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We were thrilled to know that our PPDP’09 paper “Foundations
of Session Types” [10] was selected for the PPDP Most Influential
Paper 10-Year Award. Just moments after being notified of this, we
couldn’t help looking at the works that cited—and in some cases
were inspired by—our own. The result is the following short note,
in which we recollect the main ideas behind our own work and
the related ones that followed. The tight gap between the award
notification and the deadline for the production of the PPDP’19
proceedings prevent us from providing an exhaustive survey of the
related literature and we apologize in advance for the conciseness
of our report and any relevant omission. Fortunately, there exist
recent surveys [2, 4, 14, 21] that may help the interested readers
orient themselves into the vast literature of session types as a whole.

Sessions and session types have proved to be extremely success-
ful concepts for the structuring and the analysis of communications
in distributed systems. A session is a private communication channel
through which participating processes, using the so-called ses-
sion endpoints, can communicate without interference from other
processes. This privacy property of sessions enables the modular
reasoning on complex systems, whereby each session is treated—
and typed—in isolation. Thus, it is relatively easy to conceive type
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systems that ensure communication safety (only messages of the
expected type are exchanged), protocol fidelity (communication pro-
gresses according to a given sequence of input/output operations)
and under some additional assumptions also progress (the system
does not get stuck in a configuration with unperformed pending op-
erations). These type systems associate each session endpoint with
a session type, which essentially describes a communication proto-
col in terms of the sequence of operations a process is supposed
to perform on that endpoint. Most often, this protocol description
also contains branching points, whereby processes may choose
(internally) or offer (externally) different continuations, depending
on the value of a specific message that identifies a branch.

The milestone papers by Honda [17] and Honda et al. [18] intro-
duce binary sessions and binary session types along with the key
notion of duality. Duality captures the idea that peer endpoints of
the same (binary) session should be used, according to the respec-
tive session types, in complementary ways: where one session type
specifies the output of a message, its dual specifies the input of a
message with the same type; where one session type specifies an
internal choice, the dual one specifies an external choice. Ultimately,
duality ensures that the interaction between two channels typed
by dual session types will never get stuck.

Another notion that stems from type theory and that applies to
session types is that of subtyping: it is safe to use a value with typeT
whereby a valuewith type S is expected, provided thatT is a subtype
of S . Gay and Hole [15] were the first to study a notion of subtyping
for session types and their work has become a classic reference
in the session type literature. They proceed by first defining a
subtyping relation (in the particular case, using coinduction, since
session types may be recursive), and then proving that this relation
is sound (i.e., it does not compromise any of the safety properties
ensured by sessions) if used in the type system for a particular
process calculus.

Our goal in writing the PPDP’09 paper was to give a theory of
session types that was as much language independent as possible
and where all the relevant definitions, duality and subtyping in
particular, were semantically justified. Our approach was founded
on two key insights. The first one was the realization that duality
and subtyping are closely connected. Laneve and Padovani [22]
had already pinpointed remarkable connections between session
subtyping and testing equivalences for processes [12], where the
notion of duality between two session types can be generalized to
the relation between a process and a test. The second key insight
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was inspired by the work of Frisch et al. [13], who had shown that
the notion of subtyping could emerge semantically, given a suitable
interpretation of types. If a type is interpreted as a set of values,
namely, as the set of all the possible results that the expressions
of that type may produce, then subtyping can be defined as result
containment: an expression of a given typeT can be safely used in a
context where an expression of type S is expected if and only if the
results that may be produced by that expression are less than—i.e.,
included in—those that the context can safely handle. This explains
why their approach is called semantic subtyping.

Transposing the notion of semantic subtyping from a traditional
setting (where types describe values) to sessions (where types de-
scribe protocols) requires defining a set-theoretic interpretation of
session types. Session types cannot be characterized by the set of
their results, insofar as typical sessions do not produce any result
but, rather, a set of possibly infinite interactions—more precisely,
a set of possibly infinite sequences of interaction offers. In our
PPDP’09 paper, the interpretation of a session type is taken to be
the set of its duals and two session types are related by subtyping if
and only if all dual types of the smaller type were dual of the larger
type as well. This construction is reminiscent of the realizability
semantics of constructive logic. In hindsight, this interpretation is
rather natural recalling that subtyping is a preorder relation defined
to capture “safe replacement”: every expression of a given type can
be safely (in the sense of Wright and Felleisen [29]) used wherever
an expression of a supertype is expected. Compared to the work on
semantic subtyping by Frisch et al. [13], in PPDP’09 we skip one
step, so to speak: instead of characterizing a type by a set of results
and, indirectly, a context by the set of results it can safely handle, we
directly characterized a type by the set of contexts that can safely
handle the interactions (i.e., the session type “results”) offered by
endpoints of that type. In light of that, it is then quite natural to
interpret a session type as the set of its dual session types, that is, as
the set of contexts that can safely handle the interactions offered by
that session type: this interpretation characterizes the interactions
that an endpoint of that session type may offer (trivially, the more
the dual types, the more the interactions the endpoint may produce).
We thus recover the “safe replacement” interpretation of subtyping:
an endpoint implementing a session type T can be safely used in a
context where an endpoint of a session type S is expected if and
only if the interactions it may offer are less than—i.e., included
in—those that the context can safely handle. Our transposition of
semantic subtyping to session types has subsequently inspired the
subtyping relations given by Bartoletti et al. [5] and Barbanera and
de’Liguoro [3]. Bejleri et al. [6] also model internal and external
choices according to the same intuition.

One of the most intriguing aspects of the PPDP’09 semantic
approach to the definition of session subtyping is the relationship
between the internal and external choice operators and the in-
tersection and union connectives. It turns out that, even though
intersection and internal choice play different roles, the former
being a pattern descriptor and the latter a behavioral operator,
their semantics coincide. This does not hold for union and external
choice however, since outputs in external choices behave like in
internal ones. Union and external choice instead perfectly match
in the simplified calculus of Padovani [25]. In the framework of the
logical interpretation of session types [9], Acay and Pfenning [1]

represent internal and external choices by intersection and union,
respectively.

A technical challenge of our approach is that the semantic inter-
pretation of session types is given by a labeled transition system
which uses the notion of duality. In turn, duality is defined by
means of the session type interpretation. We address this circular-
ity by means of a suitable stratification of session types. A similar
approach is adopted by Bono and Padovani [8], Barbanera and
de’Liguoro [3] and Hüttel [20], while the labeled transition system
of Bartoletti et al. [5] is first-order and populated by both processes
and types.

As an application of our theory, the PPDP’09 paper presents a
session type system for π -calculus processes where choices are
based on the type of exchanged messages, instead of relying on
labels. Notoriously, it is not trivial to guarantee the absence of
deadlock when processes are allowed to interact through more
than one session. Our solution makes use of a stack to constrain the
order in which sessions can be used: only the session on top of the
stack can communicate. Similar approaches to prevent deadlocks
are described by Padovani [24] and Spaccasassi and Koutavas [27,
28]. Subsequently, other approaches to prevent deadlocks and not
requiring an explicit ordering of sessions have emerged following
the logical interpretation of session types [9].

Related to the notion of subtyping is that of preciseness [23],
which requires to find a context expecting a term of type T and
a term of type S such that filling the context with the term “goes
wrong” whenever S is not a subtype of T . Preciseness for session
types is studied by Chen et al. [11] and Ghilezan et al. [16] refer-
ring to our PPDP’09 paper, since semantic subtyping is precise by
construction.

We conclude this note observing that two problems left open by
Castagna et al. [10] have now been solved. The first one is to allow a
channel to transmit a message containing itself, and in particular to
transmit just itself. Bernardi and Hennessy [7] give a set theoretic
model of session types without the need of stratification, so that
it becomes possible to type channels carrying themselves. The
second problem is the extension of the approach to multiparty
session types [19], which describe interactions between a fixed but
arbitrary number of processes. This extension has been developed
by Padovani [26], where session types can be composed also using
the parallel operator.
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