
Foundations of Session Types: 10 Years Later
Giuseppe Castagna

CNRS - IRIF
Université de Paris

France

Mariangiola Dezani-Ciancaglini
Dipartimento di Informatica

Università di Torino
Italy

Elena Giachino
Università di Bologna

Italy

Luca Padovani
Dipartimento di Informatica

Università di Torino
Italy

CCS CONCEPTS
• Theory of computation→ Process calculi; Type structures;
Operational semantics.

KEYWORDS
Concurrency, Communication-Centered Programming, Sessions
Types, Testing Equivalencies, Semantic Subtyping
ACM Reference Format:
Giuseppe Castagna,Mariangiola Dezani-Ciancaglini, ElenaGiachino, and Luca
Padovani. 2019. Foundations of Session Types: 10 Years Later. In Principles
and Practice of Programming Languages 2019 (PPDP ’19), October 7–9, 2019,
Porto, Portugal. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3354166.3356340

We were thrilled to know that our PPDP’09 paper “Foundations
of Session Types” [10] was selected for the PPDP Most Influential
Paper 10-Year Award. Just moments after being notified of this, we
couldn’t help looking at the works that cited—and in some cases
were inspired by—our own. The result is the following short note,
in which we recollect the main ideas behind our own work and
the related ones that followed. The tight gap between the award
notification and the deadline for the production of the PPDP’19
proceedings prevent us from providing an exhaustive survey of the
related literature and we apologize in advance for the conciseness
of our report and any relevant omission. Fortunately, there exist
recent surveys [2, 4, 14, 21] that may help the interested readers
orient themselves into the vast literature of session types as a whole.

Sessions and session types have proved to be extremely success-
ful concepts for the structuring and the analysis of communications
in distributed systems. A session is a private communication channel
through which participating processes, using the so-called ses-
sion endpoints, can communicate without interference from other
processes. This privacy property of sessions enables the modular
reasoning on complex systems, whereby each session is treated—
and typed—in isolation. Thus, it is relatively easy to conceive type

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPDP ’19, October 7–9, 2019, Porto, Portugal
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7249-7/19/10. . . $15.00
https://doi.org/10.1145/3354166.3356340

systems that ensure communication safety (only messages of the
expected type are exchanged), protocol fidelity (communication pro-
gresses according to a given sequence of input/output operations)
and under some additional assumptions also progress (the system
does not get stuck in a configuration with unperformed pending op-
erations). These type systems associate each session endpoint with
a session type, which essentially describes a communication proto-
col in terms of the sequence of operations a process is supposed
to perform on that endpoint. Most often, this protocol description
also contains branching points, whereby processes may choose
(internally) or offer (externally) different continuations, depending
on the value of a specific message that identifies a branch.

The milestone papers by Honda [17] and Honda et al. [18] intro-
duce binary sessions and binary session types along with the key
notion of duality. Duality captures the idea that peer endpoints of
the same (binary) session should be used, according to the respec-
tive session types, in complementary ways: where one session type
specifies the output of a message, its dual specifies the input of a
message with the same type; where one session type specifies an
internal choice, the dual one specifies an external choice. Ultimately,
duality ensures that the interaction between two channels typed
by dual session types will never get stuck.

Another notion that stems from type theory and that applies to
session types is that of subtyping: it is safe to use a value with typeT
whereby a valuewith type S is expected, provided thatT is a subtype
of S . Gay and Hole [15] were the first to study a notion of subtyping
for session types and their work has become a classic reference
in the session type literature. They proceed by first defining a
subtyping relation (in the particular case, using coinduction, since
session types may be recursive), and then proving that this relation
is sound (i.e., it does not compromise any of the safety properties
ensured by sessions) if used in the type system for a particular
process calculus.

Our goal in writing the PPDP’09 paper was to give a theory of
session types that was as much language independent as possible
and where all the relevant definitions, duality and subtyping in
particular, were semantically justified. Our approach was founded
on two key insights. The first one was the realization that duality
and subtyping are closely connected. Laneve and Padovani [22]
had already pinpointed remarkable connections between session
subtyping and testing equivalences for processes [12], where the
notion of duality between two session types can be generalized to
the relation between a process and a test. The second key insight

https://doi.org/10.1145/3354166.3356340
https://doi.org/10.1145/3354166.3356340
https://doi.org/10.1145/3354166.3356340

PPDP ’19, October 7–9, 2019, Porto, Portugal Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani

was inspired by the work of Frisch et al. [13], who had shown that
the notion of subtyping could emerge semantically, given a suitable
interpretation of types. If a type is interpreted as a set of values,
namely, as the set of all the possible results that the expressions
of that type may produce, then subtyping can be defined as result
containment: an expression of a given typeT can be safely used in a
context where an expression of type S is expected if and only if the
results that may be produced by that expression are less than—i.e.,
included in—those that the context can safely handle. This explains
why their approach is called semantic subtyping.

Transposing the notion of semantic subtyping from a traditional
setting (where types describe values) to sessions (where types de-
scribe protocols) requires defining a set-theoretic interpretation of
session types. Session types cannot be characterized by the set of
their results, insofar as typical sessions do not produce any result
but, rather, a set of possibly infinite interactions—more precisely,
a set of possibly infinite sequences of interaction offers. In our
PPDP’09 paper, the interpretation of a session type is taken to be
the set of its duals and two session types are related by subtyping if
and only if all dual types of the smaller type were dual of the larger
type as well. This construction is reminiscent of the realizability
semantics of constructive logic. In hindsight, this interpretation is
rather natural recalling that subtyping is a preorder relation defined
to capture “safe replacement”: every expression of a given type can
be safely (in the sense of Wright and Felleisen [29]) used wherever
an expression of a supertype is expected. Compared to the work on
semantic subtyping by Frisch et al. [13], in PPDP’09 we skip one
step, so to speak: instead of characterizing a type by a set of results
and, indirectly, a context by the set of results it can safely handle, we
directly characterized a type by the set of contexts that can safely
handle the interactions (i.e., the session type “results”) offered by
endpoints of that type. In light of that, it is then quite natural to
interpret a session type as the set of its dual session types, that is, as
the set of contexts that can safely handle the interactions offered by
that session type: this interpretation characterizes the interactions
that an endpoint of that session type may offer (trivially, the more
the dual types, the more the interactions the endpoint may produce).
We thus recover the “safe replacement” interpretation of subtyping:
an endpoint implementing a session type T can be safely used in a
context where an endpoint of a session type S is expected if and
only if the interactions it may offer are less than—i.e., included
in—those that the context can safely handle. Our transposition of
semantic subtyping to session types has subsequently inspired the
subtyping relations given by Bartoletti et al. [5] and Barbanera and
de’Liguoro [3]. Bejleri et al. [6] also model internal and external
choices according to the same intuition.

One of the most intriguing aspects of the PPDP’09 semantic
approach to the definition of session subtyping is the relationship
between the internal and external choice operators and the in-
tersection and union connectives. It turns out that, even though
intersection and internal choice play different roles, the former
being a pattern descriptor and the latter a behavioral operator,
their semantics coincide. This does not hold for union and external
choice however, since outputs in external choices behave like in
internal ones. Union and external choice instead perfectly match
in the simplified calculus of Padovani [25]. In the framework of the
logical interpretation of session types [9], Acay and Pfenning [1]

represent internal and external choices by intersection and union,
respectively.

A technical challenge of our approach is that the semantic inter-
pretation of session types is given by a labeled transition system
which uses the notion of duality. In turn, duality is defined by
means of the session type interpretation. We address this circular-
ity by means of a suitable stratification of session types. A similar
approach is adopted by Bono and Padovani [8], Barbanera and
de’Liguoro [3] and Hüttel [20], while the labeled transition system
of Bartoletti et al. [5] is first-order and populated by both processes
and types.

As an application of our theory, the PPDP’09 paper presents a
session type system for π -calculus processes where choices are
based on the type of exchanged messages, instead of relying on
labels. Notoriously, it is not trivial to guarantee the absence of
deadlock when processes are allowed to interact through more
than one session. Our solution makes use of a stack to constrain the
order in which sessions can be used: only the session on top of the
stack can communicate. Similar approaches to prevent deadlocks
are described by Padovani [24] and Spaccasassi and Koutavas [27,
28]. Subsequently, other approaches to prevent deadlocks and not
requiring an explicit ordering of sessions have emerged following
the logical interpretation of session types [9].

Related to the notion of subtyping is that of preciseness [23],
which requires to find a context expecting a term of type T and
a term of type S such that filling the context with the term “goes
wrong” whenever S is not a subtype of T . Preciseness for session
types is studied by Chen et al. [11] and Ghilezan et al. [16] refer-
ring to our PPDP’09 paper, since semantic subtyping is precise by
construction.

We conclude this note observing that two problems left open by
Castagna et al. [10] have now been solved. The first one is to allow a
channel to transmit a message containing itself, and in particular to
transmit just itself. Bernardi and Hennessy [7] give a set theoretic
model of session types without the need of stratification, so that
it becomes possible to type channels carrying themselves. The
second problem is the extension of the approach to multiparty
session types [19], which describe interactions between a fixed but
arbitrary number of processes. This extension has been developed
by Padovani [26], where session types can be composed also using
the parallel operator.

REFERENCES
[1] Cosku Acay and Frank Pfenning. 2016. Intersections and Unions of Session Types.

In Proceedings Eighth Workshop on Intersection Types and Related Systems, ITRS
2016, Porto, Portugal, 26th June 2016. (EPTCS), Naoki Kobayashi (Ed.), Vol. 242.
Open Publishing Association, Waterloo, Australia, 4–19. https://doi.org/10.4204/
EPTCS.242.3

[2] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna,
Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu,
Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,
Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and
Nobuko Yoshida. 2016. Behavioral Types in Programming Languages. Foundations
and Trends in Programming Languages 3, 2-3 (2016), 95–230. https://doi.org/10.
1561/2500000031

[3] Franco Barbanera and Ugo de’Liguoro. 2015. Sub-behaviour Relations for Session-
Based Client/Server Systems. Mathematical Structures in Computer Science 25, 6
(2015), 1339–1381. https://doi.org/10.1017/S096012951400005X

[4] Massimo Bartoletti, Ilaria Castellani, Pierre-Malo Deniélou, Mariangiola Dezani-
Ciancaglini, Silvia Ghilezan, Jovanka Pantovic, Jorge A. Pérez, Peter Thiemann,
Bernardo Toninho, and Hugo Torres Vieira. 2015. Combining Behavioural Types
with Security Analysis. J. Log. Algebr. Meth. Program. 84, 6 (2015), 763–780.

https://doi.org/10.4204/EPTCS.242.3
https://doi.org/10.4204/EPTCS.242.3
https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1017/S096012951400005X

Foundations of Session Types: 10 Years Later PPDP ’19, October 7–9, 2019, Porto, Portugal

https://doi.org/10.1016/j.jlamp.2015.09.003
[5] Massimo Bartoletti, Alceste Scalas, and Roberto Zunino. 2014. A Semantic Decon-

struction of Session Types. In CONCUR 2014 - Concurrency Theory - 25th Interna-
tional Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings (Lec-
ture Notes in Computer Science), Paolo Baldan and Daniele Gorla (Eds.), Vol. 8704.
Springer, New York, NY, 402–418. https://doi.org/10.1007/978-3-662-44584-6_28

[6] Andi Bejleri, Elton Domnori, Malte Viering, Patrick Eugster, and Mira Mezini.
2019. Comprehensive Multiparty Session Types. Programming Journal 3, 3 (2019),
6. https://doi.org/10.22152/programming-journal.org/2019/3/6

[7] Giovanni Bernardi and Matthew Hennessy. 2016. Using Higher-Order Contracts
to Model Session Types. Logical Methods in Computer Science 12, 2 (2016), 1–42.
https://doi.org/10.2168/LMCS-12(2:10)2016

[8] Viviana Bono and Luca Padovani. 2012. Typing CopylessMessage Passing. Logical
Methods in Computer Science 8, 1 (2012), 1–50. https://doi.org/10.2168/LMCS-8(1:
17)2012

[9] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear
Propositions. InCONCUR 2010 - Concurrency Theory, 21th International Conference,
CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings (Lecture
Notes in Computer Science), Paul Gastin and François Laroussinie (Eds.), Vol. 6269.
Springer, New York, NY, 222–236. https://doi.org/10.1007/978-3-642-15375-4_16

[10] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca
Padovani. 2009. Foundations of Session Types. In Proceedings of the 11th In-
ternational ACM SIGPLAN Conference on Principles and Practice of Declara-
tive Programming, September 7-9, 2009, Coimbra, Portugal, António Porto and
Francisco Javier López-Fraguas (Eds.). ACM, New York, NY, 219–230. https:
//doi.org/10.1145/1599410.1599437

[11] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko
Yoshida. 2017. On the Preciseness of Subtyping in Session Types. Logical Methods
in Computer Science 13, 2 (2017), 1–61. https://doi.org/10.23638/LMCS-13(2:
12)2017

[12] RoccoDeNicola andMatthewHennessy. 1984. Testing Equivalences for Processes.
Theor. Comput. Sci. 34 (1984), 83–133. https://doi.org/10.1016/0304-3975(84)90113-
0

[13] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic
Subtyping: Dealing Set-Theoretically with Function, Union, Intersection, and
Negation Types. J. ACM 55, 4 (2008), 19:1–19:64. https://doi.org/10.1145/1391289.
1391293

[14] Simon Gay and António Ravara (Eds.). 2017. Behavioural Types: from Theory
to Tools. River Publishers, Gistrup, Denmark. https://doi.org/10.13052/rp-
9788793519817

[15] Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the pi
calculus. Acta Inf. 42, 2-3 (2005), 191–225. https://doi.org/10.1007/s00236-005-
0177-z

[16] Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko
Yoshida. 2019. Precise Subtyping for Synchronous Multiparty Sessions. J. Log.
Algebr. Meth. Program. 104 (2019), 127–173. https://doi.org/10.1016/j.jlamp.2018.
12.002

[17] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th Inter-
national Conference on Concurrency Theory, Hildesheim, Germany, August 23-26,
1993, Proceedings (Lecture Notes in Computer Science), Eike Best (Ed.), Vol. 715.
Springer, New York, NY, 509–523. https://doi.org/10.1007/3-540-57208-2_35

[18] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language
Primitives and Type Discipline for Structured Communication-Based Program-
ming. In Programming Languages and Systems - ESOP’98, 7th European Symposium
on Programming, Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,
Proceedings (Lecture Notes in Computer Science), Chris Hankin (Ed.), Vol. 1381.
Springer, New York, NY, 122–138. https://doi.org/10.1007/BFb0053567

[19] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchro-
nous Session Types. J. ACM 63, 1 (2016), 9:1–9:67. https://doi.org/10.1145/2827695

[20] Hans Hüttel. 2016. Binary Session Types for Psi-Calculi. In Programming Lan-
guages and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, Novem-
ber 21-23, 2016, Proceedings (Lecture Notes in Computer Science), Atsushi Igarashi
(Ed.), Vol. 10017. Springer, New York, NY, 96–115. https://doi.org/10.1007/978-3-
319-47958-3_6

[21] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone,
Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio
Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of Session
Types and Behavioural Contracts. ACM Comput. Surv. 49, 1 (2016), 3:1–3:36.
https://doi.org/10.1145/2873052

[22] Cosimo Laneve and Luca Padovani. 2008. The Pairing of Contracts and Session
Types. In Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari on
the Occasion of His 65th Birthday (Lecture Notes in Computer Science), Pierpaolo
Degano, Rocco De Nicola, and José Meseguer (Eds.), Vol. 5065. Springer, New
York, NY, 681–700. https://doi.org/10.1007/978-3-540-68679-8_42

[23] Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal. 2017. On Subtyping-
Relation Completeness, with an Application to Iso-Recursive Types. ACM Trans.
Program. Lang. Syst. 39, 1 (2017), 4:1–4:36. https://doi.org/10.1145/2994596

[24] Luca Padovani. 2009. Session Types at the Mirror. In Proceedings 2nd Interaction
and Concurrency Experience: Structured Interactions, ICE 2009, Bologna, Italy, 31st
August 2009. (EPTCS), Filippo Bonchi, Davide Grohmann, Paola Spoletini, and
Emilio Tuosto (Eds.), Vol. 12. Open Publishing Association, Waterloo, Australia,
71–86. https://doi.org/10.4204/EPTCS.12.5

[25] Luca Padovani. 2010. Session Types = Intersection Types + Union Types. In
Proceedings Fifth Workshop on Intersection Types and Related Systems, ITRS 2010,
Edinburgh, U.K., 9th July 2010. (EPTCS), Elaine Pimentel, Betti Venneri, and Joe B.
Wells (Eds.), Vol. 45. Open Publishing Association, Waterloo, Australia, 71–89.
https://doi.org/10.4204/EPTCS.45.6

[26] Luca Padovani. 2012. On Projecting Processes into Session Types. Mathematical
Structures in Computer Science 22, 2 (2012), 237–289. https://doi.org/10.1017/
S0960129511000405

[27] Carlo Spaccasassi and Vasileios Koutavas. 2015. Complete Session Types In-
ference with Progress Guarantees for ML. CoRR abs/1510.03929 (2015), 1–30.
arXiv:1510.03929 http://arxiv.org/abs/1510.03929

[28] Carlo Spaccasassi and Vasileios Koutavas. 2016. Type-Based Analysis for Session
Inference (Extended Abstract). In Formal Techniques for Distributed Objects, Com-
ponents, and Systems - 36th IFIP WG 6.1 International Conference, FORTE 2016, Held
as Part of the 11th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings
(Lecture Notes in Computer Science), Elvira Albert and Ivan Lanese (Eds.), Vol. 9688.
Springer, New York, NY, 248–266. https://doi.org/10.1007/978-3-319-39570-8_17

[29] Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type
Soundness. Inf. Comput. 115, 1 (1994), 38–94. https://doi.org/10.1006/inco.1994.
1093

https://doi.org/10.1016/j.jlamp.2015.09.003
https://doi.org/10.1007/978-3-662-44584-6_28
https://doi.org/10.22152/programming-journal.org/2019/3/6
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.2168/LMCS-8(1:17)2012
https://doi.org/10.2168/LMCS-8(1:17)2012
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/1599410.1599437
https://doi.org/10.1145/1599410.1599437
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-319-47958-3_6
https://doi.org/10.1007/978-3-319-47958-3_6
https://doi.org/10.1145/2873052
https://doi.org/10.1007/978-3-540-68679-8_42
https://doi.org/10.1145/2994596
https://doi.org/10.4204/EPTCS.12.5
https://doi.org/10.4204/EPTCS.45.6
https://doi.org/10.1017/S0960129511000405
https://doi.org/10.1017/S0960129511000405
http://arxiv.org/abs/1510.03929
http://arxiv.org/abs/1510.03929
https://doi.org/10.1007/978-3-319-39570-8_17
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093

	References

