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Abstract. In this essay I present the advantages and, I dare say, the beauty of pro-
gramming in a language with set-theoretic types, that is, types that include union,
intersection, and negation type connectives. I show by several examples how set-
theoretic types are necessary to type some common programming patterns, but also
how they play a key role in typing several language constructs—from branching
and pattern matching to function overloading and type-cases—very precisely.

I start by presenting the theory of types known as semantic subtyping and extend
it to include polymorphic types. Next, I discuss the design of languages that use
these types. I start by defining a theoretical framework that covers all the examples
given in the first part of the presentation. Since the system of the framework can-
not be effectively implemented, I then describe three effective restrictions of this
system: (i) a polymorphic language with explicitly-typed functions, (ii) an implic-
itly typed polymorphic language à la Hindley-Milner, and (iii) a monomorphic
language that, by implementing classic union-elimination, precisely reconstructs
intersection types for functions and implements a very general form of occurrence
typing.

I conclude the presentation with a short overview of other aspects of these lan-
guages, such as pattern matching, gradual typing, and denotational semantics.

1 Introduction

In this essay we present the use of set-theoretic types in programming languages and
outline their theory. Set theoretic types include union types t1 ∨ t2, intersection types
t1 ∧ t2, and negation types ¬t. In strict languages it is sensible to interpret a type as the
set of values that have that type (e.g., Bool is interpreted as the set containing the values
true and false). Under this assumption, then, t1 ∨ t2 is the set of values that are either
of type t1 or of type t2; t1 ∧ t2 is the set of values that are both of type t1 and of type t2;
¬t is the set of all values that are not of type t. Set-theoretic types are polymorphic when
they include type variables (that we range over by Greek letters, α , β ,. . . ).

To give an idea of the kind of programming that set-theoretic types enable and that
we describe in this article, consider the classic recursive flatten function that transforms
arbitrarily nested lists in the list of their elements. In a ML-like language with pattern
matching it can be defined as simply as
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let rec flatten = function
| [] -> []
| h::t -> (flatten h)@(flatten t)
| x -> [x]

The function flatten returns the empty list [ ] when its argument is an empty list; if its
argument is a non-empty list, then it flattens the argument’s head h and tail t and returns
the concatenation (denoted by @) of the results; if its argument is not a list (i.e., the first
two patterns do not match), then flatten returns the list containing just the argument.

The flatten function is completely polymorphic: it can be applied to any argument
and, if lists are finite, always terminates. Although its semantics is easy to understand,
giving a simple and general polymorphic type to this function (i.e., a type that, with-
out complex metaprogramming constructions, allows the function to be applied to every
well-typed argument) defies all existing programming languages [29] with a single ex-
ception: CDuce [17]. This is because CDuce is a language that uses a complete set of
set-theoretic type connectives and we need all of them (union, intersection, and nega-
tion) to define Tree(α), the type of nested lists whose elements are of type α:

type Tree(α) = (α\List(Any)) | List(Tree(α))

in this type definition “|” denotes a union, “\” difference (i.e., intersection with the
negation: t1\t2 =def t1 ∧¬t2), List(t) is the type of lists of elements of type t, and Any

is the type of all values, so that List(Any) is the type of any list.1 In words, Tree(α)

is the type of nested lists whose leaves (i.e., the elements that are not lists) have type α .
Thus it is either a leaf or a list of Tree(α). Then, it just suffices to annotate flatten

with the right type
let rec flatten: Tree(α)→List(α) = function ...

for the definition to type-check in CDuce. In other terms, in CDuce the above definition of
flatten is of type ∀α.Tree(α)→List(α). The important point is that whatever the
type of the argument of flatten is, the application is always well-typed: if the argument
is not a list, then α is instantiated to the type of the argument; if it is a list, then it is also
a nested list, and α is instantiated with the union of the types of the non-list elements of
this nested list. In other terms, flatten can be applied to expressions of any type and the
type inferred for such an application is List(t) where the type t is the union of the types
of all the leaves of the argument, a non-list argument being itself a leaf. For instance, the
type statically deduced for the application

flatten [3 "r" [4 [true 5]] ["quo" [[false] "stop"]]]

is List(Int|Bool|String).2

1 We mainly use “&”, “|”, and “\” in code snippets for intersections, unions, and differences and
reserve “∨” , “∧”, and “¬” for formal types.

2 CDuce syntax is actually slightly different. The valid CDuce code for our example is:
type Tree('a) = ('a\[Any*]) | [ (Tree('a))* ]

let flatten ( (Tree('a)) -> [ 'a* ] )
| [] -> []
| [h;t] -> (flatten h)@(flatten t)
| x -> [x]

and the type deduced by CDuce for the application is more precise than the above since it is: [
(Bool | 3--5 | 'o'--'u')* ] (“--” is for intervals and [t*] for lists of t elements).
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The overall type inference system is quite expressive: it types more expressions or
gives more precise types (but worse error messages) than typical core-ML systems. How-
ever, such a deduction is possible only because the function flatten is explicitly typed:
fail to specify the type annotation Tree(α)→List(α) and flatten will be rejected
by all existing type-checking systems.

That current type-systems cannot infer a type as sophisticated as the type of flatten
without an explicit annotation is not surprising, since its definition combines the full
palette of set-theoretic connectives (union, intersection, and negation) and recursive types.
However, an important limitation of current programming languages is that none of them
is able to infer intersection types for functions without explicit annotations. So while any
ML-like language can deduce for

let not = fun x -> if x then false else true

the type Bool→Bool, current languages with intersection types cannot deduce for the
same function the more precise type (true→false)&(false→true) (where true

and false denote the singleton types containing the respective values) without being
instructed to do so by an explicit type annotation. The latter type is an intersection of
types, meaning that not has both type true→false and type false→true. The in-
tersection type is more precise than the type Bool→Bool: it states that when not is ap-
plied to an expression of type true, the result is not only a Boolean but actually false,
and likewise for arguments of type false. As we show later on, this degree of “preci-
sion” between two types is formally defined since (true→false)&(false→true)

is a strict subtype of Bool→Bool: every function of the former type is also of the
latter type, but not viceversa. Actually, if we adopt for if-then-else a semantics simi-
lar to the one in JavaScript, that is, we consider every value different from false to be
“truthy” (i.e., equivalent to true), then an even better intersection type for not would
be (¬false→false)&(false→true) which completely specifies the behavior of the
function since the function not above returns false for every argument that is not
false (i.e., for “truthy” values such as 42). The more precise is a type the fewer functions
it types, the most precise type being one that, as (¬false→false)&(false→true)

completely defines the semantics of a function.3

We will discuss recent systems by Castagna et al. [15, 14] that are able to deduce
the most precise intersection type for the definition of not even without any annotation.
This inference is obtained by considering the conditional in the definition of not akin
to a type-case that tests whether x is of type ¬false or not. The body of not is then
analyzed separately under the hypotheses that x has type ¬false and ¬¬false (i.e.,
false), yielding the corresponding intersection type. This is performed also for multiple
arguments, allowing the cited systems to deduce for

let and = fun x y ->

if x then (if y then false else true) else false

3 For the sake of precision, JavaScript considers being “truthy” every value different from the
eight specific “falsy” values (false, "", 0, -0, 0n, undefined, null, and NaN). Both types can
be defined by using union and negation:
type Falsy = false | "" | 0 | -0 | 0n | undefined | null | NaN

type Truthy = ¬Falsy
and the type to be deduced for not would then be (Truthy→false)&(Falsy→true).
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the following type:
(false→Any→false) & (¬false→ ((¬false→true)&(false→false))).

This type completely specifies the semantics of and : if the first argument is false, then
the result will be false for a second argument of any type; if the first argument is not
false, then the result will be true for a second argument not false, and false oth-
erwise. It is important to notice that the analysis performed in [15, 14] is type-theoretic
rather than syntactic: the arrows forming the intersection type of a function are not deter-
mined by a syntactic recognition of type-cases, but are inferred from the types involved
in the definition of the function. To illustrate the advantages of a type-based approach
over a syntactic one it suffices to consider the following definition of or that combines
the previous not and and definitions according to De Morgan’s laws:

let or = fun x y -> not (and (not x) (not y))

The type (¬false→Any→true) & (false → ((¬false→true)&(false→false)))

is deduced for this definition despite that no branching appears in it. For the same reasons
we could equivalently define the previous and function using a double call to not so
that a second argument that is not false yields true:

let and = fun x y -> if x then not (not y) else false

and obtain the same type as for the previous definition of and .
The ultimate goal of the research we present in this article is to define a programming

language whose type-inference subsumes ML-core type-inference, that can also deduce
intersections of arrows types for implicitly-typed functions such as not , and , and or ,
and where the programmer would be obliged to specify type annotations only in partic-
ular cases, such as for flatten. Unfortunately, while there exist systems that provide
some of these features, it is not currently possible to have all of them simultaneously in
a unique language, as we discuss in Section 4.

ROADMAP. This article aims at giving a rather comprehensive—though, high-level—
presentation of the current status of the research on set-theoretic types and semantic
subtyping and it was written with a sequential reading in mind. However, other reading
paths are possible: here we provide a roadmap through the remaining sections of this
presentation and suggest two such reading paths.

Section 2 provides some general examples and motivations for using set-theoretic
types. In particular, it shows the use of set-theoretic types to type programming features
and idioms, such as pattern matching, occurrence typing, and function overloading.

Section 3 is devoted to types. It starts by showing some of the limitations of syntac-
tic approaches for union and intersection types (§3.1), limitations that justify the use of
a semantic approach. Next, we describe the semantic subtyping approach: we interpret
types as sets, and use this interpretation to define the subtyping relation which, in turn,
characterizes union and intersection types; the difficult part of the definition is the inter-
pretation of function types and recursive types (§3.2). Finally, we extend the semantic
subtyping approach to polymorphic types by adding type variables to types (§3.3).

Section 4 is devoted to languages. We present various languages that use set-theoretic
types. We start with a theoretical language that can express and type all the examples
given in this work (§4.1). The theoretical language is powerful but its typing is not effec-
tive, therefore we describe three practical systems that partially implement this theoret-
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ical language, each implementation being the result of a certain number of choices and
trade-offs that we will discuss. The first language is an explicitly typed version of the the-
oretical language (§4.2)—in practice, it is the functional core of polymorphic CDuce—
and, as such, it gives up type reconstruction. The second language is implicitly typed, its
type system performs type reconstruction, but it cannot infer intersections of arrow types
(§4.3): it gives up function overloading. The third one uses techniques developed for oc-
currence typing to perform reconstruction for intersection types (of arrow types, too) but
only for types without type variables (§4.4): it gives up parametric polymorphism.

Section 5 explores three further aspects of this research: pattern matching (§5.1),
where we show how set-theoretic types enable precise typing for pattern-matching ex-
pressions and how they can be used to define properties such as exhaustiveness and re-
dundancy; gradual typing (§5.2), where we show that by using set-theoretic type con-
nectives we can give a surprising characterization of gradual types (i.e., types that use
an unknown or dynamic type identifier to establish a boundary between static and dy-
namic typing) in terms of non-gradual ones; denotational semantics (§5.3), where we
show that the interpretation for types introduced in §3.2 to define semantic subtyping
can be adapted to give a set-theoretic denotational semantics to the language CDuce.

The practical-oriented reader will start with the general motivations of Section 2 and
then proceed with the first part of Section 3 (stopping at the end of §3.1) to have an
idea of the limitations of current syntactic approaches. The reader will then proceed to
Section 4 till the end of §4.2 but taking care of skipping the more theoretic subsections,
namely, §4.1.1 and §4.1.2. Finally, the practical-oriented reader may also be interested
in exploring §5.1 which shows the subtleties of using set-theoretic types to type pattern-
matching expressions, and §5.2 which gives an aperçu of gradual typing and shows how
this technique benefits from the integration of set-theoretic types.

The theoretical-oriented reader can skim through Section 2, then jump directly to
§3.2 which sets the groundwork for the semantic subtyping approach, and next proceed
with §3.3 for polymorphic types. The reader will then continue with Section 4, first by
studying the theoretical language of §4.1 and then choosing the next topic(s) according
to her/his particular interests: §4.2 for a more programming-oriented presentation; §4.3
for type reconstruction by constraint generation and solving; §4.4 for a more cutting edge
approach to union types and their elimination rule. The reader will conclude with §5.3
on the denotational semantics of CDuce.

Both reading paths are summarized below, the former in red and the latter in blue.

2. Motivations

General
motivations for

set-theoretic
types

3. Types

Section 3.1
Limitations of the
synctatic approach

Section 3.2
Monomorphic

semantic subtyping

Section 3.3
Polymorphic

semantic subtyping

4. Languages

Section 4.1.
Theoretical language

with declarative
(non effective)

type system

Section 4.2
Explicitly-typed
language (Poly-
morphic CDuce)

Section 4.3
Type reconstruc-

tion à la ML

Section 4.4
Occurrence typing
and reconstruction

of intersections

5. Further Features

Section 5.1
Pattern matching

Section 5.2
Gradual Typing

Section 5.3
Denotational

semantics
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2 Motivations

In the previous section we gave few specific examples of use of polymorphic set-theoretic
types. One of the key features of these types that makes them versatile is that they en-
compass all the three main forms of polymorphism, namely:

Parametric polymorphism: which describes code that can act uniformly on any type,
using type variables that can be instantiated with the appropriate type (e.g., typing the
identity function as ∀α.α → α). In this article we consider only the so-called prenex
or second-class polymorphism (in the sense of [31]) where variable quantification
cannot appear below type constructors or type connectives.

Ad-hoc polymorphism: which allows code that can act on more than one type, possibly
with different behavior in each case, as in function overloading (e.g., allowing + to
have both types Int× Int→ Int and String×String→String, corresponding
to different implementations).

Subtype polymorphism: which creates a hierarchy of more or less precise types for the
same code allowing it to be used wherever any of these type is expected (e.g., typing
3 as both Int and Real, with Int≤Real).

In this section we reframe polymorphic set-theoretic types in a more general setting
showing how these types allow us to type several features and idioms of programming
languages effectively. We illustrate this with some examples.

UNION TYPES: The simplest use cases for union types include branching constructs.
In a language with union types, we can type precisely conditionals that return results of
different types: for instance, if e then 3 else true has type Int∨Bool (provided
that e has type Bool). Without union types, it could have an approximated type (e.g., a
top type) or be ill-typed. Similarly, we can use union types for structures like lists that
mix different types: we already saw an example of this in the previous section when an
application of flatten returned the list [3 "r" 4 true 5 "quo" false "stop"]

of type List(Int|Bool|String).
This makes union types invaluable to design type systems for existing untyped lan-

guages: witness for example their inclusion in Typed Racket [59] which allows the in-
cremental addition of statically-checked type annotations on a dialect of Scheme and in
TypeScript [43] and Flow [21] which extend JavaScript with static type checking.

FUNCTION OVERLOADING: We can use intersection types to assign more than one type
to an expression. This is particularly relevant for functions. We have already seen it
in the previous section for the functions not , and , and or . But even the simple
identity function can be typed as (Int→Int)∧ (Bool→Bool): this means it has both
types Int→Int and Bool→Bool, because it maps integers to integers and Booleans
to Booleans. This type describes a uniform behavior over two different argument types
(the function uniformly maps an argument into itself independently from the argument’s
type), which can also be described using parametric polymorphism. However, intersec-
tion types let us express ad-hoc polymorphism (i.e., function overloading) if coupled with
some mechanism that allows functions to test the type of their arguments. For example,
let (e∈t)?e1 :e2 be the type-case expression that first evaluates e to a value v and con-
tinues as e1 if v is of type t, and as e2 otherwise. The function λx.(x∈Int)?(x+1) :¬x
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checks whether its argument x is an Int and returns the successor of x in that case, and
the Boolean negation (hereinafter denoted by “¬”) of x otherwise. The function can be
applied to integers, returning their successor, and to Booleans, returning their negation.
This behavior can be described by the same type (Int→ Int)∧ (Bool→ Bool) used
for the identity function, but does not correspond to parametric behavior.

A function of type (t1 → t ′1)∧ (t2 → t ′2) can be safely applied to any argument of type
t1 ∨ t2, since it is defined on both t1 and t2. We know that the result will always have type
t ′1 ∨ t ′2. However, if we know the type of the argument more precisely, we can predict
the type of the result more precisely: for example, if the argument is of type t1, then the
result will be of type t ′1. So the intersection type of the function λx.(x∈Int)?(x+1) :¬x
allows us to deduce that its application to an integer will return an integer.

We said that the type (Int→Int)∧ (Bool→Bool) can be assigned to the identity
function and expresses parametric behavior. In this respect, we can see intersection types
as a finitary form of parametric polymorphism; however, they are not constrained to
represent uniform behavior, as our other example illustrates. Conversely, we could see
a polymorphic type (or type scheme) ∀α.α → α as an infinite intersection (intuitively,∧

t∈Types t → t, where Types is the set of all types), but infinite intersections do not actu-
ally exist in our types.

OCCURRENCE TYPING: Occurrence typing or flow typing [60, 47, 18] is a typing tech-
nique pioneered by Typed Racket that uses the information provided by a type test to
specialize the type of some variables in the branches of a conditional. For example, if x
is of type Int∨Bool, then to type the expression (x∈Int)?e1 :e2 we can assume that
the occurrences of x in e1 have type Int and those in e2 have type Bool, because the first
branch will only be reached if x is an Int and the second if it is not an Int (and is there-
fore a Bool). Intersection and negation types are useful to describe this type discipline.
If we test x for the type Int as in our example, then we can assign to x the type Int if
the test succeeds and ¬Int if it fails. Using intersections, we can add this information
to what we already knew, so the type of x is (Int∨Bool)∧Int (which is equivalent to
Int) in the first branch and (Int∨ Bool)∧¬Int (which is equivalent to Bool) in the
second branch. We already implicitly used this technique when, earlier in this section,
we said that λx.(x∈Int)?(x+ 1) :¬x is of type (Int→ Int)∧ (Bool→ Bool) since
we must assume that x is of type Int to type x+1 and that it is of type Bool to type ¬x:
we took into account the result of the type-test.

This method of refining types according to conditionals is important in type systems
for dynamic languages and in those that enforce null safety: some examples include
Ceylon [39], Dart [28], Flow, Kotlin [38], Typed Racket, TypeScript, and Whiley [48]. In
particular, Ceylon relies on intersection types [39, 44] and Whiley on both intersection
and negation types [47].

This same method is at the basis of the systems by Castagna et al. [15, 14] we cited
in the introduction as the sole capable of inferring intersection of arrow types for func-
tions without needing explicit type annotations. These systems use the characteristics
of set-theoretic types, as outlined above, to implement and generalize occurrence typ-
ing and decide how to split the type analysis to deduce intersection types for function
expressions, as we detail in Section 4.4.
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ENCODING DISJOINT UNION TYPES: Disjoint union types (also known as variant or
sum types) are an important feature of functional programming languages. They can be
encoded using union types and product (or record, or object) types. It is also useful to
have singleton types, that is, types that correspond to a single value as we already saw
with the two types true and false for the respective constants, both subtypes of the
Boolean type (which we can then see as equivalent to the union true∨false).

For instance, consider this example in Flow.4

type Success = { success: true, value: boolean }
type Failed = { success: false, error: string }
type Response = Success | Failed

function handleResponse(response: Response) {
if (response.success) { var value: boolean = response.value }
else { var error: string = response.error }

}

The type Response is the union (denoted by |) of two object types: both have a Boolean
field success, but the types state that success must be true for objects of type Success and
false for objects of type Failure. An analogous type could be declared in OCaml as type
response = Success of bool | Failed of string. Occurrence typing is used
to distinguish the two cases, like pattern matching could do in ML: if response.success
is true, then response must be of type Success; if it is false, response must be of type
Failure.

ENCODING BOUNDED POLYMORPHISM: Using union and intersection types, we can
encode bounded polymorphism without adding specific syntax for the bounds in quan-
tifications. For example, a type scheme with bounded polymorphism is ∀(α ≤ t).α → α:
it describes functions that can be applied to arguments of any subtype of t and that return
a result of the same type as the argument. Using intersection types, we can write this
type scheme as ∀α.(α ∧ t)→ (α ∧ t), writing the bound on the occurrences of the type
variable and not on the quantifier: as the previous type scheme it accepts only arguments
of a type smaller than t and returns results of the same type.5 Analogously, we can use
union types to represent lower bounds: in general, a bound t ′ ≤ α ≤ t on a type variable
can be eliminated by replacing every occurrence of α in the type with t ′∨ (α ∧ t), yield-
ing bounded quantifications of the form ∀(t ′≤α≤t).t ′′. Notice however that the form of
bounded polymorphism we obtain by this encoding is limited, insofar as two bounded
types may be in subtyping relation only if they have the same bounds,6 yielding a second-
class polymorphism more akin to Fun [3] (where ∀(α≤s1).t1 ≤ ∀(α≤s2).t2 is possible

4 This example is copied verbatim from the documentation of Flow, available at https://flow.
org/en/docs/types/unions.

5 Of course, the syntax ∀(α ≤ t).α → α is likely to be clearer to a programmer and should be
privileged. The point is that set-theoretic types provide all is needed to account for bounded
polymorphism without the need to add new machinery or rules for this sort of typing.

6 This is necessary only for bounded variables that occur in the type both in covariant and in
contravariant positions. Notice however that variables that do not satisfy this property can be
easily eliminated by replacing Any for all covariantly-only occurring variables, and ¬Any for all
contravariantly-only occurring ones.

https://flow.org/en/docs/types/unions
https://flow.org/en/docs/types/unions
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only for s1 = s2) than to F<: [4] (which allows ∀(α≤s1).t1 ≤∀(α≤s2).t2 even for s1 ̸= s2,
typically s2 ≤ s1).

As a concrete example, consider again the flatten function of the introduction.
We can give this function a type slightly more precise than the one in the introduction
by using the annotation Tree(α)→List((α\List(Any))) which states that the ele-
ments of the resulting list cannot be themselves lists: the list is flat. With such an anno-
tation the current version of polymorphic CDuce deduces for flatten the (equivalent)
type ∀α.Tree(α\List(Any)))→List((α\List(Any))). Since t1\ t2 = t1∧¬t2, this
corresponds to the bounded quantification ∀(α ≤ ¬List(Any)).Tree(α)→List(α)

stating that α can be instantiated with any type that is not a list (though the domain
Tree(α) can still match any type).

TYPING PATTERN MATCHING: Pattern matching is widely used in functional program-
ming. However, using pattern matching in ML-like languages, we can write functions
that cannot be given an exact domain in the type system. For instance, the OCaml code

let f = function 0 -> true | 1 -> false

defines a function that can only be applied to the integers 0 and 1, but OCaml infers the
unsafe type int → bool (albeit with a warning that pattern matching is not exhaustive).
The precise domain cannot be expressed in OCaml. Using set-theoretic types and single-
ton types, we can express it precisely as 0∨1. Furthermore, we can use the inference of
intersection of arrows we outlined in the introduction, which for the function f gives the
type (0→true)&(1→false) which completely defines the semantics of f.

More generally, set-theoretic types are a key ingredient to achieve a precise typing
of pattern matching. For instance, in a language as CDuce the set of values that match a
given pattern form a type (see Section 5.1). This can be used to precisely type a single
branch of pattern matching since the set of values processed by a given branch are all the
values in the type of the matched expression minus (set-theoretic difference) the union
(set-theoretic union) of all the values matched by the preceding branches, intersected
(set-theoretic intersection) with the values matched by the pattern of the branch at issue.
We will give all the details about it in Section 5.1 but in this essay we already met several
examples of application of this technique. For instance, in the definition of flatten in
the introduction, the first pattern [] captures the empty list, that is the singleton type [];
the second pattern h::t captures all the non-empty lists, that is the type List(Any)\[];
the third pattern x captures all values, that is the type Any. From that CDuce deduces that
the variable x in the third branch will capture any value that is not captured by the two
previous patterns, that is Any minus []∨(List(Any)\[])=List(Any) (i.e., the type
captured by the first pattern union the type captured by the second pattern) and deduces
that the list returned by the branch cannot contain other lists: this is the key mechanism
that allows CDuce to type flatten also when it is annotated with the more precise type
Tree(α)→List((α\List(Any))).

NEGATION TYPES: We have already seen several applications of negation types. In the
examples we gave we mostly used type differences, since they better fit a usage for pro-
gramming, but this is completely equivalent since negation and differences can encode
each other (i.e., t1\t2 = t1 ∧¬t2 and ¬t = Any\t). As a matter of fact, type difference is
pervasive in all programming languages that use union types. However the vast majority
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of these languages hide type difference to the programmer and use it only as a meta-
operation on types, implemented in the type-checker which uses it to produce precise
types or analyze the flow of values in pattern matching. For instance, to type the type-
case expression (x∈Int)?e1 :e2 where x has type Int∨ Bool, a type checker such as
the one for Flow would assume that the occurrences of x in e2 have type Bool, since
this type is the result of (Int∨ Bool)\Int. But to compute this result it would use an
internal type-difference operator without exposing it to the programmer: the programmer
can write its types by using unions, intersections, but not differences.

Nevertheless, first-class difference (or negation) types are useful to type several pro-
gramming patterns and idioms. We already seen this with the flatten function, whose
type critically relies on the use of difference types to define the type of nested lists. But
much simpler examples exist: consider for instance a function λx.(x∈Int)?(x+ 1) :x.
It can act on arguments of any type, computing the successor of integers and returning
any other argument unchanged. Using intersection and difference types, plus parametric
polymorphism, we can type it as ∀α.(Int→ Int)∧(α\Int→α\Int), which expresses
the function’s behavior fairly precisely and that corresponds to the bounded quantifi-
cation ∀(α ≤ ¬Int).(Int → Int)∧ (α → α): the function returns integer results for
integer arguments and returns α results for α arguments that are not integers.

Although the example λx.(x∈Int)?(x+1) :x is not very enthralling, it yields a type
that is extremely useful in practice since it precisely types functions defined by pattern
matching with a last default case that returns the argument. In [10, Appendix A] the
reader can find the detailed presentation of a couple of compelling examples of standard
functions (on binary trees and SOAP envelopes) whose typing is only possible or can
be improved thanks to set-theoretic types that use differences as in the example above.
In particular, [10] shows how to type the function to insert a new node in a red-black
tree (one of the most popular implementation of self-balancing binary search tree, due
to Guibas and Sedgewick [30]). The types used in the definition given in [10] enforce
three out of the four invariants of red-black trees,7 requiring only the addition of type
annotations to the code and no other change to a standard implementation due to Okasaki
[45, 46] to which the reader can refer for more details. The core of Okasaki’s definition
is the balance function which is defined (in our ML-like syntax) as follows:

type RBTree(α) = Leaf | ( (Red|Black), α, RBTree(α), RBTree(α))

let balance = function
| (Black, z, (Red, y, (Red, x, a, b), c), d)
| (Black, z, (Red, x, a, (Red, y, b, c)), d)
| (Black, x, a, (Red, z, (Red, y, b, c), d))
| (Black, x, a, (Red, y, b, (Red, z, c, d))) ->

(Red, y, (Black, x, a, b), (Black, z, c, d))
| x -> x

which is of type RBTree(α)→RBTree(α). In the definition of RBTree(α) nothing
distinguishes a red-black tree from a vanilla binary tree with some red or black tags. If

7 Specifically, that the root of the tree is black, that the leaves of the tree are black, and that no
red node has a red child; the missing invariant is that every path from the root to a leaf should
contain the same number of black nodes.
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we want to enforce some of the invariants of red-black trees (cf. Footnote 7) we must
modify the type definition as follows

type RBTree(α) = BTree(α) | RTree(α)
type BTree(α) = ( Black, α, RBTree(α), RBTree(α)) | Leaf
type RTree(α) = ( Red, α, BTree(α), BTree(α))

However, with these definitions the insert function of binary trees no longer type-
checks. But it is just the matter of giving a precise type to balance, since it suffices to
add the following type annotation:
( Unbalanced(α) → RTree(α)) & ( β\Unbalanced(α) → β\Unbalanced(α) )

where

type WrongTree(α) = (Red, α, RTree(α), BTree(α))
| (Red, α, BTree(α), RTree(α))

type Unbalanced(α) = (Black, α, WrongTree(α), RBTree(α))
| (Black, α, RBTree(α), WrongTree(α))

The two type definitions state that a wrong tree is a red tree with a black child and that
an unbalanced tree is a black tree with a wrong child. The annotation describes the se-
mantics of balance: it transforms an unbalanced tree into a red tree and leaves any
other argument unchanged. We recognize in this type the pattern of our simpler example
(the same pattern appears also in some other parts of the red-black tree implementa-
tion). It is then possible to deduce for the insertion function for red-black trees the type
BTree(α)→ α →BTree(α). For the valid CDuce code with an explanation of subtler
typing details, the reader can refer to Appendix A of [10].

3 Types

We have seen in the previous section that set-theoretic types play a key role in typing
several language constructs—from branching and pattern matching to function overlo-
ading—very precisely. However, we have glossed over exactly how a type checker should
treat them. It is essential to define a suitable notion of subtyping on these types. The infor-
mal description we have given suggests that certain properties should hold. In particular,
we expect union and intersection types to satisfy commutative and distributive properties
of Boolean algebras. Moreover, we expect, for example,

(Int→ Int)∧ (Bool→ Bool)≤ (Int∨Bool)→ (Int∨Bool)

to hold, so that the typing of functions with type-cases works as we sketched. To model
occurrence typing, we want (Int∨ Bool)∧ Int to be equivalent to Int and (Int∨
Bool)∧¬Int to be equivalent to Bool.

3.1 Limitations of syntactic systems

Arguably, it is intuitive to view types and subtyping in terms of sets and set inclusion,
especially to describe set-theoretic types.8 We can see a type as the set of the values of

8 For instance, this model is used to explain subtyping in the online documentation of Flow at
https://flow.org/en/docs/lang/subtypes.

https://flow.org/en/docs/lang/subtypes
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that type in the language we consider. Then, we expect t1 to be a subtype of t2 if every
value of type t1 is also of type t2, that is, if the set of values denoted by t1 is included in
the set denoted by t2. In this view, union and intersection types correspond naturally to
union and intersections of sets; negation corresponds to complementation with respect to
the set of all values.

However, most systems reason on subtyping without using this interpretation of types
as set of values. These systems (we call them, syntactic systems) rather use rules that are
sound but not complete with respect to this model: that is, they do not allow t1 ≤ t2 in
some cases in which every value of type t1 is in fact a value of type t2. Incompleteness is
not necessarily a problem, but it can result in unintuitive behavior. We show two examples
below.

LACK OF DISTRIBUTIVITY: Consider this code in Flow.9

type A = { a: number }
type B = { kind: ”b”, b: number }
type C = { kind: ”c”, c: number }

type T = (A & B) | (A & C)
function f (x: T) { return (x.kind === ”b”) ? x.b : x.c }

The first three lines declare three object types; in B and C, ”b” and ”c” are the singleton
types of the corresponding strings. The type T is defined as the union of two intersection
types, namely, A&B (the type of objects with a fields a and b of type number and a field
kind of type ”b”) and A&C (the type of objects with a fields a and c of type number and
a field kind of type ”c”).

The function f is well typed: as in handleResponse before, occurrence typing recog-
nizes that x is of type A & B in the branch x.b and of type A & C in the branch x.c.
However, if we replace the definition of T to be type T = A & (B | C), the code is
rejected by the type checker of Flow. Occurrence typing does not work because T is no
longer explicitly a union type. Flow considers (A & B) | (A & C) to be a subtype of A
& (B | C): indeed, this can be proven just by assuming that unions and intersections are
respectively joins and meets for subtyping. But in Flow’s type system, subtyping does
not hold in the other direction, because Flow does not consider distributivity.

UNION AND PRODUCT TYPES: Apart from distributivity laws, we could also expect
interaction between union and intersection types and various type constructors. Consider
product types; we might expect the two types (t1 × t)∨ (t2 × t) and (t1 ∨ t2)× t to be
equivalent (i.e., each one subtype of the other one): intuitively, both of them describe the
pairs whose first component is either in t1 or in t2 and whose second component is in t.
But this reasoning is not always reflected in the behavior of type checkers.

9 Adapted from the StackOverflow question at https://stackoverflow.com/questions/
44635326.

https://stackoverflow.com/questions/44635326
https://stackoverflow.com/questions/44635326
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For example, consider this code in Typed Racket (similar examples can be written in
Flow or TypeScript).

(define-type U-of-Pair (U (Pair Integer Boolean) (Pair String Boolean)))
(define-type Pair-of-U (Pair (U Integer String) Boolean))

(define f (lambda ([x : U-of-Pair]) x))
(define x (ann (cons 3 #f) Pair-of-U))
(f x)

We define two type abbreviations. In Typed Racket, U denotes a union type and Pair a
product type, so U-of-Pair is (Integer×Boolean)∨ (String×Boolean), and Pair-of-U is
(Integer∨String)×Boolean. The two types are not considered equivalent. To show it,
we define a function f whose domain is U-of-Pair (for simplicity, we take the identity
function) and try to apply it to an argument x of type Pair-of-U; to define x, we use an
explicit type annotation (ann) to mark the pair (cons 3 #f) as having type Pair-of-U. The
application is rejected. If we exchange the two type annotations, instead, it is accepted:
the type checker considers U-of-Pair a subtype of Pair-of-U, but not the reverse.

3.2 Semantic subtyping

In a nutshell we have to define the subtyping relation so that the types satisfy all the
commutative and distributive laws we expect from their set-theoretic interpretation. But
a “syntactic” definition of subtyping—i.e., a definition given by a set of deduction rules—
is hard to devise since, as shown by the previous examples, it may yield a definition that
is sound but not complete. To obviate this problem we follow the semantic subtyping
approach [23, 24]. In this approach subtyping is defined by giving an interpretation J·K
of types as sets and defining t1 ≤ t2 as the inclusion of the interpretations, that is, t1 ≤ t2
is defined as Jt1K ⊆ Jt2K. Intuitively, we can see JtK as the set of values that inhabit t
in the language. By interpreting union, intersection, and negation as the corresponding
operations on sets and by giving appropriate interpretations to the other constructors, we
ensure that subtyping will satisfy all expected commutative and distributive laws.

Formally, we proceed as follows. We first fix two countable sets: a set C of language
constants (ranged over by c) and a set B of basic types (ranged over by b). For exam-
ple, we can take constants to be Booleans and integers: C = {true, false,0,1, -1, . . .}.
B might then contain Bool and Int; however, we also assume that, for every constant
c, there is a “singleton” basic type which corresponds to that constant alone (for ex-
ample, a type for true, which will be a subtype of Bool). We assume that a function
B : B → P(C ) assigns to each basic type the set of constants of that type and that a
function b(·) : C → B assigns to each constant c a basic type bc such that B(bc) = {c}.

Definition 1 (Types). The set T of types is the set of terms t coinductively produced by
the following grammar

t ::= b | t × t | t → t | t ∨ t | ¬t | 0

and which satisfy two additional constraints: (1) regularity: the term must have a finite
number of different sub-terms; (2) contractivity: every infinite branch must contain an
infinite number of occurrences of the product or arrow type constructors.



14 G. Castagna

We use the abbreviations t1 ∧ t2 =
def ¬(¬t1 ∨¬t2), t1\t2 =def t1 ∧ (¬t2), and 1 =def ¬0 (in

particular, 1 corresponds to the type Any we used in the examples of Section 2). We
refer to b, ×, and → as type constructors, and to ∨, ¬, ∧, and \ as type connectives.
As customary, connectives have priority over constructors and negation has the highest
priority—e.g., ¬s∨t → u∧v denotes ((¬s)∨t)→ (u∧v).

Coinduction accounts for recursive types and it is coupled with a contractivity condi-
tion which excludes infinite terms that do not have a meaningful interpretation as types
or sets of values: for instance, the trees satisfying the equations t = t ∨ t (which gives
no information on which values are in it) or t = ¬t (which cannot represent any set of
values). Contractivity also gives an induction principle on T that allows us to apply the
induction hypothesis below type connectives (union and negation), but not below type
constructors (product and arrow). As a consequence of contractivity, types cannot con-
tain infinite unions or intersections. The regularity condition is necessary only to ensure
the decidability of the subtyping relation.

In the semantic subtyping approach we give an interpretation of types as sets; this
interpretation is used to define the subtyping relation in terms of set containment. We
want to see a type as the set of the values that have that type in a given language. How-
ever, this set of values cannot be used directly to define the interpretation, because of a
problem of circularity. Indeed, in a higher-order language, values include well-typed λ -
abstractions; hence to know which values inhabit a type we need to have already defined
the type system (to type λ -abstractions), which depends on the subtyping relation, which
in turn depends on the interpretation of types. To break this circularity, types are actually
interpreted as subsets of a set D , an interpretation domain, which is not the set of values,
though it corresponds to it intuitively (in [24], a correspondence is also shown formally:
we return to this point in Section 4.2.1). We use the following domain.

Definition 2 (Interpretation domain). The interpretation domain D is the set of finite
terms d produced inductively by the following grammar

d ::= c | (d,d) | {(d,∂ ), . . . ,(d,∂ )} ∂ ::= d | Ω

where c ranges over the set C of constants and where Ω is such that Ω /∈ D .

The elements of D correspond, intuitively, to the results of the evaluation of ex-
pressions. These can be constants or pairs of results, so we include both in D . Also, in
a higher-order language, the result of a computation can be a function which are rep-
resented in this model by finite relations of the form {(d1,∂1), . . . ,(dn,∂n)}, where Ω

(which is not in D) can appear in second components to signify that the function fails
(i.e., evaluation is stuck) on the corresponding input.

The restriction to finite relations is standard in semantic subtyping and it is one of
its subtler aspects (see [6] for a detailed explanation of this aspect). In principle, given
some mathematical domain D , we would like to interpret t1 → t2 as the set of functions
from Jt1K to Jt2K. For instance if we consider functions as binary relations, then Jt1 → t2K
could be the set { f ⊆ D2 | for all (d1,d2)∈ f , if d1∈Jt1K then d2∈Jt2K } or, compactly,
P(Jt1K×Jt2K), where the S denotes the complement of the set S within the appropriate
universe (in words, these are the sets of pairs in which it is not true that the first pro-
jection belongs to Jt1K and the second does not belong to Jt2K). But here the problem
is not circularity but cardinality, since this would require D to contain P(D2), which
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is impossible. The solution given by [24] relies on the observation that in order to use
types in a programming language we do not need to know what types are, but just how
they are related (by subtyping). In other terms, we do not require the interpretation of
an arrow type to be exactly the set of all functions of that type. We just require that this
interpretation induces the same subtyping relation as interpreting an arrow type with this
set would yield. That is, the interpretation must satisfy the (weaker) property

Js1→s2K ⊆ Jt1→t2K ⇐⇒ P(Js1K×Js2K)⊆ P(Jt1K×Jt2K).

If we interpret t1→t2 as the set Pfin(Jt1K×Jt2K) (where Pfin denotes the restriction of the
powerset to finite subsets), then this property holds.

The above explains why we use a domain D with finite relations and define the
interpretation JtK of a type t so that it satisfies the following equalities, where DΩ =
D ∪{Ω}:

Jt1 ∨ t2K = Jt1K∪ Jt2K J¬tK = D\JtK J0K = /0
JbK = B(b) Jt1 × t2K = Jt1K× Jt2K

Jt1 → t2K = {R ∈ Pfin(D ×DΩ ) | ∀(d,∂ ) ∈ R.d ∈ Jt1K =⇒ ∂ ∈ Jt2K}

This interpretation is reminiscent of a common practice in denotational semantics that
consists in interpreting functions as the set of their finite approximations: we will discuss
this relation more in Section 5.3. A consequence of this interpretation is that the type
0 → 1 contains all the (well-typed) functions: it will play an important role in Section 4.
The interpretation also explains the need of the constant Ω : this constant is used to ensure
that 1 → 1 is not a supertype of all function types: in a domain without Ω (i.e., where
the last of the equalities above would use d instead of ∂ ) every well-typed function
could be subsumed to 1 → 1 and, therefore, every application could be given the type
1, independently from the types of the function and of its argument; thanks to Ω instead
1 → 1 contains only the functions whose domain is exactly 1, since a function with
domain, say, Int, could map non-integer elements to Ω , thus excluding it from 1 → 1
(since Ω ̸∈ 1): see Section 4.2 of [24] for details.

We cannot take the equations above directly as an inductive definition of J·K because
types are not defined inductively but coinductively. Therefore we give the following def-
inition, which validates these equalities and which uses the aforementioned induction
principle on types and structural induction on D .

Definition 3 (Set-theoretic interpretation of types). We define a binary predicate (∂ : t)
(“the element ∂ belongs to the type t”), where ∂ ∈ D ∪{Ω} and t ∈ T , by induction on
the pair (∂ , t) ordered lexicographically. The predicate is defined as:

(c : b) = c ∈ B(b)
((d1,d2) : t1 × t2) = (d1 : t1) and (d2 : t2)

({(d1,∂1), . . . ,(dn,∂n)} : t1 → t2) = ∀i ∈ {1, . . . ,n}. if (di : t1) then (∂i : t2)
(d : t1 ∨ t2) = (d : t1) or (d : t2)

(d : ¬t) = not (d : t)
(∂ : t) = false otherwise

We define the set-theoretic interpretation J·K : T → P(D) as JtK = {d ∈ D | (d : t)}.
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Notice that Ω ̸∈ JtK, for any type t. Finally, we define the subtyping preorder and its
associated equivalence relation as:

Definition 4 (Subtyping). We define the subtyping relation ≤ and the subtyping equiv-
alence relation ≃ as t1 ≤ t2

def⇐⇒ Jt1K ⊆ Jt2K and t1 ≃ t2
def⇐⇒ (t1 ≤ t2) and (t2 ≤ t1) .

The subtyping relation is decidable. Deciding whether t1 is a subtype of t2 is equivalent
to deciding whether t1 ∧¬t2 is the empty type, insofar as t1 ≤ t2 ⇐⇒ Jt1K ⊆ Jt2K ⇐⇒
Jt1K∩ (D\Jt2K) ⊆ ∅ ⇐⇒ Jt1 ∧¬t2K ⊆ ∅ ⇐⇒ t1 ∧¬t2 ≤ 0. A detailed description of
the subtyping algorithm and of the data structures used to implement it efficiently can be
found in [5].

3.3 Polymorphic Extension

The examples we gave at the beginning of this article used polymorphic types. Syntac-
tically, this means extending the grammar of types with type variables drawn from a
countable set V ranged over by α:

t ::= b | t × t | t → t | t ∨ t | ¬t | 0 | α (1)

However, extending the semantic subtyping approach to define a subtyping relation on
these types is not straightforward and has been a longstanding open problem. The rea-
son is explained by Hosoya et al. [37] who point out that the naive solution of defining
subtyping of two polymorphic types as equivalent to the subtyping of all their ground
instances yields a subtyping relation that is both untreatable and counterintuitive. They
demonstrate this by defining the following problematic example:

t ×α ≤ (t ×¬t)∨ (α × t)
One could expect this judgment not to hold, because the type variable α appears in un-
related positions in the two types (in the second component on the left of a product, in
the first one on the right). According to the naive definition, instead, the judgment holds
if and only if t is a singleton type.

The solution to this problem was found by Castagna and Xu [8] who argue that
one should consider only interpretations of types where judgments such as the above
do not hold. This should ensure that subtyping on type variables behaves closer to the
expectations for parametric polymorphism, so that a type variable can occur on the right-
hand side of a subtyping judgment only if it occurs in a corresponding position on the
left-hand side. To that end Castagna and Xu [8] propose convexity as a general property of
interpretations that avoid pathological behavior such as the example above. We leave the
interested reader to refer to [8] for details on the convexity property and its interpretation.
Here we present a very simple way to extend the interpretation of Definition 3 into a
convex interpretation for polymorphic types. The idea, due to Gesbert et al. [26, 27], is
to consider the domain D of Definition 2 in which all elements are labeled by a finite set
of type variables

d ::= cL | (d,d)L | {(d,∂ ), . . . ,(d,∂ )}L
∂ ::= d | Ω

with L∈Pfin(V ), and interpret a type variable α by the set of all elements that are labeled
by α , that is JαK = {d | α ∈ tags(d)} (where we define tags(cL) = tags((d,d′)L) =
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tags({(d1,∂1), . . . ,(dn,∂n)}L) = L). The interpretation of all other types disregards labels
(e.g., the interpretation of Int is the set of all integer constants labeled by any set of
variables). It is straightforward to modify Definition 3 to validate the equality JαK= {d |
α ∈ tags(d)}: it suffices to use the new domain and just add the clause

(d : α) = α ∈ tags(d)
No further modification is needed (apart from adding labels in the first clauses) and
Definition 4 is still valid.10

While the interpretation of type variables is not very intuitive, it is easy to check
that it yields a subtyping relation that has all the sought properties. First and foremost,
according to this interpretation a type is empty if and only if all its instances are empty. In
particular, as expected, the interpretation of a type variable α is never empty (it contains
all the elements tagged by α) insofar as α could be instantiated into a non-empty type.
Also, the interpretation of a variable is contained in the interpretation of another variable
if and only if the two variables are the same.11

Finally, α ∧ t is empty if and only if t is empty since, otherwise, we could obtain a
non-empty type by instantiating α with t. For instance, since JαK = {d | α ∈ tags(d)}
and JIntK = {nL | n ∈ Z}, then Jα ∧ IntK = {nL | n ∈ Z,α ∈ L}: we see that α ∧ Int

is not empty since it contains at least 42{α}. Likewise, since Jα ∧ IntK contains both
42{α} and 42{α,β}, then neither α ∧Int≤ β nor α ∧Int≤¬β hold, the former because
42{α} ̸∈ Jβ K the latter because 42{α,β} ̸∈ J¬β K (by definition J¬β K= {d | β ̸∈ tags(d)}).
The subtyping relation is again decidable (see [8] for a detailed description of the algo-
rithm) and, although it is not evident from the interpretation, the subtyping relation is
preserved by type substitutions, a property needed to ensure soundness for polymorphic
type systems.

4 Languages

The natural candidate languages for the types we presented in the previous section are
λ -calculi (functional languages) with at least pairs and type-cases. Intuitively, we need a
λ -calculus because we have arrow types, we need pairs to inhabit product types, while
type-cases are needed to define overloaded functions and thus inhabit any intersection
of arrow types. We will see in Section 4.2 (cf. Section 4.2.1 in particular) that the cor-

10 The reason why the interpretation thus obtained is convex is that every type is interpreted into an
infinite set (even singletons types, since, e.g., JtrueK = {trueL | L ∈ Pfin(V )}). See Castagna
and Xu [8] to see how this implies convexity.

11 It is important to avoid confusion between (sub)type equivalence and unification. There is a
fundamental difference between being the same type (i.e., denoting the same set of values) and
to be unifiable: two variables can always be unified, but if they are not the same, then it is
not safe to use an expression whose type is one variable where an expression whose type is a
different variables is expected. For instance, fun(x:α→α , y:β) = xy is not well typed (since
the programmer wrote these variables, then they are considered monomorphic and it is unsound
to use a β expression where an α expression is expected) while fun(x:α→α , y:α) = xy is
well typed, and so is fun(x,y) = xy. To type the latter the type system assigns the type α to x

and β to y and then unifies α with β→γ which yields the type ((β→γ)×β)→γ of the function.
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respondence between set-theoretic types and a language satisfying these criteria can be
formally stated.

We start by describing a generic theoretical language that covers all the features we
outlined in the motivation section. While theoretically interesting the language will not
be effective: it is a language so generic and expressive that defining a reasonably com-
plete type-inference algorithm seems very hard. We will then discuss some trade-offs
and define three effective (sub-)systems for which type inference is possible, but each of
which will be able to capture only a part of the examples of Section 2.

4.1 Theoretical framework

The expressions and values of our theoretical language are defined as follows:

Expressions e ::= c | x | λx.e | ee | (e,e) | πie | (e∈t)?e :e
Values v ::= c | λx.e | (v,v) (2)

Expressions are an untyped λ -calculus with constants c, pairs (e,e), pair projections
πie, and type-cases (e∈t)?e :e. A type-case (e0∈t)?e1 :e2 is a dynamic type test that
first evaluates e0 and, then, if e0 reduces to a value v evaluates e1 if v has type t or e2
otherwise. Formally, the reduction semantics is that of a call-by-value pure λ -calculus
with pairs and type-cases. The reduction is given by the following notions of reductions
(where e{v/x} denotes the capture avoiding substitution of v for x in e)

(λx.e)v⇝ e{v/x}
π1(v1,v2)⇝ v1
π2(v1,v2)⇝ v2

(v∈t)?e1 :e2 ⇝ e1 if v ∈ t
(v∈t)?e1 :e2 ⇝ e2 if v ̸∈ t

together with the context rules that implement a leftmost outermost reduction strategy,
that is, E[e]⇝ E[e′] if e⇝ e′ where the evaluation contexts E[·] are defined as E ::= [] |
vE |Ee | (v,E) | (E,e) | πiE | (E∈t)?e :e. In the reduction rules we used the notation v∈ t
to indicate that the value v has type t. Here, this corresponds to deducing the judgment
∅⊢ v : t using the rules given in Figure 1, rules that form the type-system of our language;
but we will see that for the three system variations we present later on, the relation v ∈ t
can be defined without resorting to the type-system: this is an important property since
we do not want to call the type-inference algorithm to decide at run-time the branching
of a type-case.

The rules in the first three rows of Figure 1 do not deserve any special comment: they
are the standard typing rules for a simply-typed λ -calculus with pairs where, as custom-
ary, Γ ranges over type environments, that is, finite mappings from variables to types,
Γ ,x : t denotes the extension of the environment Γ with the mapping x 7→ t provided that
x ̸∈ dom(Γ ) (we will use ∅ to denote the empty type environment).

The rules in the fourth row are also standard. The first rule [∧] is the classic intro-
duction rule for intersection: it states that if an expression has two types, then it has
their intersection, too. The second rule [∨] is the classic union elimination rule as it
was first introduced by MacQueen et al. [41]: it states that given some expression (here,
e{e′/x}) with a subexpression e′ of type t1∨t2, if we can give to this expression the type
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[CONST]
Γ ⊢ c : bc

[VAR]
Γ ⊢ x : Γ (x)

x ∈ dom(Γ )

[→I]
Γ ,x : t1 ⊢ e : t2

Γ ⊢ λx.e : t1 → t2
[→E]

Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1
Γ ⊢ e1e2 : t2

[×I]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ (e1,e2) : t1 × t2
[×E1]

Γ ⊢ e : t1 × t2
Γ ⊢ π1e : t1

[×E2]
Γ ⊢ e : t1 × t2
Γ ⊢ π2e : t2

[∧]
Γ ⊢ e : t1 Γ ⊢ e : t2

Γ ⊢ e : t1 ∧ t2
[∨]

Γ ⊢ e′ : t1∨t2 Γ,x : t1 ⊢ e : t Γ,x : t2 ⊢ e : t

Γ ⊢ e{e′/x} : t
[≤]

Γ ⊢ e : t t≤t ′

Γ ⊢ e : t ′

[0]
Γ ⊢ e : 0

Γ ⊢ (e∈t)?e1 :e2 : 0
[∈1]

Γ ⊢ e : t Γ ⊢ e1 : t1
Γ ⊢ (e∈t)?e1 :e2 : t1

[∈2]
Γ ⊢ e : ¬t Γ ⊢ e2 : t2

Γ ⊢ (e∈t)?e1 :e2 : t2

Fig. 1: Declarative type system

t both under the hypothesis that e′ produces a result of type t1 and under the hypothesis
that e′ produces a result in t2, then we can safely give this expression type t (to satisfy
type soundness, this rule needs a further restriction when used with polymorphic types:
see [16]). The last rule of the row is the subsumption rule [≤] that states that if an expres-
sion has some type t, then it has all super-types of t, too. Together, the rules in the first
four lines of Figure 1 form a well-known type-system, since they are the same rules as
those in Definition 3.5 of the classic work on union and intersection types by Barbanera,
Dezani, and de’Liguoro [1]. Although the rules are textually the same as in [1], there
is an important difference between the system in [1] and the one in Figure 1, namely,
that our types are a strict extension of those of [1] since we also have recursive types,
negation types, and the empty type. As a consequence our subsumption rule uses the
subtyping relation of Definition 4 which is more general than the one in [1] of which it
is a conservative extension (cf. [19]).

Finally, the last three rules are specific to systems with set-theoretic types and type-
cases. They are rather new (they were first introduced in [14]) and provide a natural and
nifty way to type type-case expressions. The first rule states that if the tested expression
e has the empty type (i.e., if e diverges, that is, it can only produce a value that is in
the empty set), then so has the whole type-case expression. The second rule states that
if e can only produce a result in t, then the type of (e∈t)?e1 :e2 is the type of e1. The
third rule states that if e can only produce a result in ¬t, then the type of (e∈t)?e1 :e2
is the type of e2: since the negation type ¬t is interpreted set-theoretically as the set of
all values that are not of type t, this means that, in that case, e can only produce a result
not of type t. The reader may wonder how we type a type-case expression (e∈t)?e1 :e2
when the tested expression e is neither of type t nor of type ¬t. As a matter of fact, a type-
case is interesting only if we cannot statically determine whether it will succeed or fail.
For instance, when discussing occurrence typing, we informally described how to type
the expression (x∈Int)?(x+ 1) :¬x when x is of type Int∨Bool, that is, in that case,
when x is neither of type Int nor of type ¬Int. Here is where the union elimination
rule [∨] shows its full potential. Even though the expression e tested in (e∈t)?e1 :e2
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has some type s that is neither contained in (i.e., subtype of) t nor in ¬t, we can use
intersection and negation to split s into the union of two types that have this property,
since s ≃ (s∧ t)∨ (s∧¬t). We can thus apply the union rule and check the type-case
under the hypothesis that the tested expression has type (s∧ t) and under the hypothesis
that it has type (s ∧¬t). For instance, for (x∈Int)?(x + 1) :¬x we check the type-
case under the hypothesis that x has type Int (i.e., (Int∨Bool)∧Int) and deduce the
type Int, and under the hypothesis that x has type Bool (i.e., (Int∨Bool)∧¬Int) and
deduce the type Bool which, by subsumption, gives for the whole expression the type
Int∨Bool.

A final important remark is that the deduction system in Figure 1 is defined modulo
α-conversion. This is crucial in systems with union types since the rule [∨] breaks the
α-invariance property (see Section 2.4 in [14] and Discussion 12.5 in [32]).

4.1.1 On deriving negation types. The language and the typing rules we just defined
are expressive enough to cover all the examples we described in the first two sections.
However, the rules of Figure 1 are yet not enough to cover the whole palette of applica-
tion of set-theoretic types. The reason is that in the current system the only way to derive
for an expression a negation type is to use the subsumption rule. For instance, we can
deduce 42 : ¬Bool by subsumption, since 42 : Int and Int ≤ ¬Bool (since all integer
constants are contained in the set of values that are not Booleans). But while subsump-
tion is sufficient for values formed only by constants,12 it is not enough for values with
functional components. For example, consider the successor function λx.(x+ 1). This
function has type Int→ Int but not type Bool→ Bool: it maps integers to integers but
when applied to a Boolean it does not return a Boolean. Therefore, one would expect the
type system to deduce for the successor function the type ¬(Bool→ Bool). However, in
this case subsumption is of no use since Int→Int is not a subtype of ¬(Bool→ Bool),
and rightly so since it is easy to find a value that is of the former type but not of the
latter one: for instance, the identity function λx.x is a function that has type Int→ Int

but—since it is also of type Bool→Bool—is not of type ¬(Bool→ Bool).
Intuitively, we would like the type-system to deduce for an expression e the type ¬t

whenever (i) e is typable with some type t ′ and (ii) it is not possible to deduce the type t
for it. In a sense we would like to have a rule such as the pseudo-rule [¬] here below on
the left:

[¬]
Γ ⊢ e : t ′ Γ ̸⊢ e : t

Γ ⊢ e : ¬t
[¬(→)]

Γ ⊢ λx.e : t ′ Γ ̸⊢ λx.e : t → t ′′

Γ ⊢ λx.e : ¬(t → t ′′)

This pseudo-rule, which puts in formulas what we explained in prose, deduces negation
types for a generic expression e. However, from a practical perspective a less generic rule

12 These are either constants or possibly nested pairs of constants. All these values have a smallest
type deduced by the rules of Figure 1 and this smallest type is indivisible (i.e., its only proper
subtype is the empty type: cf. [8]). An indivisible type acts like a point in the set-theory of types:
it is either contained in a type or in its negation, and so are their values. This is the reason why
subsumption suffices to determine the negation types of this sort of values: they are all the types
that do not contain the minimal type of the value at issue. Functions, in general, do not have a
smallest type.
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such as [¬(→)] above on the right would suffice: as a matter of fact, deciding negation
types is useful in practice to evaluate type-cases and these are decided on values rather
than generic expressions. So from a practical viewpoint it suffices to deduce negation
types only for values rather than for all expressions and, in particular, for λ -abstractions,
since for all the other values subsumption is enough (see Footnote 12). So instead of
deducing generic negation types for generic expressions, it is enough to deduce negated
arrow types for λ -abstractions, yielding the less general pseudo-rule [¬(→)] above.

A different motivation for deducing negation types is that, for the reasons we explain
in Section 4.1.3, few practical systems implement the union elimination rule [∨] in its
full generality, insofar as deciding when [∨] is to be applied is still an open problem
(technically, this corresponds to determining an inversion lemma for the [∨] rule). Now,
in the absence of a [∨] rule (e.g., in the systems in Section 4.2 and 4.3), the property of
type preservation by reduction (also known as the property of subject reduction) requires
the following property to hold:

For every type t and well-typed value v, either ∅ ⊢ v : t or ∅ ⊢ v : ¬t holds. (3)

To illustrate why this is required, consider the expression λx.(x,x) and the following
typing derivation (for some arbitrary type t).

[≤]

[∧]

...
∅ ⊢ λx.(x,x) : t → (t × t)

...
∅ ⊢ λx.(x,x) : ¬t → (¬t ×¬t)

∅ ⊢ λx.(x,x) : (t → (t × t))∧ (¬t → (¬t ×¬t))
∅ ⊢ λx.(x,x) : 1 → ((t × t)∨ (¬t ×¬t))

The subsumption rule can be applied because

(t → (t × t))∧ (¬t → (¬t ×¬t))≤ 1 → ((t × t)∨ (¬t ×¬t)) :

in general, it holds that (t ′1 → t1)∧ (t ′2 → t2)≤ (t ′1 ∨ t ′2)→ (t1 ∨ t2), and t ∨¬t ≃ 1. Now
consider an arbitrary type t and a well-typed value v. Since v has type 1 by subsumption,
the application (λx.(x,x))v can be typed as (t × t)∨ (¬t ×¬t). This application reduces
to (v,v). Therefore, either (v,v) has type (t × t)∨ (¬t ×¬t) or subject reduction does not
hold. Since t× t and ¬t×¬t are disjoint, to derive the union type for v we need either the
system to have the [∨] rule, or v to have either type t or type ¬t. This illustrates the need
for the property above which in particular requires to be able to derive negation types
for functions other than by subsumption: e.g., since we cannot derive for λx.x the type
Int→ Bool, then we must be able to derive for it the type ¬(Int→Bool).

However, both [¬] and [¬(→)], untamed, do not make much sense (which is why
we called them pseudo-rules). First, their definitions are circular since they depend on
the very relation they are defining. Furthermore, they cannot be used in a deduction
system since they would correspond to non-monotone immediate-consequence operators
for which a fix-point may not exist and thus cannot be used to define the typing relation
by induction. Therefore, it is necessary to put some tight-knit restrictions on the inference
of negation types. This requires a lot of care because the very presence of negation types
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may yield to paradoxes, as it can be evinced from considering the recursive function13

let rec f = λx.( f∈true→ true)?false:true; it is easy to see that f maps true
to true if and only if it does not have type true→ true.

As hard the inference of negation types is, it cannot be dismissed lightheartedly, since
the definition of the relation v ∈ t depends on it and so does the semantics of type-cases:
if we perform a type test such as v ∈ ¬(Bool→ Bool), then we expect it to succeed at
least for some functional values (e.g., the successor function). In the second part of this
section we will show different solutions proposed in the literature to infer negation types
in a controlled way.

4.1.2 On the feasibility of type-inference. Defining inference of negation types is not
the only problem to be solved before obtaining a language usable in practice. The rules
of Figure 1 are still a far cry from a practical system that can decide whether a program
is well-typed or not. As customary, there are essentially two problems:
1. the rules are not syntax directed: given a term, to type it we can try to apply some

elimination/introduction rule, but also to apply the intersection rule [∧], or the sub-
sumption rule [≤], or the union rule [∨].

2. some rules are non-analytic:14 if we use the [→I] rule to type some λ -abstraction
we do not know how to determine the type t1 in the premise; if we use the [∨] rule
we know neither how to determine e′ nor how to determine the types t1 and t2 that
split the type of e′.

Notice that [∨] cumulates both problems. The problem that some rules are not syntax
directed can be already solved in this system for at least two of the three rules at issue: for
the rules [∧] and [≤] it is possible to eliminate them and refactor the use of intersections
and subtyping in the remaining rules. This essentially amounts to resorting to some form
of canonical derivations in which intersection [∧] and subsumption [≤] rules are used
at specific places: it can be proved (cf. [14]) that a typing judgment is provable with
the system of Figure 1 if and only if there exists a derivation for that typing judgment
where (i) subsumption is only used on the left premise of an application or a type-case
rule, on the right premises of the union rule, and on the premise of a projection rule
and (ii) intersection is only used for expressions that are λ -abstractions, that is, all the
premises of an intersection rule are the consequence of a [→I]. This yields an equivalent
system formed by the rules in Figure 2, plus the rules [CONST], [VAR], [×I], and [0]
of Figure 1, which do not change. We improved the situation on the syntax-directed
front since we got rid of [∧] and [≤], but it looks as we worsened the non-analytic front
since now all rules in Figure 2 are non-analytic. In particular, nothing tells us how to
determine the larger types in the subtyping relations occurring at the premises of these

13 Thanks to recursive types it is easy to define a polymorphic fix-point combinator and thus
define recursive functions: for every type t it is possible to define Curry’s fix-point combi-
nator Zt : (t→t)→t as λ f :t→t.∆ t∆ t where ∆ t = λx:µX .X→t. f (xx). Since our calculus is
strict, it is more interesting to define, for any type s and t the strict fix-point combinator Zs,t :
((s→t)→s→t)→s→t as λ f :(s→t)→ s→t.Es,tEs,t where Es,t = λx:µX .X→s→t. f (λv:s.xxv).

14 We consider non-analytic (or synthetic) a rule in which the input (i.e., Γ and e) of the judgment
at the conclusion is not sufficient to determine the inputs of the judgments at the premises (cf.
[42, 61]).
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[→I(∧)]
∀i ∈ I Γ ,x : si ⊢can e : ti
Γ ⊢can λx.e :

∧
i∈I si → ti

[→E(≤)]
Γ ⊢can e1 : t ≤ t1 → t2 Γ ⊢can e2 : t1

Γ ⊢can e1e2 : t2

[×E(≤)
1 ]

Γ ⊢can e : t ≤ t1 × t2
Γ ⊢can π1e : t1

[×E(≤)
2 ]

Γ ⊢can e : t ≤ t1 × t2
Γ ⊢can π2e : t2

[∨(≤)]
Γ ⊢ e′ : t1 ∨ t2 Γ ,x : t1 ⊢ e : s1 ≤ t Γ ,x : t2 ⊢ e : s2 ≤ t

Γ ⊢ e{e′/x} : t

[∈(≤)
1 ]

Γ ⊢can e : t◦ ≤ t Γ ⊢can e1 : t1
Γ ⊢can (e∈t)?e1 :e2 : t1

[∈(≤)
2 ]

Γ ⊢can e : t◦ ≤ ¬t Γ ⊢can e2 : t2
Γ ⊢can (e∈t)?e1 :e2 : t2

Fig. 2: Canonical typing rules

rules. Actually, for the three elimination rules [...E(≤)] in Figure 2 there exists a standard
way to determine these larger types which resorts to using some type operators defined
by Frisch et al. [24]. To understand it, consider the rule [→E] for applications in Figure 1.
It essentially does three things: (i) it checks that the expression in the function position
has a functional type; (ii) it checks that the argument is in the domain of the function,
and (iii) it returns the type of the application. In systems without set-theoretic types
these operations are straightforward: (i) corresponds to checking that the expression in
the function position has an arrow type, (ii) corresponds to checking that the argument
is in the domain of the arrow deduced for the function, and (iii) corresponds to returning
the codomain of that arrow. With set-theoretic types things get more complicated, since
in general the type of a function is not always a single arrow, but it can be a union of
intersections of arrow types and their negations.15 Checking that the expression in the
function position has a functional type is easy since it corresponds to checking that it has
a type subtype of 0→1, the type of all functions. Determining its domain and the type
of the application is more complicated and needs the operators dom() and ◦ defined as
dom(t) =def max{u | t ≤ u → 1} and t ◦ s =def min{u | t ≤ s → u}. In short, dom(t) is the
largest domain of any single arrow that subsumes t while t ◦ s is the smallest codomain
of any arrow type that subsumes t and has domain s. Thus the non-analytic rule [→E(≤)]
in Figure 2 can be replaced by its analytic version [→E(A)] below:

[→E(A)]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ e1e2 : t1 ◦ t2
t1 ≤ 0 → 1
t2 ≤ dom(t1)

[×E(A)
i ]

Γ ⊢ e : t
Γ ⊢ πie : πππ iii(t)

t ≤ 1×1

We need similar operators for projections since in the rules [×E(≤)
i ] (i= 1,2) the type t of

e in πie may not be a single product type but, say, a union of products: all we know is that
for the projection to be well-typed t must be a subtype of 1×1. So let t be a type such that
t ≤ 1×1, we define πππ111(t) =

def min{u | t ≤ u×1} and πππ222(t) =
def min{u | t ≤ 1×u} and

15 This is the reason why, having eliminated in Figure 2 the subsumption rule from the system,
we need in rule [→E(≤)] to subsume the type t deduced for the function e1 to an arrow type.
Likewise for the type t of the expression e in [×Ei] which might be different from a product.
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replace each non-analytic rule [×E(≤)
i ] with the corresponding analytic version [×E(A)

i ]
above. All these type operators can be effectively computed (see [24]).

4.1.3 Practical systems. Although we showed how to handle some non-analytic and/or
non-syntax-directed rules, filling the gap between our theoretical setting and practical
languages still requires to solve three non-trivial problems:
1. how to infer the type of λ -abstractions since the rule [→ I(∧)] in Figure 2 not only

is non-analytic, but also states that we must be able to deduce for λ -abstractions
intersection of arrows rather than just a single arrow;

2. how to deduce negation types for expressions or, at least, how to deduce negated
arrow types for λ -abstractions.

3. how to infer the type of type-cases; this in particular implies to tame the union-
elimination rule [∨] which, in its present formulation, is still too generic: to use this
rule to type some expression e one has to guess which subexpression e′ of e to single
out, which occurrences of e′ in e are to be tested by replacing them by x, and how to
split the type of this e′ in a union of types to be tested separately.

These three problems are tightly connected: the inference of negation types essentially
concerns the typing of functions and it affects the semantics of type-cases; the typing
of type-cases must be based on their semantics, and since this typing is essentially per-
formed by the union elimination rule, the taming of this rule cannot thus be disconnected
from the semantics of type-cases, ergo, from the deduction of negation types, ergo, from
the typing of λ -abstractions.

Unfortunately, for these three problems there is not a one-size-fits-all solution, yet. In
the next three subsections we are going to present three different ways to address these
problems yielding to three different practical systems, and discuss their advantages and
drawbacks. We can summarize these three solutions as follows:

Core CDuce. Everything is explicit: every function is explicitly annotated with its type
and the use of union elimination is limited to type-cases and needs to explicitly
specify a variable to capture the tested value. In summary, no type-reconstruction, no
general occurrence typing, but intersection of arrows and negation types are inferred
for the functions.

Type Reconstruction. Functions are implicitly typed, that is, they need no annotation:
their type is reconstructed but an intersection type can be deduced only if the func-
tion is explicitly annotated with it. No general occurrence typing and type-cases can
test functional values only in a limited form. Inference of negation types is not per-
formed: it is only used for proving type soundness.

General Occurrence Typing. Everything can be implicit, full use of union elimination
to implement occurrence typing, reconstruction of intersections of arrow types for
functions, but no polymorphism or inference of negation types. The typing algorithm
is sound but cannot be complete.

4.2 Core CDuce

The first solution for the three problems just described in Section 4.1.3 was given with
the definition of the calculus introduced in [23, 24] to study semantic subtyping, calcu-
lus which constitutes the functional core of the programming language CDuce [2]. In this
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Core Calculus of CDuce (from now on, just CDuce for short), the problem of inferring in-
tersection types for λ -abstractions is solved by annotating them with an intersection type.
Annotations solve also the problem of inferring negated arrow types for λ -abstractions
since, as we detail below, we can deduce any negated arrow for a λ -abstraction as long
as the intersection of this type with the type annotating the function is not empty. Finally,
for what concerns type-cases and union-elimination, CDuce restricts union elimination
to type-cases expressions whose syntax is modified so that they specify the binding of
the variable used in the union rule.

Before detailing these technical choices it is important to understand the reason that
drove their definition. These choices were made to “close the circle”:

4.2.1 Closing the circle. All this presentation long we spoke of types as sets of values.
In particular, we said that semantic subtyping consists in interpreting types as sets of
values and then defining one type to be subtype of another if and only if the interpretation
of the one type is contained in the interpretation of the other type. Since a subtyping
relation is a pre-order, then it immediately induces the notions of least upper bound
and greatest lower bound of a set of types. It is then natural to use such notions—thus,
the subtyping relation—to characterize, respectively, union and intersection types. This
property was used in the context of XML processing languages by Hosoya, Pierce, and
Vouillon [36, 34, 33, 35]: by combining union types with product and recursive types they
encoded XML typing systems such as DTDs or XML Schemas. The work of Hosoya et
al., however, had an important limitation, since it could not define the subtyping relation
for functions types and, therefore, it could not be used to type languages with higher order
functions. This impossibility resided in a circularity of the definition we already hinted
at in Section 3.2: to define subtyping one needs to define the type of each value; for non
functional values this can be done by induction on their structure, but with functional
values—i.e., λ -abstractions—this requires to type the bodies of the functions which, in
turn, needs the very subtyping relation one is defining.

The solution to this circularity problem was found by Frisch et al. [23, 24] and con-
sisted of three steps: (I) interpret types as sets of elements of some domain D and use this
interpretation to define a subtyping relation; (II) use the subtyping relation just defined
to type a specifically tailored functional language and in particular its values; (III) show
that if we interpret a type as the set of values of this language that have that type, then
this new interpretation induces the same subtyping relation as the starting one (which
interprets types into subsets of the domain D).

Step (I) yielded the definition of the interpretation we gave in Definition 3 resulting
in the subtyping relation of Definition 4. For step (II) we need to define a language such
that its set of values satisfies the property in (III). For that, the language must provide
enough values to separate every pair of distinct types. In other terms, whenever two
types do not have the same interpretation in the denotational model, then there must exist
a value in the language that is in one type but not in the other one. In order to provide
enough values to distinguish semantically different types we need three ingredients, two
of which are already present in our system: (i) the inference of intersection types for
functions (ii) a type-case expression, and (iii) a random choice operator. We detail each
of them in the next subsections.
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4.2.2 Inferring Intersection Types for Functions. The first problem we encounter is
how to deduce intersection types for functions. In particular, for every distinct pair of
intersections of arrows, we want to be able to define a function that distinguishes them
(an intersection of arrows is never empty since it contains at least the function that di-
verges on all arguments). This is difficult to do in practice unless functions are explicitly
annotated. As a matter of fact, λx.x has type t → t for every type t, and thus it has all
possible finite intersections of these types, thus providing an infinite search space for an
intersection type, without a best solution (since we do not have infinite intersections). To
address this problem one could be tempted to annotate the parameter of a function with
the set of the domains of the intersection type we want to deduce. In other terms, one
could try to explicitly list the set of the types si to be used by the rule [→ I(∧)] so that, for
instance, the type deduced for λx:{Int,Bool}.x would be (Int→Int)∧(Bool→Bool).
Still, this is not enough because it does not avoid the paradoxes we presented at the end
of Section 4.1.1. To solve these problems, Frisch et al. [24] annotate λ -abstractions with
their intersection types, thus providing also their return type(s). So the identity function
for integer and Booleans is written in the syntax of [24] as λ (Int→Int)∧(Bool→Bool)x.x and
the system deduces for it the type (Int→Int)∧ (Bool→Bool). Using the right anno-
tations it is then easy to define a value that distinguishes two functional types that have
different interpretations.

The first modification to the system of Section 4.1 is then to adopt for functions the
syntax and typing rules of Frisch et al. [24], that is, we replace in (2) the production
for λ -abstractions by the production e ::= λ∧i∈Isi→tix.e (where I is finite) and replace in
Figure 2 the rule [→ I(∧)] by the following one:

[→I(CDUCE)]
∀i ∈ I Γ ,x : si ⊢ e : ti
Γ ⊢ λ

∧i∈Isi→tix.e : t ∧ t ′
t = ∧i∈I(si → ti)
t ′ = ∧ j∈J¬(s′j → t ′j)
t ∧ t ′ ̸≃ 0

This rule (taken verbatim from [24]) checks whether a λ -abstraction has all the arrow
types listed in its annotation t and deduces for the term this type t intersected with an
arbitrary finite number of negated arrow types. These negated arrow types can be cho-
sen freely provided that the type t ∧ t ′ remains non-empty. This rule ensures that given
a function λ tx.e (where t is an intersection type), for every type t1 → t2, either t1 → t2
can be obtained by subsumption from t or ¬(t1 → t2) can be added to the intersection t.
In turn this ensures that, for any function and any type t either the function has type t or
it has type ¬t (see [49, Sections 3.3.2 and 3.3.3] for a thorough discussion on this rule).
The consequences of this may look surprising. For example, it allows the system to type
λ Int→Intx.x as (Int→Int)∧¬(Bool→Bool) (notice the negation) even though, disre-
garding its annotation, the function does map Booleans to Booleans. But the language
is explicitly typed, and thus we cannot ignore the annotations: indeed, the function does
not have type Bool→Bool insofar as its application to a Boolean does not return an-
other Boolean but an error Ω . The point is that the theory of semantic subtyping defined
by [24] gives expressions an intrinsic semantics (in the sense of Reynolds [54]) since
the semantics of λ -abstractions depends on their explicit type annotations. This aspect
is apparent when one studies the denotational semantics of CDuce (see Section 5.3 and
Lanvin’s PhD dissertation [40, Chapter 11]): in particular, notice that according to rule
[→I(CDUCE)] we have λ Int→42x.42 : Int→42 while λ Int→Intx.42 : ¬(Int→42) (notice
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the difference in the annotations). Therefore, λ Int→Intx.42 and λ Int→42x.42 must have
different denotations since they may yield different results for a type-case on the type
Int→42.

The purpose of the rule [→I(CDUCE)] is to ensure that, given any function and any type
t, either the function has type t or it has type ¬t. This property not only matches the view
of types as sets of values that underpins semantic subtyping, but also it is necessary to
ensure subject reduction, as we explained in Section 4.1.1 (see [24] for details).16

4.2.3 Type-cases. The second ingredient to obtain the system of Frisch et al. [24] is
the modification of the syntax for type-case expressions by adding an explicit binding.
Formally, we replace the type-case expression in (2) by the following production:

e ::= (x=e∈t)?e :e
The expression (x=e∈t)?e1 :e2 binds the value produced by e to the variable x, checks
whether this value is of type t, if so it reduces to e1, otherwise it reduces to e2. Formally:

(x=v∈t)?e1 :e2 ⇝ e1{v/x} if v ∈ t
(x=v∈t)?e1 :e2 ⇝ e2{v/x} if v ̸∈ t

Since functions are explicitly annotated by their types, it is now possible to define the
relation v ∈ t without using the type-deduction system.17 It is easy to prove that for a
well typed value v and type t that v ∈ t is decidable (cf. Lemma 6.41 in [24])) and that
we have v ∈ t ⇐⇒⊢ v : t ⇐⇒ ̸⊢ v : ¬t ⇐⇒ v ̸∈ ¬t (cf. Lemma 6.22 in [24]).

Type-case expressions are needed to define full-fledged overloaded functions as op-
posed to having just “coherent overloading” as found in Forsythe [53]. Indeed, the rule
[→I(CDUCE)] we added in the previous subsection, when it is not coupled with a type-
case expression, allows the system to type only a limited form of ad hoc polymorphism
known as coherent overloading [51, 53]. In languages with coherent overloading, such
as Forsythe or the system by Barbanera et al. [1] (or our system without type-case ex-
pressions), it is not possible to distinguish (s1→t1)∧ (s2→t2) from (s1∨s2)→ (t1∧t2), in
the sense that they both type exactly the same set of expressions.18 The equivalence (or
indistinguishability) of the two types above states that it is not possible to have a function
with two distinct behaviors chosen according to the type of the argument: the behavior
is the same for inputs of type s1 or s2 and the intersection of the arrow types is just a
way to “refine” this behavior for specific cases. In the subtyping relation of Definition 4,
instead, the relation

s1 ∨ s2 → t1 ∧ t2 ≤ (s1 → t1)∧ (s2 → t2) (4)

16 Although by this rule it is possible to deduce infinitely many distinct types for the same expres-
sion, the system still has a notion of principality, obtained by the introduction of type schemes:
see Section 6.12 in [24].

17 We have v ∈ t def⇐⇒ ∃s∈typeof(v) .s ≤ t where typeof(v) is inductively defined as:
typeof(c) def

= {bc}, typeof(λ
∧

i∈I si→ti x.e) def
= {t | t ≃ (

∧
i∈I si → ti)∧ (

∧
j∈J ¬(s′j → t ′j)), t ̸≤ 0},

typeof((v1,v2))
def
= typeof(v1)× typeof(v2).

18 It is not possible to prove that the two types are equivalent in the system of [53] but this can be
done for the system of [1].
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is strict (i.e., the converse does not hold). Therefore, for the step (III) of [24] to hold, the
language must provide a λ -abstraction that is in the larger type but not in the smaller one,
for instance because for some argument in s1 the λ -abstraction returns a result that is in t1
but not in t2. In general this may require the use of a type-case in the body of the function,
as for λ (Int→Bool)∧(Bool→Int)x.(y=x∈Int)?(y==1) :42 which is a function that has type
(Int→Bool)∧ (Bool→Int) but not Int∨Bool → Int∧Bool: since Int∧Bool = 0,
then the second type contains only functions that diverge on arguments in Int∨ Bool,
which is not the case for the function above. Thanks to the presence of type-cases we
can thus distinguish these two types by a value; without type-cases, the only functions
in (Int→Bool)∧ (Bool→Int) we could define would be those that (disregarding their
annotations) could be typed also by Int∨Bool→ 0 and, thus, they would diverge on all
their arguments.

The typing rules for type-case expressions are, once again, taken verbatim from [24]

[CASE]
Γ ⊢ e : t ′ Γ ,x : t ′∧t ⊢ e1 : s Γ ,x : t ′∧¬t ⊢ e2 : s

Γ ⊢ (x=e∈t)?e1 :e2 : s
[EFQ]

Γ ,x : 0 ⊢ e : t

and they replace the rules [∨(≤)], [∈(≤)
1 ], and [∈(≤)

2 ] of Figure 2 (thus solving the last
problem listed in Section 4.1.3). The [CASE] rule infers the type t ′ of the tested expres-
sion e, and then infers the types of the branches by taking into account the outcome of
the test. Namely, it infers the type of e1 under the hypothesis that x is bound to a value
that was produced by e (i.e., of type t ′) and passed the test (i.e., of type t): that is, a
value of type t∧t ′; it infers the type of e2 under the hypothesis that x is bound to a value
that was produced by e (i.e., of type t ′) and did not pass the test (i.e., of type ¬t). The
reader will surely have recognized that the rule [CASE] is nothing but a specific instance
of the union-elimination rule [∨] for a type-case expression, where the expression e′ of
[∨] is the expression tested by the type-case and the bind for the variable x is explicitly
given by the syntax of the expression. Finally, rule [EFQ] (ex falso quodlibet) is used for
when in the rule [CASE] either t∧t ′ or ¬t∧t ′ is empty: this means that the corresponding
branch cannot be selected whatever the result of e is and therefore, thanks to [EFQ] the
branch is not typed (it is given any type, in particular the type of the other branch). For
more discussion on the [CASE] rule and its various implications, the reader can refer to
Section 3.3 of [24] or Section 3.3 of [6] (see also the related work section of [15]).

4.2.4 Random choice. The very last ingredient to obtain the system of Frisch et al. [24]
is the addition of expressions for random choice.

Formally we add to the previous grammar the production e ::= choice(e,e). The se-
mantics of this expression is just a random choice of one of its arguments:

choice(e1,e2)⇝ e1
choice(e1,e2)⇝ e2

The need for a choice operator can be evinced by considering the interpretation of func-
tion spaces given in Definition 3. Notice indeed that functions are interpreted as finite
relations, but we do not require them to be deterministic, that is, in a finite relation
there may be two pairs with the same first projection but different second projections.
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More concretely, if e1 : t1 and e2 : t2 then choice(e1,e2) allows us to define a value that
separates the type s → t1∨ t2 from the type (s→t1)∨ (s→t2) (in Definition 3 the inter-
pretation of the latter type is strictly contained in the interpretation of the former type),
since λx.choice(e1,e2) is a value in the first type that it is not in the second type. This is
formalized by the following straightforward typing rule.

[CHOICE]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2
Γ ⊢ choice(e1,e2) : t1 ∨ t2

The complete deduction system for Core CDuce is summarized in Figure 3. It is formed

[CONST]
Γ ⊢ c : bc

[VAR]
Γ ⊢ x : Γ (x)

x ∈ dom(Γ )

[→I]
∀i ∈ I Γ ,x : si ⊢ e : ti
Γ ⊢ λ

∧i∈I si→ti x.e : t ∧ t ′
t = ∧i∈I(si → ti)
t ′ = ∧ j∈J¬(s′j → t ′j)
t ∧ t ′ ̸≃ 0

[→E]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ e1e2 : t1 ◦ t2
t1 ≤ 0 → 1
t2 ≤ dom(t1)

[×I]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ (e1,e2) : t1 × t2
[×Ei]

Γ ⊢ e : t

Γ ⊢ πie : πππ iii(t)
t ≤ 1×1

[CASE]
Γ ⊢ e : t ′ Γ ,x : t∧t ′ ⊢ e1 : s Γ ,x : ¬t∧t ′ ⊢ e2 : s

Γ ⊢ (x=e∈t)?e1 :e2 : s
[EFQ]

Γ ,x : 0 ⊢ e : t

[CHOICE]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2
Γ ⊢ choice(e1,e2) : t1 ∨ t2

Fig. 3: Algorithmic system for the core calculus of CDuce

by the choice rule plus the rules [CASE] and [EFQ] of Section 4.2.3, the rule [→ I(∧)] of
Section 4.2.2, the rules [→E(A)] and [×E(A)

i ] (for i = 1,2) of Section 4.1.2, and the rules
[CONST], [VAR], and [×I] of Figure 1. The resulting deduction system is algorithmic:
it is syntax-directed and formed by analytic rules (with a small caveat for [→I], see
Footnote 16). The complete definition of the core calculus for CDuce is summarized
for the reader’s convenience in Appendix A. Finally, the resulting system has enough
points to distinguish all types that have different interpretations. In particular, the value
interpretation of types for this language, defined as JtKV = {v | ∅ ⊢ v : t}, induces the
same subtyping relation as the interpretation J·K of Definition 3: the circle is closed.

As a final remark, it is important to stress that all these types and typing rules can also
be used for languages that do not have all the constructs described above and that, thus,
do not “close the circle”. The only drawback is that the type system will not be used at
its full potential and result more restrictive than needed. For instance, if a language does
not include overloaded functions, then we could safely consider the relation in (4) to be
an equivalence rather than a simple containment and thus safely allow expressions of the
type on the right-hand side to be used where expressions of the type on the left-hand side
are expected. This is forbidden by the current definition of the subtyping relation which,
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for such a language, would thus be more restrictive than it should be. Although this looks
as a minor problem, it is however possible to modify the definition of the subtyping
relation to validate the equality (and close the circle) as it is shown in Section 5.9 of
Frisch’s PhD thesis [22].

4.2.5 Polymorphic language. Hitherto, the system presented in this section is mono-
morphic. Although we did not explicitly state it, the meta-variable t used so far ranged
over the monomorphic types of Definition 1, which did not include type-variables. In
particular, Theorem 5.2 of [24] that states the equivalence of type containment in the
value interpretation and in the domain D and, thus, “closed the circle”, is valid only for
monomorphic types: it is not possible to give a value interpretation to polymorphic types
insofar as there is no value whose type is a type variable, even though type-variables are
not empty types. Likewise, the property that for every value v and type t either v : t or
v : ¬t no longer holds if type variables may occur in types: for instance, 42 is neither of
type α nor of type ¬α .

Nevertheless, if we want the function flatten in the introduction to be applicable
to any well-typed argument, then we need to add polymorphic types to CDuce, since the
monomorphic version of this function requires a different implementation of flatten
for each ground instantiation of the type Tree(α)→List(α). A similar argument holds
for the function balance in Section 2.

The extension of CDuce with polymorphic types is as conceptually simple as its
practical implementation is difficult. To add polymorphism to CDuce it suffices to take
the grammar of the monomorphic expressions of CDuce as is and use polymorphic types
wherever monomorphic ones were used, with a single exception: since the property that
a value v has either type t or type ¬t, no longer holds for every type t, but just for closed
types, then we restrict type-case expressions to test only closed types, that is:

Types t ::= b | t × t | t → t | t ∨ t | ¬t | 0 | α

Test Types τ ::= b | τ × τ | τ → τ | τ ∨ τ | ¬τ | 0
Expressions e ::= c | x | λ∧i∈I ti→tix.e | ee | πie | (e,e) | (x=e∈τ)?e :e | choice(e,e)

To type these expressions all we need to do is to add a single typing rule to account for the
fact that if an expression has a polymorphic type, then it has also all the instances of this
type; and since there are multiple instances of a type, then it has also their intersection.
In other terms we add to Figure 3 the following rule

[INST(∧)]
Γ ⊢ e : t

Γ ⊢ e :
∧

i∈I tσi

where I is a finite set, σi’s denote type substitutions, that is, finite mappings from variable
to types, and tσi is their application to a type t. No other modification is necessary.

Thanks to these modifications it is now possible to define in CDuce, say, the poly-
morphic identity function λ α→α x.x which is of type α → α . By an application of the
[INST(∧)] rule we can deduce for it the type (Int→Int)∧ (Bool→Bool) and, thanks to
this deduction it is possible to infer for the application (λ α→α x.x)(choice(3,true)) the
type Int∨Bool.19

19 As a side note, even if property (3) does not hold in this system (e.g., 42 is neither of type α nor
of type ¬α) this does not hinder the soundness of system since subject reduction holds for all
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Why then is the practical implementation of this system so difficult? The reader will
have noticed that since we added [INST(∧)] to the deduction system in Figure 3, then the
system is no longer algorithmic. The new rule is neither syntax-directed (it applies to a
generic expression e) nor analytic (it is not clear how to determine the set of type substi-
tutions {σi}i∈I to apply in the rule). The latter, that is determining type substitutions, is
the real challenge for implementing polymorphic CDuce. We will not explain the details
about how to do it: this has needed two distinct papers (part 1 [9] and part 2 [10]) to
which the reader can refer for all details. Bottom line, all this complexity is hidden to the
programmer: CDuce does it for her. Nevertheless, we want to outline some aspects that
can give the reader a flavor of the complexity that underlies this implementation.

A first ingredient that is necessary in all languages with implicit parametric poly-
morphism (also known as prenex or second-order polymorphism) is type unification: to
type the application of a (polymorphic) function of type t → t ′ to an argument of type
t ′′ one has to unify the type of the argument with the domain of the function, viz., to
find a type substitution σ such that tσ = t ′′σ . However, in a polymorphic language with
subtyping this may not be enough since, in general, we need a type-substitution that
makes the type of the argument a subtype of the domain of the function. In other terms
we need to solve the type tallying problem [10], that is, given two types t and t ′ find all
type substitutions σ such that tσ ≤ t ′σ . For instance, consider the types we defined at
the end of Section 2: if we want to apply a function whose domain is RBTree(α) (a
red-black tree with generic labels) to an argument of type RTree(Int) (a red tree with
integer labels), then we need the substitution σ = {α 7→ Int} since (RTree(Int))σ
= RTree(Int)≤ (BTree(Int)∨RTree(Int)) = (RBTree(α))σ (notice that the sub-
typing relation in the middle is strict). The type tallying problem is decidable for the
polymorphic types of Section 3. In Castagna et al. [10, Appendix C] we defined an algo-
rithm that returns a set of type-substitutions that is sound and complete with respect to
the tallying problem: every substitution in the set is a solution, and every solution is an
instance of the substitutions in the set. The reason why the tallying problem admits as so-
lution a principal set of substitutions—rather than a single principal substitution—is due
to the presence of set-theoretic types. For instance the problem of finding a substitution σ

such that (α1 ×α2)σ ≤ (β1 ×β2)σ admits three incomparable solutions: (i) {α1 7→ 0},
(ii) {α2 7→ 0}, and (iii) {α1 7→ β1,α2 7→ β2}.

While the capacity of solving the type tallying problem is necessary to type the ap-
plications of polymorphic functions, this capacity alone is not sufficient. The reason is
that functions can be typed not only by instantiating their types, but also by what is com-
monly called expansion: as stated by rule [INST(∧)] an expression, thus a function, can
be typed by any intersection of instantiations of its type. Consider the function:

let even : (Int→Bool) & (α\Int→α\Int) =

fun x -> (x∈Int) ? ((x mod 2)==0) : x

or, in Core CDuce syntax, λ (Int→Bool)∧(α\Int→α\Int)x.(y=x∈Int)?((ymod 2)==0) :y.
The function is polymorphic: if applied to an integer it returns a Boolean (i.e., whether
the argument is even or not), otherwise it returns the argument. Notice that the type of

well typed terms with ground types, that is for all ground instances of a program. This is enough
to prove the soundness of the system.
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this function is not weird since it follows the same pattern as the type of the balance

function we defined in Section 2. Next consider the classic map function:

let rec map : (α→β)→List(α)→List(β) =
fun f l -> match l with (5)
| [] -> []
| h::t -> (f h)::(map f t)

and the partial application map even for which polymorphic CDuce infers the type

map even : ( List(Int) → List(Bool) ) ∧
( List(γ\Int) → (List(γ\Int)) ∧ (6)
( List(γ∨Int)) → List((γ\Int)∨Bool) )

stating that map even returns a function that when applied to a list of integers it returns
a list of Booleans; when applied to a list that does not contain any integer, then it returns
a list of the same type (actually, the same list); and when it is applied to a list that may
contain some integers (e.g., a list of reals), then it returns a list of the same type, without
the integers but with some Booleans instead (in the case of reals, a list with Booleans and
with reals that are not integers). The typing of map even shows that the sole tallying is not
sufficient to obtain such a precise type: the result is obtained by inferring three different
instantiations20 of the type of map, taking their intersection and tallying it with the type
of even. This is obtained by the CDuce type-checker by trying different expansions of
the types of the function and of the argument, implementing a dove-tail search. For a
detailed explanation the reader can refer to Castagna et al. [10].

The language presented in this subsection is the core of the polymorphic version of
CDuce implemented in the development branch of the language. It is possible to define
in it the functions flatten, balance, map, and even of Sections 1, 2 and here above as
long as they are explicitly typed: CDuce requires every function to be annotated with its
type. CDuce also performs occurrence typing, but it requires the tested expression either
to be a variable or to be explicitly bound to a variable on which the union elimination
rule is applied.

In the next section we show how to get rid of the mandatory annotations for functions
(alas at the expense of inferring intersection types for them), while in Section 4.4 we
present a language in which union elimination is implemented without any restriction
and intersection types for functions are inferred without need of annotations (alas at the
expense of polymorphism).

letlet

4.3 An Implicitly-Typed Polymorphic Language with Set-Theoretic Types

The polymorphic language of the previous section requires to explicitly annotate every
function with its type. While for top-level functions this may be often advisable and
sometime necessary—e.g., for documentation purposes or for exporting the functions in

20 For map even we need to infer just two instantiations, namely, {α 7→ (γ\Int),β 7→ (γ\Int)}
and {α 7→ (γ∨Int),β 7→ (γ\Int)∨Bool}. The type in (6) is redundant since the first type of
the intersection is an instance (e.g., for γ=Int) of the third. We included it just for the sake of
the presentation.
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a library—, it is in general an annoying burden for the programmer, especially for local
functions many of which seldom require to be documented with a precise type. Besides,
determining the right annotation may be mind-boggling if not impossible, even for very
simple functions: for instance, consider the function λx.(λy.(x,y))x which clearly has the
type (Int→Int×Int)∧ (Bool→Bool×Bool) since it always returns a pair obtained
by duplicating the function’s argument; as an exercise the reader may try to annotate it
without polymorphic types (and without reading the solution in the footnote), so as to
deduce the above intersection type.21

To obviate these problems we studied how to type the implicitly-typed language of
grammar (2) in Section 4.1, whose λ -abstractions are not annotated, using the polymor-
phic types of Section 3.3. The first results of this study were presented in Castagna et al.
[11] whose system was later greatly improved and superseded by Petrucciani’s Ph.D.
dissertation [49, see Part 2] on which the rest of this subsection is largely based. In order
to make type-inference for the implicitly-typed λ -abstractions in (2) feasible, we define
a system that imposes several restrictions that are absent from the explicitly-typed poly-
morphic CDuce we described in Section 4.2.5, namely:
1. the system implements the so-called let-polymorphism, characteristic of languages

of the ML-family or Hindley-Milner systems, according to which the type system
can only instantiate the type of expressions22 that are bound in a let construct. This
contrasts with the system in Section 4.2.5 where the type of every expression can be
instantiated.

2. type-case expressions can test only types that do not have any functional subcompo-
nent other than 0 → 1;

3. the type-system does not infer negated arrow types for functions;
4. the reconstruction algorithm does not infer intersection types for functions.

Obviously, to implement let-polymorphism we need to extend the grammar (2) with a
let-expression. The language thus has the following definition:

Test Types τ ::= b | τ × τ | 0 → 1 | τ ∨ τ | ¬τ | 0
Expressions e ::= c | x | λx.e | ee | (e,e) | πie | (e∈τ)?e :e | letx=ein e

As anticipated type-cases cannot test arbitrary types, since they use the restricted gram-
mar for test types τ . There are two restrictions with respect to the types in (1): types
must be ground (as in Section 4.2.5, α does not appear in the definition of τ) and the
only arrow type that can appear is 0→1, that is, the type of all functions. This means
that type-cases can distinguish functions from non-functions but cannot distinguish, say,
the functions that have type Int→Int from those that do not. Type-cases of this form
have the same expressiveness as the type-testing primitives of dynamic languages like
JavaScript and Racket. The definitions of values and of the reduction semantics rules
given in Section 4.1 do not change. To account for the new let-expressions we add

21 This is impossible since the type to give to the local function λy.(x,y) depends on the hypothesis
on x: annotating the inner function with the above intersection type would not work since when
x is of type Int, then the local function does not have type Bool→ Bool×Bool and similarly
for the case when x is of type Bool. The only solution is to annotate both functions with the type
α → α×α and deduce the intersection type by applying rule [INST(∧)]. See also Section 4.4
which introduces more expressive annotations that can type this example.

22 In practice, values, see the so called value restriction suggested by Wright [64].



34 G. Castagna

to these definitions the notion of reduction letx=vin e⇝ e{v/x} together with the
new evaluation context letx=E in e. As for CDuce, the relation v ∈ t (actually, v ∈ τ)
used in the reduction semantics of type-cases can be defined independently from the
type system. Here the definition is even simpler than the one given in Section 4.2.3
(cf. Footnote 17) since we have v ∈ t def⇐⇒ typeof(v) ≤ t and v ̸∈ t def⇐⇒ typeof(v) ≤
¬t where typeof(c) =def bc, typeof(λx.e) =def 0→1, and typeof((v1,v2)) =def typeof(v1)×
typeof(v2). Note that typeof maps every λ -abstraction to 0→1. This approximation is
allowed by the restriction on test types in type-cases.

The most important changes with respect to the theoretical framework of Section 4.1
are to be found in the type-system, defined in Figure 4 where, as anticipated, t, t ′, t1, and

[CONST]
Γ ⊢ c : bc

[VAR]
Γ ⊢ x : t{α⃗ 7→⃗t}

Γ (x) = ∀α⃗.t

[→I]
Γ ,x : t1 ⊢ e : t2

Γ ⊢ λx.e : t1 → t2
[→E]

Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1
Γ ⊢ e1e2 : t2

[×I]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ (e1,e2) : t1 × t2
[×E1]

Γ ⊢ e : t1 × t2
Γ ⊢ π1e : t1

[×E2]
Γ ⊢ e : t1 × t2
Γ ⊢ π2e : t2

[CASE]
Γ ⊢ e : t ′ either t ′ ≤ ¬t or Γ ⊢ e1 : s either t ′ ≤ t or Γ ⊢ e2 : s

Γ ⊢ (e∈t)?e1 :e2 : s

[LET]
Γ ⊢ e1 : t1 Γ ,x : ∀α⃗.t1 ⊢ e2 : t

Γ ⊢ letx=e1 in e2 : t
α⃗ ♯ Γ

[∧]
Γ ⊢ e : t1 Γ ⊢ e : t2

Γ ⊢ e : t1 ∧ t2
[≤]

Γ ⊢ e : t t ≤ t ′

Γ ⊢ e : t ′

Fig. 4: Typing rule for let-polymorphism

t2 range over the polymorphic types defined in Section 3.3 grammar (1). The type system
described in Figure 4 is very similar to a standard Hindley-Milner system: the differences
are just the addition of subtyping and intersection introduction, as well as a rule for
type-cases. As in Hindley-Milner type systems, we introduce a notion of type scheme
separate from that of types. A type scheme, denoted by ∀α1, ....,αn.t and abbreviated as
∀α⃗.t, binds the type variables α1, ...,αn in t. We view types as a subset of type schemes
identifying ∀α⃗.t with t if α⃗ is empty. Type environments map variables into type-schemes
and we write α ♯ Γ for the property that α does not occur free in Γ (type schemes are
considered equivalent modulo α-renaming of the type variables).

If we compare the rules in Figure 4 with those of the theoretical framework in Fig-
ure 1 we will notice several differences. Foremost, the union elimination rule [∨] is no
longer present. Since this rule played a key role in typing type-case expressions, then the
three rules [0], [∈1], and [∈2] for type cases are replaced in Figure 4 by a single rule
[CASE] that skips the typing of a branch when this is not selectable. The only other dif-
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ference is in the rule [VAR]. This is classic in Hindley-Milner system: type environments
map variables into type-schemes and [VAR] instantiates these variables with a set of types
t⃗. This rule is coupled with the new rule [LET] that infers the type t1 of the argument of
the let-expression and generalizes this type by binding in the type of x all variables α⃗

that are not free in Γ . A final observation, while by the rule [∧] it is possible to deduce
intersection types for functions, it is not possible to deduce negation types (other than
by subsumption). Nevertheless the system is sound, but the proof needs to deduce these
negation types which, since the λ -abstractions are not annotated, is not straightforward:
see Petrucciani [49, §3.3].

4.3.1 Type reconstruction. The next problem is to define an algorithm of type re-
construction23 for this implicitly-typed language with set-theoretic types (that we dub
Implicit CDuce, for short). The algorithm defined by Petrucciani [49, Chapter 4] does
not attempt to infer intersection types: that would complicate type inference because we
cannot easily know how many types we should infer and intersect for a given expression,
notably for a function. Therefore, the algorithm of type reconstruction is sound with
respect to the type system in Figure 4 and complete with respect the same system with-
out the rule [∧]. The algorithm follows a pattern that is common with Hindley-Milner
system and consists in producing sets of structured constraints, that are then simplified
into sets of subtyping constraints to be solved by the tallying algorithm we hinted at in
Section 4.2.5. For space reasons we just outline its main characteristics and some speci-
ficities of type reconstruction for set-theoretic types.

The main difference with respect to Hindley-Milner systems is that we reduce type
reconstruction to solving sets of constraints that are subtyping constraints (rather than
type equality constraints) that we then solve by using tallying (rather than unification).

A subtlety of Hindley-Milner type systems is the restriction used in generalization: to
type e2 in letx=e1 in e2, we assign to x the type scheme obtained from the type of e1 by
quantifying over all type variables except those that are free in the type environment. This
restriction is needed to ensure soundness. Therefore, whether the binding for a variable
x of a let-expression is polymorphic or not (and if it is, which type variables we can
instantiate) depends on a comparison of the type variables that appear syntactically in
the type of the bound expression and in the type environment. This is problematic with
semantic subtyping: we want to see types up to the equivalence relation ≃ (that is, to
identify types with the same set-theoretic interpretation), but two types can be equivalent
while having different type variables in them. For instance, α ∧ 0 and α\α are both
equivalent to 0, but α occurs in them and not in 0. This means that we cannot see type
environments up to equivalence of their types, since the type schemes in them were
generalized according to the variables that syntactically occurred in the environment. The
absence of this property is problematic during constraint resolution, in particular when
applying type substitutions. The solution to this problem is to adopt a technique akin to
the reformulated typing rules of Dolan and Mycroft [20]. First of all, note that our current
type environments Γ bring two different kinds of hypotheses: they map λ -abstracted

23 We use this term in the sense of Pierce [50], that is, reconstructing the type information in an
implicitly-typed language. Sometimes the terms type inference or type assignment system are
equivalently used in the literature.
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variables into types (that cannot be instantiated: the variables have monomorphic types)
and let-abstracted variables into type schemes (which can be instantiated by replacing
the quantified variables by types: the variables have polymorphic types). As a first step,
let us separate these two kinds of hypotheses and replace our type environment Γ by a
monomorphic type environment M for λ -abstracted variables and a polymorphic type
environment P for let-abstracted variables: for clarity we distinguish the latter variables
by superposing a hat on them, such as in x̂ and ŷ. The second step is to notice that
type schemes are obtained by generalizing the type variables that do not occur in the
monomorphic part of the type environment. This observation allows us to get rid of type
schemes and generalization by replacing them with typing schemes [20] that record how
a polymorphic type depends on the current monomorphic type environment. So while a
monomorphic type environment M still maps a λ -abstracted variable x into a type t, a
polymorphic environment P maps a let-abstracted variable x̂ into a typing scheme ⟨M⟩t
where M is a monomorphic type environment and t a type. For instance, consider the
expression λx.(let x̂=λy.(x,y)in e). With type schemes we would choose α as the type
of x, type λy.(x,y) as β → α × β , and then, to type e, we would assign to x̂ the type
scheme ∀β .β → α × β (we generalized β but not α). In the reformulated system, in
contrast, x̂ is assigned the typing scheme ⟨x : α⟩(β → α × β ) where all type variables
are implicitly quantified (the reconstruction algorithm will be allowed to instantiate all
of them: cf., rule [x̂] in Figure 6) and can be α-renamed: we could equivalently choose
for x̂ the typing scheme ⟨x : γ⟩(δ → γ ×δ ), since we do not care which type variables we
use, but only that the dependency is recorded correctly. Using this system, the previous
difficulties with generalization do not arise: we can give x̂ the type α ∨ (γ\γ) equivalent
to α as long as this does not capture an implicitly quantified type variable of the typing
scheme (in the present case γ).

Once we have fixed this point, then reconstruction consists in constraint generation
and constraint solving. On the lines of Pottier and Rémy [52], Petrucciani [49, Chap-
ter 4] introduces two notions of constraint. The first, type constraints (t1 ◦< t2), constrain
a solution (a type substitution σ ) to satisfy subtyping between two types (that is, to sat-
isfy t1σ ≤ t2σ ). In the absence of let-polymorphism, the type inference problem can
be reduced to solving such type constraints, as done by Wand [63] for unification. In
our setting, as for type inference for ML, it would force us to mix constraint generation
with constraint solving. Therefore, we introduce structured constraints, which allow us
to keep the two phases of constraint generation and constraint solving separate. These
constraints can mention expression variables and include binders to introduce new vari-
ables. Structured constraints are closely related to those in the work of Pottier and Rémy
[52] on type inference for ML and are defined as follows:

C ::= (t ◦< t) | (x ≤̇ t) | (x̂ ≤̇ t) |C∧C |C∨C | ∃α⃗.C | def x : t inC | let x̂ : ∀α[C] inC

Structured constraints include type constraints (t ◦< t) but also several other forms. The
two forms (x ≤̇ t) and (x̂ ≤̇ t) constrain the type or typing scheme of the variable. Con-
straints include conjunction and disjunction. The existential constraint ∃α⃗.C introduces
new type variables (it simplifies freshness conditions). Finally, the def and let constraints
introduce the two forms of expression variables and are used to describe the constraints
for λ -abstractions and let-expressions, respectively. Their meaning can be evinced from
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the definition of the constraint generation function ⟨⟨· : ·⟩⟩ that, given an expression e and
a type t, yields a structured constraint ⟨⟨e : t⟩⟩. This constraint expresses the conditions
under which e has type tσ for some type substitution σ . It is defined in Figure 5 where

⟨⟨x̂ : t⟩⟩= (x̂ ≤̇ t)
⟨⟨x : t⟩⟩= (x ≤̇ t)
⟨⟨c : t⟩⟩= (bc ◦< t)

⟨⟨(λx.e) : t⟩⟩= ∃α1,α2.(def x : α1 in ⟨⟨e : α2⟩⟩)∧ (α1→α2 ◦< t)
⟨⟨e1e2 : t⟩⟩= ∃α.⟨⟨e1 : α → t⟩⟩∧ ⟨⟨e2 : t⟩⟩

⟨⟨(e1,e2) : t⟩⟩= ∃α1,α2.⟨⟨e1 : α1⟩⟩∧ ⟨⟨e2 : α2⟩⟩∧ (α1×α2 ◦< t)
⟨⟨πie : t⟩⟩= ∃α1,α2.⟨⟨e : α1×α2⟩⟩∧ (αi ◦< t)

⟨⟨((e0∈τ)?e1 :e2) : t⟩⟩= ∃α.⟨⟨e0 : α⟩⟩∧
(
(α ◦<¬τ)∨⟨⟨e1 : t⟩⟩

)
∧
(
(α ◦< τ)∨⟨⟨e2 : t⟩⟩

)
⟨⟨(let x̂=e1 in e2) : t⟩⟩= let x̂ : ∀α[⟨⟨e1 : α⟩⟩] in ⟨⟨e2 : t⟩⟩

Fig. 5: Constraint generation

α,α1,α2 do not occur in t. The constraints for variables and constants are straightfor-
ward. To type λx.e with type t, the system generates two fresh variables α1 and α2,
generates the constraint for e to be of type α2 under the hypothesis that x is of type α1,
and adds the constraint that t subsumes α1 → α2. Note that the constraint generation
associates λx.e to a single arrow α1 → α2 since, as anticipated, it does not attempt to
infer intersection types. The constraints for applications, pairs and projections are self-
explaining. For type-cases, the system generates the constraint for the tested expression
to be of type α , for a fresh α , and then it types the two branches provided that they can be
selected, viz., either the constraint that e1 is of type t must be satisfied or the first branch
cannot be selected since α is a subtype of ¬τ , and similarly for the second branch. Fi-
nally, for let-expressions it generates the constraints for e1 remembering that the type α

of e1 can be generalized, and under this hypothesis generates the constraints for e2 to be
of type t.

Once the structured constraints are generated for a given expression they are simpli-
fied to obtain a set of type constraints whose solution yields the type of the expression.
This is done by an algorithm that takes as input a polymorphic type environment P and a
structured constraint C and produces a set of type constraints D (which is then solved by
tallying), a monomorphic type-environment M (which collects the constraints x ≤̇ t in C)
and a set of variables α⃗ (that collects the type variables introduced during the simplifi-
cation of C). This is written as P ⊢C ⇝ D | M | α⃗ and defined by the deduction rules in
Figure 6.

A type constraint yields the singleton containing the type constraint itself (rule [ ◦<])
while a constraint for a λ -abstracted variable returns the corresponding monomorphic
environment without any other constraint (rule [x]). The first interesting rule is the one
for the constraint of a let-abstracted variable (rule [x̂]), since it performs the instantia-
tion: if the typing scheme of x̂ is ⟨M1⟩t1, then the simplification instantiates all the type
variables in the typing scheme (i.e., tvar(⟨M1⟩t1)) by some fresh variables β⃗ (precisely,
some variables β⃗ not occurring in t, noted β⃗ ♯ t), and returns the constraint that the type
of x̂ so instantiated is subsumed by t, the monomorphic environment M1 of the constraint
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[ ◦<]
P ⊢ (t1 ◦< t2) ⇝ {t1 ◦< t2} |∅ |∅

[x]
P ⊢ (x ≤̇ t) ⇝ ∅ | (x : t) |∅

[x̂]
P ⊢ (x̂ ≤̇ t) ⇝ {t1{α⃗ 7→β⃗} ◦< t} | M1{α⃗ 7→β⃗} | β⃗

{
P(x̂) = ⟨M1⟩t1
α⃗ = tvar(⟨M1⟩t1)
β⃗ ♯ t

[∧]
P ⊢C1 ⇝ D1 | M1 | α⃗1 P ⊢C2 ⇝ D2 | M2 | α⃗2

P ⊢C1 ∧C2 ⇝ D1 ∪D2 | M1 ∧M2 | α⃗1 ∪ α⃗2

{⃗
α1 ♯ α⃗2,C2
α⃗2 ♯C1

[∨]
P ⊢Ci ⇝ D | M | α⃗

P ⊢C1 ∨C2 ⇝ D | M | α⃗
[∃]

P ⊢C ⇝ D | M | α⃗
′

P ⊢ ∃α⃗.C ⇝ D | M | α⃗
′∪ α⃗

α⃗ ′ ♯ α⃗

[DEF]
P ⊢C ⇝ D | M | α⃗

P ⊢ def x : t inC ⇝ D∪{t ◦< M(x)} | M\x | α⃗
α⃗ ♯ t

[LET]
P ⊢C1 ⇝ D1 | M1 | α⃗1 (P, x̂ : ⟨M1σ1 : ασ1⟩) ⊢C2 ⇝ D2 | M2 | α⃗2

P ⊢ let x̂ : ∀α[C1] inC2 ⇝ D2 | M1σ1{α⃗ 7→β⃗}∧M2 | α⃗2 ∪ β⃗


σ1 ∈ tally(D1)
α⃗ = tvar(M1σ1)
α⃗1 ♯ α

β⃗ ♯C1, α⃗2

Fig. 6: Constraint simplification rules

so instantiated, and the set β⃗ of fresh variables used for this instantiation. The rule for
conjunction [∧] requires all the constraints to be satisfied and merges the monomorphic
environments (where M1∧M2 denotes the pointwise intersection of the environments24).
Rule [∨] non-deterministically chooses a constraint, while [∃] ensures that the constraint
uses fresh variables and records them. Rule [DEF] simplifies the constraint C and adds a
new type constraint t ◦< M(x) (notice the contravariance, since t is the type hypothesis of
a λ -abstracted variable it must be smaller than the type M(x) needed to type the body of
the function) to remove the binding of x from M, so that the domain of a monomorphic
environment obtained by simplifying a constraint C is always the set of λ -abstracted
variables free in C. Finally, because of let-polymorphism, the simplification algorithm
uses the tallying algorithm internally to simplify let-constraints. This is done in [LET]
where tally(D) denotes the set of type-substitutions that solve the set of type constraints
D. The rule first simplifies the structured constraint C1 and solves the resulting D1 using
tallying. Then it non-deterministically chooses a solution σ1 of D1 to obtain the typing
scheme for x̂, and simplifies C2 in the expanded environment. The final monomorphic
environment returned is the intersection of M2 and a fresh renaming of M1σ1. In most
rules, the side conditions force the choice of fresh variables.

The type reconstruction algorithm is sound: let e be a program (i.e., a closed ex-
pressions) and α a type variable, if ∅ ⊢ ⟨⟨e : α⟩⟩ ⇝ D | ∅ | α and σ ∈ tally(D), then
∅ ⊢ e : ασ is derivable by the system in Figure 4. The algorithm is also complete with
respect to the system without the intersection rule, viz., if a type t can be deduced for an
expression e without using the rule [∧], then ∅ ⊢ ⟨⟨e : α⟩⟩ ⇝ D | ∅ | α for some D and
there exists σ ∈ tally(D), such that t is an instance of ασ . The system we presented here

24 In this rule and in the rule [DEF] we suppose that M(x) = 1 for x ̸∈ dom(M). Thus if x ̸∈
dom(M), then (M∧M′)(x) = M′(x) and (t ◦< M(x)) = (t ◦< 1).
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is a simplification of the one by Petrucciani [49]. In particular we glossed over how to
handle non-determinism (disjunctive constraints and multiple solutions of tally(D) are
the two sources of non-determinism for the algorithm) and how the introduction of fresh
variables during tallying is addressed. The reader can find these details in Petrucciani
[49, Chapter 4].

In this system we can now write the map function defined in (5) without specifying
its type in the annotation: the type reconstruction algorithm will deduce it for us. This
same type is deduced for the map function by any language of the ML-family. But of
course, the use of set-theoretic types goes beyond what can be reconstructed in ML.
We already gave an example in Section 2 that shows that, thanks to set-theoretic types,
pattern matching can be typed to ensure exhaustivity. A second example is given by the
function f below which returns true for the pair of tags (akin to user-defined constants)
( À, B̀), and false for the symmetric pair:

let f = function let g = function

| (`A,`B) -> true | `A -> `B (7)
| (`B,`A) -> false | x -> x

the type returned by the reconstruction algorithm for implicit CDuce and the one by
OCaml (where this kind of tags are called polymorphic variants) are given below.

Implicit CDuce OCaml
f: ( À, B̀)∨( B̀, À) → Bool ( À∨ B̀ , À∨ B̀) → Bool

g: ∀α. À∨ B̀∨(α\( À∨ B̀)) → B̀∨α ∀(α ≥ À∨ B̀) .α → α

While OCaml states that the function f can be applied to any pair of tags À or B̀ (but
the type-checker warns that pattern matching may not be exhaustive since it fails for,
say, the pair ( À, À)) the reconstruction in implicit CDuce bars out all pairs that would
make pattern matching fail. But even when exhaustivity is not an issue, implicit CDuce
can return more precise types, as the function g defined in (7) shows. The type returned
by OCaml states that the function g will return either À or B̀ or any other value that is
passed to the function.25 The type inferred by implicit CDuce states that the function g

will return either B̀ or any other value passed to the function provided that it is neither
À or B̀: contrary to OCaml, it correctly detects that g will never return a tag À.

Finally, to understand how the reconstruction algorithm works in the presence of
subtyping, consider the following OCaml code snippet (that does not involve any pattern
matching or fancy data type: just products) that OCaml fails to type:

fun x -> if (fst x) then (1 + snd x) else x

Our reconstruction algorithm deduces for this function the type
(Bool×Int) → ( Int | (Bool×Int) )

To that end, the constraint generation and simplification systems assign to the function
the type α → β and, after simplification, generates a set of four constraints: {(α ◦<
Bool×1),(α ◦< 1×Int),(Int ◦< β ),(α ◦< β )}. The first constraint is generated because
fst x is used in a position where a Boolean is expected; the second comes from the use of

25 In OCaml this value can only be another polymorphic variant.
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snd x in an integer position; the last two constraints are produced to type the result of an
if then else expression (with a supertype of the types of both branches). To compute
the solution of two constraints of the form α ◦< t1 and α ◦< t2, the tallying algorithm must
compute the greatest lower bound of t1 and t2 (or an approximation thereof); likewise for
two constraints of the form s1 ◦< β and s2 ◦< β the best solution is the least upper bound
of s1 and s2. This yields Bool×Int for the domain —i.e., the intersection of the upper
bounds for α— and (Int | (Bool×Int)) for the codomain—i.e., the union of the
lower bounds for β .

This last example further witnesses the interest of having set-theoretic types exposed
to the programmer rather than just as meta-operations implemented by the type checker.
To perform type reconstruction in the presence of subtyping, one must be able to compute
unions and intersections of types. In some cases, as for the domain in the example above,
the solution of these operations is a type of ML (or of the language at issue): then the
operations can be meta-operators computed by the type-checker but not exposed to the
programmer. In other cases, as for the codomain in the example, the solution is a type
which might not already exist in the language: therefore, the only solution to type the
expression precisely is to add the corresponding set-theoretic operations to the types of
the language.

4.3.2 Adding type annotations. The type reconstruction algorithm we just described
cannot infer intersection types for functions. However it is possible to explicitly annotate
functions (actually, any expression) with an intersection type and the system will check
whether the function has that type [see 49, Chapter 5]. For instance, we can specify for
the functions f and g in (7) the following annotations.

f : (( À, B̀)→ true) ∧ (( B̀, À)→ false)

g : ∀α.( À→ B̀) ∧ ((α\ À)→ (α\ À))

and the type system will accept both of them. With these explicit annotations we almost
recover all the expressiveness of the system in Section 4.2.5 (it just lacks the possibility of
testing function types other than 0→1). So for instance, the application of the (implicitly-
typed) map to the function g explicitly annotated with the type above, will return in the
system of Petrucciani [49, Chapter 5] exactly the same type as the type of map even given
in (6) where À is replaced for Int and B̀ is replaced for Bool.

Adding annotations requires few modifications to the previous system. First of all we
have, of course, to add annotations to our syntax. Here we present a simplified setting
in which annotations are added only to let-expressions (see [49, Chapter 5] for the sys-
tem where annotations can be added to any expressions anywhere in a program), which
corresponds to adding the following production:

e ::= let x̂ : ∀α⃗.t =ein e

A let-abstracted variable can now be annotated with an annotation ∀α⃗.t which specifies
the type t to check for the expression bound to the variable, as well as the type variables
α⃗ that are polymorphic in t. Like in the annotation given above to the function g, we can
specify all the variables occurring in t, but we can also omit some, meaning that they will
be considered monomorphic. For instance, let x̂ : ∀α.α→α =λx.xin x̂3 is well typed,
because α is bound in the let and can be instantiated in the body of the let. Instead,
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let x̂ : α→α =λx.xin x̂3 is ill-typed, because α is not bound in the let and cannot be
instantiated when typing the body x̂3—in practice, this means that α is bound in some
outer scope and is polymorphic only outside that scope.

The addition of annotations has as a consequence that now expressions may have
some free type variables (e.g., tvar(let x̂ : ∀α⃗.t =e1 in e2) = ((tvar(t)∪ tvar(e1))\α⃗)∪
tvar(e2)) which are monomorphic and, thus, cannot be instantiated. To cope with this
fact all the constructions we introduced previously in this section must be enriched by
a set ∆ of monomorphic type variables that cannot be instantiated. So for instance the
typing rule for let-expressions has ∆ as extra hypothesis and becomes:

[LET]
Γ ;∆∪α⃗ ⊢ e1 : t1 ≤ t ′ Γ ,x : ∀α⃗.t1;∆ ⊢ e2 : t

Γ ;∆ ⊢ let x̂ : ∀α⃗.t ′ =e1 in e2 : t
α⃗ ♯ Γ ,∆

The set ∆ must also be added as a parameter of constraint generation. Furthermore,
constraint generation must be modified to exploit type annotations. In particular, we want
to generate different constraints for an x̂ variable or a function when we know the type it
should have. For instance, if a function λx.e is annotated by an intersection type

∧
i∈I t ′i →

ti, then we want to generate separate constraints from e for each arrow: we break up the
intersection into the set {t ′i → ti | i ∈ I} and generate a def-constraint for each element in
the set. If the type in the annotation is not syntactically an intersection of arrows, we can
still try to rewrite it to an equivalent intersection (as a trivial example, we could treat the
annotation (t ′ → t)∨0 like t ′ → t). Formally, we need a function d∆(t) that given a type
t and a set of monomorphic variables ∆ returns a set of arrow types such that, if it is not
empty, then it satisfies (i) t ≃

∧
t ′∈d∆(t) t ′; (ii) tvar(

∧
t ′∈d∆(t) t ′)⊆ ∆ ; (iii) for all t1 → t2 ∈

d∆(t), t1 ̸≃ 0. Essentially, d∆(t) decomposes the type t into an equivalent intersection of
arrow types such that these arrows are not of the form 0 → s (which not only would be
redundant but also problematic [see 49, Section 5.2.2]) and do not contain monomorphic
variables. If this decomposition is not possible d∆(t) returns the empty set. Once we have
a function satisfying these properties (its definition is not important), then we can modify
the constraint generation function so that it takes into account the monomorphic variables
∆ and the annotations. The crucial modifications are the following ones.

⟨⟨x̂ : t⟩⟩∆ =
∧

i∈I(x̂ ≤̇ t) if t ≃
∧

i∈I ti
⟨⟨(λx.e) : t⟩⟩∆ = ∃α1,α2.(def x : α1 in ⟨⟨e : α2⟩⟩∆ )∧ (α1→α2 ◦< t) if d∆(t) =∅
⟨⟨(λx.e) : t⟩⟩∆ =

∧
t1→t2∈d∆(t)(def x : t1 in ⟨⟨e : t2⟩⟩∆ ) otherwise

⟨⟨(let x̂ : ∀α⃗.t ′ =e1 in e2) : t⟩⟩∆ = let x̂ : ∀α⃗,α[⟨⟨e1 : t ′⟩⟩∆∪α⃗ ∧ (t ′ ◦< α)] in ⟨⟨e2 : t⟩⟩∆

with the conditions α1,α2 ♯ t,e,∆ in the second line and α, α⃗ ♯ e1,∆ in the last one.
If a let-abstracted variable is typed by an intersection, then we generate the constraints
for each type in the intersection separately and take their conjunction. If the type of a
λ -abstraction can be decomposed into an intersection of arrows, then we generate the
constraints for each single arrow separately and take their conjunction; otherwise we
proceed as before (in this case the type t is likely to be a type variable). For annotated
let-expressions we generate the constraint that expresses the conditions under which e1
has the type in the annotation, adding the variables α⃗ to those that cannot be instantiated
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when typing e1. Note that the freshness conditions now regard both ∆ and the subexpres-
sions of the program (since free type variables may occur in them). Similar modifications
must be done on the freshness conditions of the remaining generation rules.

Finally, the constraint simplification rules must also take into account the set of
monomorphic variables. Thus, for instance, we have to modify the simplification rule
for let-abstracted variables, so that the fresh instantiation does not use variables in ∆ ,
and likewise for let-expressions:

[x̂]
P;∆ ⊢ (x̂ ≤̇ t) ⇝ {t1{α⃗ 7→β⃗} ◦< t} | M1{α⃗ 7→β⃗} | β⃗

{
P(x̂) = ⟨M1⟩t1
α⃗ = tvar(⟨M1⟩t1)
β⃗ ♯ t,∆

[LET]

P;∆ ∪ α⃗ ⊢C1 ⇝ D1 | M1 | α⃗1
(P, x̂ : ⟨M1σ1 : ασ1⟩);∆ ⊢C2 ⇝ D2 | M2 | α⃗2

P;∆ ⊢ let x̂ : ∀α⃗,α[C1] inC2 ⇝ D2 | M1σ1{β⃗ 7→γ⃗}∧M2 | α⃗2 ∪ β⃗


σ1 ∈ tally∆∪α⃗ (D1)
α⃗ ♯ ∆ ,M1σ1

β⃗ = tvar(M1σ1)\∆

α⃗1 ♯ α

γ⃗ ♯C1, α⃗2,∆

notice in the last rule that the appropriate set of monomorphic variables is now passed to
tally, so that it will not instantiate them to solve the constraints (see Petrucciani [49] for
details).

4.3.3 A Remark on Occurrence Typing. As a final remark, notice that since the type-
system in Figure 4 does not include any form of a union elimination rule, this system
cannot perform occurrence typing. It is possible to proceed as in Section 4.2.5 and change
the syntax of type-cases so as they specify a binding for the tested expression obtaining
the same limited form of occurrence typing present in the CDuce language.

4.4 Occurrence Typing and Reconstruction of Intersections

The two systems described in the preceding sections—i.e., the explicitly-typed version
and the implicitly-typed version of CDuce—present two limitations with respect to the
theoretical framework of Section 4.1:
1. No occurrence typing: neither system includes the union elimination rule [∨] of

Figure 1 which, combined with the rules [∈i], implements occurrence typing.
2. No reconstruction for intersection types: in both systems the only way to deduce an

intersection type for a function is to explicitly annotate it with the sought type.
The approach we describe next, proposed by Castagna et al. [14], targets precisely these
two problems but, for the time being, at the expense of polymorphism. The work studies
whether it is possible to define a type-inference algorithm for the system of the theoret-
ical framework, as is: we use the language defined in (2) with the type-system defined
by rules in Figure 1 and the monomorphic types of Definition 1. The technical problems
to solve in order to define a typing algorithm for this system are those evoked in Sec-
tions 4.1.2 and 4.1.3, namely, (i) how to determine the arrows that form the intersection
type of a λ -abstraction that is not annotated, (ii) how to deduce negation types for a
function, (iii) which expressions and which occurrences of these expressions should the
system choose when it applies an instance of the rule [∨], and (iv) how to determine the
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union of types into which the system should split the type of an expression chosen for
[∨].

We have seen that the previous two systems simply avoided the technical problems
(iii) and (iv) by excluding the rule [∨] and by typing type-case expressions with custom
rules (possibly adding an explicit binding to the syntax of the type-cases so as to have
a limited form of occurrence typing). The system described in [14], instead, follows the
opposite approach: it keeps the rule [∨] as is and introduces specific sound (though, not
complete) algorithmic solutions for these two technical problems. For (iii) it virtually
applies the [∨] rule to all subexpressions of a program and for each such subexpression
it takes into account all its occurrences in the program. For (iv) it uses the type-cases
and the applications of overloaded functions that occur in the program to determine the
split in union types: for instance, if e1 : (Int → Char)∧ (Bool∨Char → Bool), e2 :
Int∨Bool and there is in the program a type-case of the form (e1e2∈Bool)? · · · : · · · ,
then the system splits the type of e1e2 (which is Char∨ Bool) into two separate types,
Char and Bool, since they yield different results for the type-case; but the system will
also split the type of e2 into Int and Bool since they yield two distinct result types for
the application of the overloaded function e1 (and incidentally for the type-case at issue).
The same solution as for technical problem (iv) is also used for the technical problem
(i), viz., given a function with a certain domain the system uses the type-cases and the
applications of overloaded functions occurring in the program to determine how to split
the function’s domain into a union of types to be checked separately and, thus, deduce
an intersection type for the function: for instance, if e1 has the same type as above and
it is applied to the parameter x of some function—e.g., λx . ...e1(x)...—, then the system
will deduce that the domain of the function is (a subtype of) Int∨Bool∨Char and split
this domain in two, that is, it tries to type the body of the function under the hypothesis
x : Int and under the hypothesis x : Bool∨ Char to deduce for the function a type of
the form (Int → ...)∧ (Bool∨Char → ...). Finally, the system in Castagna et al. [14]
avoids technical problem (ii) in the same way as implicit CDuce does: negation types
are not inferred, but type-cases cannot test functional types other than 0 → 1. This of
course implies that property (3) in Sectionn 4.1.1—i.e., that every value has a type or its
negation—does not hold. But this does not hinder the property of type preservation since,
as we explained in Section 4.1.1, the presence of the union elimination rule [∨] suffices
for it (even though it holds only for ad hoc parallel reductions: cf. Barbanera et al. [1]
and Castagna et al. [14]).

To obtain a type-inference algorithm with the characteristics outlined above, Castagna
et al. [14] proceed in four steps, that we describe next.

First, we introduce an intermediate language that adds to the theoretical framework’s
original language defined in (2) (henceforth, the source language) a “bind” construct that
factors out common subexpressions. The type system of this new intermediate language
limits the introduction of intersection and union types in the rules for typing functions
and bind forms, respectively. Typeability in the source and the intermediate language
coincide up to refactoring with bind.

Second, we introduce a syntactic restriction on terms of the intermediate language
dubbed maximal-sharing canonical form (MSC-form), reminiscent of an aggressive A-
normal form [55]. A MSC-form is essentially a list of bindings from variables to atoms.
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An atom is either an expression of our source language in which all subexpressions are
variables, or it is a λ -abstraction whose body is a MSC-form. These forms are called
maximal-sharing forms because they must satisfy the property that there cannot be two
distinct bindings for the same atom. This is a crucial property because it ensures that
every expression of the source language (i) is equivalent to a unique (modulo the order
of bindings) MSC-form and (ii) is well-typed if and only if its MSC-form is. For instance,
consider the expression

(a1a2∈Int)?(a2 +1) :((a1a2)@a2) (8)

where a1 and a2 are generic atoms of type t1 = (Int→Int)∧ (String→String) and
t2 = Int∨String, respectively, and @ denotes string concatenation. This expression is
well-typed with type Int∨String. Its MSC-form will look like the term in Table 1. No-

bind x1 = a1 in
bind x2 = a2 in
bind x3 = x1x2 in
bind x4 = x2 + 1 in
bind x5 = x3@x2 in
bind x6 = (x3∈Int)?x4 :x5
in x6

Table 1: Pure MSC-form

bind x1 : {t1} = a1 in
bind x2 : {Int , String} = a2 in
bind x3 : {x2:Int▷Int , x2:String▷String} = x1x2 in
bind x4 : {Int} = x2 + 1 in
bind x5 : {String} = x3@x2 in
bind x6 : {t2} = (x3∈Int)?x4 :x5
in x6

Table 2: Annotated MSC-form

tice that this term satisfies the maximal sharing property because the two occurrences of
the application a1a2 in the source language expression (8) are bound by the same variable
x3. Essentially MSC-forms are our solution to technical problem (iii) we evoked at the
beginning of this section, namely, which subexpressions and which occurrences of these
subexpressions should the system choose for applying [∨]: the fact that all proper subex-
pressions of an atom are variables means that the system chooses all subexpressions,
while the maximal sharing property means that the system chooses all occurrences of
each subexpression since it replaces all of them by the same variable.

Third, we prove that an MSC-form is well-typed if and only if it is possible to ex-
plicitly annotate all the bindings of variables so that the MSC-form type-checks. The
annotations essentially define how to split the type of the bound variables into a union of
types (when the variable is bound by a λ this corresponds to splitting the type of the λ -
abstraction into an intersection, when the variable is bound by a bind this corresponds to
splitting the argument of the bind-expression into a union) and the annotated MSC-form
type-checks if the rest of the expression type-checks for each of the splits specified in its
annotations. Table 2 gives the annotations for the MSC-form of Table 1. The important
annotations are those of the variables x2 and x3. The first states that to type the expression,
the type Int∨String of a2 must be split and the expression must be checked separately
for x2 : Int and x2 : String. The annotation of x3 states that when x2 has type Int then
x3 must be assumed to be of type Int and when x2 has type String so must have x3.
Since we can effectively transform a source language expression into its MSC-form, then
we have a method to check the well-typedness of an expression of the source language:
transform it into its MSC-form and infer all the annotations of its variables, if possible.
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Inferring the annotations of a MSC-form boils down to deciding how to split the types of
its variables.

Fourth, we define an algorithm which infers how to split the types of atoms. It starts
from a MSC-form in which all variables are annotated with the top type Any and performs
several passes to refine these annotations. Each pass has three possible outcomes: either
(a.) the MSC-form type-checks with its current annotations and the algorithm stops with
a success, or (b.) the MSC-form does not type-check, the pass proposes a new version
of the same MSC-form but with refined annotations, and a new pass is started, or (c.)
the MSC-form does not check and it is not possible to further refine the annotations so
that the form may become typable, then the algorithm stops with a failure. The algorithm
refines the annotations differently for variables that are bound by lambdas and by binds.
For the variables in binds the algorithm produces a set of disjoint types so that their
union is the type of the atom in the bind; for lambdas the algorithm splits the type of
the parameter into a set of disjoint types and rejects the types in this set for which the
function does not type-check, thus determining the domain of the function. The very last
point that remains to explain is how to determine the split of a type: as a matter of fact,
in general there are infinitely many different ways to split a type. The split of the types is
driven by the types tested in type-cases and the operations applied to their components.
For instance, the split of the type of a2 for the variable x2 in Tables 1 and 2 is determined
by the test x3∈Int: the algorithm will propose to split the type t3 of x3 into t3 ∧Int and
t3 ∧¬Int. Since t3 is Int∨String, the split proposed for x3 is actually Int or String.
This split triggers in the subsequent pass the split for the type of x2 since x3 is defined as
x1x2 and x3 can be of type Int only if x2 is of type Int and it can be of type String only
if x2 is of type String. We just got the expected annotations. Essentially, this fourth step
is our solution to the technical problems (iv) and (i) we evoked at the beginning of this
section, namely, how to split the type of a subexpression chosen to apply [∨] into a union
of types, and how to split the type of an implicitly-typed function into an intersection
of arrows: we split these types by analyzing the type-cases and the overloaded function
applications occurring in the program.

Formally, [14] defines the following intermediate language

Intermediate exp eee::= c | x | λx.eee | eeeeee | (eee,eee) | πieee | (eee∈τ)?eee :eee | bindx=eeeineee (9)

with the typing rules given in Figure 7 (where we omitted the rules for constants, vari-
ables, and pairs since they are the same as in Figure 1).26 A well-typed expression of
the intermediate language is typed by derivations in which every instance of the [∨] rule
(here declined in two forms) corresponds to a bind-expression. Any such derivation cor-
responds to a canonical derivation (Figure 2) for a particular expression of the source lan-
guage in (2). This expression can be obtained from the intermediate language expression
by unfolding its bindings. Formally, this is obtained by the unwinding operation, noted
⌈.⌉ and defined for binding expressions as ⌈bindx=eee1 ineee2 ⌉ =def ⌈eee2⌉{⌈eee1⌉/x}, as the
identity for constants and variables, and homomorphically for all the other expressions.
It is possible to prove that the problem of typing an expression of our source language is

26 Notice that we do not define a reduction semantics for the intermediate language since the
sole purpose of the intermediate expressions is to encode typing derivations. But a call-by-need
semantics for the new bind-expressions would be appropriate [14, see Appendix A.6].
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[→I]
(∀ j ∈ J) Γ ,x : t j ⊢I eee : s j

Γ ⊢I λx.eee :
∧

j∈J t j → s j
J ̸=∅ [→E]

Γ ⊢I eee1 : t1 Γ ⊢I eee2 : t2
Γ ⊢I eee1eee2 : t1 ◦ t2

t1 ≤ 0 → 1
t2 ≤ dom(t1)

[×E1]
Γ ⊢I eee : t ≤ (1×1)

Γ ⊢I π1eee : π1(t)
[×E2]

Γ ⊢I eee : t ≤ (1×1)

Γ ⊢I π2eee : π2(t)
[0]

Γ ⊢I eee : 0

Γ ⊢I (eee∈t)?eee1 :eee2 : 0

[∈1]
Γ ⊢ eee : t0 ≤ t Γ ⊢ eee1 : t1

Γ ⊢ (eee∈t)?eee1 :eee2 : t1
t0 ̸≃ 0 [∈2]

Γ ⊢I eee : t0 ≤ ¬t Γ ⊢ eee2 : t2
Γ ⊢I (eee∈t)?eee1 :eee2 : t2

t0 ̸≃ 0

[∨1]
Γ ⊢I eee2 : s

Γ ⊢I bindx=eee1 ineee2 : s
x ̸∈dom(Γ ) [∨2]

Γ ⊢I eee1 :
∨

j∈J t j (∀ j∈J) Γ ,x:t j ⊢I eee2 : s j

Γ ⊢I bindx=eee1 ineee2 :
∨

j∈J s j
J ̸=∅

Fig. 7: Intermediate typing rules

equivalent to the problem of finding a typable intermediate expression whose unwinding
is that declarative expression. In other terms, a declarative expression is typable if and
only if we can enrich it with bindings so that it becomes a typable intermediate expres-
sion.

The definition of the intermediate expressions is a step forward in solving the problem
of typing a declarative expression, but it also brings a new problem, since we now have
to decide where to add the bindings in a declarative expression so as to make it typable
in the intermediate system. We get rid of this problem by defining the maximal sharing
canonical forms (MSC-form for short). The idea is pretty simple, and consists in adding
a new binding for every distinct (modulo α-conversion) sub-expressions of a declarative
expression. Formally, this transformation yields a MSC-form:

Definition 5 (MSC Forms). An intermediate expression eee is a maximal sharing canon-
ical form if it is produced by the following grammar:

Atomic expressions aaa ::= c | λx.κκκ | (x,x) | xx | (x∈τ)?x :x | πix
MSC-forms κκκ ::= x | bindx=aaainκκκ

(10)

and is α-equivalent to an expression κκκ that satisfies the following properties: (1) if
bindx1 =aaa1 inκκκ1 and bindx2 =aaa2 inκκκ2 are distinct sub-expressions of κκκ , then ⌈aaa1⌉ ̸≡α

⌈aaa2⌉; (2) if λx.κκκ1 is a sub-expression of κκκ and bindy=aaainκκκ2 a sub-expression of κκκ1,
then fv(aaa) ̸⊆ fv(λx.κκκ1); (3) if bindx=aaainκκκ ′ is a sub-expression of κκκ , then x ∈ fv(κκκ ′).

MSC-forms, ranged over by κκκ , are variables preceded by a list of bindings of variables to
atoms. Atoms are either λ -abstractions whose body is a MSC-form or any other expres-
sion in which all proper sub-expressions are variables. Therefore, bindings can appear in
a MSC-form either at top-level or at the beginning of the body of a function. Definition 5
ensures that given an expression e of the source language (2) there exists a unique (mod-
ulo α-conversion and the order of bindings) MSC-form whose unwinding is e: we denote
this MSC-form by MSC(e) and it is easy to effectively produce it from e (roughly, visit e
bottom up and generate a distinct binding for each distinct sub-expression). Furthermore,
e is typable if and only if MSC(e) is: we reduced the problem of typing e to the one of
typing MSC(e), a form that we can effectively produce from e and for which we have the
syntax-directed type system of Figure 7.
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The type system of Figure 7 is syntax directed, but it still includes non-analytic
rules for functions and bind-expressions. Thus, the next step consists in adding anno-
tations to intermediate expressions, so as to make these rules analytic: we consider ex-
pressions of the form λx:A.eee and bindx:A=eeeineee , where A ranges over annotations of
the form {Γ ▷t, . . . ,Γ ▷t}. Our annotations are, thus, finite relations between type envi-
ronments and types. An annotation of the form x : {Γi▷ti}i∈I indicates that under the
hypothesis Γi the variable x must be supposed to be of type ti. We write {t1, . . . ,tn} for
{∅▷t1, . . . ,∅▷tn} and just t for {∅▷t}. So for instance we write λx:t.eee for λx:{∅▷t}.eee
while, say, bindx:{t1, . . . ,tn}=eee1 ineee2 stands for bindx:{∅▷t1, . . . ,∅▷tn}=eee1 ineee2 .

In this system terms encode derivations. Terms with simple annotations such as λx:t.eee
represent derivations as they can be found in the simply-typed λ -calculus: in other terms,
to type the function the system must look for a type s such that λx:t.eee is of type t → s.
When annotations are sets of types, such as in λx:{t1, . . . , tn}.eee, then the term represents
a derivation for an intersection type, such as the derivations that can be found in semantic
subtyping calculi: in other terms, to type the function the system look for a set of types
{s1, . . . ,sn} such that λx:{t1, . . . , tn}.eee has type

∧n
i=1 ti → si. Finally, the reason why we

need the more complex annotations of the form {Γ1▷t1, . . . ,Γ1▷t1} can be shown by an
example. Consider λx.((λy.(x,y))x): in the declarative system we can deduce for it the
type (Int→Int×Int)∧ (Bool→Bool×Bool). We must find the annotations A1 and A2
such that λx:A1.((λy:A2.(x,y))x) has type (Int→Int×Int)∧ (Bool→Bool×Bool).
Clearly A1 = {Int,Bool}. However, the typing of the parameter y depends on the typing
of x: when x:Int then y must have type Int (the type of y must be larger than the one
of x—the argument it will be bound to—, but also smaller than Int so as to deduce
that λy.(x,y) returns a pair in Int×Int). Likewise when x:Bool, then y must be of type
Bool, too. Therefore, we use as A2 the annotation {x:Int▷Int,x:Bool▷Bool}, which
precisely states that when x:Int, then we must suppose that y (the variable annotated by
A2) is of type Int, and likewise for Bool.

[→I]
(∀ j ∈ J) Γ ,x : t j ⊢A κ : s j

Γ ⊢A λx:{Γi▷ti}i∈I .κ :
∧

j∈J t j → s j
J = {i ∈ I | Γ ≤ Γi} ̸=∅

[∨1]
Γ ⊢A κ : s

Γ ⊢A bindx:{Γi▷ti}i∈I =ainκ : s
x ̸∈ dom(Γ )

{i ∈ I | Γ ≤ Γi}=∅

[∨2]
Γ ⊢A a :

∨
j∈J t j (∀ j ∈ J) Γ ,x : t j ⊢A κ : s j

Γ ⊢A bindx:{Γi▷ti}i∈I =ainκ :
∨

j∈J s j
J = {i ∈ I | Γ ≤ Γi} ̸=∅

Fig. 8: Algorithmic typing rules

The type system for annotated terms is given by the rules for abstractions and binding
in Figure 8 plus all the other rules of the intermediate type system (specialized for MSC-
forms, i.e., where every subexpression is a variable). The system is algorithmic since it
is syntax-directed and uses only analytic rules.

The main interest of this algorithmic system is that a well-typed annotated term uni-
vocally encodes a type derivation for a MSC-form and, therefore, it also encodes a par-
ticular canonical derivation for an expression of the source language. All this gives us a
procedure to check whether an expression e of the source language (2) is well typed or
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not: produce MSC(e) and look for a way to annotate it so that it becomes a well-typed an-
notated expression. If we find such annotations, then e is well typed. If such annotations
do not exist, then e is not well-typed.

The last final step is then to define an algorithm to find whether there exists a way to
annotate an MSC-form to make it well-typed. Different algorithms are possible. Castagna
et al. [14, Section 5] describe an algorithm that starts by annotating all bound variables
with Any and then performs several passes in which it analyses the type-cases and over-
loaded applications of the term to determine how to split the types of the concerned
expression and thus refining the annotations of their bindings. The reader may refer to
[14, Section 5] for the details of this algorithm. Here we just stress that, contrary to the
previous systems presented here, the algorithm is able to deduce the precise intersection
types for the (non-annotated) functions not , and (both versions), and or we gave at
the end of the introduction, as well as reconstruct the type (Int→Int)∧ (Bool→Bool)
for the function λx.(x∈Int)?(x+1) :¬x given in Section 2.

4.5 Summary

In this section we presented three practical variations of the theoretical language we de-
fined in Section 4.1. The ultimate goal of our research is to have a unique language that
covers the characteristics of the three of them. The current implementation of polymor-
phic CDuce corresponds to the language we presented in Section 4.2.5 but work is in
progress to merge it with the implicitly-typed language of Petrucciani’s dissertation [49,
Part I] that we presented in Section 4.3. The idea is to completely move to the constraint
generation and resolution we surveyed in Section 4.3.1 and consider the current ver-
sion of polymorphic CDuce as the special case of the annotated expressions presented in
Section 4.3.2. This may require to change the notation of explicitly-typed polymorphic
functions, which is the reason why a polymorphic version of CDuce was not released,
yet. The only problem to solve to obtain a conservative extension of (both monomor-
phic and polymorphic) CDuce will then be how to deal in Petrucciani’s system with the
type-cases of values with functional components (since in CDuce you can test whether
a function has a given arrow type). The final step will be then to integrate the resulting
system with the general usage of the union elimination rules on the lines of the system
we described in Section 4.4. The first results of this work, still in progress, are presented
in [16].

5 Further Features

In this section we briefly overview few extra features that were developed in the context
of the study of set-theoretic types.

5.1 Pattern Matching

Several examples presented in this article use pattern matching. Furthermore, in Section 2
we cited the precise typing of pattern matching expressions as one of the main motiva-
tions of using set-theoretic types. However, the languages we formalized in Section 4 do
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not include pattern matching expressions: they just have type-case expressions which,
in their binding variant of Section 4.2.3, may be considered a very simplistic version
of pattern matching. Here, we outline how full-fledged pattern matching can be added
to the languages presented in Section 4. Similar formalizations of pattern matching for
set-theoretic type systems have been described by Frisch [22, Chapter 6], Castagna et al.
[10, Appendix E], and Castagna et al. [11].

For simplicity, we only consider two-branch pattern matching. We extend the syntax
with the match construct and with patterns:

e ::= · · · | match e with p → e | p → e p ::= τ | x | (p, p) | p& p | p| p ,

where τ are the test types defined in Section 4 (ground types for CDuce and its explicit
polymorphic variant, ground non-functional types for implicitly-typed CDuce and the
variant for occurrence typing) and with some restrictions on the variables that can appear
in patterns: in (p1, p2) and p1& p2, p1 and p2 must have distinct variables; in p1| p2, p1
and p2 must have the same variables.

A more familiar syntax for patterns is p ::= | c | x | (p, p) | p as x | p| p, with wild-
cards and constants instead of τ types and with as-patterns “p as x” (in OCaml syntax;
x@p in Haskell) instead of conjunction. We can encode and c as 1 and bc (both are in
the grammar for τ), while “p as x” is p&x, as will soon be clear.

v/x = {v/x}
v/τ = {} if v ∈ τ

v/(p1, p2) = ς1 ∪ ς2 if v = (v1,v2), v1/p1 = ς1, and v2/p2 = ς2

v/p1& p2 = ς1 ∪ ς2 if v/p1 = ς1 and v/p2 = ς2

v/p1| p2 = v/p1 if v/p1 ̸= fail

v/p1| p2 = v/p2 if v/p1 = fail

v/p = fail otherwise

Fig. 9: Semantics of patterns

To describe the semantics of pattern matching, we define a function (·)/(·) that, given
a value v and a pattern p, yields a result v/p which is either fail or a substitution ς

mapping the variables in p to values (subterms of v). This function is defined in Figure 9.
Then, we augment the reduction rules with

(match v with p1 → e1 | p2 → e2) ⇝ e1ς if v/p1 = ς

(match v with p1 → e1 | p2 → e2) ⇝ e2ς if v/p1 = fail and v/p2 = ς

and add matchE with p → e | p → e to the grammar of evaluation contexts.
Given each pattern p, we can define a type *p+ that describes exactly the values that

match the pattern:

*τ+ = τ *x+ = 1

*(p1, p2)+ = *p1 +× * p2+ *p1& p2+ = *p1 +∧ * p2+ *p1| p2+ = *p1 +∨ * p2+
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It can be shown that, for every well-typed value v and every pattern p, we have v/p ̸= fail
if and only if ∅ ⊢ v : *p+. This allows us to formalize purely at the level of types the
exhaustiveness and redundancy checks that are often performed on pattern matching.
The typing rule for match is the following.

Γ ⊢ e0 : t0
either t0 ≤ ¬ * p1+ or Γ ,(t0 ∧ *p1+)/p1 ⊢ e1 : t

either t0 ≤ *p1+ or Γ ,(t0\ * p1+)/p2 ⊢ e2 : t
Γ ⊢ match e0 with p1 → e1 | p2 → e2 : t

t0 ≤ *p1 +∨ * p2+

The “either . . . or . . . ” conditions have the same purpose as for type-case rule [CASE]
in Figure 4, namely, they skip the typing of branches that cannot be selected. The side
condition t0 ≤ *p1 +∨ * p2+ ensures that matching is exhaustive: any value produced by
e0 has type t0 and therefore matches either p1 or p2. When a branch is selectable it is
typed under the hypothesis Γ extended with a type environment produced by applying
the operator t/p, which given a type t and a pattern p with t ≤ *p+ produces the type
environment that can be assumed for the variables in p when a value of type t is matched
against p and matching succeeds. Thus e1 is typed under the hypothesis obtained suppos-
ing that p1 was matched against a value produced by e0 (i.e., in t0) and accepted by p1
(i.e., in *p1+), while the hypotheses for e2 are obtained supposing that p2 was matched
against a value produced by e0 (i.e., in t0) and not accepted by p1 (i.e., in ¬* p1+: remind
that t0\ * p1+ = t0 ∧¬ * p1+). The operator is defined as follows

t/τ =∅
t/x = x : t

t/(p1, p2) = (πππ111(t)/p1)∪(πππ222(t)/p2)

t/p1& p2 = (t/p1)∪(t/p2)

t/p1| p2 = ((t ∧ *p1+)/p1)∪((t\ * p1+)/p2)

and satisfies the property that for every t, p, and v, if ∅ ⊢ v : t and v/p = ς , then, for
every variable x in p, the judgment ∅ ⊢ xς : (t/p)(x) holds.

Finally, we said that the condition t0 ≤ *p1 +∨ * p2+ in the typing rule for match-
expressions ensures the exhaustiveness of pattern matching, but what about redundancy?
When t0 ≤ ¬ * p1+ should not the system return a warning that e1 cannot be selected and
likewise for e2 when t0 ≤ *p1+? In general it should not, since skipping the typing of
some branches is necessary for inferring intersection types for overloaded functions. For
instance, consider again the function we defined in Section 2 to explain overloading, that
is, λ (Int→Int)∧(Bool→Bool)x.(x∈Int)?(x+ 1) :¬x whose definition with pattern match-
ing would be:

λ (Int→Int)∧(Bool→Bool)x .match x with Int→ (x+1) | 1 →¬x
When typing the body of the function under the hypothesis x : Int it is important not to
check the type of the second branch (since ¬x would be ill typed) and under the hypoth-
esis x : Bool it is important not to check the type of the first branch (since x+1 would be
ill typed). However, neither of the branches is redundant because each of them is type-
checked at least once. Redundancy corresponds to branches that are never type-checked,
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as, for instance, the second branch in the following definition
λ (Int→Int)∧(Bool→Bool)x .match x with (Int∨Bool)→ x | 1 →¬x

which is skipped both under the hypothesis x : Int and under the hypothesis x : Bool
and, therefore, must be fingered as redundant (but the function is well-typed). In con-
clusion, as it is the case for exhaustiveness, redundancy of pattern matching, too, can be
characterized in terms of a type system that includes set-theoretic types.

5.2 Gradual Typing

Gradual typing is an approach proposed by Siek and Taha [56] to combine the safety
guarantees of static typing with the programming flexibility of dynamic typing. The idea
is to introduce an unknown (or dynamic) type, denoted ?, used to inform the compiler that
some static type-checking can be omitted, at the cost of some additional runtime checks.
The use of both static typing and dynamic typing in a same program creates a boundary
between the two, where the compiler automatically adds—often costly [58]—dynamic
type-checks to ensure that a value crossing the barrier is correctly typed.

Occurrence typing—that we discussed in Sections 2 and 4.4—and gradual typing
often have common use cases. For instance the example we gave for occurrence typing
in Section 2, λx.(x∈Int)?(x+1) :¬x, can also be typed by gradual typing as follows:

λx : ?.(x∈Int)?(x+1) :¬x (11)

“Standard” or “safe” gradual typing inserts two dynamic checks since it compiles the
code above into λx : ?.(x∈Int)?(x⟨Int⟩+ 1) :¬(x⟨Bool⟩), where e⟨t⟩ is a type-cast
that dynamically checks whether the value returned by e has type t.27 The type deduced
for the function in (11) is ?→ Int∨Bool meaning that it is a function that can be applied
to any argument (which may have its type dynamically checked if needs to be) and will
return either an integer or a Boolean (or a cast exception if a dynamic check fails). This
type is not very precise since it allows the function to be applied to any argument, even if
we already know that it will fail with a cast exception for arguments that are neither inte-
gers nor Booleans. Whence the interest of having full-fledged set-theoretic types thanks
to which the programmer can shrink the domain of the function as follows:

λx : (?∧ (Int∨Bool)).(x∈Int)?(x+1) :¬x (12)

Intuitively, this annotation means that the function above accepts for x a value of any type
(which is indicated by ?), as long as this value is also either an Int or a Bool. So the type-
casts will never fail. This was the initial motivation of our study of integrating gradual
and set-theoretic types [7, 13]. Of course, the example above does not need gradual
typing if the systems provides occurence typing: this provides a better solution since,
as we showed before, it returns a more precise type ((Int→Int)∧(Bool→Bool)) and
avoids the insertion of superfluous run-time checks. But there are some cases in which the
occurrence typing analysis may fail to type-check, since either they are too complex or

27 Intuitively, e⟨t⟩ is syntactic sugar for, say, in JavaScript (typeof(e)==="t") ? e : (throw
"Type error"). Not exactly though, since to implement compilation à la sound gradual typing
it is necessary to use casts on function types that need special handling.
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they are not covered by the formalism (e.g., when polymorphic types are needed, which
are not captured by the system presented in Section 4.4). In those cases gradual typing
is a viable alternative to no typing at all. In a sense, occurrence typing is a discipline
designed to push forward the frontiers beyond which gradual typing is necessary, thus
reducing the amount of runtime checks needed (see Castagna et al. [14, Section 3.3] for
more a detailed treatment).

But the interest of integrating gradual and set-theoretic types is not limited to hav-
ing a more precise typing of some applications like the ones above. The main interest
of this integration is that the introduction of set-theoretic types allows us to give a se-
mantic foundation to gradual typing, and explain the type-theory of gradual types only
in terms of non-gradual ones. The core of the type-systems for gradually-typed expres-
sions such as (11) or (12) is the definition of a precision relation ≼ on types [57, 25]
(called naive subtyping in [62]). In the cited works the definition of this relation is very
simple: given two gradual types τ1, τ2, the type τ1 is less precise than τ2, written τ1 ≼ τ2,
if and only if τ2 is obtained from τ1 by replacing some occurrences of ? by some types
(we use τ to range over gradual types to distinguish them from types in which ? does
not occur and that are called static types). So for instance ?→?×?≼ Int→?×Bool≼
Int→Int×Bool. Intuitively, the precision relation indicates in which types a gradual
type may “materialize” (i.e., turn out to be) at runtime. So the type ?→? of a function
materializes into Int→? if this function happens at runtime to be applied to an integer.
Castagna et al. [13] demonstrate that to extend with gradual typing an existing statically-
typed language all is needed is (i) to add ? to the types (as a new basic type), (ii) define
the precision relation ≼ (and, if used, the subtyping relation ≤) on the new types, and
(iii) add the following subsumption-like materialization rule to the existing typing rules:

[≼]
Γ ⊢ e : τ τ ≼ τ

′

Γ ⊢ e : τ
′

Of course, this does not immediately yield an effective implementation (one has to find a
type-inference algorithm, define the language with the explicit casts and the compilation
of well-typed terms into it, compilation that, roughly, must insert a dynamic type-cast
wherever the typing algorithm had to use a materialization rule) but conceptually this
is all is needed. The difficult point is to define the precision relation (but also to extend
an existing subtyping relation to gradual types). The simple definition of the precision
relation we gave above is syntax based and, as such, it shows its limits as soon as we
add type connectives. In semantic subtyping equivalence between types plays a central
role: two types are equivalent if and only if they represent the same set of values, and
this makes them to behave identically in every context. So one would expect equiva-
lent types to materialize in the same set of types, but this is not the case: consider for
example the types Int∨? and ?∨ Int; although they are equivalent, the former mate-
rializes into Int∨Bool while the latter does not. The latter does, however, materialize
into Bool∨Int which is equivalent to Int∨Bool. A similar reasoning can be done for ?
and ¬? which intuitively behave in exactly the same way. We thus need a more robust,
syntax independent characterization of the precision relation.

In his Ph.D. dissertation, Lanvin [40] showed that this characterization can be given
just in terms of static types (i.e., the types without any occurrence of ? in them). Take
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as static types either the set-theoretic types of Definition 1 or their polymorphic exten-
sion given by grammar (1), together with their respective subtyping relations. To obtain
gradual types add to the grammars of these types the production t ::= ? (still, we use τ

to range over gradual types and reserve t for static types). Given a gradual type τ , the
set of all static types it materializes to forms a complete lattice, with a maximum and a
minimum static type that we denote by τ⇑ and τ⇓, respectively. So we have that for all τ ,
if τ ≼ t, then τ⇓ ≤ t ≤ τ⇑, where ≤ is the subtyping relation for the static types. It is very
easy to derive the materialization extrema τ⇑ and τ⇓ from τ: you get τ⇑ by replacing in
τ every covariant occurrence of ? by 1 and every contravariant occurrence of ? by 0; τ⇓

is obtained in the same way, by replacing in τ every covariant occurrence of ? by 0 and
every contravariant one by 1. The definition of the minimal and maximal static material-
izations together with the subtyping relation on static types is all is needed to define the
precision relation and the subtyping relation on the newly defined gradual types. Lanvin
[40] shows that it is possible to define the precision relation≼ and the subtyping relation
≤̇ on gradual types as follows:

τ1 ≼ τ2
def⇐⇒ τ1

⇓ ≤ τ2
⇓ and τ2

⇑ ≤ τ1
⇑ (13)

τ1 ≤̇ τ2
def⇐⇒ τ1

⇓ ≤ τ2
⇓ and τ1

⇑ ≤ τ2
⇑ (14)

where ≤ denotes the subtyping relation given on static types—e.g., the two subtyping
relations induced by interpretations of types given in Sections 3.2 and 3.3—.28

Equation (13) conveys a strong message: any gradual type can be seen as an interval
of possible types, where ? denotes the interval of all types, and a type τ denotes the
interval ranging from τ⇓ to τ⇑ (or, more precisely, the sub-lattice of the types included
between the two). Semantic materialization then allows us to reduce this interval, by
going to any type τ ′ such that τ⇓ ≤ τ ′⇓ and τ ′⇑ ≤ τ⇑, possibly until reaching a static type
(that is, a type τ such that τ⇓ = τ⇑).

Equation (14) extends this interval interpretation to the subtyping relation of gradual
types, stating that a type τ1 is a subtype of τ2 if the interval denoted by τ1 only contains
subtypes of elements of the interval denoted by τ2.

Notice that these two definitions also provide an effective way to decide precision
and subtyping for gradual types: generate the gradual extrema and check on them the
subtyping relations for static types according to (13) or (14).

Lanvin justifies these definitions by giving a semantic interpretation of all gradual
types (i.e., not just of the static ones) and proving all the needed properties. In particular,
he proves a series of properties that show the robustness of the relations defined in (13)
and (14). First, for all gradual types τ and τ ′ such that τ ≼ τ ′ we have τ⇓ ≤̇ τ ′ ≤̇ τ⇑, that
is, all the materializations of a gradual type form a complete sub-lattice (not just the static
materializations). More surprisingly, for every gradual type τ we have τ ≃̇ τ⇓∨ (?∧τ⇑),
where ≃̇ is the symmetric closure of the gradual subtyping relation ≤̇. According to
this last property, every gradual type τ is equivalent to the ? type as long as we bound
it with the two extrema τ⇓ and τ⇑, thus strengthening the intuition of gradual types as
intervals of static types. Therefore, every gradual type can be represented by a pair of

28 Strictly speaking, it is necessary slightly to modify these interpretations so that all the types of
the form 0→t are not all equivalent: see Lanvin [40, Section 6.1.2].
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static types, and to add gradual typing to a system, it suffices to augment the types with
a single constant ? that only needs to appear at top level, that is, under neither an arrow
nor a product. This characterization can then be used to define the gradual counterparts
d̃om(.), ◦̃, and π̃ππ iii(.) of the type operators dom(.), ◦, and πππ iii(.) we defined at the end of
Section 4.1.2, thus providing a further proof of the robustness of the definitions in (13)
and (14). So we have:

d̃om(τ) =def dom(τ⇑)∨ (?∧dom(τ⇓))

τ ◦̃ τ
′ =def (τ⇓ ◦ τ

′⇑)∨ (?∧ (τ⇑ ◦ τ
′⇓))

π̃ππ iii(τ) =def (πππ iii(τ
⇓))∨ (?∧ (πππ iii(τ

⇑)))

for which we can prove that d̃om(τ) = max{τ ′ | τ ≤̇ τ ′ → 1}, τ1 ◦̃ τ2 = min{τ | τ1 ≤̇
τ2 → τ}, π̃ππ111(τ) = min{τ ′ | τ ≤̇ τ ′×1}, and π̃ππ222(τ) = min{τ ′ | τ ≤̇ 1× τ ′}.

5.3 Denotational Semantics

We have seen in Section 3 that the essence of semantic subtyping is to interpret types as
sets of values. However, for the circularity problem described in Section 4.2.1 this cannot
be done directly on the values of some language, but must pass via an interpretation in a
domain D whose elements represent these values. Furthermore, for cardinality problems,
functional values cannot be represented directly as elements of the domain, and one has
to interpret types as sets containing only functions with finite graphs. Even if at the end
one obtains the same subtyping relation as if we had considered infinite functions (cf.,
Section 3.2) this solution has been making readers uneasy. The fact of using finite graph
functions to define a relation for general function spaces looked more as a technical trick
than as a theoretical breakthrough. Pierre-Louis Curien suggested that the construction
was a pied de nez to (it cocked a snook at) denotational semantics, insofar as it used a
semantic construction to define a language for which a denotational semantics was not
known to exist. The common belief was that the solution worked because considering all
finite functions in the interpretation of a function space was equivalent to give the finite
approximations of the non-finite functions in that space, in the same way as, say, Scott
domains are built by giving finite approximations of the functions therein.

Very recently, Lanvin’s Ph.D. dissertation [40, Part 2] has formalized this intuition
and defined a denotational semantics for a language with semantic subtyping (actually,
the language of Sections 4.2.2–4.2.4), in which functions are interpreted as the infinite
set of their finite approximations. This yields a model with a simple inductive definition,
which does not need isomorphisms or the solution of domain equation. The idea is to
interpret not only types but also terms in the domain D of Definition 2. Unfortunately,
the domain D cannot be used as is,29 but it must be slightly modified to account for
the fact that functions map finite approximations (rather than single denotations) into
denotations. In practice, one has to modify the domain as follows

d ::= c | (d,d) | {(S,∂ ), . . . ,(S,∂ )} S ::= {d, . . . ,d} ∂ ::= d | Ω

29 Actually, it can but it yields a weak property of computational soundness: cf. [40, Chapter 9].
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where, thus, the domain now includes finite maps from finite and non-empty sets of ele-
ments (ranged over by S) into other elements or Ω . The interpretation of types must also
be slightly modified to make the interpretation of arrows satisfy the following equation:

Jt1 → t2K = {R ∈ Pfin(Pfin(D)×DΩ ) | ∀(S,∂ ) ∈ R .S∩ Jt1K ̸=∅ =⇒ ∂ ∈ Jt2K}}

modification that yields the same subtyping relation as the one produced by the inter-
pretation of Definition 3. In this domain it is then not very difficult to interpret every
term of the language into the (possibly infinite) set of its finite approximations. For in-
stance, a constant c will be interpreted as the singleton {c}. The only delicate part is the
interpretation of λ -abstractions, that is defined as follows:

Jλx:t.eKρ = {R ∈ Pfin(Pfin(D)×DΩ ) | ∀(S,∂ ) ∈ R, either S ⊆ JtK and ∂ ∈ JeKρ,x 7→S
or S ⊆ J¬tK and ∂ = Ω}

where ρ is a semantic environment that maps variables into approximations, that is, into
sets in Pfin(D). The definition above states that a λ -abstraction is interpreted as the set
of all finite approximations that map any approximation in the domain of the function to
the interpretation of the body where the parameter is associated to that approximation,
and any approximation that is outside this domain to the failure Ω . Notice that, as we
anticipated in Section 4.2.2, the denotation of a function depends on its type annotation.

For this interpretation it is possible to prove three fundamental properties:

1. Type soundness: if Γ ⊢ e : t, then JeKρ ⊆ JtK, for every ρ ∈ JΓ K.30

2. Computational soundness: if Γ ⊢ e : t, and e⇝ e′, then JeKρ = Je′Kρ , for all ρ ∈ JΓ K.
3. Computational adequacy: JeKρ =∅, for every well-typed closed diverging term e.

This interpretation works only for a language without type-cases and overloaded func-
tions (notice the syntax of annotations which are just on the parameter of λ -abstractions
and not on the full term). The reader can refer to Lanvin [40, Part 2] for all details and a
denotational semantics of the whole Core CDuce language.

6 Conclusion

In this essay I tried to survey the multiple advantages and usages of set-theoretic types
in programming. Set-theoretic types are sometimes the only way to type some particu-
lar functions, sometimes as simple as the flatten function of the introduction. This
is so because set-theoretic types provide a suitable language to describe many non-
conventional, but not uncommon, programming patterns. This is demonstrated by the
fact that the need of set-theoretic types naturally arises when trying to fit type-systems
on dynamic languages: union and negations become necessary to capture the nature of
branching and of pattern matching, intersections are often the only way to describe the
polymorphic use of some functions whose definition lacks the uniformity required by
parametric polymorphism. The development of languages such as Flow, TypeScript, and
Typed Racket is the latest witness of this fact. I also showed that even when set-theoretic

30 Where JΓ K = {ρ | ∀x ∈ dom(Γ ) . ρ(x)⊆ JΓ (x)K}.
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types are not exposed to the programmer, they are often present at meta level since they
provide the basic tools to precisely type some program constructions such as type-cases
and pattern matching. Finally, set-theoretic types provide a powerful theoretic toolbox to
explore, understand, and formalize existing type disciplines: I demonstrated this with
gradual types which, thanks to set-theoretic types, can be understood as intervals of
static types, an analogy that we can use to rethink both their theory (see Lanvin’s dis-
sertation [40]) and their practice (e.g., the implementation of gradual virtual machines as
in [12]).

This survey is necessarily incomplete. For instance, I barely spoke of XML types
and XML programming even though they were the first motivation for developing the
theory of semantic subtyping and to design and implement programming languages such
as XDuce and CDuce. Also, I completely swept under the carpet how to handle features
that are common in modern programming languages such as the use of abstract types—
whose integration with structural subtyping and polymorphism may result delicate—and
the presence of side-effects. The latter is particular sensitive for the language presented
in Section 4.4, insofar as the use of MSC-forms is sound only for pure expressions.
Nevertheless, I hope I gave a good idea of the potentiality of having set-theoretic types
in a programming language and how the addition of these types can be done.

It is not all a bed of roses though. From a formal point of view we did not succeed,
yet, to define a unique formalism that mixes implicitly and explicitly typed functions,
reconstruction of intersection types, and an advanced use of occurrence typing. But we
are not far from it: see [16]. From a practical viewpoint even more work is needed.
We have seen that parametric polymorphism with set-theoretic types implies constraint
generation and constraint resolution (i.e., structured and (sub-)typing constraints in the
implicitly-typed language and only the latter in the explicitly-typed one). This has several
drawbacks. Foremost, because of the presence of unions and of subtyping, constraint
solving is a potential source of computational explosion that we do not master well, yet.
Furthermore, constraint solving makes the generation of informative error messages very
difficult for the case when it fails, but even pretty printing the deduced types in a form
easily understandable by the programmer may sometimes happen to be challenging. So
the positive message with which I want to conclude this presentation is that, all in all,
the research of set-theoretic types still is a very nice playground that reserves us several
interesting and challenging problems yet to be solved.
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URL https://tel.archives-ouvertes.fr/tel-02119930.

50. Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
51. Benjamin Crawford Pierce. Programming with Intersection Types and Bounded Polymor-

phism. PhD thesis, Carnegie Mellon University, USA, 1992. URL https://www.cis.

upenn.edu/~bcpierce/papers/thesis.pdf.
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A Core Calculus of CDuce [24]

Syntax

Types t ::= b | t × t | t → t | t ∨ t | ¬t | 0
Expressions e ::= c | x | λ∧i∈I ti→tix.e | ee | πie | (e,e) | (x=e∈t)?e :e | choice(e,e)
Values v ::= c | x | λ∧i∈Isi→tix.e | (v,v)

Reduction semantics

(λ∧i∈Isi→tix.e)v⇝ e{v/x}
πi(v1,v2)⇝ vi i = 1,2

choice(e1,e2)⇝ ei i = 1,2
(x=v∈t)?e1 :e2⇝ e1{v/x} if v ∈ t
(x=v∈t)?e1 :e2⇝ e2{v/x} if v ̸∈ t

where v ∈ t def⇐⇒ ∃s∈typeof(v).s ≤ t with

typeof(c) =def {bc}
typeof(λ

∧
i∈I si→tix.e) =def {t | t ≃ (

∧
i∈I si → ti)∧ (

∧
j∈J ¬(s′j → t ′j)), t ̸≤ 0}

typeof((v1,v2)) =def typeof(v1)× typeof(v2)

plus the standard context rule implementing a leftmost outermost strategy, namely, E[e]⇝
E[e′] if e⇝ e′, where

E ::= [] | Ee | vE | (E,e) | (v,E) | πiE | (x=E∈t)?e :e

Type-system

[CONST]
Γ ⊢ c : bc

[VAR]
Γ ⊢ x : Γ (x)

x ∈ dom(Γ )

[→I]
∀i ∈ I Γ ,x : si ⊢ e : ti
Γ ⊢ λ

∧i∈Isi→tix.e : t ∧ t ′
t = ∧i∈I(si → ti)
t ′ = ∧ j∈J¬(s′j → t ′j)
t ∧ t ′ ̸≃ 0

[→E]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ e1e2 : t1 ◦ t2
t1 ≤ 0 → 1
t2 ≤ dom(t1)

[×I]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ (e1,e2) : t1 × t2

[×E1]
Γ ⊢ e : t

Γ ⊢ π1e : πππ111(t)
t ≤ 1×1 [×E2]

Γ ⊢ e : t
Γ ⊢ π2e : πππ222(t)

t ≤ 1×1

[CASE]
Γ ⊢ e : t ′ Γ ,x : t∧t ′ ⊢ e1 : s Γ ,x : ¬t∧t ′ ⊢ e2 : s

Γ ⊢ (x=e∈t)?e1 :e2 : s
[EFQ]

Γ ,x : 0 ⊢ e : t

[CHOICE]
Γ ⊢ e1 : t1 Γ ⊢ e2 : t2
Γ ⊢ choice(e1,e2) : t1 ∨ t2
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