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Qualitative vs. quantitative semantics

Traditionally, denotational semantics is based on domains
(continuous, stable maps) and is qualitative.

This means that the interpretation of a term does not take into
account the number of times arguments are used to produce a
result.

Example: stable semantics makes no difference between the terms

M1 = λxBool if x then (if x then t else f) else f

and M2 = λxBool x

both are of type Bool→ Bool and are interpreted as
{({t}, t), ({f}, f)} in the usual model of coherence spaces.
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Quantitative semantics

In the simplest quantitative semantics, one replaces finite sets by
finite multisets and one can remove coherence.

M1 = λxBool if x then (if x then t else f) else f is interpreted as
{([t, t], t), ([t, f], f), ([f], f)}.

M2 = λxBool x is interpreted as {([t], t), ([f], f)}.
This semantics is more informative in two ways:

quantitative informations

it takes into account non-deterministic behaviours of
arguments (the point ([t, f], f)).

De Carvalho & Tortora de Falco: relational semantics is injective
on normal proof-nets (MELL).
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The linear logic viewpoint

The main difference between the two approaches is the
interpretation of the LL exponential !X :

in the qualitative setting (coherence spaces), !X uses finite
sets (actually finite cliques) of elements of X

in the quantitative setting, !X uses finite multisets of
elements of X (coherence is not needed).

The other constructions (additives and multiplicatives) are very
similar in both settinge.

It is possible to get rid of coherence in the qualitative setting as
well and to replace finite cliques by finite sets in the construction
of !X .
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Scott semantics

But this requires to move to Scott semantics:

In the quantitative setting, we can simply interpret a formula
A as a set X with no additional structure. A proof of A is
interpreted as a subset of X .

But this does not work in the qualitative setting. In other
words: if we interpret all formulae as in the quantitative
setting, but for !X for which we use Pfin(X ) instead of
Mfin(X ), we don’t get a model.
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Failure of coherence-free qualitative semantics

Take !X = Pfin(X ) and

if s ⊆ X × Y then define !s ⊆ !X × !Y by
!s = {({a1, . . . , an}, {b1, . . . , bn}) | n ∈ N and ∀i (ai , bi ) ∈ s}
dX = {({a}, a) | a ∈ X}.

Then if X = Y = Bool = {t, f}, s = {(t, t), (f, t)}, we have

({t, f}, {t, t} = {t}) ∈ !s and so ({t, f}, t) ∈ dBool ◦ !s

but ({t, f}, t) /∈ s ◦ dBool.

In coherence spaces, since s = {(t, t), (f, t)} must be a clique
in Bool( Bool, we must have t ˇBool f and hence
{t, f} /∈ |!Bool| so ({t, f}, {t}) /∈ !s.

In quantitative semantics [t, t] 6= [t] so ([t, f], [t]) /∈ !s.
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One has to endow X (et least) with a “Scott structure”, that is, a
preorder relation. Then proofs are interpreted as downwards closed
sets.
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The quantitative model

Category Rel of sets and relations Rel(E ,F ) = P(E × F ).

E⊥ = E

E ⊗ F = E ` F = E × F
˘

i∈I Ei =
⊕

i∈I Ei =
⋃

i∈I{i} × Ei

!E = ?X =Mfin(E )
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If t ∈ Rel(E ,F ) then
!t = {([a1, . . . , an], [b1, . . . , bn]) | n ∈ N and ∀i (ai , bi ) ∈ t}.

dE = {([a], a) | a ∈ E} ∈ Rel(!E ,E ) (dereliction)

pE = {(m1 + · · ·+ mn, [m1, . . . ,mn]) | n ∈ N and ∀i mi ∈
Mfin(E )} (digging)

wE = {([], ∗)} ∈ Rel(!E , 1) (weakening)

cE = {(l + r , (l , r)) | l , r ∈Mfin(E )} ∈ Rel(!E , !E ⊗ !E )
(contraction)
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Moreover, Rel is a model of differential linear logic:

dE = {(a, [a]) | a ∈ E} ∈ Rel(E , !E ) (codereliction), with
dE ◦ dE = IdE .

wE = {(∗, [])} ∈ Rel(1, !E ) (coweakening)

cE = {(l , r , l + r) | l , r ∈ !E} ∈ Rel(!E ⊗ !E , !E )
(cocontraction)
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(!E ,wE , cE ,wE , cE ) is a commutative bialgebra and moreover

E dE

((QQQQQQQQ

0

��
!E

wEvvmmmmmmmmm

1

E dE

**TTTTTTTTTTT

dE⊗wE+wE⊗dE

��
!E

cEuujjjjjjjj

!E ⊗ !E

(Leibniz)

E

!E

dE
hhQQQQQQQQ

1
wE

66mmmmmmmmm

0

OO E

!E

dE
jjTTTTTTTTTTT

!E ⊗ !E
cE

55jjjjjjjj

dE⊗wE+wE⊗dE

OO (Linearity)

And more properties.
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Scott semantics (Huth): the category Scott

Objects are preorders S = (|S |,≤S) (≤S preorder relation on |S |).
Define I(S) = {u ⊆ |S | | ∀a, a′ ∈ |S | a ≤S a′ ∈ u ⇒ a ∈ u}.

Scott(S ,T ) is the set of linear maps I(S)→ I(T ), that is, maps
preserving all unions.

S⊥ = Sop = (|S |,≥S)

S ⊗ T = S ` T = (|S | × |T |,≤S × ≤T )
˘

i∈I Si = (
⋃

i∈I{i} × |Si |,≤) with (i , a) ≤ (j , b) if i = j and
a ≤Si b⊕

i∈I Si =
˘

i∈I Si .

!S = (Pfin(|S |),≤!S) with u ≤!S u′ if ∀a ∈ u ∃a′ ∈ u′ a ≤S a′.
?S = (Pfin(|S |),≤?S) with u ≤?S u′ if ∀a′ ∈ u′ ∃a ∈ u a ≤S a′.
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Linear maps as relations

A linear map S → T can be seen as an element of
I(S⊥ ` T ) = I(Sop × T ), and composition of maps corresponds
to composition of relations.

IdS = {(a, a′) ∈ |S | × |S | | a′ ≤S a}.

As usual S ( T = S⊥ ` T .
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For a ∈ X and m ∈ !X , “a ∈ m” means that a occurs at least once
in m.

Notice: what is important is I(S), not S itself, and if we set
!S = (Mfin(|S |),≤!S) with m ≤!S m′ if ∀a ∈ m ∃a′ ∈ m′ a ≤S a′,
then we define the same I(!S). This is what we do now.

If t ∈ I(S ( T ), we define !t ∈ I(!S ( !T ) by

!t = {(m, p) ∈ |!S ( !T | | ∀b ∈ p∃a ∈ m (a, b) ∈ t}.

dS = {(m, a) | ∃a′ ∈ m a ≤S a′} ∈ I(!S ( S) (dereliction)

pS = {(m, [m1, . . . ,mn]) | n ∈ N∀i mi ≤!S m} ∈ I(!S ( !!S)
(digging)

wS = {(m, ∗) |∈ |!S |} ∈ I(!S ( 1) (weakening)

cS = {(m, (l , r)) | l ≤!S m and r ≤!S m} ∈ I(!S ( !S ⊗ !S)
(contraction).
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Scott is not a model of differential linear logic

There is no natural transformation dS ∈ I(S ( !S) such that
dS ◦ dS = IdS .

Not surprising: differential LL is essentially sensitive to the
quantitative features of proofs, and Scott semantics completely
cancels this aspect.
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Morphisms in the Kleisli category

In the Kleisli category of this comonad (over the category of
preorders and linear maps), a morphism S → T is exactly a Scott
continuous function I(S)→ I(T ).

This Kleisli category is a CCC.
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Comparison of LL formulae interpretations

We interpret the atomic formulae of LL in the same way in both
models (if α is interpreted by the set E in Rel, we represent it as
(E ,=E ) in the Scott model).

If A is a formula of LL,

E its interpretation in Rel

and S its interpretation in the Scott model,

then |S | = E . This is due to our definition of !S .
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Scott semantics as downwards closure

If π is a proof of A,

x ∈ P(E ) its relational interpretation

and u ∈ I(S) ⊆ P(E ) its Scott interpretation,

what is the connection between these two sets?

If π is cut-free, then one sees easily that u = ↓Sx . So this equation
extends to arbitrary LL proofs by cut-elimination and invariance of
the semantics.

How to extend this to extensions of LL where not all programs are
terminating (pure lambda-calculus, PCF etc)?
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Preorders with projections

The idea is to work with mixed objects X = (〈X 〉,D(X )) where

〈X 〉 is a preorder

D(X ) is a set of subsets of P(|〈X 〉|).

It will make sense to compute ↓x only for x ⊆ |〈X 〉| such that
x ∈ D(X ).

Given a “proof” π of X ,

the relational semantics x of π will belong to D(X )

and its Scott semantics will be ↓x ∈ I(〈X 〉).
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Main definition: orthogonality condition

Let S be a preorder and let x , x ′ ⊆ |S |.

We say that x and x ′ are S-dual if

x ′ ∩ ↓Sx 6= ∅ ⇒ x ′ ∩ x 6= ∅ .

This is equivalent to

↑Sx ′ ∩ x 6= ∅ ⇒ x ′ ∩ x 6= ∅ .

so that x and x ′ are S-dual iff x ′ and x are S⊥-dual.
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Let D ⊆ P(|S |), we set

D⊥(S) = {x ′ ⊆ |S | | ∀x ∈ D x and x ′ are S-dual}

so that one has D ⊆ D ′ ⇒ D ′⊥(S) ⊆ D⊥(S) and D ⊆ D⊥(S)⊥(Sop)

and hence D⊥(S) = D⊥(S)⊥(Sop)⊥(S).

A preorder with projection (PP) is a pair X = (〈X 〉,D(X )) where
〈X 〉 is a preorder and D(X ) ⊆ P(|〈X 〉|) is such that

D(X ) = D(X )⊥(S)⊥(Sop) (that is D(X ) ⊇ D(X )⊥(S)⊥(Sop))

So given x ⊆ |〈X 〉|, to check that x ∈ D(X ), it suffices to prove
that

∀x ′ ∈ D(X )⊥(S) x ′ ∩ ↓〈X 〉x 6= ∅ ⇒ x ′ ∩ x 6= ∅ .

Thomas Ehrhard LI 2012 About the extensional collapse of Rel



Some immediate consequences of the definition

I(〈X 〉) ⊆ D(X ) ⊆ P(|〈X 〉|).

If A ⊆ D(X ) then ∪A ∈ D(X ).

|〈X 〉| ∈ D(X ).
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Morphisms of PP

Let X and Y be PPs. We define a PP X ( Y by

〈X ( Y 〉 = 〈X 〉( 〈Y 〉 = 〈X 〉op × 〈Y 〉 (product preorder)

and, given t ⊆ |〈X 〉| × |〈Y 〉|, one has t ∈ D(X ( Y ) if, for

all x ∈ D(X ) and for all y ′ ∈ D(Y )⊥(〈Y 〉),

t ∩ (↓〈X 〉x × ↑〈Y 〉y ′) 6= ∅ ⇒ t ∩ (x × y ′) 6= ∅ .

In other words

D(X ( Y ) = {x × y ′ | x ∈ D(X ) and y ′ ∈ D(Y )⊥(〈Y 〉)}
⊥(〈X 〉×〈Y 〉op)

so that X ( Y defined in that way is a PP.
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Functional characterization of PP morphisms

Lemma

Let t ⊆ |〈X 〉| × |〈Y 〉|. One has t ∈ D(X ( Y ) iff, for any
x ∈ D(X ),

t x ∈ D(Y ) (where t x = {b | ∃a ∈ x (a, b) ∈ t})
t (↓〈X 〉x) ⊆ ↓〈Y 〉(t x).

From this, it follows easily that

Id|〈X 〉| ∈ D(X ( X ) (diagonal relation)

and, given s ∈ D(X ( Y ) and t ∈ D(Y ( Z ),
t ◦ s ∈ D(X ( Z ) (relational composition).

So we have defined a category PP with PP(X ,Y ) = D(X ( Y ).
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PP is a model of LL

X⊥ = (〈X 〉op,D(X )⊥(〈X 〉))

X ⊗ Y = (X ( Y⊥)
⊥

, in other words D(X ⊗ Y ) =

{x × y | x ∈ D(X ) and y ∈ D(Y )}⊥(〈X 〉×〈Y 〉)⊥(〈X 〉op×〈Y 〉op)

X ` Y = X⊥( Y

Next we define !X = {x ! | x ∈ D(X )}⊥(!〈X 〉)⊥((!〈X 〉)op)
where

x ! =Mfin(x).

It is essential to observe that (↓〈X 〉x)! = ↓〈!X 〉(x !).
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Functional characterization of Kleisli morphisms

Lemma

Let t ⊆ |〈!X ( Y 〉|, one has t ∈ D(!X ( Y ) iff, for any
x ∈ D(X ),

t x ! ∈ D(Y )

and t (↓〈X 〉x)! ⊆ ↓〈Y 〉(t x !).

Using this characterization, one shows that

If t ∈ D(X ( Y ) then !t = {([a1, . . . , an], [b1, . . . , bn]) | n ∈
N ∀i (ai , bi ) ∈ t} ∈ D(!X ( !Y )
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d|〈X 〉| = {([a], a) | a ∈ |〈X 〉|} ∈ D(!X ( X )

p|〈X 〉| = {(m1 + · · ·+ mn, [m1, . . . ,mn]) | n ∈ N, m1, . . . ,mn ∈
|〈!X 〉|} ∈ D(!X ( !!X )

w|〈X 〉| = {([], ∗)} ∈ D(!X ( 1)

c|〈X 〉| = {(l + r , (l , r)) | l , r ∈ |〈!X 〉|} ∈ D(!X ( !X ⊗ !X )

But one can check that, in general, d|〈X 〉| /∈ D(X ( !X ): PP is
not a model of differential LL.
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Realizability

Let X be a PP and let x ⊆ |〈X 〉| and u ∈ I(〈X 〉). Then we say
that x realizes u, notation x 
X u, if x ∈ D(X ) and ↓〈X 〉x = u.

Lemma

Let t ⊆ |〈!X ( Y 〉| and w ∈ I(〈!X ( Y 〉). One has t 
!X(Y w
iff, for all x ⊆ |〈X 〉| and all u ∈ I(〈X 〉)

x 
X u ⇒ t x ! 
Y w u!

w represents a Scott continuous function f : I(X )→ I(Y ), and
w u! = f (u). Using this lemma one can show that “The Scott
model of LL is the extensional collapse of the relational model”.
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Substructures

Given preorders S and S ′, we write S ⊆ S ′ if |S | ⊆ |S ′|, and

∀a, b ∈ |S | a ≤S b ⇔ a ≤S ′ b .

Given PPs X and X ′, we write X ⊆ X ′ if

〈X 〉 ⊆ 〈X ′〉
D(X ) ⊆ D(X ′)

∀x ′ ∈ D(X ′) x ′ ∩ |〈X 〉| ∈ D(X ) and (↓〈X ′〉x
′) ∩ |〈X 〉| ⊆

↓〈X 〉(x ′ ∩ |〈X 〉|).
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Then ⊆ is a partial order relation on PPs and the class of PPs,
ordered by this relation, is complete (all directed lubs exist).

All linear logic constructs are continuous wrt. this partial order,
including linear negation.

As an example, consider the operation Φ(X ) = (!X ( !X ). Then
Φ has a least fixpoint U which satisfies U = !U ( !U.

It is well known that such an object (in any categorical model of
LL) is a model of the cbv lambda-calculus (Girard’s “boring
translation”, Wadler).
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A cbv lambda-calculus

Values (notation P, Q. . . )

If x is a variable then x is a value

if M is a term and x is a value then λx M is a value

and terms (notation M, N. . . )

if P is a value then 〈P〉 is a term

if M and N are terms then M N is a term.

Substitution: if E is a term (resp. a value) and P is a value then
E [P/x ] is a term (resp. a value).

Reduction: 〈λx M〉 〈P〉 βV M [P/x ].
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Linear categorical semantics

Let L be a categorical model of LL (cartesian ∗-autonomous
category L with a comonad (!, dX : !X → X , pX : !X → !!X ) and
Seely isomorphisms !(X & Y ) ' !X ⊗ !Y ).

A linear model of cbv is a triple (U, app, lam) where U is an object
of L, app ∈ L(U, !U ( !U), lam ∈ L(!U ( !U,U) with
app ◦ lam = Id!U(!U .

Remark: the Kleisli category L! is a CCC and ! defines a strong
monad on L! so that this notion of model of cbv is compatible
with models based on strong monads.
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Interpretation of expressions

Given an expression E and a list of variables ~x = (x1, . . . , xn)
which is repetition free and contains all free variables of E , one
defines [E ]~x ∈ L(!U⊗n,X ) where X = U if E is a value and
X = !U if E is a term.
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Example: interpreting abstractions and value terms

If M is a term, then by inductive hypothesis
[M]~x ,x : !U⊗n ⊗ !U → !U. Using monoidal closedness we have
λ([M]~x ,x) : !U⊗n → (!U ( !U) and one sets

[λx M]~x = lam ◦ λ([M]~x ,x) : !U⊗n → U

If P is a value then by inductive hypothesis [P]~x : !U⊗n → U
and one sets

[〈P〉]~x = ![P]~x ◦ p : !U⊗n → !U

where p : !U⊗n → !(!U⊗n) is a generalization of the digging
morphism pX : !X → !!X .

If E βV E ′ then [E ]~x = [E ′]~x .
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A cbv finite resource calculus

We define simple expressions (values and terms).

If x is a variable then x is a simple value.

If t is a simple term and x is a variable then λx t is a simple
value.

If p1, . . . , pn are simple values then 〈p1, . . . , pn〉 is a simple
term (the order does not matter).

If s and t are simple terms then s t is a simple term.

A term is a finite sum of simple terms and a value is a finite sum
of simple values.

All constructions are extended to terms and values by linearity,
e.g. 〈p1 + p2, q〉 = 〈p1, q〉+ 〈p2, q〉.
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Reduction in the cbv resource calculus

Simple expressions reduce to expressions (of the same kind).

〈p1, . . . , pn〉 t βV 0 if n 6= 1

〈λx t〉 〈p1, . . . , pn〉 βV 0 is n 6= the number of free occurrences
of x in t.

〈λx t〉 〈p1, . . . , pn〉 βV
∑

f ∈Sn
t
[
p1/xf (1), . . . , pn/xf (n)

]
if t

has exactly n occurrences x1, . . . , xn of x .

Lemma

This calculus is Church-Rosser and strongly normalizing.
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Semantics

Assume that L is also a “weak model” of differential LL, which
means that:

products and coporducts coincide in L so that each homset
L(X ,Y ) has a canonical structure of commutative monoid (L
is additive).

There is a codereliction natural transformation dX ∈ L(X , !X )
such that dX ◦ dX = IdX .

Then coweakening wX : 1→ !X and cX : !X ⊗ !X → !X can be
defined using additivity of L and the Seely isomorphisms.
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The fact that (!X ,wX , cX ,wX , cX ) is a commutative bialgebra and
the required diagrams

X dX

((QQQQQQQQ

0

��
!X

wXvvmmmmmmmmm

1

X dX

**TTTTTTTTTTT

dX⊗wX +wX⊗dX

��
!X

cXttjjjjjjjj

!X ⊗ !X

(Leibniz)

X

!X

dX
hhQQQQQQQQ

1
wX

66mmmmmmmmm

0

OO X

!X

dX
jjTTTTTTTTTTT

!X ⊗ !X
cX

44jjjjjjjj

dX⊗wX +wX⊗dX

OO (Linearity)

are all for free: they result from the naturality of dX and dX .

Why “weak”? Because we don’t need here to say anything about
the interaction between dE and pE (chain rule).
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Given a cbv model (U, app, lam) in a weak model of differential
LL, we can interpret the resource calculus above.

Main tool: using cocontraction, coweakening and codereliction, we

can define for all n a morphism d
(n)
X : X⊗n → !X .

Given a simple expression e and a list of variables ~x = (x1, . . . , xn)
which is repetition free and contains all free variables of e, one
defines [e]~x ∈ L(!U⊗n,X ) where X = U if e is a value and X = !U
if e is a term.

For e =
∑k

i=1 ei sum of simple terms, we set of course

[e]~x =
∑k

i=1[ei ]
~x .
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Example: interpreting abstractions and value terms

If t is a simple term, then by inductive hypothesis
[t]~x ,x : !U⊗n ⊗ !U → !U. Using monoidal closedness we have
λ([t]~x ,x) : !U⊗n → (!U ( !U) and one sets

[λx t]~x = lam ◦ λ([t]~x ,x) : !U⊗n → U

If p1, . . . , pk are simple values then by inductive hypothesis
[pi ]

~x : !U⊗n → U and one sets

[〈p1, . . . , pk〉]~x = d
(k)
U ◦ ([p1]~x ⊗ · · · ⊗ [pk ]~x) ◦ c

where c : !U⊗n → (!U⊗n)
⊗k

is a generalization of the
contraction morphism cX : !X → !X ⊗ !X .

One proves easily that e βV e ′ ⇒ [e]~x = [e ′]~x .
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In PP, we have built an object U such that U = !U ( !U.

So U is a model of cbv in PP with app = Id and lam = Id and

Ur = |〈U〉| is a model of cbv in Rel (which is a weak model of
differential linear logic)

Us = 〈U〉 is a model of cbv in Scott (which is not a weak
model of differential linear logic)

Thomas Ehrhard LI 2012 About the extensional collapse of Rel



In Ur , we can interpret the cbv lambda-calculus, and also the cbv
finite resource calculus, and the Taylor expansion formula holds (in
Rel, sum of morphisms is just union). Here, it reads

[E ]~xr =
⋃
{[e]~x | e ∈ T (E )}

where T (E ) is defined as

T (x) = {x}
T (λx M) = {λx t | t ∈ T (M)}
T (〈P〉) = {〈p1, . . . , pn〉 | n ∈ N and p1, . . . , pn ∈ T (P)}
T (M N) = {s t | s ∈ T (M) and t ∈ T (N)}
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Corollary: a cbv sensitivity theorem

Let M be a closed term in the cbv lambda-calculus, and assume
that [M]s 6= ∅.

Since U is a model of cbv in PP, we have [M]r = [M] ∈ D(!U)
and, as a consequence,

[M]s = ↓〈!U〉([M]r ) .

Therefore [M]r 6= ∅.

But [M]r =
⋃
{[t] | t ∈ T (M)}, and hence there exists t ∈ T (M)

such that [t] 6= ∅.

Hence the normal form t0 of t, which is a finite set of normal values
of the cbv resource calculus, is non-empty. Indeed [t0] = [t] 6= ∅.

It follows easily (by mimicking on M the reduction of t) that M
reduces to a term of shape 〈P〉 where P is a closed value
(abstraction).
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This result can be proved by a reducibility method, that is, using a
logical relation which involves both syntax (the cbv
lambda-calculus) and semantics (the Scott model Us).

Here, reducibility is completely semantical (the main definition is
that of D(X )). It induces a well-behaved functor PP→ Scott.
Using this functor we get the equation [M]s = ↓〈!U〉([M]r ). The
rest of the proof is completely elementary and relies on Taylor
expansion and strong normalization of the resource calculus.

The same model PP can be used to prove similar results for the
Scott semantics of various lambda-calculi (PCF, cbn etc).
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