if it is NULL, only the pointer left values x, x->data, and x->next are allowed,

This limitation will be removed in future versions of CELIA.

• the conditions on pointer variables shall also be elementary, i.e., only terms x and x->data
are allowed,

This limitation will be removed in future versions of CELIA.

• the Boolean conditions used in if andwhile statements shall be atomic,

This limitation will be removed in future versions of CELIA.

• the actual parameters in function calls shall be variables,

This limitation will be removed in future versions of CELIA.

• the output actual parameters in function calls shall be pointers to lists.

The C file in input of CELIA can be annotated with specifications in the ACSL logic of
Frama-C. The file intlist.h defines several predicates that can be used in these annotations.
Currently, only these predicates are considered by CELIA. Also, only annotations corresponding
to function pre-conditions are interpreted. The semantics of these predicates is explained here.

Version: 14 January 2011

http://www.liafa.jussieu.fr/celia/samples/intlist/intlist.h
http://www.frama-c.com
http://www.liafa.jussieu.fr/celia/samples/intlist/intlist.h
http://www.liafa.jussieu.fr/cinv/doc/Specification-logic.html#Specification-logic

5 Options

The CELIA plugin is called as follows:
frama-c-Celia.byte <Frama-C options> -celia <input C files>

The Frama-C options external to CELIA are explained in the Frama-C documentation.
The options relevant for CELIA are:

-celia activates the CELIA plug-in in Frama-C,

-celia-cinv-opt

specifies the property file from which the options for the analysis has to be read.

The property file is a list of lines
key=value

where key specifies the option and value specifies the value of the option.
The following tuples of keys and values are known to CELIA:

domain the abstract domain to use (default: shape).

dwdomain abstract domain used for list segments; possible values are lsum (default), mset, and
ucons. If this appear several times with different values, it specifies a product of
these domains.

maxanon default maximum number of anonymous nodes per segment (default 0); this number
can be changed for each function (see option funspec).

maxasegm default maximum number of segments with anonymous nodes (default 1, may only
be more); this number can be changed for each function (see option funspec).

funspec the property file in which are given specific parameters of analysis for each function,
see [FunctionOptions], page 6.

depth (option for Fixpoint) depth of recursive iterations (default 2, may only be more).

guided (option for Fixpoint) if true, guided analysis of Gopand and Reps (default: false).

wdelay (option for Fixpoint) specifies usage of widening delay steps (default: 1).

wdesc specifies usage of widening number of descending steps (default: 2).

main entry point function for the analysis (default: main).

Options specific for functions

The format of this file is a sequence of line, each line having the form:
function_name: n s p

where:

• n gives maxanon parameter (positive integer),

• s gives maxsegm parameter (strictly positive integer),

• p gives patterns to be used in the UCONS domain; it is an integer value obtained from the
binary or of the following values:

• 1 for pattern forall y in n (default value)

• 2 for pattern forall y1 in n1, y2 in n2. y1==y2

• 4 for pattern forall y1,y2 in n1. y1<=y2

Version: 14 January 2011

http://www.frama-c.com

Chapter 6: Outputs 7

6 Outputs

CELIA outputs the following files:

pan-nm.c contains the C code normalized by Frama-C where each statement has a unique
identifier (C comment containing sid). This file contains the full coded needed by
the analysis.

pan.eq contains the inter-procedural control flow graph (ICFG) considered by the analysis.
Also, it provides (section penv) the encoding of each function variable into a domain
variable.

pan.abs contains the result of the analysis, i.e., for each statement the number of the file
.shp containing the invariant computed by CELIA.

f_XXX.shp
shape files containing the invariants computed by CELIA. To obtain a dot repre-
sentation of this file please use the program com/shp2dot.sh.

How to read shape files?

A shape file f_XXX.shp is a list of tuples built from

• a shape graph (see CAV’10 publication) which is an abstraction of the heap:

• the nodes of the graph represent heap sub-lists which are not pointed by pointer pro-
gram variables; nods are named by n0 (NULL), n1, n2, ... and are labelled by the
pointer programs variables which points to the head of the sub-list, and

• the arcs represent reachability relations (via next field) between sub-lists.

For example, the shape graph in the invariant intlist-lib-add.c:sid:6 represents a heap with
three sub-lists (nodes n1, n2, n3) such that the sub-list stating in n1 is labeled by the
program variables x2 and x5 and reaches the sub-list starting in node n2; the sub-list
starting in n3 is disjoint from the other sub-lists.

• a list of constraints for each data word abstract domain (in LSUM, MSET, UCONS) used
in the analysis.

For the domains LSUM and MSET, the constraints attached to the graph are conjunctions
of linear constraints involving the following terms:

xi represents the value stored in a scalar program variable (see file pan.eq to obtain
the variable name),

data(n) represents the value stored in the head of the sub-list represented by the node n,

len(n) represents the number of nodes in the sub-list represented by the node n,

sum(n) represents the sum of values stored in the tail of the sub-list represented by the node
n,

mshd(n) represents the singleton mouldiest containing only the value stored in the first ele-
ment (head) of the sub-list represented by node n,

mstl(n) represents the multiset containing the values stored in the tail of the sub-list repre-
sented by node n,

Version: 14 January 2011

www.graphviz.com
http://www.liafa.jussieu.fr/celia/samples/intlist-lib-add/mset/sid_6.png

For example, the constraint
-mstl(n2)+mstl(n3)=0
in the multi-set constraints in the first shape graph of intlist-lib-add.c:sid:6 says that the

multisets of tails of sub-lists represented by nodes n2 and n3 are equal.
For the domain UCONS, the constraints attached to the graph are conjunction structured

as follows:

• the econs block are linear constraints on the data(n), len(n) and integer program variables
x,

• the following blocks represent universal formulas in the form, e.g.,

forall y in n. patter-constraint => data-constraint

which express properties on the data in the sub-lists starting in the node n.

For example, the UCONS constraints in the file intlist-sort-insert:sid:40 contains two univer-
sally quantified constraints, both concerning the node n1:

• the first constraint expresses the property that for all cells in the sub-lists n1, represented
by y, the data stored in these cells is greater or equal than the data stored in the head of
n1, and

• the second constraint expresses the property that for all two cells y1 and y2 in the sub-lists
n1 such that y1 <= y2, the data stored in these cells is ordered.

Version: 14 January 2011

http://www.liafa.jussieu.fr/celia/samples/intlist-lib-add/mset/sid_6.png
http://www.liafa.jussieu.fr/celia/samples/intlist-sort-insert/ucons/sid_40.png

Chapter 7: References 9

7 References

• [Apron] Apron project, http://apron.cri.ensmp.fr/library/

• [Cousot&Cousot,79] P. Cousot and R. Cousot, Systematic Design of Program Analysis
Frameworks, POPL’79

• [Fixpoint] B. Jeannet, http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/index.html

• [Frama-C] http://www.frama-c.com/

Version: 14 January 2011

http://apron.cri.ensmp.fr/library/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/index.html
http://www.frama-c.com/

	CELIA Copying Conditions (LGPL)
	Introduction
	Installing
	Requirements
	Configuring
	Compiling
	Executing

	Inputs
	Options
	Outputs
	References

