Four Forms of Polymorphism SIGPL Summer School 2019

Giuseppe Castagna

CNRS

Outline of the course

- Background and Motivations

Polymorphism - Motivating Examples - A Refresher Course on Operational Semantics

- Subtyping polymorphism

Simple Types - Recursive Types - Bibliography

- Parametric polymorphism

Introduction - Hindley-Milner System - Inference algorithm

- Ad-Hoc polymorphism

Set-theoretic types - Semantic Subtyping - Application to a language. - Adding Parametric Polymorphism: the Types - Adding Parametric Polymorphism: the Language

- Gradual Typing (dynamic type polymorphism)

Main ideas - Formal system - Algorithmic Aspects - Criteria for Gradual Typing Implementation issues - References

Background and Motivations

Outline

(1) Polymorphism
(2) Motivating Examples
(3) A Refresher Course on Operational Semantics

Outline

(1) Polymorphism

(2) Motivating Examples

(3) A Refresher Course on Operational Semantics

What is polymorphism?

Merriam-Webster Dictionary

The quality or state of existing in or assuming different forms

What is polymorphism?

Merriam-Webster Dictionary

The quality or state of existing in or assuming different forms
In computing: the capability of a programming entity to act as of being of different types.

What is polymorphism?

Merriam-Webster Dictionary

The quality or state of existing in or assuming different forms
In computing: the capability of a programming entity to act as of being of different types.
There exists several polymorphic programming entities:

- polymorphic functions (e.g., a function of type int \rightarrow int and of type bool \rightarrow bool)
- polymorphic data structures (e.g., a list whose elements are of any possible type)
- polymorphic classes (e.g. a class whose instances are stack of int and stacks of bool
- polymorphic operators (e.g., the symbol + to denote arithmetic sum and string concatenation
- ...

What is polymorphism?

Merriam-Webster Dictionary

The quality or state of existing in or assuming different forms
In computing: the capability of a programming entity to act as of being of different types.
There exists several polymorphic programming entities:

- polymorphic functions (e.g., a function of type int \rightarrow int and of type bool \rightarrow bool)
- polymorphic data structures (e.g., a list whose elements are of any possible type)
- polymorphic classes (e.g. a class whose instances are stack of int and stacks of bool
- polymorphic operators (e.g., the symbol + to denote arithmetic sum and string concatenation
- ...

In this course I focus on functions.

Polymorphic functions

Polymorphic functions

Functions that can be applied to arguments of different types

Polymorphic functions

Polymorphic functions

Functions that can be applied to arguments of different types

GOAL

How to define sound type system for polymorphic functions
Sound = all expressions that pass type-checking will never reduce to stuck terms such as 3 (true)

Polymorphic functions

Polymorphic functions

Functions that can be applied to arguments of different types

GOAL

How to define sound type system for polymorphic functions
Sound = all expressions that pass type-checking will never reduce to stuck terms such as 3 (true)

Four forms of polymorphism:
(1) parametric,
(2) subtyping,
(3) ad-hoc,
(9) dynamic

Four kinds of polymorphism

(1) Parametric polymorphism:

Functions that work with arguments of any type.

Four kinds of polymorphism

(1) Parametric polymorphism:

Functions that work with arguments of any type.
They do not inspect "parametric" arguments, they just:

- either ignore them
- or pass them to other polymorphic functions
- or return them in the result

Four kinds of polymorphism

(1) Parametric polymorphism:

Functions that work with arguments of any type.
They do not inspect "parametric" arguments, they just:

- either ignore them
- or pass them to other polymorphic functions
- or return them in the result
(2) Subtyping polymorphism:

Functions that work with arguments having certain properties:

Four kinds of polymorphism

(1) Parametric polymorphism:

Functions that work with arguments of any type.
They do not inspect "parametric" arguments, they just:

- either ignore them
- or pass them to other polymorphic functions
- or return them in the result
(2) Subtyping polymorphism:

Functions that work with arguments having certain properties:
They use the known properties of the arguments

Four kinds of polymorphism

(1) Parametric polymorphism:

Functions that work with arguments of any type.
They do not inspect "parametric" arguments, they just:

- either ignore them
- or pass them to other polymorphic functions
- or return them in the result
(2) Subtyping polymorphism:

Functions that work with arguments having certain properties:
They use the known properties of the arguments
(3) Ad-hoc polymorphism (a.k.a. overloading):

Functions that work with arguments belonging to a specific (finite) set of different types

Four kinds of polymorphism

(1) Parametric polymorphism:

Functions that work with arguments of any type.
They do not inspect "parametric" arguments, they just:

- either ignore them
- or pass them to other polymorphic functions
- or return them in the result
(2) Subtyping polymorphism:

Functions that work with arguments having certain properties:
They use the known properties of the arguments
(3) Ad-hoc polymorphism (a.k.a. overloading):

Functions that work with arguments belonging to a specific (finite) set of different types
They execute different code for each type of the argument

Four kinds of polymorphism

(1) Parametric polymorphism:

Functions that work with arguments of any type.
They do not inspect "parametric" arguments, they just:

- either ignore them
- or pass them to other polymorphic functions
- or return them in the result
(2) Subtyping polymorphism:

Functions that work with arguments having certain properties:
They use the known properties of the arguments
(3) Ad-hoc polymorphism (a.k.a. overloading):

Functions that work with arguments belonging to a specific (finite) set of different types
They execute different code for each type of the argument
((Dynamic/Unknow type:
Functions that make no assumption about the type of some specific arguments

Four kinds of polymorphism

(1) Parametric polymorphism:

Functions that work with arguments of any type.
They do not inspect "parametric" arguments, they just:

- either ignore them
- or pass them to other polymorphic functions
- or return them in the result
(2) Subtyping polymorphism:

Functions that work with arguments having certain properties:
They use the known properties of the arguments
(3) Ad-hoc polymorphism (a.k.a. overloading):

Functions that work with arguments belonging to a specific (finite) set of different types
They execute different code for each type of the argument
(4) Dynamic/Unknow type:

Functions that make no assumption about the type of some specific arguments
They delay the check to the type of these arguments at run-time

Outline

(9) Polymorphism

(2) Motivating Examples

(3) A Refresher Course on Operational Semantics

1. Parametric polymorphism

Functions that work with arguments of any type.
They do not inspect "parametric" arguments, they just:

- either ignore them
- or pass them to other polymorphic functions
- or return them in the result

```
function first (x , y) {
    return x;
}
```

It can be applied to pairs of type $\mathrm{S} \times \mathrm{T} \rightarrow \mathrm{S}$ and returns a result of type S , whatever types S and T are.

1. Parametric polymorphism

Functions that work with arguments of any type.
They do not inspect "parametric" arguments, they just:

- either ignore them
- or pass them to other polymorphic functions
- or return them in the result
function first (x , y) \{
return x ;
\}
It can be applied to pairs of type $S \times T \rightarrow S$ and returns a result of type S, whatever types S and T are.

Intuition

Add type variables and quantify them universally:

$$
\forall \alpha, \beta . \alpha \times \beta \rightarrow \alpha
$$

2. Subtyping polymorphism

Functions that work with arguments of with certain properties: They use the known properties of the arguments

```
function size (x) {
    return x.length;
}
```

It can be applied to objects with the property lenght and return (in general) an integer.

2. Subtyping polymorphism

Functions that work with arguments of with certain properties: They use the known properties of the arguments

```
function size (x) {
    return x.length;
}
```

It can be applied to objects with the property lenght and return (in general) an integer.

Intuition

Define an order relation on types and accept arguments of any subtype

$$
\{\text { length: number }\} \rightarrow \text { number }
$$

Accepts arguments of any type $\mathrm{T} \leq\{$ length: number $\}$ (e.g. \{ length: number, concat: string \rightarrow string $\}$)

Combined usage

```
function size (x) {
    return x.length;
}
```


Subtyping + Parametric

Possibility two combine the two form of polymorphism

$$
\forall \alpha .\{\text { length : } \alpha\} \rightarrow \alpha
$$

Combined usage

```
function size (x) {
    return x.length;
}
```


Subtyping + Parametric

Possibility two combine the two form of polymorphism

$$
\forall \alpha .\{\text { length : } \alpha\} \rightarrow \alpha
$$

```
function doOnLength (x) {
    if (x.length > 4) { <do something> }
    return x
}
```


Bounded parametric

$$
\forall \alpha \leq\{\text { length }: \quad \text { number }\} . \quad \alpha \rightarrow \alpha
$$

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

```
function double (x) {
    (typeof(x) === "number") ? 2*x : x.concat(x)
}
```

If applied to an integer returns an integer, if applied to a string returns a string

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

```
function double (x) {
    (typeof(x) === "number") ? 2*x : x.concat(x)
```

\}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

```
function double (x) {
    (typeof (x) === "number") ? 2*x : x.concat(x)
```

\}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types

- Naive solution: union types

$$
\text { (number|string) } \rightarrow \text { (number|string) }
$$

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

```
function double (x) {
    (typeof(x) === "number") ? 2*x : x.concat (x)
```

\}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types

- Naive solution: union types

$$
\text { (number|string) } \rightarrow \text { (number|string) }
$$

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

```
function double (x) {
    (typeof(x) === "number") ? 2*x : x.concat(x)
```

\}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types

- Naive solution: union types

$$
\text { (number|string) } \rightarrow \text { (number|string) }
$$

- Better solution: intersection types

$$
\text { (number } \rightarrow \text { number) \& (string } \rightarrow \text { string) }
$$

3. Ad hoc polymorphism

Functions for arguments in a specific (finite) set of different types
They execute different code for each type of the argument

```
function double (x) {
    (typeof (x) === "number") ? 2*x : x.concat(x)
```

\}

If applied to an integer returns an integer, if applied to a string returns a string

Use set-theoretic types

- Naive solution: union types

$$
\text { (number|string) } \rightarrow \text { (number|string) }
$$

- Better solution: intersection types

$$
\text { (number } \rightarrow \text { number) \& (string } \rightarrow \text { string) }
$$

needs some form of occurrence typing

Combined usage

```
function double (x) {
    (typeof(x) === "number") ? 2*x : x.concat(x)
}
```


Set-theoretic + Subtyping

(number \rightarrow number) \&
((not (number) \& \{concat: string \rightarrow string\}) \rightarrow string)
Actually, set-theoretic types are defined by subtyping

Combined usage

```
function double (x) {
    (typeof(x) === "number") ? 2*x : x.concat(x)
}
```


Set-theoretic + Subtyping

(number \rightarrow number) \&
((not (number) \& \{concat: string \rightarrow string\}) \rightarrow string)
Actually, set-theoretic types are defined by subtyping

Set-theoretic + Parametric

$\forall \alpha, \beta$. (number \rightarrow number) \&
($(\alpha \& \operatorname{not}$ (number) \& \{concat: $\alpha \rightarrow \beta\}$) $\rightarrow \beta$)

Combined usage

```
function double (x) {
    (typeof(x) === "number") ? 2*x : x.concat(x)
}
```


Set-theoretic + Subtyping

(number \rightarrow number) \&
((not (number) \& \{concat: string \rightarrow string\}) \rightarrow string)
Actually, set-theoretic types are defined by subtyping

Set-theoretic + Parametric

$\forall \alpha, \beta$. (number \rightarrow number) \&
($(\alpha \& \operatorname{not}($ number $) \&\{$ concat: $\alpha \rightarrow \beta\}) \rightarrow \beta$)
a sophisticated way to write bounded polymorphism and recursive types:
$\forall \beta, \forall(\gamma \leq$ not (number) \& μX. $\{$ concat: $X \rightarrow \beta\}$).
(number \rightarrow number) $\&(\gamma \rightarrow \beta)$

4. Dynamic types

Functions that for some specific arguments delay the check of types at run-time

```
function double (x) {
    ( typeof(x) === "number" ) ? 2*x : x.concat(x)
```

\}

4. Dynamic types

Functions that for some specific arguments delay the check of types at run-time

```
function double (x) {
    (<some twisted condition>) ? 2*x : x.concat(x)
}
```


4. Dynamic types

Functions that for some specific arguments delay the check of types at run-time

```
function double (x) {
    (<some twisted condition>) ? 2*x : x.concat(x)
}
```

Cannot give a type to x that works with both $2 * \mathrm{x}$ and x . concat (x)

4. Dynamic types

Functions that for some specific arguments delay the check of types at run-time

```
function double (x:?) {
    (<some twisted condition>) ? 2*x : x.concat(x)
}
```

Cannot give a type to x that works with both $2 * \mathrm{x}$ and x . concat (x)
Solution
Add an unknown/type "?"

4. Dynamic types

Functions that for some specific arguments delay the check of types at run-time

```
function double (x: ?) {
    (<some twisted condition>) ? 2*x : x.concat(x)
}
```

Cannot give a type to x that works with both $2 * \mathrm{x}$ and x . concat (x)
Solution

Add an unknown/type "?"

Develop a type theory for "?" such that:

- No solution for? for some execution \Rightarrow statically reject
- No problem for any solution for ? \Rightarrow statically accept, do nothing
- For each possible execution there exists some solution for ? \Rightarrow statically accept and add run-time checks

Reject at compile time:

function wrong (x : ?) \{
return (2*x $+x(2)$); //cannot be a number and a function \}

Reject at compile time:

```
function wrong (x : ?) {
    return (2*x + x(2)); //cannot be a number and a function
}
Accept as is:
function ok (x : ?) {
    if (typeof(x) === "number"){ return 42 } else { return x }
}
Intuitively the function has type: ? }->\mathrm{ ( number | ?)
```


Reject at compile time:

```
function wrong (x : ?) {
    return (2*x + x(2)); //cannot be a number and a function
}
Accept as is:
```

function ok (x : ?) \{
if (typeof(x) === "number") \{ return 42 \} else \{ return x \}
\}
Intuitively the function has type: ? \rightarrow (number | ?)

Accept and insert checks:

```
function double (x : ?) {
    (<condition>) ? 2*x : x.concat(x)
}
```

Compile as
function double (x : ?) \{
(<condition>) ? $2 *(x\langle$ number $\rangle)$: (x〈string $\rangle) . \operatorname{concat(x\langle \text {string}\rangle)~}$
\}

Combined usage: all 4 together! (OCaml style)

```
let mymap (condition) (f) (x : ?) =
    if condition then Array.map f x else List.map f x
```


Combined usage: all 4 together! (OCaml style)

```
let mymap (condition) (f) (x : ?) =
    if condition then Array.map f x else List.map f x
```

Type: bool $\rightarrow(\alpha \rightarrow \beta) \rightarrow ? \rightarrow$?

Combined usage: all 4 together! (OCaml style)

```
let mymap (condition) (f) (x : ?) =
    if condition then Array.map f x else List.map f x
```

Type: bool $\rightarrow(\alpha \rightarrow \beta) \rightarrow ? \rightarrow$?

- x can be bound to anything (though only α list or α array work)
- no information on the type of the result (though only β list or β array are possible)
let mymap (condition) (f) (x : (α array | α list) \& ?) = if condition then Array.map f x else List.map $f x$

Type: bool $\rightarrow(\alpha \rightarrow \beta) \rightarrow((\alpha$ array $\mid \alpha$ list $) \& ?) \rightarrow(\beta$ array $\mid \beta$ list $)$

Combined usage: all 4 together! (OCaml style)

let mymap (condition) (f) (x : ?) = if condition then Array.map f x else List.map $f x$
Type: bool $\rightarrow(\alpha \rightarrow \beta) \rightarrow ? \rightarrow$?

- x can be bound to anything (though only α list or α array work)
- no information on the type of the result (though only β list or β array are possible)
let mymap (condition) (f) (x : (α array | α list) \& ?) = if condition then Array.map $f \mathrm{x}$ else List.map f x

Type: bool $\rightarrow(\alpha \rightarrow \beta) \rightarrow((\alpha$ array $\mid \alpha$ list $) \& ?) \rightarrow(\beta$ array $\mid \beta$ list $)$ Compiled as:
let mymap (condition) (f) (x : (α array | α list) \& ?) = if condition then Array.map f (x $\langle\alpha$ array \rangle) else List.map $f(x\langle\alpha l i s t\rangle)$

Combined usage: all 4 together! (OCaml style)

let mymap (condition) (f) (x : ?) = if condition then Array.map f x else List.map $f x$
Type: bool $\rightarrow(\alpha \rightarrow \beta) \rightarrow ? \rightarrow$?

- x can be bound to anything (though only α list or α array work)
- no information on the type of the result (though only β list or β array are possible)
let mymap (condition) (f) (x : (α array | α list) \& ?) = if condition then Array.map f x else List.map $f x$

Type: bool $\rightarrow(\alpha \rightarrow \beta) \rightarrow((\alpha$ array $\mid \alpha$ list $) \& ?) \rightarrow(\beta$ array $\mid \beta$ list $)$ Compiled as:

```
let mymap (condition) (f) (x : ( }\alpha\mathrm{ array | 人 list) & ?) =
    if condition then Array.map f (x<\alphaarray\rangle)
    else List.map f (x\langle\alphalist\rangle)
```

Cutting edge research: Gradual typing, a new perspective, POPL 19

Outline

(9) Polymorphism

(2) Motivating Examples
(3) A Refresher Course on Operational Semantics

Syntax and small-step semantics

Syntax

Terms	a, b	=	N	Numeric constant
			x	Variable
		\|	$a b$	Application
			$\lambda x . a$	Abstraction
Values	v	:=	$\lambda x . a$	

Syntax and small-step semantics

Syntax

Terms $a, b::=N \quad$ Numeric constant
x
$a b$
λx.a
Variable Application
Abstraction
Values $\quad v::=\lambda x . a \mid N$

Small step semantics for strict functional languages

Evaluation Contexts $\quad \mathrm{E}::=$ []|Ea|vE

$$
\begin{array}{ll}
\mathrm{BETA}_{v} & \begin{array}{l}
\text { CONTEXT } \\
(\lambda x . a) v \rightarrow a[v / x]
\end{array} \\
\frac{a \rightarrow b}{E[a] \rightarrow E[b]}
\end{array}
$$

Strategy and big-step semantics

Characteristics of the reduction strategy

Weak reduction: We cannot reduce under λ-abstractions;
Call-by-value: In an application ($\lambda x . a) b$, the argument b must be fully reduced to a value before β-reduction can take place.
Left-most reduction: In an application $a b$, we must reduce a to a value first before we can start reducing b.
Deterministic: For every term a, there is at most one b such that $a \rightarrow b$.

Strategy and big-step semantics

Characteristics of the reduction strategy

Weak reduction: We cannot reduce under λ-abstractions;
Call-by-value: In an application ($\lambda x . a) b$, the argument b must be fully reduced to a value before β-reduction can take place.
Left-most reduction: In an application $a b$, we must reduce a to a value first before we can start reducing b.
Deterministic: For every term a, there is at most one b such that $a \rightarrow b$.

Big step semantics for strict functional languages

$$
N \Rightarrow N \quad \lambda x . a \Rightarrow \lambda x . a \quad \frac{a \Rightarrow \lambda x . c \quad b \Rightarrow v_{\circ} \quad c\left[v_{\circ} / x\right] \Rightarrow v}{a b \Rightarrow v}
$$

Interpreter

```
The big step semantics induces an efficient implementation
type term =
    Const of int | Var of string | Lam of string * term | App of term * term
exception Error
let rec subst x v = function (* assumes v is closed *)
    | Const n -> Const n
    Var y -> if x = y then v else Var y
    Lam(y, b) -> if x = y then Lam(y, b) else Lam(y, subst x v b)
    App(b, c) -> App(subst x v b, subst x v c)
let rec eval = function
    Const n -> Const n
    Var x -> raise Error
        Lam(x, a) -> Lam(x, a)
        App(a, b) ->
            match eval a with
            | Lam(x, c) -> let v = eval b in eval (subst x v c)
            _ -> raise Error
```


Exercises

(1) Define the small-step and big-step semantics for the call-by-name
(2) Deduce from the latter the interpreter
(3) Use the technique introduced for the type 'a delayed earlier in the course to implement an interpreter with lazy evaluation.

Improving implementation

Environments

- Implementing textual substitution $a[x / v]$ is inefficient. This is why compilers and interpreters do not implement it.
- Alternative: record the binding $x \mapsto v$ in an environment e

$$
\begin{array}{lcc}
\frac{e(x)=v}{e \vdash x \Rightarrow v} & e \vdash N \Rightarrow N & e \vdash \lambda x . a \Rightarrow \lambda x . a \\
\frac{e \vdash a \Rightarrow \lambda x . c}{} \quad e \vdash b \Rightarrow v_{0} \quad e ; x \mapsto v_{0} \vdash c \Rightarrow v \\
e \vdash a b \Rightarrow v
\end{array}
$$

Improving implementation

Environments

- Implementing textual substitution $a[x / v]$ is inefficient. This is why compilers and interpreters do not implement it.
- Alternative: record the binding $x \mapsto v$ in an environment e

$$
\begin{array}{lcc}
\frac{e(x)=v}{e \vdash x \Rightarrow v} & e \vdash N \Rightarrow N & e \vdash \lambda x . a \Rightarrow \lambda x . a \\
\frac{e \vdash a \Rightarrow \lambda x . c}{} \quad e \vdash b \Rightarrow v_{0} \quad e ; x \mapsto v_{0} \vdash c \Rightarrow v \\
e \vdash a b \Rightarrow v
\end{array}
$$

Giving up substitutions in favor of environments does not come for free

Improving implementation

Environments

- Implementing textual substitution $a[x / v]$ is inefficient. This is why compilers and interpreters do not implement it.
- Alternative: record the binding $x \mapsto v$ in an environment e

$$
\begin{array}{lcl}
\frac{e(x)=v}{e \vdash x \Rightarrow v} & e \vdash N \Rightarrow N & e \vdash \lambda x . a \Rightarrow \lambda x . a \\
\frac{e \vdash a \Rightarrow \lambda x . c}{} \quad e \vdash b \Rightarrow v_{0} \quad e ; x \mapsto v_{0} \vdash c \Rightarrow v \\
e \vdash a b \Rightarrow v
\end{array}
$$

Giving up substitutions in favor of environments does not come for free

- Lexical scoping requires careful handling of environments

$$
\begin{aligned}
& \text { let } x=1 \text { in } \\
& \text { let } f=\lambda y \cdot(x+1) \text { in } \\
& \text { let } x=\text { foo" in } \\
& f 2
\end{aligned}
$$

In the environment used to evaluate $f 2$ the variable x is bound to 1 .

Exercise

```
Try to evaluate
    let x = 1 in
    let f = \lambday.(x+1) in
    let x = "foo" in
    f 2
```

by the big-step semantics in the previous slide, where let $x=a$ in b is syntactic sugar for $(\lambda x . b) a$
let us outline it together

Function closures

To implement lexical scoping in the presence of environments, function abstractions λx. a must not evaluate to themselves, but to a function closure: a pair $(\lambda x . a)[e]$ (ie, the function and the environment of its definition)

Big step semantics with environments and closures

$$
\text { Values } \quad v::=N \mid(\lambda x . a)[e]
$$

Environments e $::=x_{1} \mapsto v_{1} ; \ldots ; x_{n} \mapsto v_{n}$

$$
\begin{array}{lcl}
\frac{e(x)=v}{e \vdash x \Rightarrow v} & e \vdash N \Rightarrow N & e \vdash \lambda x . a \Rightarrow(\lambda x . a)[e] \\
\frac{e \vdash a \Rightarrow(\lambda x . c)\left[e_{0}\right]}{} & e \vdash b \Rightarrow v_{\circ} & e_{\circ} ; x \mapsto v_{\circ} \vdash c \Rightarrow v \\
e \vdash a b \Rightarrow v
\end{array}
$$

De Bruijn indexes

Identify variable not by names but by the number \underline{n} of λ 's that separate the variable from its binder in the syntax tree.

$$
\lambda x \cdot(\lambda y \cdot y x) x \text { is } \quad \lambda \cdot(\lambda \cdot \underline{0} 1) \underline{0}
$$

\underline{n} is the variable bound by the n-th enclosing λ. Environments become sequences of values, the n-th value of the sequence being the value of variable $n-1$.

Terms	a, b	$::=N\|\underline{n}\| \lambda \cdot a \mid a b$
Values	v	$::=N \mid(\lambda \cdot a)[e]$
Environments	e	$::=v_{0} ; v_{1} ; \ldots ; v_{n}$

$$
\begin{gathered}
\frac{e=v_{0} ; \ldots ; v_{n} ; \ldots ; v_{m}}{e \vdash \underline{n} \Rightarrow v_{n}} \quad e \vdash N \Rightarrow N \\
\frac{e \vdash a \Rightarrow(\lambda . c)\left[e_{0}\right] \quad e \vdash b \Rightarrow v_{\circ}}{e \vdash a b \Rightarrow v} \quad v_{\circ} ; e_{\circ} \vdash c \Rightarrow v \\
\end{gathered}
$$

The canonical, efficient interpreter

```
# type term = Const of int | Var of int | Lam of term | App of term * term
    and value = Vint of int | Vclos of term * environment
    and environment = value list (* use Vec instead *)
# exception Error
# let rec eval e a =
    match a with
    | Const n -> Vint n
        | Var n -> List.nth e n (* will fail for open terms *)
        | Lam a -> Vclos(Lam a, e)
        | App(a, b) ->
            match eval e a with
            | Vclos(Lam c, e') ->
                let v = eval e b in
                eval (v :: e') c
            | _ -> raise Error
# eval [] (App ( Lam (Var 0), Const (2)));; (* (\lambdax.x)2 -> 2 *)
- : value = Vint 2
```

Note:To obtain improved performance one should implement environments by persistent extensible arrays: for instance by the Vec library by Luca de Alfaro.

Subtyping

Outline

4 Simple Types
(5) Recursive Types

6 Bibliography

Outline

4 Simple Types

(5) Recursive Types

6 Bibliography

Simply Typed λ-calculus

Syntax

Reduction

Contexts $C[]::=[]|a[]|[] a \mid \lambda x: T .[]$

$$
\begin{array}{ll}
\begin{array}{l}
\text { BETA } \\
(\lambda x: T . a) b \longrightarrow a[b / x]
\end{array} & \begin{array}{l}
\text { CONTEXT } \\
\end{array} \\
\frac{a \longrightarrow b}{C[a] \longrightarrow C[b]}
\end{array}
$$

Type system

Typing

$$
\begin{array}{lll}
\text { VAR } & \rightarrow \text { INTRO } \\
\Gamma \vdash x: \Gamma(x) & \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T}
\end{array} \quad \frac{\overrightarrow{\text { ELIM }}}{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S
$$

(plus the typing rules for constants).

Type system

Typing

$$
\begin{array}{ll}
\text { VAR } & \rightarrow \text { INTRO } \\
\Gamma \vdash x: \Gamma(x) & \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T}
\end{array} \quad \frac{\overrightarrow{\text { ELIM }}}{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S
$$

(plus the typing rules for constants).

Type system

Typing

$$
\begin{array}{lll}
\text { VAR } & \rightarrow \text { INTRO } \\
\Gamma \vdash x: \Gamma(x) & \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} & \frac{\rightarrow \text { ELIM }}{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S \\
\Gamma \vdash a b: T
\end{array}
$$

(plus the typing rules for constants).

Theorem (Subject Reduction)

If $\Gamma \vdash a: T$ and $a \longrightarrow{ }^{*} b$, then $\Gamma \vdash b: T$.
We will essentially focus on the subject reduction property (a.k.a. type preservation), though well-typed programs must also satisfy progress:

Theorem (Progress)

If $\varnothing \vdash \mathrm{a}: T$ and $a \nrightarrow$, then a is a value
where a value is either a constant or a lambda abstraction

$$
v::=\lambda x: T . a \mid \text { true } \mid \text { false }|1| 2 \mid \ldots
$$

Subject Reduction + Progress = Soundness

Soundness [Wright \& Felleisen 1994]

A type system is sound if every well-typed expression either diverges or reduces to a value of type

Soundness is a corollary of subject reduction and progress

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property. As such it describes a deterministic algorithm.

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property. As such it describes a deterministic algorithm.
let rec typecheck gamma $=$ function
| x-> $\operatorname{gamma}(x) \quad(* \operatorname{Var}$ rule *)
| $\lambda x: T . a ~->~ T \rightarrow$ (typecheck (gamma, x:T) a) (* Intro rule *)
| ab -> let $T_{1} \rightarrow T_{2}=$ typecheck gamma a in (* Elim rule *) let $T_{3}=$ typecheck gamma b in
if $T_{1}==T_{3}$ then T_{2} else fail

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property. As such it describes a deterministic algorithm.
let rec typecheck gamma $=$ function
| x-> $\operatorname{gamma}(x) \quad(* \operatorname{Var}$ rule *)
| $\lambda x: T . a ~->~ T \rightarrow$ (typecheck (gamma, $x: T$) a) (* Intro rule *)
| ab -> let $T_{1} \rightarrow T_{2}=$ typecheck gamma a in (* Elim rule *) let $T_{3}=$ typecheck gamma b in
if $T_{1}==T_{3}$ then T_{2} else fail
Exercise. Write the typecheck function for the following definitions:
type stype $=$ Int | Bool | Arrow of stype * stype
type term =
Num of int | BVal of bool | Var of string
Lam of string $*$ stype $*$ term \mid App of term $*$ term
exception Error
Use List. assoc for environments.

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\frac{\overrightarrow{\text { ELIM }}}{\stackrel{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash b: S}} \underset{\Gamma \vdash a b: T}{ }
$$

So, for instance, we cannot:

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\begin{aligned}
& \rightarrow \text { ELIM } \\
& \Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S \\
& \Gamma \vdash a b: T
\end{aligned}
$$

So, for instance, we cannot:

- Apply a function of type Int \rightarrow Int to an argument of type Odd even though every odd number is an integer number, too.

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\frac{\overrightarrow{\Gamma \vdash} \mathrm{ELIM}}{\stackrel{\Gamma}{\mathrm{\Gamma}}: S \rightarrow T \quad \Gamma \vdash b: S} \text { Гトab:T}
$$

So, for instance, we cannot:

- Apply a function of type Int \rightarrow Int to an argument of type Odd even though every odd number is an integer number, too.
- If we have records, apply the function $\lambda x:\{\ell:$ Int $\}$. $(3+x . \ell)$ to a record of type $\left\{\ell:\right.$ Int, $\ell^{\prime}:$ Bool $\}$

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\frac{\overrightarrow{\text { ELIM }}}{\stackrel{\rightharpoonup}{\Gamma} a: S \rightarrow T \quad \Gamma \vdash b: S}
$$

So, for instance, we cannot:

- Apply a function of type Int \rightarrow Int to an argument of type Odd even though every odd number is an integer number, too.
- If we have records, apply the function $\lambda x:\{\ell:$ Int $\}$. $(3+x . \ell)$ to a record of type $\left\{\ell\right.$: Int, ℓ^{\prime} : Bool $\}$
- If we are in OOP, send a message defined for objects of the class Persons to an instance of the subclass Students.

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\frac{\overrightarrow{\text { ELIM }}}{\stackrel{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash b: S}} \underset{\Gamma \vdash a b: T}{ }
$$

So, for instance, we cannot:

- Apply a function of type Int \rightarrow Int to an argument of type Odd even though every odd number is an integer number, too.
- If we have records, apply the function $\lambda x:\{\ell:$ Int $\}$. $(3+x . \ell)$ to a record of type $\left\{\ell\right.$: Int, ℓ^{\prime} : Bool $\}$
- If we are in OOP, send a message defined for objects of the class Persons to an instance of the subclass Students.

Subtyping polymorphism

We need a kind of polymorphism different from the ML one (parametric polymorphism).

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation <:)

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation < :)
- This subtyping relation has two possible interpretations:

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation <:)
- This subtyping relation has two possible interpretations:

Containment: If $S \leq T$, then every value of type S is also of type T.
For instance an odd number is also an integer, a student is also a person.
Sometimes called a "is_a" relation.

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation <:)
- This subtyping relation has two possible interpretations:

Containment: If $S \leq T$, then every value of type S is also of type T.
For instance an odd number is also an integer, a student is also a person.
Sometimes called a "is_a" relation.
Substitutability: If $S \leq T$, then every value of type S can be safely used
where a value of type T is expected.
Where "safely" means, without disrupting type preservation and progress.

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation <:)
- This subtyping relation has two possible interpretations:

Containment: If $S \leq T$, then every value of type S is also of type T.
For instance an odd number is also an integer, a student is also a person.
Sometimes called a "is_a" relation.
Substitutability: If $S \leq T$, then every value of type S can be safely used
where a value of type T is expected.
Where "safely" means, without disrupting type preservation and progress.

- We'll see how each interpretation has a formal counterpart.

Subtyping for simply typed λ-calculus

- We suppose to have a predefined preorder $\mathcal{B} \subset$ Basic \times Basic for basic types (given by the language designer).

For instance take the reflexive and transitive closure of $\{($ Odd, Int), (Even, Int), (Int, Real) $\}$

Subtyping for simply typed λ-calculus

- We suppose to have a predefined preorder $\mathcal{B} \subset$ Basic \times Basic for basic types (given by the language designer).

For instance take the reflexive and transitive closure of $\{($ Odd, Int), (Even, Int), (Int, Real) \}

- To extend it to function types, we resort to the sustitutability interpretation. We will try to deduce when we can safely replace a function of some type by a term of a different type

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$
Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$

Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:
(1) If $a: T_{1}$, then we can apply f to a. If $S \leq T_{1} \rightarrow T_{2}$, then we can apply g to a, as well.
$\Rightarrow g$ is a function, therefore $S=S_{1} \rightarrow S_{2}$

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$

Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:
(1) If $a: T_{1}$, then we can apply f to a. If $S \leq T_{1} \rightarrow T_{2}$, then we can apply g to a, as well.
$\Rightarrow g$ is a function, therefore $S=S_{1} \rightarrow S_{2}$
(2) If $a: T_{1}$, then $f(a)$ is well typed. If $S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}$, then also $g(a)$ is well-typed. g expects arguments of type S_{1} but a is of type T_{1} \Rightarrow we can safely use T_{1} where S_{1} is expected, ie $T_{1} \leq S_{1}$

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$

Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:
(1) If a : T_{1}, then we can apply f to a. If $S \leq T_{1} \rightarrow T_{2}$, then we can apply g to a, as well.
$\Rightarrow g$ is a function, therefore $S=S_{1} \rightarrow S_{2}$
(2) If $a: T_{1}$, then $f(a)$ is well typed. If $S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}$, then also $g(a)$ is well-typed. g expects arguments of type S_{1} but a is of type T_{1}
\Rightarrow we can safely use T_{1} where S_{1} is expected, ie $T_{1} \leq S_{1}$
(3) $f(a): T_{2}$, but since g returns results in S_{2}, then $g(a): S_{2}$. If I use g where f is expected, then it must be safe to use S_{2} results where T_{2} results are expected
$\Rightarrow S_{2} \leq T_{2}$ must hold.

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$

Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:
(1) If $a: T_{1}$, then we can apply f to a. If $S \leq T_{1} \rightarrow T_{2}$, then we can apply g to a, as well.
$\Rightarrow g$ is a function, therefore $S=S_{1} \rightarrow S_{2}$
(2) If $a: T_{1}$, then $f(a)$ is well typed. If $S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}$, then also $g(a)$ is well-typed. g expects arguments of type S_{1} but a is of type T_{1}
\Rightarrow we can safely use T_{1} where S_{1} is expected, ie $T_{1} \leq S_{1}$
(3) $f(a): T_{2}$, but since g returns results in S_{2}, then $g(a): S_{2}$. If I use g where f is expected, then it must be safe to use S_{2} results where T_{2} results are expected
$\Rightarrow S_{2} \leq T_{2}$ must hold.

Solution

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \text { and } S_{2} \leq T_{2}
$$

Covariance and contravariance

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \text { and } S_{2} \leq T_{2}
$$

Notice the different orientation of containment on domains and co-domains. We say that the type constructor \rightarrow is

- covariant on codomains, since it preserves the direction of the relation;
- contravariant on domains, since it reverses the direction of the relation.

Covariance and contravariance

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \text { and } S_{2} \leq T_{2}
$$

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor \rightarrow is

- covariant on codomains, since it preserves the direction of the relation;
- contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:

The containment interpretation yields exactly the same relation as obtained by the substitutability interpretation. For instance a function that maps integers to integers ...

Covariance and contravariance

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \text { and } S_{2} \leq T_{2}
$$

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor \rightarrow is

- covariant on codomains, since it preserves the direction of the relation;
- contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:

The containment interpretation yields exactly the same relation as obtained by the substitutability interpretation. For instance a function that maps integers to integers ...

- is also a function that maps integers to reals: it returns results in Int so they will be also in Real.
Int \rightarrow Int \leq Int \rightarrow Real (covariance of the codomains)

Covariance and contravariance

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \text { and } S_{2} \leq T_{2}
$$

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor \rightarrow is

- covariant on codomains, since it preserves the direction of the relation;
- contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:

The containment interpretation yields exactly the same relation as obtained by the substitutability interpretation. For instance a function that maps integers to integers ...

- is also a function that maps integers to reals: it returns results in Int so they will be also in Real.
Int \rightarrow Int \leq Int \rightarrow Real (covariance of the codomains)
- is also a function that maps odds to integers: when fed with integers it returns integers, so will do the same when fed with odd numbers.
Int \rightarrow Int \leq Odd \rightarrow Int (contravariance of the codomains)

Subtyping deduction system

$$
\begin{array}{ll}
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}} & \text { ARROW } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} \\
\text { REFL } \frac{T_{2}}{T \leq T} & \text { TRANS } \frac{T_{1} \leq T_{2} \quad T_{2} \leq T_{3}}{T_{1} \leq T_{3}}
\end{array}
$$

Subtyping deduction system

$$
\begin{array}{ll}
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}} & \text { ARROW } \frac{T_{1} \leq S_{1} r}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} \\
\text { REFL } \frac{T_{2}}{T \leq T} & \text { TRANS } \frac{T_{1} \leq T_{2} \quad T_{2} \leq T_{3}}{T_{1} \leq T_{3}}
\end{array}
$$

This system is neither syntax directed nor satisfies the subformula property

Subtyping deduction system

$$
\begin{array}{ll}
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}} & \text { ARROW } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} \\
\text { REFL } \frac{T_{2}}{T \leq T} & \text { TRANS } \frac{T_{1} \leq T_{2} \quad T_{2} \leq T_{3}}{T_{1} \leq T_{3}}
\end{array}
$$

This system is neither syntax directed nor satisfies the subformula property How do we define an algorithm to check the subtyping relation?

Subtyping deduction system

$$
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}}
$$

$$
\text { ARRow } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}
$$

How do we define an algorithm to check the subtyping relation?

Subtyping deduction system

$$
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}} \quad \text { ARrow } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}
$$

These rules describe a deterministic and terminating algorithm (we say that the system is algorithmic).

How do we define an algorithm to check the subtyping relation?

Subtyping deduction system

$$
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}} \quad \text { ARrow } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}
$$

These rules describe a deterministic and terminating algorithm (we say that the system is algorithmic).

How do we define an algorithm to check the subtyping relation?

Theorem (Admissibility of Refl and Trans)

In the system composed just by the rules Arrow and Basic:

1) $T \leq T$ is provable for all types T
2) If $T_{1} \leq T_{2}$ and $T_{2} \leq T_{3}$ are provable, so is $T_{1} \leq T_{3}$.

The rules Refl and Trans are admissible

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

$$
\begin{array}{ll}
\text { VAR } & \rightarrow \text { INTRO } \\
\Gamma \vdash x: \Gamma(x) & \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T}
\end{array} \quad \frac{\overrightarrow{\text { ELIM }}}{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S
$$

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

$$
\begin{array}{ll}
\text { VAR } \\
\Gamma \vdash x: \Gamma(x) & \begin{array}{c}
\rightarrow \text { INTRO } \\
\Gamma, x: S \vdash a: T \\
\Gamma \vdash \lambda x: S . a: S \rightarrow T
\end{array} \\
& \frac{\text { SUBSUMPTION }}{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S \\
& \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T} S \leq T
\end{array}
$$

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

$$
\begin{array}{ll}
\begin{array}{ll}
\text { VAR } \\
\Gamma \vdash x: \Gamma(x) & \rightarrow \text { INTRO } \\
\Gamma, x: S \vdash a: T \\
\Gamma \vdash \lambda x: S . a: S \rightarrow T
\end{array} & \begin{array}{l}
\Gamma \vdash a: S \rightarrow T \\
\\
\\
\\
\\
\\
\\
\\
\text { SUBSUMPTION } \\
\Gamma \vdash a: S \\
\Gamma \vdash a: T
\end{array}
\end{array}
$$

This corresponds to the containment relation:
if $S \leq T$ and a is of type S then a is also of type T

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

$$
\begin{array}{ll}
\text { VAR } \\
\Gamma \vdash x: \Gamma(x) & \rightarrow \text { INTRO } \\
& \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \\
& \frac{\text { SUBSUMPTION }}{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S \\
& \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T}
\end{array}
$$

This corresponds to the containment relation:
if $S \leq T$ and a is of type S then a is also of type T

Subject reduction: If $\Gamma \vdash a: T$ and $a \longrightarrow^{*} b$, then $\Gamma \vdash b: T$. Progress property: If $\varnothing \vdash a: T$ and $a \nrightarrow$, then a is a value

Typing algorithm

Typing algorithm

$$
\begin{aligned}
& \begin{array}{ll}
\text { VAR } \\
\Gamma \vdash x: \Gamma(x) & \rightarrow \text { INTRO } \\
\Gamma \vdash, x: S \vdash a: T \\
\Gamma \vdash \lambda x: S . a: S \rightarrow T
\end{array} \\
& \frac{\overrightarrow{\Gamma \vdash a} \operatorname{ELIM}: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
& \begin{array}{l}
\text { SUBSUMPTION } \\
\frac{\Gamma \vdash a: S \quad S \leq T}{\Gamma \vdash a: T}
\end{array}
\end{aligned}
$$

Subsumption makes the type system non-algorithmic:

- it is not syntax directed: subsumption can be applied whatever the term.
- it does not satisfy the subformula property: even if we know that we have to apply subsumption which T shall we choose?

Typing algorithm

$$
\begin{aligned}
& \rightarrow \text { INTRO } \\
& \stackrel{\text { VAR }}{\Gamma \vdash x: \Gamma(x)} \frac{\rightarrow \text { INTRO }}{\Gamma, x: S \vdash a: T} \begin{array}{l}
\Gamma \vdash \lambda x: S . a: S \rightarrow T
\end{array} \\
& \frac{\overrightarrow{\Gamma \vdash a} \operatorname{ELIM}: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
& \begin{array}{l}
\text { SUBSUMPTION } \\
\begin{array}{l}
\Gamma \vdash a: S \quad S \leq T \\
\Gamma \vdash a: T
\end{array}
\end{array}
\end{aligned}
$$

Subsumption makes the type system non-algorithmic:

- it is not syntax directed: subsumption can be applied whatever the term.
- it does not satisfy the subformula property: even if we know that we have to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

Typing algorithm

Subsumption makes the type system non-algorithmic:

- it is not syntax directed: subsumption can be applied whatever the term.
- it does not satisfy the subformula property: even if we know that we have to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

Typing algorithm

$$
\begin{array}{llll}
\mathrm{VAR}_{\mathrm{AR}} & \rightarrow \text { INTRO } & \rightarrow \mathrm{ELIM} \leq \\
\Gamma \vdash_{\mathcal{A}} x: \Gamma(x) & \frac{\Gamma, x: S \vdash_{\mathcal{A}} a: T}{\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T} & \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T}{} \quad \Gamma \vdash_{\mathcal{A}} b: U & \Gamma \leq S \\
\Gamma \vdash_{\mathcal{A}} a b: T
\end{array}
$$

(1) The system is algorithmic: it describes a typing algorithm (exercise: program typecheck and subtype by using the previous structures)
(2) The system conforms the substitutability interpretation: we use an expression of a subtype U where a supertype S is expected (note "use" = elimination rule).

Typing algorithm

$$
\begin{array}{lll}
\operatorname{VAR} & \rightarrow \text { INTRO } & \rightarrow \mathrm{ELIM} \leq \\
\Gamma \vdash_{\mathcal{A}} x: \Gamma(x) & \frac{\Gamma, x: S \vdash_{\mathcal{A}} a: T}{\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T} & \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T}{} \quad \Gamma \vdash_{\mathcal{A}} b: U \\
\Gamma \vdash_{\mathcal{A}} a b: T
\end{array}
$$

(1) The system is algorithmic: it describes a typing algorithm (exercise: program typecheck and subtype by using the previous structures)
(2) The system conforms the substitutability interpretation: we use an expression of a subtype U where a supertype S is expected (note "use" = elimination rule).

How do we relate the two systems?

Typing algorithm

$$
\begin{array}{lll}
\operatorname{VAR} & \rightarrow \text { INTRO } & \rightarrow \mathrm{ELIM}_{\leq} \\
\Gamma \vdash_{\mathcal{A}} x: \Gamma(x) & \frac{\Gamma, x: S \vdash_{\mathcal{A}} a: T}{\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T} & \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T}{} \quad \Gamma \vdash_{\mathcal{A}} b: U \\
\Gamma \vdash_{\mathcal{A}} a b: T
\end{array}
$$

(1) The system is algorithmic: it describes a typing algorithm (exercise: program typecheck and subtype by using the previous structures)
(2) The system conforms the substitutability interpretation: we use an expression of a subtype U where a supertype S is expected (note "use" = elimination rule).

How do we relate the two systems?
For subtyping, admissibility ensured that the system and the algorithm prove the same judgements. Here it is no longer true. For instance:

$$
\varnothing \vdash \lambda x: \text { Int. } x: \text { Odd } \rightarrow \text { Real } \quad \text { but } \quad \varnothing \vdash_{\mathcal{A}} \lambda x: \text { Int. } x: \text { Odd } \rightarrow \text { Real. }
$$

Typing algorithm

$$
\begin{array}{ll}
\text { VAR } & \rightarrow \text { INTRO } \\
\Gamma \vdash_{\mathcal{A}} x: \Gamma(x) & \frac{\Gamma, x: S \vdash_{\mathcal{A}} a: T}{\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T}
\end{array}
$$

(1) The system is algorithmic: it describes a typing algorithm (exercise: program typecheck and subtype by using the previous structures)
(2) The system conforms the substitutability interpretation: we use an expression of a subtype U where a supertype S is expected (note "use" = elimination rule).

How do we relate the two systems?
For subtyping, admissibility ensured that the system and the algorithm prove the same judgements. Here it is no longer true. For instance:

$$
\varnothing \vdash \lambda x: \text { Int. } x: \text { Odd } \rightarrow \text { Real } \quad \text { but } \quad \varnothing \vdash_{\mathcal{A}} \lambda x: \text { Int. } x: \text { Odd } \rightarrow \text { Real. }
$$

This is expected: Algorithm = one type returned for each typable term.

Soundness and completeness of the typing algorithm

a is typable by $\vdash \Leftrightarrow a$ is typable by $\vdash_{\mathcal{A}}$

$\Leftarrow=$ soundness
\Rightarrow = completeness

Soundness and completeness of the typing algorithm

 a is typable by $\vdash \Leftrightarrow a$ is typable by $\vdash_{\mathcal{A}}$$$
\begin{aligned}
& \Leftarrow=\text { soundness } \\
& \Rightarrow=\text { completeness }
\end{aligned}
$$

Theorem (Soundness)
If $\Gamma \vdash_{\mathcal{A}} a: T$, then $\Gamma \vdash a: T$

Theorem (Completeness)

If $\Gamma \vdash a: T$, then $\Gamma \vdash_{\mathcal{A}} a: S$ with $S \leq T$

Minimum type and soundness

Corollary (Minimum type)

$$
\text { If } \Gamma \vdash_{\mathcal{A}} a: T \text { then } T=\min \{S \mid \Gamma \vdash a: S\}
$$

Proof. Let $\mathcal{S}=\{S \mid \Gamma \vdash a: S\}$. Soundness ensures that \mathcal{S} is not empty. Completeness states that T is a lower bound of \mathcal{S}. Minimality follows by using soundness once more.

Minimum type and soundness

Corollary (Minimum type)

If $\Gamma \vdash_{\mathcal{A}} a: T$ then $T=\min \{S \mid \Gamma \vdash a: S\}$
Proof. Let $\mathcal{S}=\{S \mid \Gamma \vdash a: S\}$. Soundness ensures that \mathcal{S} is not empty. Completeness states that T is a lower bound of \mathcal{S}. Minimality follows by using soundness once more.

The corollary above explains that the typing algorithm works with the minimum types of the terms. It keeps track of the best type information available

Minimum type and soundness

Corollary (Minimum type)

If $\Gamma \vdash_{\mathcal{A}} a: T$ then $T=\min \{S \mid \Gamma \vdash a: S\}$
Proof. Let $S=\{S \mid \Gamma \vdash a: S\}$. Soundness ensures that \mathcal{S} is not empty. Completeness states that T is a lower bound of \mathcal{S}. Minimality follows by using soundness once more.

The corollary above explains that the typing algorithm works with the minimum types of the terms. It keeps track of the best type information available

```
Theorem (Algorithmic subject reduction)
```


The theorem above explains that the computation reduces the minimum type of a program. As such it increases the type information about it.

Summary for simply-typed λ-calculs $+\leq$

- The containment interpretation of the subtyping relation corresponds to the "logical" view of the type system embodied by subsumption.
- The substitutability interpretation of the subtyping relation corresponds to the "algorithmic" view of the type system.

Summary for simply-typed λ-calculs $+\leq$

- The containment interpretation of the subtyping relation corresponds to the "logical" view of the type system embodied by subsumption.
- The substitutability interpretation of the subtyping relation corresponds to the "algorithmic" view of the type system.
- To define the type system one usually starts from the "logical" system, which is simpler since subtyping is concentrated in the subsumption rule
- To implement the type system one passes to the substitutability view. Subsumption is eliminated and the check of the subtyping relation is distributed in the places where values are used/consumed. This in general corresponds to embed subtype checking into elimination rules.

Summary for simply-typed λ-calculs $+\leq$

- The containment interpretation of the subtyping relation corresponds to the "logical" view of the type system embodied by subsumption.
- The substitutability interpretation of the subtyping relation corresponds to the "algorithmic" view of the type system.
- To define the type system one usually starts from the "logical" system, which is simpler since subtyping is concentrated in the subsumption rule
- To implement the type system one passes to the substitutability view. Subsumption is eliminated and the check of the subtyping relation is distributed in the places where values are used/consumed. This in general corresponds to embed subtype checking into elimination rules.
- The obtained algorithm works on the minimum types of the logical system
- Computation reduces the (algorithmic) type thus increasing type information (the result of a computation represents the best possible type information: it is the singleton type containing the result).
- The last point makes dynamic dispatch (aka, dynamic binding) meaningful.

Products I

Syntax

Types	$T:$	$:=$	$\ldots \mid T \times T$	product types
Terms $a, b:$	$:=$	\ldots		
		(a, a)	pair	
		$\pi_{i}(a) \quad(i=1,2)$	projection	

Reduction

$$
\pi_{i}\left(\left(a_{1}, a_{2}\right)\right) \longrightarrow a_{i} \quad(i=1,2)
$$

Typing

$$
\begin{array}{ll}
\times \text { INTRO } \\
\Gamma \vdash a_{1}: T_{1} & \Gamma \vdash a_{2}: T_{2} \\
\Gamma \vdash\left(a_{1}, a_{2}\right): T_{1} \times T_{2}
\end{array} \quad \begin{aligned}
& \times \operatorname{ELIM}_{i} \\
& \Gamma \vdash a: T_{1} \times T_{2} \\
& \Gamma \vdash \pi_{i}(a): T_{i}
\end{aligned}(i=1,2)
$$

Products II

Subtyping

$$
\begin{aligned}
& \text { PROD } \\
& \frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{S_{1} \times S_{2} \leq T_{1} \times T_{2}}
\end{aligned}
$$

Exercise: Check whether the above rule is compatible with the containement and/or the substitutability interpretation of the subtyping relation.

The subtyping rule above is also algorithmic. Similarly, for the typing rules there is no need to embed subtyping in the elimination rules since π_{i} is an operator that works on all products, not a particular one (cf. with the application of a function, which requires a particular domain).

Of course subject reduction and progress still hold.
Exercise: Define values and reduction contexts for this extension.

Records

Up to now subtyping rules « lift » the subtyping relation \mathcal{B} on basic types to constructed types. But if \mathcal{B} is the identity relation, so is the whole subtyping relation. Record subtyping is non-trivial even when \mathcal{B} is the identity relation.
Syntax

| Types $\quad T:$ | $:=$ | $\ldots \mid\{\ell: T, \ldots, \ell: T\}$ | record types |
| :--- | ---: | ---: | ---: | ---: |
| Terms $a, b::=$ | | | |
| | | $\{\ell=a, \ldots, \ell=a\}$ | record |
| | | a. ℓ | field selection |

Reduction

$$
\{\ldots, \ell=a, \ldots\}, \ell \longrightarrow a
$$

Typing
\{\}Intro
$\frac{\Gamma \vdash a_{1}: T_{1} \ldots \Gamma \vdash a_{n}: T_{n}}{\Gamma \vdash\left\{\ell_{1}=a_{1}, \ldots, \ell_{n}=a_{n}\right\}:\left\{\ell_{1}: T_{1}, \ldots, \ell_{n}: T_{n}\right\}}$
\{\}Elim
$\frac{\Gamma \vdash a:\{\ldots, \ell: T, \ldots\}}{\Gamma \vdash a, \ell: T}$

Record Subtyping

To define subtyping we resort once more on the substitutability relation. A record is "used" by selecting one of its labels.

Record Subtyping

To define subtyping we resort once more on the substitutability relation. A record is "used" by selecting one of its labels.

We can replace some record by a record of different type if in the latter we can select the same fields as in the former and their contents can substitute the respective contents in the former.

Subtyping

$$
\begin{aligned}
& \frac{S_{1} \leq T_{1} \ldots S_{n} \leq T_{n}}{\left\{\ell_{1}: S_{1}, \ldots, \ell_{n}: S_{n}, \ldots, \ell_{n+k}: S_{n+k}\right\} \leq\left\{\ell_{1}: T_{1}, \ldots, \ell_{n}: T_{n}\right\}}
\end{aligned}
$$

Exercise. Which are the algorithmic typing rules?

Outline

(4) Simple Types
(5) Recursive Types

6 Bibliography

Iso-recursive and Equi-recursive types

Lists are a classic example of recursive types:

$$
X \approx(\operatorname{Int} \times X) \vee \operatorname{Nil}
$$

also written as $\mu X .((\operatorname{Int} \times X) \vee$ Nil $)$
Two different approaches according to whether \approx is interpreted as an isomorphism or an equality:
Iso-recursive types: $\mu X .((\operatorname{Int} \times X) \vee \mathrm{Nil})$ is considered isomorphic to its one-step unfolding $(\operatorname{Int} \times \mu X .((\operatorname{Int} \times X) \vee \mathrm{Nil})) \vee \mathrm{Nil})$. Terms include a pair of built-in coercion functions for each recursive type $\mu X . T$:

$$
\text { unfold }: \mu X . T \rightarrow T[\mu X . T / X] \quad \text { fold }: T[\mu X . T / X] \rightarrow \mu X . T
$$

Equi-recursive types: μX. ((Int $\times X) \vee$ Nil) is considered equal to its one-step unfolding $(\operatorname{Int} \times \mu X .((\operatorname{Int} \times X) \vee \mathrm{Nil})) \vee \mathrm{Nil})$. The two types are completely interchangeable. No support needed from terms.

Iso-recursive and Equi-recursive types

Lists are a classic example of recursive types:

$$
X \approx(\operatorname{Int} \times X) \vee \operatorname{Nil}
$$

also written as $\mu X .((\operatorname{Int} \times X) \vee$ Nil $)$
Two different approaches according to whether \approx is interpreted as an isomorphism or an equality:
Iso-recursive types: $\mu X .((\operatorname{Int} \times X) \vee \mathrm{Nil})$ is considered isomorphic to its one-step unfolding $(\operatorname{Int} \times \mu X .((\operatorname{Int} \times X) \vee \mathrm{Nil})) \vee \mathrm{Nil})$. Terms include a pair of built-in coercion functions for each recursive type $\mu X . T$:

$$
\text { unfold }: \mu X . T \rightarrow T[\mu X . T / X] \quad \text { fold }: T[\mu X . T / X] \rightarrow \mu X . T
$$

Equi-recursive types: μX. ((Int $\times X) \vee$ Nil) is considered equal to its one-step unfolding $(\operatorname{Int} \times \mu X .((\operatorname{Int} \times X) \vee \mathrm{Nil})) \vee \mathrm{Nil})$. The two types are completely interchangeable. No support needed from terms.

Subtyping for recursive types generalizes the equi-recursive approach.
The \approx relation corresponds to subtyping in both directions:

$$
\mu X . T \leq T[\mu X . T / X] \quad T[\mu X . T / X] \leq \mu X . T
$$

Recursive types are weird

- To add (equi-)recursive types you do not need to add any new term

Recursive types are weird

- To add (equi-)recursive types you do not need to add any new term
- You don't even need to have recursion on terms:

$$
\mu X .((\operatorname{Int} \times X) \vee \operatorname{Nil})
$$

interpret the type above as the finite lists of integers.
Then μX. (Int $\times X$) is the empty type.

Recursive types are weird

- To add (equi-)recursive types you do not need to add any new term
- You don't even need to have recursion on terms:

$$
\mu X .((\operatorname{Int} \times X) \vee \operatorname{Nil})
$$

interpret the type above as the finite lists of integers.
Then μX. (Int $\times X$) is the empty type.

- Actually if you have recursive terms and allow infinite values you can easily jeopardize decidability of the subtyping relation (which resorts to checking type emptiness)
- This contrasts with their intuition which looks simple: we always informally applied a rule such as:

$$
\frac{A, X \leq Y \vdash S \leq T}{A \vdash \mu X . S \leq \mu Y . T}
$$

Subtyping recursive types

Syntax

Types	T : $:=$	Any	top type
	,	$T \rightarrow T$	function types
		$T \times T$	product types
		X	type variables
		$\mu X . T$	recursive types

where T is contractive, that is (two equivalent definitions):
(1) T is contractive iff for every subexpression $\mu X . \mu X_{1} \ldots \mu X_{n}$. S it holds $S \neq X$.
(2) T is contractive iff every type variable X occurring in it is separated from its binder by a \rightarrow or $\mathrm{a} \times$.

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

$$
\begin{aligned}
& \text { TOP } \overline{T \leq \text { Any }} \quad \text { PROD } \frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{S_{1} \times S_{2} \leq T_{1} \times T_{2}} \quad \text { ARROW } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} \\
& \text { UNFOLD LEFT } \frac{S[\mu X . S / X] \leq T}{\mu X . S \leq T} \quad \text { UNFOLD RIGHT } \frac{S \leq T[\mu X . T / X]}{S \leq \mu X . T}
\end{aligned}
$$

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

$$
\begin{aligned}
& \text { TOP } \frac{\operatorname{PROD} \frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{S_{1} \times S_{2} \leq T_{1} \times T_{2}} \quad \text { Any } \quad \text { ARROW } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}}{\text { UNFOLD LEFT } \frac{S[\mu X . S / X] \leq T}{\mu X . S \leq T} \quad \text { UNFOLD RIGHT } \frac{S \leq T[\mu X . T / X]}{S \leq \mu X . T}}
\end{aligned}
$$

Coinductive definition

(1) Why coinduction?
(2) Why no reflexivity/transitivity rules?
(3) Why no rule to compare two μ-types?

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules
TOP $\overline{T \leq \text { Any }} \quad$ PROD $\frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{S_{1} \times S_{2} \leq T_{1} \times T_{2}} \quad$ ARROW $\frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}$
Unfold Left $\frac{S[\mu X . S / X] \leq T}{\mu X . S \leq T}$
Unfold Right $\frac{S \leq T[\mu X . T / X]}{S \leq \mu X . T}$

Coinductive definition

(1) Why coinduction?
(2) Why no reflexivity/transitivity rules?
(3) Why no rule to compare two μ-types?

Short answers (more detailed answers to come):
(1) Because we compare infinite expansions
(2) Because it would be unsound
(3) Useless since obtained by coinduction and unfold

Example of coinductive derivation

$$
\begin{array}{r}
\text { Arrow } \frac{\text { Even } \leq \text { Int } \quad \mu X \text {.Int } \rightarrow X \leq \mu Y \text {.Even } \rightarrow Y}{\text { Int } \rightarrow(\mu X \text {.Int } \rightarrow X) \leq \text { Even } \rightarrow(\mu Y \text {.Even } \rightarrow Y)} \\
\text { Unfold Right } \frac{\text { Int } \rightarrow(\mu X \text {.Int } \rightarrow X) \leq \mu Y \text {.Even } \rightarrow Y}{\mu X \text {.Int } \rightarrow X \leq \mu Y \text {.Even } \rightarrow Y}
\end{array}
$$

Example of coinductive derivation

Notice the use of coinduction

Amadio and Cardelli's subtyping algorithm

Let $A \subset$ Types \times Types

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq A n y}{}(S, A n y) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq A n y \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Determinization of the rules

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq A n y}{}(S, A n y) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq A n y \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Store the type to implement coinduction

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq A n y}{}(S, A n y) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq A n y \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Determinization of the rules

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq A n y}{}(S, A n y) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq A n y \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Store the type to implement coinduction

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq A n y}{}(S, A n y) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq A n y \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

The rest is similar

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq A n y}{}(S, A n y) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq A n y \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Let $A \subset$ Types \times Types

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq A n y}{}(S, A n y) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq A n y \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Properties

Theorem (Soundness and Completeness)

Let S and T be closed types. $S \leq T$ belongs the relation coinductively defined by the rules on slide 55 if and only if $\varnothing \vdash S \leq T$ is provable

Properties

Theorem (Soundness and Completeness)

Let S and T be closed types. $S \leq T$ belongs the relation coinductively defined by the rules on slide 55 if and only if $\varnothing \vdash S \leq T$ is provable

To see the proof of the above theorem you can refer to the following reference Pierce et al. Recursive types revealed, Journal of Functional Programming, 12(6):511-548, 2002.

Properties

Theorem (Soundness and Completeness)

Let S and T be closed types. $S \leq T$ belongs the relation coinductively defined by the rules on slide 55 if and only if $\varnothing \vdash S \leq T$ is provable

To see the proof of the above theorem you can refer to the following reference Pierce et al. Recursive types revealed, Journal of Functional Programming, 12(6):511-548, 2002.

Notice that the algorithm above is exponential. We will show how to define an $O\left(n^{2}\right)$ algorithm to decide $S \leq T$, where n is the total number of different subexpressions of $S \leq T$.

Induction and coinduction

Intuition

Given a deduction system, it characterizes two possible distinct sets (of provable judgements) according to whether an inductive or a coinductive approach is used.

Induction and coinduction

Intuition

Given a deduction system, it characterizes two possible distinct sets (of provable judgements) according to whether an inductive or a coinductive approach is used.

Let \mathcal{F} be a deduction system on a universe \mathcal{U} (i.e. a monotone function from $\mathcal{P}(\mathcal{U})$ to $\mathcal{P}(\mathcal{U}))$. A set $X \in \mathscr{P}(\mathcal{U})$ is:
\mathcal{F}-closed if it contains all the elements that can be deduced by \mathcal{F} with hypothesis in X.
\mathcal{F}-consistent if every element of X can be deduced by \mathcal{F} from other elements in X.

Induction and coinduction

Intuition

Given a deduction system, it characterizes two possible distinct sets (of provable judgements) according to whether an inductive or a coinductive approach is used.

Let \mathcal{F} be a deduction system on a universe \mathcal{U} (i.e. a monotone function from $\mathcal{P}(\mathcal{U})$ to $\mathscr{P}(\mathcal{U}))$. A set $X \in \mathscr{P}(\mathcal{U})$ is:
\mathcal{F}-closed if it contains all the elements that can be deduced by \mathcal{F} with hypothesis in X.
\mathcal{F}-consistent if every element of X can be deduced by \mathcal{F} from other elements in X.

Induction and coinduction

A deduction system

- inductively defines the least \mathcal{F}-closed set
- coinductively defines the greatest \mathcal{F}-consistent set

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \begin{array}{cccccc}
a & \frac{b}{b} & \frac{c}{c} & & \frac{d}{a} & \frac{f}{d} \\
\hline
\end{array}
$$

Inductively:
\{\}

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \begin{array}{cccccc}
a & \frac{b}{b} & \frac{c}{c} & & \frac{d}{a} & \frac{f}{d} \\
\hline
\end{array}
$$

Inductively:
$\{d\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \begin{array}{cccccc}
a & \frac{b}{b} & \frac{c}{c} & & \frac{d}{a} & \frac{f}{d} \\
\hline
\end{array}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \begin{array}{cccccc}
a & \frac{b}{b} & \frac{c}{c} & & d & f \\
a & \bar{d} & \frac{d}{e} & \frac{g}{g}
\end{array}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
Coinductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\}
$$

Inductively:
Coinductively:
$\{d, e\}$
$\{a, b, c, d, e\}$
Self-justifying set:
$\{a, b, c\}$

Exercises

(1) Let $\mathcal{U}=\mathbb{Z}$ and take as deduction system all the instances of the rule

$$
\frac{n}{n+1}
$$

for $n \in \mathbb{Z}$. Which are the sets inductively and coinductively defined by it?
(2) Same question but with $\mathcal{U l}=\mathbb{N}$.
(3) Same question but with $\mathcal{U}=\mathbb{N}^{2}$ and as deduction system all the rules instance of

$$
\frac{(m, n) \quad(n, o)}{(m, o)}
$$

for $m, n, o \in \mathbb{N}$

Why Coinduction for Recursive types?

We want to use $S=\mu X$.Int $\rightarrow X$ where $T=\mu Y$.Even $\rightarrow Y$ is expected.

Why Coinduction for Recursive types?

We want to use $S=\mu X$.Int $\rightarrow X$ where $T=\mu Y$.Even $\rightarrow Y$ is expected.
Use the substitutability interpretation.
Let $e: T$ then e :
(1) waits for an Even number,
(2) fed by an Even number returns a function that behaves similarly: (1) wait for an Even ...

Why Coinduction for Recursive types?

We want to use $S=\mu X$.Int $\rightarrow X$ where $T=\mu Y$.Even $\rightarrow Y$ is expected.
Use the substitutability interpretation.
Let $e: T$ then e :
(1) waits for an Even number,
(2) fed by an Even number returns a function that behaves similarly: (1) wait for an Even ...
Now consider f : S, then f :
(1) waits for an Int number,
(2) fed by an Int (or a Even) number returns a function that behaves similarly: (1) wait for ...

Why Coinduction for Recursive types?

We want to use $S=\mu X$.Int $\rightarrow X$ where $T=\mu Y$.Even $\rightarrow Y$ is expected.
Use the substitutability interpretation.
Let $e: T$ then e :
(1) waits for an Even number,
(2) fed by an Even number returns a function that behaves similarly: (1) wait for an Even ...
Now consider f : S, then f :
(1) waits for an Int number,
(2) fed by an Int (or a Even) number returns a function that behaves similarly: (1) wait for ...
S and T are in subtyping relation because their infinite expansions are in subtyping relation.

$$
S \leq T \quad \Longrightarrow \quad \text { Int } \rightarrow S \leq \text { Even } \rightarrow T \quad \Longrightarrow \quad S \leq T \wedge \text { Even } \leq \text { Int }
$$

This is exactly the proof we saw at the beginning:

This is exactly the proof we saw at the beginning:

Coinduction

$S \leq T$ is not an axiom but $\{S \leq T$, Even \leq Int $\}$ is a self-justifying set.

This is exactly the proof we saw at the beginning:

Coinduction

$S \leq T$ is not an axiom but $\{S \leq T$, Even \leq Int $\}$ is a self-justifying set.

Observation:

(1) The deduction above shows why a specific rule for μ is useless (apply consecutively the two unfold rules).
(2) If we added reflexivity and/or transitivity rules, then \mathcal{U} would be \mathcal{F}-consistent (cf. the third exercise on slide 61).

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:
$\operatorname{subtype}(A, S, T)=$ if $(S, T) \in A$ then A else

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\operatorname{subtype}(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in }
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\operatorname{subtype}(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0}
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\operatorname{subtype}(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0} \\
& \text { else if } S=S_{1} \times S_{2} \text { and } T=T_{1} \times T_{2} \text { then } \\
& \operatorname{subtype}\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right)
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\text { subtype }(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0} \\
& \text { else if } S=S_{1} \times S_{2} \text { and } T=T_{1} \times T_{2} \text { then } \\
& \text { subtype }\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } S=S_{1} \rightarrow S_{2} \text { and } T=T_{1} \rightarrow T_{2} \text { then } \\
& \operatorname{subtype}\left(\operatorname{subtype}\left(A_{0}, T_{1}, S_{1}\right), S_{2}, T_{2}\right)
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\text { subtype }(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0} \\
& \text { else if } S=S_{1} \times S_{2} \text { and } T=T_{1} \times T_{2} \text { then } \\
& \text { subtype }\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } S=S_{1} \rightarrow S_{2} \text { and } T=T_{1} \rightarrow T_{2} \text { then } \\
& \operatorname{subtype}\left(\operatorname{subtype}\left(A_{0}, T_{1}, S_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } T=\mu X . T_{1} \text { then } \\
& \operatorname{subtype}\left(A_{0}, S, T_{1}\left[\mu X . T_{1} / X\right]\right)
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\text { subtype }(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0} \\
& \text { else if } S=S_{1} \times S_{2} \text { and } T=T_{1} \times T_{2} \text { then } \\
& \text { subtype }\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } S=S_{1} \rightarrow S_{2} \text { and } T=T_{1} \rightarrow T_{2} \text { then } \\
& \operatorname{subtype}\left(\operatorname{subtype}\left(A_{0}, T_{1}, S_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } T=\mu X . T_{1} \text { then } \\
& \operatorname{subtype}\left(A_{0}, S, T_{1}\left[\mu X . T_{1} / X\right]\right) \\
& \text { else if } S=\mu X . S_{1} \text { then } \\
& \operatorname{subtype}\left(A_{0}, S_{1}\left[\mu X . S_{1} / X\right], T\right)
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

```
\(\operatorname{subtype}(A, S, T)=\) if \((S, T) \in A\) then \(A\) else
                let \(A_{0}=A \cup\{(S, T)\}\) in
    if \(T=\) Any then \(A_{0}\)
    else if \(S=S_{1} \times S_{2}\) and \(T=T_{1} \times T_{2}\) then
    subtype \(\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right)\)
    else if \(S=S_{1} \rightarrow S_{2}\) and \(T=T_{1} \rightarrow T_{2}\) then
    subtype \(\left(\operatorname{subtype}\left(A_{0}, T_{1}, S_{1}\right), S_{2}, T_{2}\right)\)
    else if \(T=\mu X . T_{1}\) then
    \(\operatorname{subtype}\left(A_{0}, S, T_{1}\left[\mu X . T_{1} / X\right]\right)\)
    else if \(S=\mu X . S_{1}\) then
    subtype \(\left(A_{0}, S_{1}\left[\mu X . S_{1} / X\right], T\right)\)
    else fail
```

Compare the previous algorithm with the Amadio-Cardelli algorithm:

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq A n y}{}(S, A n y) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq A n y \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

They both check containment in the relation coinductively defined by:

$$
\begin{aligned}
& \text { TOP } \frac{}{T \leq \text { Any }} \quad \text { PROD } \frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{S_{1} \times S_{2} \leq T_{1} \times T_{2}} \quad \text { ARROW } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} \\
& \text { UNFOLD LEFT } \frac{S[\mu X . S / X] \leq T}{\mu X . S \leq T} \quad \text { UNFOLD RIGHT } \frac{S \leq T[\mu X . T / X]}{S \leq \mu X . T}
\end{aligned}
$$

But the former is far more efficient.

Outline

(4) Simple Types
(5) Recursive Types
(6) Bibliography

References

围
R. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on Programming Languages and Systems, 14(4):575-631, 1993.
囯 Pierce et al. Recursive types revealed, Journal of Functional Programming, 12(6):511-548, 2002.

Parametric polymorphism

Outline

(7) Introduction

8 Hindley-Milner System
(9) Inference algorithm

Outline

(7) Introduction

(8) Hindley-Milner System

(9) Inference algorithm

Monomorphic calculus

$$
\begin{aligned}
& \text { Types } \quad T::=\text { Bool } \mid \text { Int } \mid \text { Real } \mid \ldots \\
& T \rightarrow T \\
& \text { basic types } \\
& \text { function types } \\
& \text { Terms } a, b::=\text { true } \mid \text { false }|1| 2 \mid \ldots \text { constants } \\
& \text { variable } \\
& \text { application } \\
& \text { abstraction } \\
& \text { let } \\
& \overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T}{} \quad \Gamma \vdash b: S \\
& \frac{\Gamma \vdash a: S \quad \Gamma, x: S \vdash b: T}{\Gamma \vdash \text { let } x: S=a \text { in } b: T}
\end{aligned}
$$

Parametric polymorphism

It is a pity to use the identity function just with a single type.

$$
\text { let } f: \text { Int } \rightarrow \text { Int }=\lambda x: \text { Int. } x \text { in } b
$$

In particular, if we get rid of type annotations we see that the identity function can be given several different types.

$$
\begin{gathered}
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\\
\frac{\Gamma \vdash a: S \quad \Gamma, x: S \vdash b: T}{\Gamma \vdash \text { let } x=a \text { in } b: T}
\end{gathered}
$$

In particular, $\lambda x . x$ can be given all the types of the form $T \rightarrow T$ for every T.

Parametric polymorphism

We extend the syntax of types

basic types function types type variables polymorphic types

We add to the previous rules these two rules

$$
\frac{\Gamma \vdash a: T \quad \alpha \notin \mathrm{fv}(\Gamma)}{\Gamma \vdash a: \forall \alpha . T} \quad \frac{\Gamma \vdash a: \forall \alpha . T}{\Gamma \vdash a: T[S / \alpha]}
$$

The resulting system is called System F (Girard/Reynolds)

We can for instance derive

$$
\lambda x . x x:(\forall \alpha . \alpha \rightarrow \alpha) \rightarrow(\forall \alpha . \alpha \rightarrow \alpha)
$$

and supposing we have pairs:

$$
\text { let } f=\lambda x . x \text { in }(f 3, f \text { true }): \text { Int } \times \text { Bool }
$$

Remark

The condition $\alpha \notin \mathrm{fv}(\Gamma)$ in the rule

$$
\frac{\Gamma \vdash a: T \quad \alpha \notin \mathrm{fv}(\Gamma)}{\Gamma \vdash a: \forall \alpha . T}
$$

is crucial ... without it we can derive
$\frac{x: \alpha \vdash x: \alpha}{\frac{x: \alpha \vdash \forall \alpha . \alpha}{\vdash \lambda x . x: \alpha \rightarrow(\forall \alpha \cdot \alpha)}}$
and therefore type, for instance, $(\lambda x . x) 12$ with any type we wish

Bad news

For terms without type anotations the problems:

- type inference: given an expression a find if there exists a type T such that $a: T$
- type checking: given and expression a and a type T check whether a: T holds
are both undecidable
(J. B. Wells. Typability and type checking in the second-order lambda-calculus are equivalent and undecidable, 1994.)

Bad news

For terms without type anotations the problems:

- type inference: given an expression a find if there exists a type T such that a : T
- type checking: given and expression a and a type T check whether a: T holds
are both undecidable
(J. B. Wells. Typability and type checking in the second-order lambda-calculus are equivalent and undecidable, 1994.)

Solution 1: use explicit type abstractions and instantiations (e.g., generics) Solution 2: restrict the power of the system (e.g., Hindley-Milner)

Bad news

For terms without type anotations the problems:

- type inference: given an expression a find if there exists a type T such that $a: T$
- type checking: given and expression a and a type T check whether a: T holds
are both undecidable
(J. B. Wells. Typability and type checking in the second-order lambda-calculus are equivalent and undecidable, 1994.)

Solution 1: use explicit type abstractions and instantiations (e.g., generics) Solution 2: restrict the power of the system (e.g., Hindley-Milner)

Hindley-Milner

We restrict the power of System F to have decidable type inference and type checking
(used in OCaml, SML, Haskell, etc ...)

Outline

(7) Introduction

8 Hindley-Milner System
(9) Inference algorithm

Hindley-Milner System

The quantification can only be prenex:

A type environment Γ now maps variable to schemas, and typing judgement have the form $\Gamma \vdash a: \sigma$

The following types (schemas) are ok:

$$
\begin{aligned}
& \forall \alpha . \alpha \rightarrow \alpha \\
& \forall \alpha . \forall \beta .(\alpha \times \beta) \rightarrow \alpha \\
& \forall \alpha . \text { Bool } \rightarrow \alpha \rightarrow \alpha \rightarrow \alpha \\
& \forall \alpha .(\alpha \rightarrow \alpha) \rightarrow \alpha
\end{aligned}
$$

but the following type is not longer allowed:

$$
(\forall \alpha . \alpha \rightarrow \alpha) \rightarrow(\forall \alpha . \alpha \rightarrow \alpha)
$$

Hindley-Milner System

$$
\begin{gathered}
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash a b: T} \quad \Gamma \vdash b: S \\
\frac{\Gamma \vdash a: \sigma_{1}}{\Gamma \vdash, x: \sigma_{1} \vdash b: \sigma_{2}} \\
\Gamma \vdash \operatorname{let} x=a \text { in } b: \sigma_{2}
\end{gathered} \frac{\Gamma \vdash a: T \alpha \notin \mathrm{fv}(\Gamma)}{\Gamma \vdash a: \forall \alpha \cdot T} \quad \frac{\Gamma \vdash a: \forall \alpha \cdot T}{\Gamma \vdash a: T[S / \alpha]}
$$

Hindley-Milner System

Notice that the rule for let is the (only) rule that introduce a polymorphic type in the type environment.

$$
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \operatorname{let} x=a \text { in } b: \sigma_{2}}
$$

Thanks to this we can for instance type

$$
\text { let } f=\lambda x \cdot x \text { in }(f f)(f 1)
$$

with $f: \forall \alpha . \alpha \rightarrow \alpha$ in the context to type $(f f)(f 1)$ in order to use three times the instantiation rule for the type schema:

$$
\frac{f: \forall \alpha . \alpha \rightarrow \alpha \vdash f: \forall \alpha . \alpha \rightarrow \alpha}{f: \forall \alpha \cdot \alpha \rightarrow \alpha \vdash f:(\alpha \rightarrow \alpha)[T / \alpha]}
$$

where T is respectively for each occurrence of f, (Int \rightarrow Int) \rightarrow Int \rightarrow Int, Int \rightarrow Int, and Int.

Hindley-Milner System

On the contrary the rule for abstractions does not introduce in the environment a schema, but just a type

$$
\frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T}
$$

otherwise $S \rightarrow T$ would not be well formed.

In particular,

$$
\lambda x . x x
$$

is no longer typeable, while

$$
\text { let } f=\lambda x \cdot x \text { in } f f
$$

is still typeable.

Outline

(7) Introduction

8 Hindley-Milner System
(9) Inference algorithm

Hindley-Milner Algorithm

The system is not syntax directed because of the following two rules apply to any expression:

$$
\frac{\Gamma \vdash a: T \quad \alpha \notin \mathrm{fv}(\Gamma)}{\Gamma \vdash a: \forall \alpha . T} \quad \frac{\Gamma \vdash a: \forall \alpha . T}{\Gamma \vdash a: T[S / \alpha]}
$$

Hindley-Milner syntax-directed system

$$
\begin{aligned}
& \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
& \frac{T \sqsubseteq \Gamma(x)}{\Gamma \vdash x: T} \quad \frac{\Gamma \vdash a: S \quad \Gamma, x: \operatorname{Gen}(S, \Gamma) \vdash b: T}{\Gamma \vdash \operatorname{let} x=a \text { in } b: T}
\end{aligned}
$$

Hindley-Milner syntax-directed system

$$
\begin{aligned}
& \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
& \frac{T \sqsubseteq \Gamma(x)}{\Gamma \vdash x: T} \quad \frac{\Gamma \vdash a: S \quad \Gamma, x: \operatorname{Gen}(S, \Gamma) \vdash b: T}{\Gamma \vdash \operatorname{let} x=a \text { in } b: T}
\end{aligned}
$$

Where

$$
T \sqsubseteq \forall \alpha_{1} \ldots . \forall \alpha_{n} \cdot S \Longleftrightarrow \exists S_{1}, \ldots, S_{n} \text { such that } T=S\left[S_{1} / \alpha_{1} \ldots . S_{n} / \alpha_{n}\right]
$$

and

$$
\operatorname{Gen}(S, \Gamma)=\forall \alpha_{1} \ldots . \forall \alpha_{n} . S \text { where }\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\operatorname{fv}(S) \backslash \operatorname{fv}(\Gamma)
$$

Hindley-Milner syntax-directed system

$$
\begin{aligned}
& \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
& \frac{T \sqsubseteq \Gamma(x)}{\Gamma \vdash x: T} \quad \frac{\Gamma \vdash a: S \quad \Gamma, x: \operatorname{Gen}(S, \Gamma) \vdash b: T}{\Gamma \vdash \operatorname{let} x=a \text { in } b: T}
\end{aligned}
$$

Where

$$
T \sqsubseteq \forall \alpha_{1} \ldots . \forall \alpha_{n} . S \Longleftrightarrow \exists S_{1}, \ldots, S_{n} \text { such that } T=S\left[S_{1} / \alpha_{1} \ldots . S_{n} / \alpha_{n}\right]
$$

and

$$
\operatorname{Gen}(S, \Gamma)=\forall \alpha_{1} \ldots . \forall \alpha_{n} . S \text { where }\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\operatorname{fv}(S) \backslash \operatorname{fv}(\Gamma)
$$

Syntax directed but Not an algorithm yet!

State: a current substitution ϕ and an infinite set of fresh variables V

$$
\begin{aligned}
\text { fresh }= & \text { do } \alpha \in V \\
& \text { do } V:=V \backslash\{\alpha\} \\
& \text { return } \alpha
\end{aligned}
$$

$$
\begin{aligned}
W(\Gamma \vdash x)= & \text { let } \forall \alpha_{1} \ldots \alpha_{n} \cdot T \leftarrow \Gamma(x) \\
& \text { do } \beta_{1}, \ldots, \beta_{n} \leftarrow \text { fresh, } \ldots, \text { fresh } \\
& \text { return } T\left[\beta_{1} / \alpha_{1}, \ldots, \beta_{n} / \alpha_{n}\right] \\
W(\Gamma \vdash \lambda x . a)= & \text { do } \alpha \leftarrow \mathrm{fresh} \\
& \text { do } T \leftarrow W(\Gamma, x: \alpha \vdash a) \\
& \text { return } \alpha \rightarrow T \\
W(\Gamma \vdash a b)= & \text { do } T \leftarrow W(\Gamma \vdash a) \\
& \text { do } S \leftarrow W(\Gamma \vdash b) \\
& \text { do } \alpha \leftarrow \text { fresh } \\
& \text { do } \phi:=\operatorname{mgu}(\phi(T), \phi(S \rightarrow \alpha)) \circ \phi \\
& \text { return } \alpha
\end{aligned}
$$

$$
\begin{aligned}
W(\Gamma \vdash \text { let } x=a \text { in } b)= & \text { do } S \leftarrow W(\Gamma \vdash a) \\
& \text { do } \sigma \leftarrow G \operatorname{Gen}(\phi(S), \phi(\Gamma)) \\
& \text { return } W(\Gamma, x: \sigma \vdash b)
\end{aligned}
$$

Most General Unifier

$$
\begin{aligned}
\operatorname{mgu}(\varnothing) & =\text { id } \\
\operatorname{mgu}(\{(\alpha, \alpha)\} \cup C) & =\operatorname{mgu}(C) \\
\operatorname{mgu}(\{(\alpha, T)\} \cup C) & =\operatorname{mgu}(C[T / \alpha]) \circ[T / \alpha] \text { if } \alpha \text { not free in } T \\
\operatorname{mgu}(\{(T, \alpha)\} \cup C) & =\operatorname{mgu}(C[T / \alpha]) \circ[T / \alpha] \text { if } \alpha \text { not free in } T \\
\operatorname{mgu}\left(\left\{\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right)\right\} \cup C\right) & =\operatorname{mgu}\left(\left\{\left(S_{1}, T_{1}\right),\left(S_{2}, T_{2}\right)\right\} \cup C\right)
\end{aligned}
$$

In all the other cases mgu fails

Ad-Hoc Polymorphism

Outline

(10) Set-theoretic types
(11) Semantic Subtyping
(12) Application to a language.
(13) Adding Parametric Polymorphism: the Types
(14) Adding Parametric Polymorphism: the Language

Outline

(10) Set-theoretic types
(11) Semantic Subtyping
(12) Application to a language.
(13) Adding Parametric Polymorphism: the Types
(14) Adding Parametric Polymorphism: the Language

Set-theoretic types

We consider the following possibly recursive types:

$$
\mathrm{T}::=\text { Bool } \mid \text { Int } \mid \text { Any }|(\mathrm{T}, \mathrm{~T})| \mathrm{T} \vee \mathrm{~T}|\mathrm{~T} \& \mathrm{~T}| \operatorname{not}(\mathrm{T}) \mid \mathrm{T}-->\mathrm{T}
$$

Useful for:
(1) XML types
(2) Precise typing of pattern matching
(3) Overloaded functions
(4) Mixins
(3) General programming paradigms

Let us see each point more in detail

1. XML types

```
<?xml version="1.0"?>
    <!DOCTYPE biblio [
    <!ELEMENT biblio (book*)>
    <!ELEMENT book (title, (author+)|(editor+), price?)>
    <!ELEMENT title (#PCDATA)>
    <!ELEMENT author (#PCDATA)>
    <!ELEMENT editor (#PCDATA)>
    <!ELEMENT price (#PCDATA)>
]>
```

Can be encoded with union and recursive types

$\begin{aligned} & \text { type } \\ & \text { type } \end{aligned}$	$\begin{aligned} \text { Biblio } & = \\ X & = \end{aligned}$	$\begin{aligned} & \left(\begin{array}{l} \text { 'biblio. } \end{array}\right. \\ & \left(\text { Book, X) }{ }^{\prime}\right. \text { 'nnil } \end{aligned}$
type	Book	book, (Title, YVZ))
type	$=1$	Author, YV(Price,'nil) V'nil
type	Z =	Editor, ZV(Price,'nil)V'nil)
type	Title	'title, String)
type	Author =	('author, String)
type	Editor =	('editor, String)
type	Price =	('price, String)

2. Precise typing of pattern matching (I)

Consider the following pattern matching expression

$$
\text { match } e \text { with } p_{1}->e_{1} \mid p_{2}->e_{2}
$$

where patterns are defined as follows:

$$
p::=x|(p, p)| p|p| p \& p
$$

2. Precise typing of pattern matching (I)

Consider the following pattern matching expression

$$
\text { match } e \text { with } p_{1}->e_{1} \mid p_{2}->e_{2}
$$

where patterns are defined as follows:

$$
p::=x|(p, p)| p|p| p \& p
$$

If we interpret types as set of values

$$
t=\{v \mid v \text { is a value of type } t\}
$$

then the set of all values that match a pattern is a type

$$
\begin{aligned}
&\left\{p \int=\{v \mid v \text { is a value that matches } p\}\right. \\
&2 x\}=\text { Any } \\
&\left\{\left(p_{1}, p_{2}\right) \int\right.=\left(\eta p_{1} \int, 2 p_{2} \int\right) \\
& 2 p_{1} \mid p_{2} \int=\left\{p_{1} \int \vee 2 p_{2} \int\right. \\
& 2 p_{1} \& p_{2} \int=\left\{p _ { 1 } \int \& \left\{p_{2} \int\right.\right.
\end{aligned}
$$

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching: match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:
match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $\mathrm{T}_{1} \backslash \mathrm{~T}_{2}$ for $\mathrm{T}_{1} \& \operatorname{not}\left(\mathrm{~T}_{2}\right)$

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:
match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $\mathrm{T}_{1} \backslash \mathrm{~T}_{2}$ for $\mathrm{T}_{1} \& \operatorname{not}\left(\mathrm{~T}_{2}\right)$

- To infer the type T_{1} of e_{1} we need $\mathrm{T} \&\left\{p_{1} \int\right.$;

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $\mathrm{T}_{1} \backslash \mathrm{~T}_{2}$ for $\mathrm{T}_{1} \& \operatorname{not}\left(\mathrm{~T}_{2}\right)$

- To infer the type T_{1} of e_{1} we need $\mathrm{T} \&\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(T \backslash\left\lceil p_{1} \int\right) \&\left\lceil p_{2} \int\right.\right.$;

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $\mathrm{T}_{1} \backslash \mathrm{~T}_{2}$ for $\mathrm{T}_{1} \& \operatorname{not}\left(\mathrm{~T}_{2}\right)$

- To infer the type T_{1} of e_{1} we need $\mathrm{T} \&\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(T \backslash\left\lceil p_{1} \int\right) \& ~ \ p_{2} \int\right.$;
- The type of the match expression is $\mathrm{T}_{1} \vee T_{2}$.

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $\mathrm{T}_{1} \backslash \mathrm{~T}_{2}$ for $\mathrm{T}_{1} \& \operatorname{not}\left(\mathrm{~T}_{2}\right)$

- To infer the type T_{1} of e_{1} we need $\mathrm{T} \&\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(T \backslash\left\lceil p_{1} \int\right) \&\left\lceil p_{2} \int\right.\right.$;
- The type of the match expression is $\mathrm{T}_{1} \vee T_{2}$.
- Pattern matching is exhaustive if $\mathrm{T} \leq 2 p_{1} \int \vee\left\{p_{2} \int\right.$;

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: T$ and let us write $\mathrm{T}_{1} \backslash \mathrm{~T}_{2}$ for $\mathrm{T}_{1} \& \operatorname{not}\left(\mathrm{~T}_{2}\right)$

- To infer the type T_{1} of e_{1} we need T \& $\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(T \backslash\left\lceil p_{1} \int\right) ~ \& ~ \ p_{2} \int\right.$;
- The type of the match expression is $T_{1} \vee T_{2}$.
- Pattern matching is exhaustive if $\mathrm{T} \leq\left\{p_{1} \int \vee\left\{p_{2}\right\}\right.$;

2. Precise typing of pattern matching (II)

Boolean type connectives are needed to type pattern matching:

match e with $p_{1}->e_{1} \mid p_{2}->e_{2}$
Suppose that $e: \mathrm{T}$ and let us write $\mathrm{T}_{1} \backslash \mathrm{~T}_{2}$ for $\mathrm{T}_{1} \& \operatorname{not}\left(\mathrm{~T}_{2}\right)$

- To infer the type T_{1} of e_{1} we need T \& $\left\{p_{1} \int\right.$;
- To infer the type T_{2} of e_{2} we need $\left(T \backslash\left\lceil p_{1}\right\}\right) \&\left\{p_{2} \int\right.$;
- The type of the match expression is $\mathrm{T}_{1} \vee T_{2}$.
- Pattern matching is exhaustive if $\mathrm{T} \leq \ell p_{1} \int \vee\left\{p_{2}\right\}$;

Formally:

[MATCH]
$\frac{\Gamma \vdash e: T \quad \Gamma, \mathrm{~T} \& 2 p_{1} \int / p_{1} \vdash e_{1}: \mathrm{T}_{1} \quad \Gamma, \mathrm{~T} \backslash 2 p_{1} \int / p_{2} \vdash e_{2}: \mathrm{T}_{2}}{\Gamma \vdash \text { match } e \text { with } p_{1}->e_{1} \mid p_{1}->e_{2}: \mathrm{T}_{1} \vee \mathrm{~T}_{2}}\left(\mathrm{~T} \leq 2 p_{1} \int \vee\left\{p_{2}\right\}\right)$
where T / p is the type environment for the capture variables in p when the pattern is matched against values in T .
(e.g., ((Int , Int) $\vee($ Bool , Char $)) /(x, y)$ is $x:$ Int \vee Bool, $y:$ Int \vee Char)

3. Overloaded functions

Intersection types are useful to type overloaded functions (in the Go language):

```
package main
import "fmt"
func Opposite (x interface{}) interface{} {
    var res interface{}
        switch value := x.(type) {
            case bool:
            res = (!value) || x has type bool
            case int:
                res = (-value) || x has type int
        }
        return res
}
func main() { fmt.Println(Opposite(3) , Opposite(true)) }
```

In Go Opposite has type Any-->Any (every value has type interface\{\}). Better type with intersections Opposite: (Int-->Int) \& (Bool-->Bool)

3. Overloaded functions

Intersection types are useful to type overloaded functions (in the Go language):

```
package main
import "fmt"
func Opposite (x interface{}) interface{} {
    var res interface{}
        switch value := x.(type) {
            case bool:
                res = (!value) || x has type bool
            case int:
                res = (-value) || x has type int
        }
        return res
}
func main() { fmt.Println(Opposite(3) , Opposite(true)) }
```

In Go Opposite has type Any-->Any (every value has type interface\{\}). Better type with intersections Opposite: (Int-->Int) \& (Bool-->Bool) Intersections can also to give a more refined description of standard functions:
func Successor(x int) \{ return(x+1) \}
which could be typed as Successor: (Odd-->Even) \& (Even-->Odd)

$2+3$. Precise typing of OCaml

Exercise:

(1) What is the type returned by

$$
\begin{aligned}
& \text { let foo = function } \\
& \text { | ('A,'B) -> true } \\
& \text { | ('B,'A) -> false }
\end{aligned}
$$

and what is the problem ?
(2) Which type could we give if we had full-fledged union types?
(3) Give an intersection type that refines the previous type

$2+3$. Precise typing of OCaml

Exercise:

(1) What is the type returned by

$$
\begin{aligned}
& \text { let foo = function } \\
& \text { | ('A,'B) -> true } \\
& \text { | ('B,'A) -> false }
\end{aligned}
$$

and what is the problem ?
$[<' A \mid ' B] *[<' A \mid ' B]->$ bool thus foo('A , 'A) fails
(2) Which type could we give if we had full-fledged union types?
(3) Give an intersection type that refines the previous type

$2+3$. Precise typing of OCaml

Exercise:

(1) What is the type returned by

$$
\begin{aligned}
& \text { let foo = function } \\
& \text { | ('A,'B) -> true } \\
& \text { | ('B,'A) -> false }
\end{aligned}
$$

and what is the problem ?
$[<' A \mid ' B] *[<' A \mid ' B]->$ bool thus foo('A , 'A) fails
(2) Which type could we give if we had full-fledged union types?

$$
(‘ A * \text { ' } B \text {)| ('B * 'A) -> bool }
$$

(3) Give an intersection type that refines the previous type

$2+3$. Precise typing of OCaml

Exercise:

(1) What is the type returned by

$$
\begin{aligned}
& \text { let foo = function } \\
& \text { | ('A,'B) -> true } \\
& \text { | ('B,'A) -> false }
\end{aligned}
$$

and what is the problem ?
$[<' A \mid ' B] *[<' A \mid ' B]->$ bool thus foo('A , 'A) fails
(2) Which type could we give if we had full-fledged union types?

$$
(‘ A * \text { ' } B \text {)| ('B * 'A) -> bool }
$$

(3) Give an intersection type that refines the previous type

$$
((‘ A * \text { ' } B)->\text { true }) \&\left(\left({ }^{\prime} B * \text { 'A) }->\text { false }\right)\right.
$$

You can try it on http://www.cduce.org/ocaml/bi
4. Typing of Mixins

Intersection types are used in Microsoft's Typescript to type mixins.

```
function extend<T, U>(first: T, second: U): T & U {
    |* <T> exp is a type cast (equivalent: exp as T) */
    let result =<T & U>{};
    for (let id in first){
            (<any>result)[id]=(<any>first)[id]; }
    for (let id in second) { if (!result.hasOwnProperty(id)) {
                (<any>result)[id] = (<any>second)[id];}}
    return result;
}
    ass Person {
        constructor(public name: string) { }
}
interface Loggable {
    log(): void;
}
class ConsoleLogger implements Loggable {
    log() {\ldots}
}
var jim= extend(new Person("Jim"), new ConsoleLogger());
var n = jim.name;
j im.log();
```


5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.
(1) the root of the tree is black
(2) the leaves of the tree are black
(3) no red node has a red child
(4) every path from root to a leaf contains the same number of black nodes

5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.
(1) the root of the tree is black
(2) the leaves of the tree are black
(3) no red node has a red child
(4) every path from root to a leaf contains the same number of black nodes

The key of Okasaki's insertion is the function balance which transforms an unbalanced tree, into a valid red-black tree (as long as a, b, c, and d are valid):

5. General programming paradigms

Consider red-black trees. Recall that they must satisfy 4 invariants.
(1) the root of the tree is black
(2) the leaves of the tree are black
(3) no red node has a red child
(4) every path from root to a leaf contains the same number of black nodes

The key of Okasaki's insertion is the function balance which transforms an unbalanced tree, into a valid red-black tree (as long as a, b, c, and d are valid):

b c

a b

b c

In ML we need GADTs to enforce the invariants.
type α RBtree =
Leaf

|et balance =
function

| x \rightarrow x
et insert =
function (x, t) \rightarrow
|et ins =
function
Leaf -> Red(x,Leaf,Leaf)
$c(y, a, b)$ as $z \cdot\rangle$

| Red (α, RBtree , RBtree)
| Blk(α, RBtree , RBtree)
let balance =

function

```
Blk( z , Red( x, a, Red(y,b,c) ) , d )
    Blk( z , Red( y, Red(x,a,b), c ) , d )
    Blk( x , a , Red( z, Red(y,b,c), d ) )
    Blk( x , a , Red( y, b, Red(z,c,d) ) )
            -> Red ( y, Blk(x,a,b), Blk(z,c,d) )
    | x -> x
```

let insert =
function (x , t) ->
let ins =
function
| Leaf -> Red (x,Leaf,Leaf)
$c(y, a, b)$ as z->
if $\mathrm{x}<\mathrm{y}$ then balance $\mathrm{c}(\mathrm{y}$, (ins a), b) else
if $x>y$ then balance $c(y, a,(i n s b))$ else z
in let _(y, a,b) = ins t in Blk(y, a,b)

typofargt tye // Write the correct definitions

let balance = function

```
| Blk( z , Red( x, a, Red(y,b,c) ) , d )
    Blk( z , Red( y, Red(x,a,b), c ) , d )
    Blk( x , a , Red( z, Red(y,b,c), d ) )
    Blk( x , a , Red( y, b, Red(z,c,d) ) )
            -> Red ( y, Blk(x,a,b), Blk(z,c,d) )
| x -> x
```

let insert =
function (x , t) ->
let ins =
function
| Leaf -> Red(x,Leaf,Leaf)
$c(y, a, b)$ as z->
if $\mathrm{x}<\mathrm{y}$ then balance $\mathrm{c}(\mathrm{y}$, (ins a), b) else
if $x>y$ then balance $c(y, a,(i n s b))$ else z
in let _($\mathrm{y}, \mathrm{a}, \mathrm{b}$) = ins t in $\operatorname{Blk}(\mathrm{y}, \mathrm{a}, \mathrm{b})$


```
type RBtree = Btree | Rtree
type Rtree = Red( }\alpha,\mathrm{ Btree, Btree )
type Btree = Blk( }\alpha,\mathrm{ RBtree, RBtree) | Leaf
type Wrong = Red ( }\alpha,(\mathrm{ Rtree, RBtree) ( (RBtree, Rtree) )
et balance: (Unbal }->\mathrm{ Rtree) & (( }\beta\mathrm{ \Unbal) }->(\boldsymbol{\beta}\\mathrm{ Unbal)) =
function
et insert: ( }\boldsymbol{\alpha},\quad\mathrm{ Btree ) }->\mathrm{ Btree =
    |et ins:(Leaf }->\mathrm{ Rtree)&(Btree }->\mathrm{ RBtree\Leaf) &(Rtree }->\mathrm{ Rtree|Wrong)=
    function Leaf }->\mathrm{ Red(x,Leaf, Leaf)
        c(y,a,b) as z.>
    balancec{(y, (ins a), b
    in let__(y,a,b)=ins tin in Blk(y,a,b)',
```

```
type RBtree = Btree | Rtree
type Rtree = Red( }\alpha,\mathrm{ Btree , Btree )
type Btree = Blk( }\alpha,\mathrm{ RBtree, RBtree) | Leaf
type Wrong = Red( }\alpha,\mathrm{ (Rtree,RBtree)|(RBtree,Rtree) )
type Unbal = Blk( }\alpha\mathrm{ , (Wrong,RBtree)| (RBtree,Wrong) )
let balance: (Unbal }->\mathrm{ Rtree) & (( }\beta\backslash\mathrm{ Unbal) }->(\beta\backslash\mathrm{ Unbal)) =
function
Blk( z , Red( y, Red(x,a,b), c) , d )
| x -> x
let insert: ( }\alpha,\mathrm{ Btree) }->\mathrm{ Btree =
function
    let ins:(Leaf }->\mathrm{ Rtree) & (Btree }->\mathrm{ RBtree\Leaf) & (Rtree }->\mathrm{ Rtree|Wrong) =
    function
            | Leaf -> Red(x,Leaf,Leaf)
            c(y,a,b) as z ->
            if x<y then balance c(y, (ins a), b ) else 
    in let _(y,a,b) = ins t in Blk(y,a,b)
```

```
type RBtree = Btree | Rtree
type Rtree = Red( }\alpha,\mathrm{ Btree , Btree )
type Btree = Blk( }\alpha,\mathrm{ RBtree, RBtree) | Leaf
type Wrong = Red( \alpha, (Rtree,RBtree)|(RBtree,Rtree) )
type Unbal = Blk( \alpha, (Wrong,RBtree)|(RBtree,Wrong) )
let balance: (Unbal }->\mathrm{ Rtree) & (( }\beta\backslash\mathrm{ Unbal) }->(\beta\backslash\mathrm{ Unbal)) =
function
Blk( z , Red( y, Red(x,a,b), c ) , d )
Blk( z , Red( x, a, Red(y,b,c) ) , d )
Blk( x , a , Red( z, Red(y,b,c), d ) )
Blk( x , a , Red( y, b, Red(z,c,d) ) )
    -> Red ( y, Blk(x,a,b), Blk(z,c,d) )
| x x Pesultpfincert estisfies
let insert: ( }\alpha,\mathrm{ Btree) Btree = constrints stotioolly by typing
    let ins:(Leaf }->\mathrm{ Rtree) & (Btree }->\mathrm{ RBtree\Leaf) & (Rtree }->\mathrm{ Rtree|Wrong) =
    function
    | Leaf -> Red(x,Leaf,Leaf)
        c(y,a,b) as z ->
            if x<y then balance c(y, (ins a), b) else 
    in let _(y,a,b) = ins t in Blk(y,a,b)
```

```
type RBtree = Btree | Rtree
type Rtree = Red( }\alpha,\mathrm{ Btree , Btree )
type Btree = Blk( }\alpha,\mathrm{ RBtree, RBtree) | Leaf
type Wrong = Red( }\alpha,\mathrm{ (Rtree,RBtree)|(RBtree,Rtree) )
type Unbal = Blk( \alpha, (Wrong,RBtree)|(RBtree,Wrong) )
let balance: (Unbal }->\mathrm{ Rtree) & (( }\beta\backslash\mathrm{ Unbal) }->(\beta\backslash\mathrm{ Unbal)))=
    function 
    function 
    function 
    function 
    function 
    function 
        x -> x
let insert: ( }\alpha,\mathrm{ Btree ) }->\mathrm{ Btree =
                                    set-theretic typer
```



```
function
    let ins:(Leaf }->\mathrm{ Rtree) & (Btree }->\mathrm{ RBtree\Leaf) & (Rtree }->\mathrm{ Rtree|Wrong) =
    function
            Leaf -> Red(x,Leaf,Leaf)
                c(y,a,b) as z ->
            if x < y then balance c( y, (ins a), b ) else
            if x > y then balance c( y, a, (ins b) ) else z
    in let _(y,a,b) = ins t in Blk(y,a,b)
```

```
type RBtree = Btree | Rtree
type Rtree = Red( }\alpha,\mathrm{ Btree , Btree )
type Btree = Blk( }\alpha,\mathrm{ RBtree, RBtree) | Leaf
type Wrong = Red( }\alpha,\mathrm{ (Rtree,RBtree)|(RBtree,Rtree) )
type Unbal = Blk( \alpha, (Wrong,RBtree)|(RBtree,Wrong) )
let balance: (Unbal }->\mathrm{ Rtree) & (( }\beta\backslash\mathrm{ Unbal) }->(\beta\backslash\mathrm{ Unbal)) )=
function
```



```
let insert: ( }\alpha,\mathrm{ Btree) }->\mathrm{ Btree =
function
    let ins:(Leaf }->\mathrm{ Rtree) & (Btree }->\mathrm{ RBtree\Leaf) & (Rtree }->\mathrm{ Rtree|Wrong) =
    function
    | Leaf -> Red(x,Leaf,Leaf)
                c(y,a,b) as z ->
            if x < y then balance c( y, (ins a), b ) else
            if x > y then balance c( y, a, (ins b) ) else z
    in let _(y,a,b) = ins t in Blk(y,a,b)
```


Cutting edge research

Type checking the previous definitions is not so difficult. The hard part is to type partial applications:

$$
\begin{aligned}
& \text { map }:(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \text { balance }:(\text { Unbal } \rightarrow \text { Rtree }) \&((\beta \backslash \text { Unbal }) \rightarrow(\beta \backslash \text { Unbal })) \\
& \text { map balance }:\left(\left[\begin{array}{l}
\text { Unbal }] \rightarrow[\text { Rtree }]) \\
\&
\end{array}\right.\right. \\
& \&([\alpha \backslash \text { Unbal }] \rightarrow[\alpha \backslash \text { Unbal }]) \\
&\&(\alpha \mid \text { Unbal }] \rightarrow[(\alpha \backslash \text { Unbal) }) \text { Rtree }])
\end{aligned}
$$

Fortunately, programmers (and you) are spared from these gory details.

New languages use union and intersections

Facebook's Flow:

// @flow
function toStringPrimitives(val: number | boolean | string) \{ return String(val);
\}

```
type One = { foo: number };
type Two = { bar: boolean };
```

type Both = One \& Two;
var value: Both = \{
foo: 1,
bar: true
\};

New languages use union and intersections

```
Typed-Racket
(let ([a-number 37])
    (if (even? a-number)
        'yes
        'no))
- : Symbol [more precisely: (U 'no 'yes)]
'no
(: f : (case-> (-> True Integer Integer)
                                (-> False Boolean Boolean)))
    (define (f condition x)
    (if condition
    (add1 x)
    (not x)))
```


New languages using negation

```
Typescript
Negation types are proposed in a merge request for TypeScript:
function asValid<T extends not null>
    (value: T, isValid: (value: T) => boolean) : T | null
        return isValid(value) ? value : null;
declare const x: number;
declare const y: number | null;
asValid(x, n => n >= 0); // OK
asValid(y, n => n >= 0); // Error
```


Full-fledged connectives for novel type expressivity

The recursive flatten function:

Full-fledged connectives for novel type expressivity

The recursive flatten function:

```
let flatten
    | [] -> []
    | [h ; t] -> (flatten h)@(flatten t)
    | x -> [x]
```


Full-fledged connectives for novel type expressivity

The recursive flatten function:

```
(* recursive type with union intersection and negation *)
type Tree('a) = ('a\[Any*]) | [ (Tree('a))* ]
let flatten ( (Tree('a)) -> ['a*] )
    | [] -> []
    | [h ; t] -> (flatten h)@(flatten t)
    | x -> [x]
```


Full-fledged connectives for novel type expressivity

The recursive flatten function:

```
(* recursive type with union intersection and negation *)
type Tree('a) = ('a\[Any*]) | [ (Tree('a))* ]
let flatten ( (Tree('a)) -> ['a*] )
    | [] -> []
    | [h ; t] -> (flatten h)@(flatten t)
    | x -> [x]
```

The function flatten can be applied to any expression since Tree ('a) unifies with every type.
It returns a list whose element type is the union of the types of all the leaves:
\# flatten [3 'r' [4 ['true 5]] ["quo" [[‘false] "stop"]]];;

- : [(Bool | 3--5 | 'o'--'u')*]
= [3 'r' 4 true 5 'quo' false 'stop']

Encoding of bounded polymorphism

When combined with polymorphic types, set-theoretic types can encode a limited form of bounded polymorphism:

$$
\forall\left(\mathrm{T}_{1} \leq \alpha \leq \mathrm{T}_{2}\right) . \mathrm{T}
$$

is encoded as

$$
\mathrm{T}\left\{\alpha:=\left(\alpha \vee \mathrm{T}_{1}\right) \wedge \mathrm{T}_{2}\right\}
$$

For instance:

$$
\text { balance : (Unbal } \rightarrow \text { Rtree) \& (} \beta \backslash \text { Unbal } \rightarrow \beta \backslash \text { Unbal) }
$$

can be read as:

$$
\text { balance }: \forall(\beta \leq \text { not (Unbal) }) \text {. (Unbal } \rightarrow \text { Rtree) \& }(\beta \rightarrow \beta)
$$

Limited form since you can compare just types with equal bounds

How to understand/explain set-theoretic type connectives?

- The type connectives union, intersection, and negation are completely defined by the subtyping relation:
- $T_{1} \vee T_{2}$ is the least upper bound of T_{1} and T_{2}
- $T_{1} \& T_{2}$ is the greatest lower bound of T_{1} and T_{2}
- $\operatorname{not}(T)$ is the only type whose union and intersection with T yield the Any and Empty types, respectively.
- Defining (and deciding) subtyping for type connectives (i.e., , , \& , not ()) is far more difficult than for type constructors (i.e., -->, $\times,\{\ldots\}, \ldots$). [examples later on]
- Understanding connectives in terms of subtyping is out of reach of simple programmers

How to understand/explain set-theoretic type connectives?

- The type connectives union, intersection, and negation are completely defined by the subtyping relation:
- $T_{1} \vee T_{2}$ is the least upper bound of T_{1} and T_{2}
- $T_{1} \& T_{2}$ is the greatest lower bound of T_{1} and T_{2}
- $\operatorname{not}(T)$ is the only type whose union and intersection with T yield the Any and Empty types, respectively.
- Defining (and deciding) subtyping for type connectives (i.e., , , \& , not ()) is far more difficult than for type constructors (i.e., -->, $\times,\{\ldots\}, \ldots$). [examples later on]
- Understanding connectives in terms of subtyping is out of reach of simple programmers

Give a set-theoretic semantics to types define subtyping semantically

Types as sets of values and semantic subtyping

$$
\mathrm{T}::=\text { Bool } \mid \text { Int } \mid \text { Any }|(\mathrm{T}, \mathrm{~T})| \mathrm{T} \vee \mathrm{~T}|\mathrm{~T} \& \mathrm{~T}| \operatorname{not}(\mathrm{T}) \mid \mathrm{T}-->\mathrm{T}
$$

Each type denotes a set of values:
Bool is the set that contains just two values \{true, false $\}$
Int is the set of all the numeric constants: $\{0,-1,1,-2,2,-3, \ldots\}$.
Any is the set of all values.
($\mathrm{T}_{1}, \mathrm{~T}_{2}$) is the set of all the pairs $\left(v_{1}, v_{2}\right)$ where v_{1} is a value in T_{1} and $v_{2} \mathrm{a}$ value in T_{2}, that is $\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in \mathrm{~T}_{1}, v_{2} \in \mathrm{~T}_{2}\right\}$.
$\mathrm{T}_{1} \vee \mathrm{~T}_{2}$ is the union of the sets T_{1} and T_{2}, that is $\left\{v \mid v \in \mathrm{~T}_{1}\right.$ or $\left.v \in \mathrm{~T}_{2}\right\}$
$\mathrm{T}_{1} \& \mathrm{~T}_{2}$ is the intersection of the sets T_{1} and T_{2}, i.e. $\left\{v \mid v \in \mathrm{~T}_{1}\right.$ and $\left.v \in \mathrm{~T}_{2}\right\}$.
$\underline{n o t}(\mathrm{~T})$ is the set of all the values not in T , that is $\{v \mid v \notin \mathrm{~T}\}$.
In particular not (Any) is the empty set (written Empty).
$\mathrm{T}_{1}-->\mathrm{T}_{2}$ is the set of all function values that when applied to a value in T_{1}, if they return a value, then this value is in T_{2}.

Types as sets of values and semantic subtyping

$$
\mathrm{T}::=\text { Bool } \mid \text { Int } \mid \text { Any }|(\mathrm{T}, \mathrm{~T})| \mathrm{T} \vee \mathrm{~T}|\mathrm{~T} \& \mathrm{~T}| \operatorname{not}(\mathrm{T}) \mid \mathrm{T}-->\mathrm{T}
$$

Each type denotes a set of values:
Bool is the set that contains just two values \{true, false\}
Int is the set of all the numeric constants: $\{0,-1,1,-2,2,-3, \ldots\}$.
Any is the set of all values.
($\left.\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ is the set of all the pairs $\left(v_{1}, v_{2}\right)$ where v_{1} is a value in T_{1} and $v_{2} \mathrm{a}$ value in T_{2}, that is $\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \in \mathrm{~T}_{1}, v_{2} \in \mathrm{~T}_{2}\right\}$.
$\mathrm{T}_{1} \vee \mathrm{~T}_{2}$ is the union of the sets T_{1} and T_{2}, that is $\left\{v \mid v \in \mathrm{~T}_{1}\right.$ or $\left.v \in \mathrm{~T}_{2}\right\}$
$\mathrm{T}_{1} \& \mathrm{~T}_{2}$ is the intersection of the sets T_{1} and T_{2}, i.e. $\left\{v \mid v \in \mathrm{~T}_{1}\right.$ and $\left.v \in \mathrm{~T}_{2}\right\}$.
not (T) is the set of all the values not in T , that is $\{v \mid v \notin \mathrm{~T}\}$.
In particular not (Any) is the empty set (written Empty).
$\mathrm{T}_{1}-->\mathrm{T}_{2}$ is the set of all function values that when applied to a value in T_{1}, if they return a value, then this value is in T_{2}.

Semantic subtyping

Subtyping is set-containment

Semantic Subtyping in a nutshell

Semantic subtyping

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| 0 \mid \mathbb{1}
$$

Semantic subtyping

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{O} \mid \mathbb{1}
$$

- Constructor subtyping is easy: constructors do not mix, eg.:

$$
\frac{s_{2} \leq s_{1} \quad t_{1} \leq t_{2}}{s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}}
$$

Semantic subtyping

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{O} \mid \mathbb{1}
$$

- Constructor subtyping is easy: constructors do not mix, eg.:

$$
\frac{s_{2} \leq s_{1} \quad t_{1} \leq t_{2}}{s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}}
$$

- Connective subtyping is harder. connectives distribute over constructors, eg.

$$
\left(s_{1} \vee s_{2}\right) \rightarrow t \quad \gtreqless \quad\left(s_{1} \rightarrow t\right) \wedge\left(s_{2} \rightarrow t\right)
$$

Semantic subtyping

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{O} \mid \mathbb{1}
$$

- Constructor subtyping is easy: constructors do not mix, eg.:

$$
\frac{s_{2} \leq s_{1} \quad t_{1} \leq t_{2}}{s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}}
$$

- Connective subtyping is harder. connectives distribute over constructors, eg.

$$
\left(s_{1} \vee s_{2}\right) \rightarrow t \quad \gtreqless \quad\left(s_{1} \rightarrow t\right) \wedge\left(s_{2} \rightarrow t\right)
$$

Define subtyping semantically:

(1) Interpret types as sets (of values)
(2) Define subtyping as set containment.

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{array}{ll}
\llbracket \odot \square]=\varnothing & \left.\llbracket t_{1} \vee t_{2} \rrbracket=\llbracket\left[t_{1}\right]\right] \cup\left[t_{2} \rrbracket\right. \\
\llbracket \neg t]]=\mathcal{D} \backslash[[t] & \left.\llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1}\right] \cap \cap\left[t_{2} \rrbracket\right.
\end{array}
$$

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{array}{ll}
{[\llbracket \square]=\varnothing} & \left.\left.\llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1}\right]\right] \cup\left[\llbracket t_{2} \rrbracket\right. \\
\llbracket \neg t]]=\mathcal{D} \backslash[\llbracket t] & \left.\llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1}\right] \cap \cap\left[t_{2} \rrbracket\right.
\end{array}
$$

- Constructors have their natural interpretation:

$$
\begin{aligned}
& \llbracket t_{1} \times t_{2} \rrbracket \\
& \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket=\left\{t_{1} \rrbracket \times \times \llbracket t_{2} \rrbracket\right. \\
& =\left\{\mid f \text { function from } \llbracket t_{1} \rrbracket \text { to } \llbracket t_{2} \rrbracket\right\}
\end{aligned}
$$

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{aligned}
\llbracket \odot]=\varnothing & \left.\llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1}\right] \cup \llbracket\left[t_{2} \rrbracket\right. \\
\llbracket \neg t]]=\mathcal{D} \backslash[\llbracket t] & \left.\llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1}\right] \cap \cap t_{2} \rrbracket
\end{aligned}
$$

- Constructors have their natural interpretation:

$$
\begin{aligned}
& \llbracket t_{1} \times t_{2} \rrbracket \\
& \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket=\left\{t_{1} \rrbracket \times \times \llbracket t_{2} \rrbracket\right. \\
& =\left\{\mid f \text { function from } \llbracket t_{1} \rrbracket \text { to } \llbracket t_{2} \rrbracket\right\}
\end{aligned}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{array}{ll}
\llbracket \odot \rrbracket=\varnothing & \llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cup \cup \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket]=\mathcal{D} \backslash \llbracket t \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket
\end{array}
$$

- Constructors have their natural interpretation:

$$
\begin{array}{llr}
\llbracket t_{1} \times t_{2} \rrbracket \rrbracket & =\llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket & \mathcal{D}^{2} \subseteq \mathcal{D} \\
\llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket & =\left\{f \mid f \text { function from } \llbracket t_{1} \rrbracket \text { to } \llbracket t_{2} \rrbracket\right\} & \mathcal{D}^{\mathcal{D}} \subseteq \mathcal{D}
\end{array}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{aligned}
& \left.\left.\left.\llbracket t_{1} \times t_{2}\right]\right]=\llbracket t_{1} \rrbracket \times \llbracket t_{2}\right] \\
& \left.\llbracket t_{1} \rightarrow t_{2} \rrbracket\right]=\left\{f \mid f \text { function from } \llbracket t_{1} \rrbracket \text { to } \llbracket t_{2} \rrbracket\right\}
\end{aligned}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{array}{rlrl}
\llbracket \cup \square] & =\varnothing & \llbracket t_{1} \vee t_{2} \rrbracket & \left.=\llbracket t_{1}\right\rceil \\
\llbracket \neg t] & =\mathcal{D} \backslash[t \rrbracket \rrbracket \\
\llbracket t_{1} \wedge t_{2} \rrbracket & =\llbracket t_{1} \\
\text { - Constructors have their naturd }
\end{array}
$$

$$
\begin{aligned}
& \left.\llbracket t_{1} \times t_{2} \rrbracket\right] \\
& \left.\left.\llbracket t_{1} \rightarrow t_{2} \rrbracket\right]=\llbracket t_{1} \rrbracket \times \llbracket t_{2}\right] \\
& \left.=f \mid f \text { function from }\left[\llbracket t_{1} \rrbracket \text { to } \llbracket t_{2} \rrbracket\right\}\right\}
\end{aligned}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Key idea
Do not define what types are define how they are related

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{array}{ll}
\llbracket \mathbb{\square O]}=\varnothing & \left.\llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1}\right] \cup \cup \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket]=\mathcal{D} \backslash \llbracket t \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket
\end{array}
$$

- Constructors have their natural interpretation:

$$
\begin{aligned}
& \left.\llbracket t_{1} \times t_{2} \rrbracket\right] \\
& \left.\llbracket t_{1} \rightarrow t_{2} \rrbracket\right]=\left\{t_{1} \rrbracket \times \llbracket t_{2}\right] \\
& \left.\left.=f \mid f \text { function from } \llbracket t_{1} \rrbracket \text { to } \llbracket t_{2} \rrbracket\right\}\right\}
\end{aligned}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Key idea
Do not define what types are define how they are related

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{array}{ll}
\llbracket \mathbb{\square O]}=\varnothing & \left.\llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1}\right] \cup \cup \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket]=\mathcal{D} \backslash \llbracket t \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket
\end{array}
$$

- Constructors have their natural interpretation:

$$
\begin{aligned}
& \left.\llbracket t_{1} \times t_{2} \rrbracket\right] \\
& \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket=\left\{t_{1} \rrbracket \times \llbracket t_{2} \rrbracket\right. \\
& \left.=\left\{f \subseteq \mathcal{D}^{2} \mid\left(d_{1}, d_{2}\right) \in f, d_{1} \in \llbracket t_{1} \rrbracket \Rightarrow d_{2} \in \llbracket t_{2} \rrbracket\right\}\right\}
\end{aligned}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Key idea
Do not define what types are define how they are related

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{array}{ll}
\llbracket 0 \rrbracket=\varnothing & \llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cup \cup \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket]=\mathcal{D} \backslash \llbracket t \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket
\end{array}
$$

- Constructors have their natural interpretation:

$$
\begin{aligned}
\llbracket t_{1} \times t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket \\
\llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket & =\mathcal{P}\left(\llbracket t_{1} \rrbracket \times \overline{\llbracket t_{2} \rrbracket \rrbracket}\right)
\end{aligned}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Key idea
Do not define what types are define how they are related

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{aligned}
\llbracket 0 \rrbracket=\varnothing & \llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cup \cup \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket] & =\mathcal{D} \backslash \llbracket t \rrbracket
\end{aligned}
$$

- Constructors have their natural interpretation:

$$
\begin{aligned}
& \llbracket t_{1} \times t_{2} \rrbracket=\llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket \\
& \llbracket t_{1} \rightarrow t_{2} \rrbracket
\end{aligned}=\mathbb{P}\left(\llbracket t_{1} \rrbracket \times \overline{\llbracket t_{2} \rrbracket}\right)
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Key idea
Do not define what types are define how they are related

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{aligned}
\llbracket 0 \rrbracket=\varnothing & \llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cup \cup \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket] & =\mathcal{D} \backslash \llbracket t \rrbracket
\end{aligned}
$$

- Constructors have the same \subseteq as their natural interpretation:

$$
\begin{aligned}
\llbracket t_{1} \times t_{2} \rrbracket & =\llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket \\
\llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket & =\mathcal{P}\left(\llbracket t_{1} \rrbracket \times \overline{\llbracket t_{2} \rrbracket \rrbracket}\right)
\end{aligned}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Key idea
Do not define what types are define how they are related

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{array}{ll}
\llbracket \odot \rrbracket]=\varnothing & \llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cup \cup \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket]=\mathcal{D} \backslash \llbracket t \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket
\end{array}
$$

- Constructors have the same \subseteq as their natural interpretation:

$$
\begin{aligned}
& \left.\left.\llbracket\left[s_{1} \times s_{2} \rrbracket\right] \subseteq \llbracket t_{1} \times t_{2} \rrbracket \quad \Longleftrightarrow \quad \llbracket s_{1} \rrbracket \times \llbracket s_{2} \rrbracket\right] \subseteq \llbracket t_{1}\right] \times \llbracket t_{2} \rrbracket \\
& \llbracket s_{1} \rightarrow s_{2} \rrbracket \rrbracket \subseteq t_{1} \rightarrow t_{2} \rrbracket \Longleftrightarrow \mathcal{P}\left(\overline{\left.\llbracket s_{1} \rrbracket\right] \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left[t_{1} \rrbracket \times \overline{\left.\llbracket t_{2}\right]}\right.}\right)
\end{aligned}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Key idea

Do not define what types are define how they are related

Semantic subtyping: formalization

- First, define an interpretation of types into sets.

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})
$$

such that

- Connectives have their set-theoretic interpretation:

$$
\begin{array}{ll}
\llbracket \odot \rrbracket=\varnothing & \left.\llbracket t_{1} \vee t_{2} \rrbracket=\llbracket t_{1} \rrbracket\right] \cup \llbracket t_{2} \rrbracket \\
\llbracket \neg t \rrbracket]=\mathcal{D} \backslash \llbracket t \rrbracket & \llbracket t_{1} \wedge t_{2} \rrbracket=\llbracket t_{1} \rrbracket \cap \llbracket t_{2} \rrbracket
\end{array}
$$

- Constructors have the same \subseteq as their natural interpretation:

$$
\begin{aligned}
& \llbracket\left[s_{1} \times s_{2} \rrbracket \subseteq \llbracket t_{1} \times t_{2} \rrbracket \quad \Longleftrightarrow \quad \llbracket s_{1} \rrbracket \times \llbracket s_{2} \rrbracket \subseteq \llbracket t_{1} \rrbracket \times \llbracket t_{2} \rrbracket\right. \\
& \llbracket s_{1} \rightarrow s_{2} \rrbracket \rrbracket \subseteq t_{1} \rightarrow t_{2} \rrbracket \Longleftrightarrow \mathcal{P}\left(\overline{\left.\llbracket s_{1} \rrbracket\right] \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left[t_{1} \rrbracket \times \overline{\left.\llbracket t_{2}\right]}\right.}\right)
\end{aligned}
$$

- Then define the subtyping relation as set-containment.

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket s \rrbracket \subseteq \llbracket t \rrbracket
$$

Semantic subtyping

(1) Gives an interpretation satisfying the above constraints;
(2) Gives an algorithm to decide the induced subtyping relation.

1: An interpretation that satisfies the previous constraints.

1: An interpretation that satisfies the previous constraints.

Looking for \mathcal{D} and [[]]: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that:

$$
\llbracket s_{1} \rightarrow s_{2} \rrbracket \subseteq \llbracket t_{1} \rightarrow t_{2} \rrbracket \Longleftrightarrow \mathcal{P}\left(\overline{\left.\llbracket s_{1} \rrbracket\right] \times \overline{\llbracket s_{2} \rrbracket}}\right) \subseteq P\left(\overline{\left.\llbracket t_{1} \rrbracket\right] \times \overline{\left.\llbracket t_{2}\right]}}\right)
$$

1: An interpretation that satisfies the previous constraints.

Looking for \mathcal{D} and [[]]: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that:

$$
\llbracket s_{1} \rightarrow s_{2} \rrbracket \subseteq \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket \mathcal{P}\left(\overline{\left.\llbracket s_{1}\right] \rrbracket \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left.\llbracket t_{1}\right] \rrbracket \times \overline{\left.\llbracket t_{2}\right]}}\right)
$$

(1) \mathcal{D} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$

1: An interpretation that satisfies the previous constraints.

Looking for \mathcal{D} and [[]]: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that:

$$
\llbracket s_{1} \rightarrow s_{2} \rrbracket \subseteq \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket \mathcal{P}\left(\overline{\left.\llbracket s_{1}\right] \rrbracket \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left.\llbracket t_{1}\right] \rrbracket \times \overline{\left.\llbracket t_{2}\right]}}\right)
$$

(1) \mathcal{D} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$

1: An interpretation that satisfies the previous constraints.

Looking for \mathcal{D} and [[]]: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that:

$$
\llbracket s_{1} \rightarrow s_{2} \rrbracket \subseteq \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket \mathcal{P}\left(\overline{\left.\llbracket s_{1}\right] \rrbracket \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left.\llbracket t_{1}\right] \rrbracket \times \overline{\left.\llbracket t_{2}\right]}}\right)
$$

(1) \mathcal{D} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) $\left[[]_{\mathcal{D}}\right.$ is defined as:

1: An interpretation that satisfies the previous constraints.

Looking for \mathcal{D} and [[]]: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that:

$$
\llbracket s_{1} \rightarrow s_{2} \rrbracket \subseteq \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket \mathcal{P}\left(\overline{\left.\left[s_{1}\right]\right] \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left.\llbracket t_{1}\right] \rrbracket \times \overline{\left.\llbracket t_{2}\right]}}\right)
$$

(1) \mathcal{D} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) $\left[[]_{\mathcal{D}}\right.$ is defined as:

$$
\begin{array}{ll}
\llbracket \mathbb{O} \rrbracket_{\mathcal{D}}=\varnothing & \llbracket \mathbb{1} \rrbracket_{\mathcal{D}}=\mathcal{D} \\
\llbracket s \vee t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cup\left[t t \rrbracket_{\mathcal{D}}\right. & \llbracket \neg t \rrbracket_{\mathcal{D}}=\mathcal{D} \backslash\left[t t \rrbracket_{\mathcal{D}}\right. \\
\llbracket s \wedge t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cap \llbracket t \rrbracket_{\mathcal{D}}
\end{array}
$$

1: An interpretation that satisfies the previous constraints.

Looking for \mathcal{D} and [[]]: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that:

$$
\llbracket s_{1} \rightarrow s_{2} \rrbracket \subseteq \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket \mathcal{P}\left(\overline{\left.\llbracket s_{1}\right] \rrbracket \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left.\llbracket t_{1}\right] \rrbracket \times \overline{\left.\llbracket t_{2}\right]}}\right)
$$

(1) \mathcal{D} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) [[]] $]_{\mathcal{D}}$ is defined as:

$$
\begin{array}{ll}
\llbracket \mathbb{O} \rrbracket_{\mathcal{D}}=\varnothing \quad \llbracket \mathbb{1} \rrbracket_{\mathcal{D}}=\mathcal{D} & \llbracket \neg t \rrbracket_{\mathcal{D}}=\mathcal{D} \backslash\left[t t \rrbracket_{\mathcal{D}}\right. \\
\llbracket s \vee t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cup \llbracket t t \rrbracket_{\mathcal{D}} & \left.\llbracket s \wedge t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cap \llbracket t\right]_{\mathcal{D}} \\
\llbracket s \times t]_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \times\left[t t \rrbracket_{\mathcal{D}}\right. & \llbracket t \rightarrow s \rrbracket_{\mathcal{D}}=\mathcal{P}_{f}\left(\left[\llbracket t \rrbracket_{\mathcal{D}} \times \overline{\llbracket s \rrbracket_{\mathcal{D}}}\right)\right.
\end{array}
$$

1: An interpretation that satisfies the previous constraints.

Looking for \mathcal{D} and [[]]: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that:

$$
\llbracket s_{1} \rightarrow s_{2} \rrbracket \subseteq \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket \mathcal{P}\left(\overline{\left.\llbracket s_{1}\right] \rrbracket \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left.\llbracket t_{1}\right] \rrbracket \times \overline{\left.\llbracket t_{2}\right]}}\right)
$$

(1) \mathcal{D} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) [[]] $]_{\mathcal{D}}$ is defined as:

$$
\begin{aligned}
& \left.\llbracket 0 \rrbracket_{\mathcal{D}}=\varnothing \quad \llbracket \mathbb{1} \rrbracket_{\mathcal{D}}=\mathcal{D} \quad \llbracket \neg t\right]_{\mathcal{D}}=\mathcal{D} \backslash[t]_{\mathcal{D}} \\
& \llbracket s \vee t]_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cup\left[\llbracket t \rrbracket_{\mathcal{D}}\right. \\
& \llbracket s \times t \rrbracket_{\mathcal{D}}=\llbracket\left[s \rrbracket_{\mathcal{D}} \times \llbracket\left[t \rrbracket_{\mathcal{D}}\right.\right. \\
& \llbracket s \wedge t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cap\left[[t]_{\mathcal{D}}\right. \\
& \llbracket t \rightarrow s \rrbracket_{\mathcal{D}}=\mathcal{P}_{f}\left(\left[t t \rrbracket_{\mathcal{D}} \times \overline{\llbracket s \rrbracket_{\mathcal{D}}}\right)\right.
\end{aligned}
$$

1: An interpretation that satisfies the previous constraints.

Looking for \mathcal{D} and [[]]: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that:

$$
\llbracket s_{1} \rightarrow s_{2} \rrbracket \subseteq \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket \mathcal{P}\left(\overline{\left.\llbracket s_{1}\right] \rrbracket \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left.\llbracket t_{1}\right] \rrbracket \times \overline{\left.\llbracket t_{2}\right]}}\right)
$$

(1) \mathcal{D} least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) [[]] $]_{\mathcal{D}}$ is defined as:

$$
\begin{array}{ll}
\llbracket \mathbb{O} \rrbracket_{\mathcal{D}}=\varnothing \quad \llbracket \mathbb{1} \rrbracket_{\mathcal{D}}=\mathcal{D} & \llbracket \neg t \rrbracket_{\mathcal{D}}=\mathcal{D} \backslash\left[t t \rrbracket_{\mathcal{D}}\right. \\
\llbracket s \vee t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cup \llbracket t t \rrbracket_{\mathcal{D}} & \llbracket s \wedge t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cap\left[t t \rrbracket_{\mathcal{D}}\right. \\
\llbracket s \times t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \times\left[t t \rrbracket_{\mathcal{D}}\right. & \llbracket t \rightarrow s \rrbracket_{\mathcal{D}}=\mathcal{P}_{f}\left(\left[\llbracket t \rrbracket_{\mathcal{D}} \times \overline{\llbracket s \rrbracket_{\mathcal{D}}}\right)\right.
\end{array}
$$

It is a model:

$$
\mathcal{P}_{f}(X) \subseteq \mathscr{P}_{f}(Y) \Longleftrightarrow X \subseteq Y \Longleftrightarrow P(X) \subseteq P(Y)
$$

1: An interpretation that satisfies the previous constraints.

Looking for \mathcal{D} and [[]]: Types $\rightarrow \mathcal{P}(\mathcal{D})$ such that:

$$
\llbracket s_{1} \rightarrow s_{2} \rrbracket \subseteq \llbracket t_{1} \rightarrow t_{2} \rrbracket \rrbracket \mathcal{P}\left(\overline{\left.\llbracket s_{1}\right] \rrbracket \times \overline{\left.\llbracket s_{2}\right]}}\right) \subseteq \mathcal{P}\left(\overline{\left.\llbracket t_{1}\right] \rrbracket \times \overline{\left.\llbracket t_{2}\right]}}\right)
$$

(1) D least solution of $X=X^{2}+\mathcal{P}_{f}\left(X^{2}\right)$
(2) $\left[[]_{\mathcal{D}}\right.$ is defined as:

$$
\begin{aligned}
& \left.\llbracket 0]_{\mathcal{D}}=\varnothing \quad \llbracket \mathbb{1} \rrbracket_{\mathcal{D}}=\mathcal{D} \quad \llbracket \neg t\right]_{\mathcal{D}}=\mathcal{D} \backslash[t t]_{\mathcal{D}} \\
& \llbracket s \vee t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cup[t t]_{\mathcal{D}} \quad \llbracket s \wedge t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \cap\left[[t]_{\mathcal{D}}\right. \\
& \llbracket s \times t \rrbracket_{\mathcal{D}}=\llbracket s \rrbracket_{\mathcal{D}} \times \llbracket t t \rrbracket_{\mathcal{D}} \quad \llbracket t \rightarrow s \rrbracket_{\mathcal{D}}=\mathcal{P}_{f}\left(\llbracket t \rrbracket_{\mathcal{D}} \times \overline{\llbracket s \rrbracket_{\mathcal{D}}}\right)
\end{aligned}
$$

It is a model:

$$
\mathcal{P}_{f}(X) \subseteq \mathcal{P}_{f}(Y) \Longleftrightarrow X \subseteq Y \Longleftrightarrow \mathcal{P}(X) \subseteq \mathcal{P}(Y)
$$

It is the best model: for any other model $\left[[] \rrbracket_{\mathcal{D}^{\prime}}\right.$

$$
t_{1} \leq_{\mathcal{D}^{\prime}} t_{2} \Rightarrow t_{1} \leq_{\mathcal{D}} t_{2}
$$

2: An algorithm to decide $t_{1} \leq t_{2}$.

Step 1: Transform the subtyping problem into an emptiness decision problem:

$$
t_{1} \leq t_{2} \Longleftrightarrow \llbracket t_{1} \rrbracket \subseteq \llbracket t_{2} \rrbracket \Leftrightarrow \llbracket t_{1} \wedge \neg t_{2} \rrbracket=\varnothing \Longleftrightarrow t_{1} \wedge \neg t_{2} \leq \mathbb{0}
$$

2: An algorithm to decide $t_{1} \leq t_{2}$.

Step 1: Transform the subtyping problem into an emptiness decision problem:

$$
t_{1} \leq t_{2} \Longleftrightarrow \llbracket t_{1} \rrbracket \subseteq \llbracket t_{2} \rrbracket \Leftrightarrow \llbracket t_{1} \wedge \neg t_{2} \rrbracket=\varnothing \Longleftrightarrow t_{1} \wedge \neg t_{2} \leq \mathbb{0}
$$

Step 2: Put the type whose emptiness is to be decided in disjunctive normal form.

$$
\bigvee_{i \in \mid} \bigwedge_{i \in J} \ell_{i j}
$$

where $a::=b|t \times t| t \rightarrow t|\mathbb{O}| \mathbb{1}$ and $\ell::=a \mid \neg a$

2: An algorithm to decide $t_{1} \leq t_{2}$.

Step 1: Transform the subtyping problem into an emptiness decision problem:
$\left.t_{1} \leq t_{2} \Longleftrightarrow \llbracket t_{1} \rrbracket \subseteq \llbracket t_{2} \rrbracket\right] \llbracket t_{1} \wedge \neg t_{2} \rrbracket=\varnothing \Longleftrightarrow t_{1} \wedge \neg t_{2} \leq \mathbb{0}$
Step 2: Put the type whose emptiness is to be decided in disjunctive normal form.

$$
\bigvee_{i \in I} \bigwedge_{j \in J} \ell_{i j}
$$

where $a::=b|t \times t| t \rightarrow t|\mathbb{O}| \mathbb{1}$ and $\ell::=a \mid \neg a$
Step 3: Simplify mixed intersections:
Mixed summands of the union can be simplified. For instance:

- $\left(t_{1} \times t_{2}\right) \wedge\left(t_{1} \rightarrow t_{2}\right) \leq 0$ is always true
- $\left(t_{1} \times t_{2}\right) \wedge \neg\left(t_{1} \rightarrow t_{2}\right) \leq \mathbb{O}$ holds iff $t_{1} \times t_{2} \leq \mathbb{0}$.

2: An algorithm to decide $t_{1} \leq t_{2}$.

Step 1: Transform the subtyping problem into an emptiness decision problem:
$\left.t_{1} \leq t_{2} \Longleftrightarrow \llbracket t_{1} \rrbracket \subseteq \llbracket t_{2} \rrbracket\right] \llbracket t_{1} \wedge \neg t_{2} \rrbracket=\varnothing \Longleftrightarrow t_{1} \wedge \neg t_{2} \leq \mathbb{O}$
Step 2: Put the type whose emptiness is to be decided in disjunctive normal form.
$\bigvee_{i \in I} \bigwedge_{i \in J} \ell_{i j}$
$i \in l j \in J$
where $a::=b|t \times t| t \rightarrow t|\mathbb{O}| \mathbb{1}$ and $\ell::=a \mid \neg a$
Step 3: Simplify mixed intersections:
Mixed summands of the union can be simplified. For instance:

- $\left(t_{1} \times t_{2}\right) \wedge\left(t_{1} \rightarrow t_{2}\right) \leq \mathbb{0}$ is always true
- $\left(t_{1} \times t_{2}\right) \wedge \neg\left(t_{1} \rightarrow t_{2}\right) \leq \mathbb{O}$ holds iff $t_{1} \times t_{2} \leq \mathbb{0}$.

The problem is reduced to deciding:

$$
\bigwedge_{i \in I} s_{i} \times t_{i} \bigwedge_{j \in J} \neg\left(s_{j} \times t_{j}\right) \leq \mathbb{0} \quad \text { and } \quad \bigwedge_{i \in I} s_{i} \rightarrow t_{i} \bigwedge_{j \in S \text { Similarly for basic types) }} \neg\left(s_{j} \rightarrow t_{j}\right) \leq \mathbb{0}
$$

Step 4: Use the set-theoretic interpretation to simplify the intersections:
Decomposition law for products:

$$
\begin{aligned}
& \bigwedge_{i \in I} t_{i} \times s_{i} \leq \bigvee_{i \in J} t_{i} \times s_{i} \Longleftrightarrow \\
& \quad \forall J^{\prime} \subset J .\left(\bigwedge_{i \in I} t_{i} \leq \bigvee_{i \in J^{\prime}} t_{i}\right) \text { or }\left(\bigwedge_{i \in I} s_{i} \leq \bigvee_{i \in J \backslash J^{\prime}} s_{i}\right)
\end{aligned}
$$

Decomposition law for arrows:

$$
\begin{aligned}
\bigwedge_{i \in I} t_{i} \rightarrow s_{i} & \leq \bigvee_{i \in J} t_{i} \rightarrow s_{i} \Longleftrightarrow \\
& \exists j \in J . \forall I^{\prime} \subset I .\left(t_{j} \leq \bigvee_{i \in I^{\prime}} t_{i}\right) \text { or }\left(I^{\prime} \neq I \text { et } \bigwedge_{i \in \backslash I^{\prime}} s_{i} \leq s_{j}\right)
\end{aligned}
$$

Step 5: Memoize (for recursive types) and recurse.

Application to a language.

Language

Syntax

Exprs

$\begin{aligned} \text { Values } \quad v \quad::= & (v, v) \\ & \mid \lambda^{\wedge \in \mid S_{i} \rightarrow t_{i} x . e}\end{aligned}$
$\left\lvert\, \begin{aligned} & \lambda^{\wedge_{i \in} \mid s_{i} \rightarrow t_{i}} \text { x.e } \\ & e e \\ & (e, e) \\ & \pi_{i} e\end{aligned}\right.$
$(x=e \in t) ? e: e \quad$ binding type case
variables
abstractions
applications pairs
projections, $i=1,2$
| $(x-e \in t)$?e.e binding type case

Language

Syntax

Exprs

e : $:=$	x
	$\lambda^{\wedge} \wedge_{i \in} s_{i} \rightarrow t_{i}$ X.e
	$e e$
	(e,e)
	$\pi_{i} e$
	($x=e \in t$)

variables
abstractions
applications
pairs
projections, $i=1,2$
binding type case
$\begin{aligned} \text { Values } \quad v \quad:= & (v, v) \\ & \mid \quad \lambda^{\wedge \in \mid S_{i} \rightarrow t_{i} x . e}\end{aligned}$
Semantics

$$
\begin{array}{rlll}
\left(\lambda^{\wedge_{i} \mid S_{i} \rightarrow t_{i}} x . e\right) v & \longrightarrow & e[v / x] & \\
\pi_{i}\left(v_{1}, v_{2}\right) & \longrightarrow & v_{i} & i=1,2 \\
(x=v \in t) ? e_{1}: e_{2} & \longrightarrow & e_{1}[v / x] & v \in t \\
(x=v \in t) ? e_{1}: e_{2} & \longrightarrow & e_{2}[v / x] & v \notin t
\end{array}
$$

Typing

$$
\text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}}
$$

Typing

$$
\begin{gathered}
\text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}} \\
{\left[\text { APP] } \frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}} \quad[\text { ABS }] \frac{\forall i \in I \quad \Gamma, x: s_{i} \vdash e: t_{i}}{\Gamma \vdash \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i} x . e: \bigwedge_{i \in I} s_{i} \rightarrow t_{i}}}\right.}
\end{gathered}
$$

Typing

$$
\begin{gathered}
\text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}} \\
{\left[\text { APP] } \frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}} \quad[\text { ABS }] \frac{\forall i \in I \quad \Gamma, x: s_{i} \vdash e: t_{i}}{\Gamma \vdash \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x \cdot e: \bigwedge_{i \in l} s_{i} \rightarrow t_{i}}\right.}
\end{gathered}
$$

Typing

$$
\begin{gathered}
\text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}} \\
{\left[\text { APP] } \frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \quad \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}} \quad[\mathrm{ABS}] \frac{\forall i \in I \quad \Gamma, x: s_{i} \vdash e: t_{i}}{\Gamma \vdash \lambda^{\wedge_{i \in \prime} s_{i} \rightarrow t_{i} x . e: \bigwedge_{i \in I} s_{i} \rightarrow t_{i}}}\right.} \\
{[\mathrm{SEL}] \frac{\Gamma \vdash e:\left(t_{1}, t_{2}\right)}{\Gamma \vdash \pi_{i} e: t_{i}} \quad[\mathrm{PAIR}] \frac{\Gamma \vdash e_{1}: t_{1} \quad \Gamma \vdash e_{2}: t_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): t_{1} \times t_{2}}}
\end{gathered}
$$

Typing

$$
\text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}}
$$

[APP] $\frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \quad \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}}$
$[\mathrm{ABS}] \frac{\forall i \in I \quad \Gamma, x: s_{i} \vdash e: t_{i}}{\Gamma \vdash \lambda^{\wedge_{i \in} s_{i} \rightarrow t_{i} x . e: \bigwedge_{i \in I} s_{i} \rightarrow t_{i}}}$

$$
[\mathrm{SEL}] \frac{\Gamma \vdash e:\left(t_{1}, t_{2}\right)}{\Gamma \vdash \pi_{i} e: t_{i}} \quad[\mathrm{PAIR}] \frac{\Gamma \vdash e_{1}: t_{1} \quad \Gamma \vdash e_{2}: t_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): t_{1} \times t_{2}}
$$

[TYPECASE] $\frac{\Gamma \vdash e: t_{0} \quad \Gamma, x: s_{1} \vdash e_{1}: t_{1} \quad \Gamma, x: s_{2} \vdash e_{2}: t_{2}}{\Gamma \vdash(x=e \in t) ? e_{1}: e_{2}: \underset{\left\{i \mid s_{i} \neq 0\right\}}{\bigvee} t_{i}} \begin{aligned} & s_{1} \equiv t_{0} \wedge t \\ & s_{2} \equiv t_{0} \wedge \neg t\end{aligned}$

Typing

$$
\text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}}
$$

[APP] $\frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \quad \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}}$
$[\mathrm{ABS}] \frac{\forall i \in I \quad \Gamma, x: s_{i} \vdash e: t_{i}}{\Gamma \vdash \lambda^{\wedge_{i \in} s_{i} \rightarrow t_{i} x . e: \bigwedge_{i \in I} s_{i} \rightarrow t_{i}}}$

$$
[\mathrm{SEL}] \frac{\Gamma \vdash e:\left(t_{1}, t_{2}\right)}{\Gamma \vdash \pi_{i} e: t_{i}} \quad[\mathrm{PAIR}] \frac{\Gamma \vdash e_{1}: t_{1} \quad \Gamma \vdash e_{2}: t_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): t_{1} \times t_{2}}
$$

[TYPECASE] $\frac{\Gamma \vdash e: t_{0} \quad \Gamma, x: s_{1} \vdash e_{1}: t_{1} \quad \Gamma, x: s_{2} \vdash e_{2}: t_{2}}{\Gamma \vdash(x=e \in t) ? e_{1}: e_{2}: \underset{\left\{i \mid s_{i} \neq 0\right\}}{\bigvee} t_{i}} \begin{aligned} & s_{1} \equiv t_{0} \wedge t \\ & s_{2} \equiv t_{0} \wedge \neg t\end{aligned}$

Typing

$$
\begin{aligned}
& \text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}} \\
& \text { [APP] } \frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \quad \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}} \\
& {[\mathrm{ABS}] \frac{\forall i \in I}{} \Gamma_{, ~ x:}: s_{i} \vdash e: t_{i} .} \\
& {[\mathrm{SEL}] \frac{\Gamma \vdash e:\left(t_{1}, t_{2}\right)}{\Gamma \vdash \pi_{i} e: t_{i}} \quad[\mathrm{PAIR}] \frac{\Gamma \vdash e_{1}: t_{1} \quad \Gamma \vdash e_{2}: t_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): t_{1} \times t_{2}}} \\
& \text { [TYPECASE] } \frac{\Gamma \vdash e: t_{0} \quad \Gamma, x: s_{1} \vdash e_{1}: t_{1} \quad \Gamma, x: s_{2} \vdash e_{2}: t_{2}}{\Gamma \vdash(x=e \in t) ? e_{1}: e_{2}: \bigvee_{\left\{i \mid s_{i} \neq 0\right\}} t_{i}} \begin{array}{l}
s_{1} \equiv t_{0} \wedge t \\
s_{2} \equiv t_{0} \wedge \neg t
\end{array}
\end{aligned}
$$

Typing

$$
\text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}}
$$

[APP] $\frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \quad \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}}$
[ABS] $\frac{\forall i \in I ~ \Gamma, x: s_{i} \vdash e: t_{i}}{\Gamma \vdash \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i} x . e: \bigwedge_{i \in I} s_{i} \rightarrow t_{i}}}$

$$
[\mathrm{SEL}] \frac{\Gamma \vdash e:\left(t_{1}, t_{2}\right)}{\Gamma \vdash \pi_{i} e: t_{i}} \quad[\mathrm{PAIR}] \frac{\Gamma \vdash e_{1}: t_{1} \quad \Gamma \vdash e_{2}: t_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): t_{1} \times t_{2}}
$$

[TYPECASE] $\frac{\Gamma \vdash e: t_{0} \quad \Gamma, x: s_{1} \vdash e_{1}: t_{1} \quad \Gamma, x: s_{2} \vdash e_{2}: t_{2}}{\Gamma \vdash(x=e \in t) ? e_{1}: e_{2}: \bigvee_{\left\{i \mid s_{i} \neq 0\right\}} t_{i}} \begin{aligned} & s_{1} \equiv t_{0} \wedge t \\ & s_{2} \equiv t_{0} \wedge \neg t\end{aligned}$

Typing

$$
\text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}}
$$

$$
\begin{gathered}
\text { [APP] } \frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}} \quad \text { [ABS] } \frac{\forall i \in I \quad \Gamma, x: s_{i} \vdash e: t_{i}}{\Gamma \vdash \lambda^{\wedge_{i \in 1} s_{i} \rightarrow t_{i}} x \cdot e: \bigwedge_{i \in 1} s_{i} \rightarrow t_{i}} \\
\text { [TEL] } \frac{\Gamma \vdash e:\left(t_{1}, t_{2}\right)}{\Gamma \vdash \pi_{i} e: t_{i}} \quad \text { [PAIR] } \frac{\Gamma \vdash e_{1}: t_{1} \quad \Gamma \vdash e_{2}: t_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): t_{1} \times t_{2}} \\
\text { [TYPECASE] } \frac{\Gamma \vdash e: t_{0} \quad \Gamma, x: s_{1} \vdash e_{1}: t_{1} \quad \Gamma, x: s_{2} \vdash e_{2}: t_{2}}{\Gamma \vdash(x=e \in t) ? e_{1}: e_{2}: \bigvee_{\left\{i \mid s_{i} \notin 0\right\}} t_{i}} \quad \begin{array}{l}
s_{1} \equiv t_{0} \wedge t \\
s_{2} \equiv t_{0} \wedge \neg t
\end{array}
\end{gathered}
$$

Necessary for typing overloaded functions:

$$
\lambda^{(\operatorname{lnt} \rightarrow \operatorname{lnt}) \wedge(\text { Pol } \rightarrow \text { Dol })} x .(y=x \in \operatorname{lnt}) ?(y+1): \operatorname{not}(y)
$$

Typing

$$
\begin{aligned}
& \text { [SUBSUMPTION] } \frac{\Gamma \vdash e: t \quad t \leq t^{\prime}}{\Gamma \vdash e: t^{\prime}} \\
& \text { [APP] } \frac{\Gamma \vdash e_{1}: t_{1} \rightarrow t_{2} \quad \Gamma \vdash e_{2}: t_{1}}{\Gamma \vdash e_{1} e_{2}: t_{2}} \\
& {[\mathrm{ABS}] \frac{\forall i \in I}{\Gamma \vdash \lambda^{\wedge_{i \in I} s_{i} \rightarrow t_{i}} x . e: \bigwedge_{i \in I} s_{i} \rightarrow t_{i}}} \\
& \text { [rEL] } \frac{\Gamma \vdash e:\left(t_{1}, t_{2}\right)}{\Gamma \vdash \pi_{i} e: t_{i}} \quad[\mathrm{PAIR}] \frac{\Gamma \vdash e_{1}: t_{1} \quad \Gamma \vdash e_{2}: t_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): t_{1} \times t_{2}} \\
& \text { [TYPECASE] } \frac{\Gamma \vdash e: t_{0} \quad \Gamma, x: s_{1} \vdash e_{1}: t_{1} \quad \Gamma, x: s_{2} \vdash e_{2}: t_{2}}{\Gamma \vdash(x=e \in t) ? e_{1}: e_{2}: \bigvee_{\left\{i \mid s_{i} \neq 0\right\}} t_{i}} \begin{array}{l}
s_{1} \equiv t_{0} \wedge t \\
s_{2} \equiv t_{0} \wedge \neg t
\end{array}
\end{aligned}
$$

The type system is sound

Back to the initial example

```
function double (x) {
    (typeof(x) === "number") ? 2*x : x.concat (x)
}
```


Back to the initial example

$$
\begin{align*}
& \text { function double (x) \{ } \\
& \text { (typeof }(\mathrm{x})===\text { "number") ? } 2 * \mathrm{x}: \mathrm{x} \cdot \operatorname{concat(\mathrm {x})} \\
& \lambda^{\mathrm{t}} x \cdot(y=x \in \operatorname{Int}) ?(2 * y):(y \cdot \operatorname{concat}(y))
\end{align*}
$$

Back to the initial example

```
function double (x) {
    (typeof(x) === "number") ? 2*x : x.concat (x)
}
```

$$
\begin{equation*}
\lambda^{\mathrm{t} x} \times(y=x \in \operatorname{Int}) ?(2 * y):(y . \operatorname{concat}(y)) \tag{1}
\end{equation*}
$$

Exercise

Use the previous rules to check that (1) is well-typed for:

- $\mathbf{t}=($ Int \vee String $) \rightarrow($ Int \vee String $)$
- $\mathbf{t}=($ Int \rightarrow Int $) \wedge($ String \rightarrow String $)$
where String $=\mu X .\{$ concat : $X \rightarrow X\}$

Closing the circle

What about the interpretation of types as set of "values"?

Closing the circle

What about the interpretation of types as set of "values"? I interpreted types into subsets of \mathcal{D} rather than into sets of:

$$
\text { Values } \quad v::=(v, v) \mid \lambda^{\wedge_{i \in \mid} s_{i} \rightarrow t_{i} \text { X.e }}
$$

Closing the circle

What about the interpretation of types as set of "values"? I interpreted types into subsets of \mathcal{D} rather than into sets of:

$$
\text { Values } \quad v::=(v, v) \mid \lambda^{\wedge_{i \in} s_{i} \rightarrow t_{i} \text { X.e }}
$$

Define a new interpretation of types:

$$
\llbracket t \rrbracket_{\mathcal{V}}=\{v \mid \vdash v: t\}
$$

Closing the circle

What about the interpretation of types as set of "values"?
I interpreted types into subsets of \mathcal{D} rather than into sets of:

$$
\text { Values } \quad v::=(v, v) \mid \lambda^{\wedge_{i \in} s_{i} \rightarrow t_{i} \text { X.e }}
$$

Define a new interpretation of types:

$$
\llbracket t \rrbracket_{\mathcal{V}}=\{v \mid \vdash v: t\}
$$

This induces a new subtyping relation:

$$
t \leq_{\mathcal{V}} s \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket t \rrbracket_{\mathcal{V}} \subset \llbracket s \rrbracket_{\mathcal{V}}
$$

Closing the circle

What about the interpretation of types as set of "values"?

 I interpreted types into subsets of \mathcal{D} rather than into sets of:$$
\text { Values } \quad v::=(v, v) \mid \lambda^{\wedge_{i \in} \mid s_{i} \rightarrow t_{i} \text { X.e }}
$$

Define a new interpretation of types:

$$
\llbracket t \rrbracket_{\mathcal{V}}=\{v \mid \vdash v: t\}
$$

This induces a new subtyping relation:

$$
t \leq_{\mathcal{V}} s \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad \llbracket t \rrbracket_{\mathcal{V}} \subset \llbracket s \rrbracket_{\mathcal{V}}
$$

Actually, it is not a new one ... it is the old one:

Theorem [Frisch, Castagna, Benzaken 2002\&2008]

$$
t \leq_{\mathcal{V}} s \quad \Longleftrightarrow \quad t \leq_{\mathcal{D}} s
$$

where $\leq_{\mathcal{D}}$ is the subtyping via \mathcal{D} and used to define $\vdash v: t$

Closing the circle

Was then \mathcal{D} really necessary?

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

$$
\llbracket t \rrbracket_{\mathcal{V}}
$$

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

$$
t \leq t \quad \llbracket t \rrbracket_{\mathcal{V}}
$$

$$
\vdash e: t \quad \vdash v: t
$$

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

$$
\begin{array}{cc}
& \llbracket t]_{\mathcal{D}} \\
t \leq t & {\left[t \rrbracket_{\mathcal{V}}\right.} \\
\vdash e: t & \vdash v: t
\end{array}
$$

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

$\vdash e: t \quad \vdash v: t$

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.
We are in a circular definition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined. wo aro in aromoulanderinition

Closing the circle

Was then \mathcal{D} really necessary?

YES!

λ-abstractions are values and need (sub)typing to be defined.

Outline

(10) Set-theoretic types
(11) Semantic Subtyping
(12) Application to a language.
(13) Adding Parametric Polymorphism: the Types
(14) Adding Parametric Polymorphism: the Language

Motivating examples: reminder 1

The recursive flatten function:

Motivating examples: reminder 1

The recursive flatten function:

```
(* recursive type with union intersection and negation *)
    type Tree(\alpha) = (\alpha\[Any*]) | [ (Tree(\alpha))* ]
(* recursive flatten written in polymorphic CDuce
let flatten ( (Tree(\alpha)) -> [\alpha*] )
    | [] -> []
    | [h ; t] -> (flatten h)@(flatten t)
    | x -> [x]
```


Motivating examples: reminder 1

The recursive flatten function:

```
(* recursive type with union intersection and negation *)
    type Tree(\alpha) = (\alpha\[Any*]) | [ (Tree(\alpha))* ]
(* recursive flatten written in polymorphic CDuce
let flatten ( (Tree(\alpha)) -> [ \alpha*] )
    | [] -> []
    | [h ; t] -> (flatten h)@(flatten t)
    | x -> [x]
```


Rationale

The language does not changes apart from the fact that type variables such as α may occur in type annontations.

Motivating examples: reminder 2

Type refinement of balance for red-black trees

Motivating examples: reminder 2

Type refinement of balance for red-black trees
let balance: (Unbal \rightarrow Rtree) \& $((\beta \backslash$ Unbal $) \rightarrow(\beta \backslash$ Unbal $))=$ function

```
| Blk( z , Red( x, a, Red (y,b,c) ) , d )
| Blk( z , Red( y, Red(x,a,b), c ) , d )
| Blk( x , a , Red( z, Red(y,b,c), d ) )
| Blk( x , a , Red( y, b, Red(z,c,d) ) )
    -> Red ( y, Blk(x,a,b), Blk(z,c,d) )
| x -> x
```


Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{O} \mid \mathbb{1}
$$

Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\rightarrow t| 0 \mid 1 \text { 年 }
$$

Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{O}|\mathbb{1}| \boldsymbol{\alpha}
$$

Idea: Use the previous relation since is defined for "ground types"
Let $\sigma:$ Vars \rightarrow ClosedTypes denote ground substitutions. Define:

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \forall \sigma . s \sigma \leq t \sigma
$$

Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{O}|\mathbb{1}| \boldsymbol{\alpha}
$$

Idea: Use the previous relation since is defined for "ground types"
Let $\sigma:$ Vars \rightarrow ClosedTypes denote ground substitutions. Define:

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \forall \sigma . s \sigma \leq t \sigma
$$

or equivalently

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \forall \sigma \cdot \llbracket s \sigma \rrbracket \subseteq \llbracket t \sigma \rrbracket
$$

Naive solution

$$
t::=B|t \times t| t \rightarrow t|t \vee t| t \wedge t|\neg t| \mathbb{0}|\mathbb{1}| \boldsymbol{\alpha}
$$

Idea: Use the previous relation since is defined for "ground types"
Let $\sigma:$ Vars \rightarrow ClosedTypes denote ground substitutions. Define:

or equivalently

$$
\begin{aligned}
& \text { THIS ISA WRONG WAY: } \\
& \hline \text { MANY PROBLEMS }
\end{aligned}
$$

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is at least as hard as solving Diophantine equations

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is at least as hard as solving Diophantine equations
(2) It breaks parametricity:

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is at least as hard as solving Diophantine equations
(2) It breaks parametricity:

$$
\begin{equation*}
(t \times \alpha) \leq(t \times \neg t) \vee(\alpha \times t) \tag{2}
\end{equation*}
$$

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is at least as hard as solving Diophantine equations
(2) It breaks parametricity:

$$
\begin{equation*}
(t \times \alpha) \leq(t \times \neg t) \vee(\alpha \times t) \tag{2}
\end{equation*}
$$

This inclusion holds if and only if t is an indivisible type (eg., a singleton or a basic type):

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is at least as hard as solving Diophantine equations
(2) It breaks parametricity:

$$
\begin{equation*}
(t \times \alpha) \leq(t \times \neg t) \vee(\alpha \times t) \tag{2}
\end{equation*}
$$

This inclusion holds if and only if t is an indivisible type (eg., a singleton or a basic type):

> Property of indivisible types
> If t is an indivisible type, then for all possible interpretations of α

$$
t \leq \boldsymbol{\alpha} \quad \text { or } \quad \alpha \leq \neg t
$$

holds.

Problems with the naive solution

(1) Haruo Hosoya conjectured that deciding $\forall \sigma . s \sigma \leq t \sigma$ is at least as hard as solving Diophantine equations
(2) It breaks parametricity:

$$
\begin{equation*}
(t \times \alpha) \leq(t \times \neg t) \vee(\alpha \times t) \tag{2}
\end{equation*}
$$

This inclusion holds if and only if t is an indivisible type (eg., a singleton or a basic type):

Property of indivisible types

If t is an indivisible type, then for all possible interpretations of α

$$
t \leq \boldsymbol{\alpha} \quad \text { or } \quad \alpha \leq \neg t
$$

holds.

- If $\alpha \leq \neg t$ then the left element of the union in (2) suffices;
- If $t \leq \boldsymbol{\alpha}$, then $\boldsymbol{\alpha}=(\boldsymbol{\alpha} \backslash t) \vee t$. Thus $(t \times \boldsymbol{\alpha})=(t \times(\boldsymbol{\alpha} \backslash t)) \vee(t \times t)$. This union is contained component-wise in the one in (2).

Problems with the naive solution

The fact that

$$
(t \times \alpha) \leq(t \times \neg t) \vee(\alpha \times t)
$$

holds if and only if t is indivisible is really catastrophic:

Problems with the naive solution

The fact that

$$
(t \times \alpha) \leq(t \times \neg t) \vee(\alpha \times t)
$$

holds if and only if t is indivisible is really catastrophic:

- Deciding subtyping needs deciding indivisibility ... which is very hard.

Problems with the naive solution

The fact that

$$
(t \times \alpha) \leq(t \times \neg t) \vee(\alpha \times t)
$$

holds if and only if t is indivisible is really catastrophic:

- Deciding subtyping needs deciding indivisibility ... which is very hard.
- This subtyping relation breaks parametricity: by subsumption a function generic in its first argument, becomes generic on its second argument.

Problems with the naive solution

The fact that

$$
(t \times \alpha) \leq(t \times \neg t) \vee(\alpha \times t)
$$

holds if and only if t is indivisible is really catastrophic:

- Deciding subtyping needs deciding indivisibility ... which is very hard.
- This subtyping relation breaks parametricity:
by subsumption a function generic in its first argument, becomes generic on its second argument.
- A semantic solution was deemed unfeasible (even w/o arrows)
- Problem eschewed by resorting to syntactic solutions: [Hosoya, Frisch, Castagna: POPL 05], [Vouillon: POPL 06].

Problems with the naive solution

The fact that

$$
(t \times \alpha) \leq(t \times \neg t) \vee(\alpha \times t)
$$

holds if and only if t is indivisible is really catastrophic:

- Deciding subtyping needs deciding indivisibility ... which is very hard.
- This subtyping relation breaks parametricity: by subsumption a function generic in its first argument, becomes generic on its second argument.
- A semantic solution was deemed unfeasible (even w/o arrows)
- Problem eschewed by resorting to syntactic solutions: [Hosoya, Frisch, Castagna: POPL 05], [Vouillon: POPL 06].

A SEMANTIC SOLUTION IS POSSIBLE

A semantic solution

A faint intuition

The loss of parametricity is only due to the interpretation of indivisible types, all the rest works (more or less) smoothly

A semantic solution

A faint intuition

The loss of parametricity is only due to the interpretation of indivisible types, all the rest works (more or less) smoothly

The crux of the problem is that for an indivisible type \boldsymbol{i}

$$
\boldsymbol{i} \leq \boldsymbol{\alpha} \quad \text { or } \quad \boldsymbol{\alpha} \leq \neg \boldsymbol{i}
$$

validity can stutter from one formula to another, missing in this way the uniformity typical of parametricity

A semantic solution

A faint intuition

The loss of parametricity is only due to the interpretation of indivisible types, all the rest works (more or less) smoothly

The crux of the problem is that for an indivisible type \boldsymbol{i}

$$
\boldsymbol{i} \leq \boldsymbol{\alpha} \quad \text { or } \quad \boldsymbol{\alpha} \leq \neg \boldsymbol{i}
$$

validity can stutter from one formula to another, missing in this way the uniformity typical of parametricity

The leitmotiv of this work

A semantic characterization of models where stuttering is absent, should yield a subtyping relation that is:

- Semantic
(2) Intuitive for the programmer
(3) Decidable

A semantic solution

Rough idea

Make indivisible types "splittable" so that type variables can range over strict subsets of every type, indivisible types included.
[intuition: interpret all non-empty types into infinite sets]

A semantic solution

Rough idea

Make indivisible types "splittable" so that type variables can range over strict subsets of every type, indivisible types included. [intuition: interpret all non-empty types into infinite sets]

Since this cannot be done at syntactic level, move to the semantic one and replace ground substitutions by semantic assignments:

$$
\eta: \text { Vars } \rightarrow \mathcal{P}(\mathcal{D})
$$

A semantic solution

Rough idea

Make indivisible types "splittable" so that type variables can range over strict subsets of every type, indivisible types included.
[intuition: interpret all non-empty types into infinite sets]
Since this cannot be done at syntactic level, move to the semantic one and replace ground substitutions by semantic assignments:

$$
\eta: \text { Vars } \rightarrow \mathcal{P}(\mathcal{D})
$$

and now the interpretation function takes an extra parameter

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})^{\text {Vars }} \rightarrow \mathcal{P}(\mathcal{D})
$$

A semantic solution

Rough idea

Make indivisible types "splittable" so that type variables can range over strict subsets of every type, indivisible types included.
[intuition: interpret all non-empty types into infinite sets]
Since this cannot be done at syntactic level, move to the semantic one and replace ground substitutions by semantic assignments:

$$
\eta: \text { Vars } \rightarrow \mathcal{P}(\mathcal{D})
$$

and now the interpretation function takes an extra parameter

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})^{\text {Vars }} \rightarrow \mathcal{P}(\mathcal{D})
$$

with

$$
\begin{aligned}
& \llbracket \alpha \rrbracket \eta \quad=\eta(\alpha) \quad[\llbracket \neg t]\rceil \eta=\mathcal{D} \backslash \llbracket t]\rceil \eta \\
& {\left[\left[t_{1} \vee t_{2}\right]\right] \eta=\left[[t _ { 1 }] \rrbracket \eta \cup \left[\left[t_{2}\right] \rrbracket \eta \quad\left[\left[t_{1} \wedge t_{2}\right]\right] \eta=\llbracket\left[t_{1}\right] \rrbracket \eta \cap\left[\left[t_{2}\right]\right] \eta\right.\right.} \\
& \llbracket \cup \rrbracket \eta=\varnothing \quad \llbracket \mathbb{1} \rrbracket \eta=\mathcal{D}
\end{aligned}
$$

A semantic solution

Rough idea

Make indivisible types "splittable" so that type variables can range over strict subsets of every type, indivisible types included.
[intuition: interpret all non-empty types into infinite sets]
Since this cannot be done at syntactic level, move to the semantic one and replace ground substitutions by semantic assignments:

$$
\eta: \text { Vars } \rightarrow \mathcal{P}(\mathcal{D})
$$

and now the interpretation function takes an extra parameter

$$
\llbracket \rrbracket: \text { Types } \rightarrow \mathcal{P}(\mathcal{D})^{\text {Vars }} \rightarrow \mathcal{P}(\mathcal{D})
$$

with

$$
\begin{aligned}
& \llbracket \alpha \rrbracket \eta \quad=\eta(\boldsymbol{\alpha}) \quad[[\neg t]\rceil \eta=\mathcal{D} \backslash \llbracket t]\rceil \eta \\
& {\left[\left[t_{1} \vee t_{2}\right]\right] \eta=\left[[t _ { 1 }] \rrbracket \eta \cup \left[\left[t_{2}\right] \rrbracket \eta \quad\left[\left[t_{1} \wedge t_{2}\right]\right] \eta=\llbracket\left[t_{1}\right] \rrbracket \eta \cap\left[\left[t_{2}\right]\right] \eta\right.\right.} \\
& \llbracket \mathbb{\square Q \eta}=\varnothing \quad \llbracket \mathbb{1} \rrbracket \eta=\mathcal{D}
\end{aligned}
$$

and such that it satisfies:

$$
\llbracket\left[t _ { 1 } \rightarrow s _ { 1 } \rrbracket \eta \subseteq \llbracket \left[t _ { 2 } \rightarrow s _ { 2 } \rrbracket \eta \quad \Longleftrightarrow \mathcal { P } \left(\overline{\left.\left[t_{1}\right] \rrbracket \eta \times \overline{\llbracket s_{1} \rrbracket \eta}\right) \subseteq \mathcal{P}\left(\left[\left[t_{2}\right] \rrbracket \eta \times \overline{\left.\llbracket s_{2}\right] \eta}\right)\right.}\right.\right.\right.
$$

Subtyping relation

In this framework the natural definition of subtyping is

$$
s \leq t \stackrel{\text { def }}{\Longleftrightarrow} \forall \eta \cdot \llbracket s \rrbracket \eta \subseteq \llbracket[t \rrbracket \eta
$$

It "just" remains to find the uniformity condition to avoid stuttering and recover parametricity.

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity property holds

$$
\left.\left.\left.\forall \eta \cdot\left(\left[\left[t_{1}\right] \rrbracket \eta=\varnothing \text { or } \llbracket t_{2}\right]\right\rceil \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1}\right]\right] \eta=\varnothing\right) \text { or }\left(\forall \eta \cdot\left[\llbracket t_{2} \rrbracket \eta=\varnothing\right)\right.
$$

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity property holds

$$
\left.\left.\left.\left.\forall \eta \cdot\left(\left[\left[t_{1}\right]\right] \eta=\varnothing \text { or } \llbracket t_{2}\right]\right] \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1}\right]\right] \eta=\varnothing\right) \text { or }\left(\forall \eta \cdot \llbracket\left[t_{2} \rrbracket \eta=\varnothing\right)\right.
$$

- It avoids stuttering: $\forall \eta \cdot([\llbracket t \wedge \neg \alpha]\rceil \eta=\varnothing$ or $\llbracket t \wedge \alpha \rrbracket \rrbracket \eta=\varnothing)$-that is, ($t \leq \boldsymbol{\alpha}$ or $\boldsymbol{\alpha} \leq \neg t$)— holds if and only if t is empty.

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity property holds

$$
\left.\forall \eta \cdot\left(\left[\left[t_{1}\right] \rrbracket \eta=\varnothing \text { or } \llbracket t_{2}\right] \rrbracket \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1}\right] \rrbracket \eta=\varnothing\right) \text { or }\left(\forall \eta \cdot \left[\left[t_{2} \rrbracket \eta=\varnothing\right)\right.\right.
$$

- It avoids stuttering: $\forall \eta \cdot([\llbracket t \wedge \neg \alpha]\rceil \eta=\varnothing$ or $\llbracket t \wedge \alpha \rrbracket \rrbracket \eta=\varnothing)$-that is, ($t \leq \boldsymbol{\alpha}$ or $\boldsymbol{\alpha} \leq \neg t$)— holds if and only if t is empty.
- There are natural models:all models that map all non-empty types into infinite sets satisfy it [our initial intuition].

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity property holds

$$
\left.\left.\forall \eta \cdot\left(\left[\left[t_{1}\right] \rrbracket \eta=\varnothing \text { or } \llbracket t_{2}\right]\right\rceil \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1}\right] \rrbracket \eta=\varnothing\right) \text { or }\left(\forall \eta \cdot\left[\llbracket t_{2} \rrbracket \eta=\varnothing\right)\right.
$$

- It avoids stuttering: $\forall \eta \cdot([\llbracket t \wedge \neg \alpha] \eta=\varnothing$ or $\llbracket t \wedge \alpha \rrbracket \rrbracket \eta=\varnothing)$-that is, ($t \leq \boldsymbol{\alpha}$ or $\boldsymbol{\alpha} \leq \neg t$)— holds if and only if t is empty.
- There are natural models:all models that map all non-empty types into infinite sets satisfy it [our initial intuition].
- A sound, complete, and terminating decision algorithm: the condition gives us exactly the right conditions needed to reuse the subtyping algorithm devised for ground types.

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity property holds

$$
\left.\left.\forall \eta \cdot\left(\left[\left[t_{1}\right] \rrbracket \eta=\varnothing \text { or } \llbracket t_{2}\right]\right\rceil \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1}\right] \rrbracket \eta=\varnothing\right) \text { or }\left(\forall \eta \cdot\left[\llbracket t_{2} \rrbracket \eta=\varnothing\right)\right.
$$

- It avoids stuttering: $\forall \eta \cdot([\llbracket t \wedge \neg \alpha] \eta=\varnothing$ or $\llbracket t \wedge \alpha \rrbracket \rrbracket \eta=\varnothing)$-that is, ($t \leq \boldsymbol{\alpha}$ or $\boldsymbol{\alpha} \leq \neg t$)— holds if and only if t is empty.
- There are natural models:all models that map all non-empty types into infinite sets satisfy it [our initial intuition].
- A sound, complete, and terminating decision algorithm: the condition gives us exactly the right conditions needed to reuse the subtyping algorithm devised for ground types.
- An intuitive relation: the algorithm returns intuitive results (actually, it helps to better understand twisted examples)

The magic property: convexity

Consider only models of semantic subtyping in which the following convexity property holds

$$
\left.\left.\forall \eta \cdot\left(\left[\left[t_{1}\right] \rrbracket \eta=\varnothing \text { or } \llbracket t_{2}\right]\right] \eta=\varnothing\right) \Longleftrightarrow\left(\forall \eta \cdot \llbracket t_{1}\right] \rrbracket \eta=\varnothing\right) \text { or }\left(\forall \eta \cdot \left[\left[t_{2} \rrbracket \eta=\varnothing\right)\right.\right.
$$

- It avoids stuttering: $\forall \eta \cdot(\llbracket t \wedge \neg \alpha \rrbracket \rrbracket \eta=\varnothing$ or $\llbracket t \wedge \alpha \rrbracket \rrbracket \eta=\varnothing)$ - that is, ($t \leq \boldsymbol{\alpha}$ or $\boldsymbol{\alpha} \leq \neg t$)- holds if and only if t is empty.
- There are natural models:all models that map all non-empty types into infinite sets satisfy it [our initial intuition].
- A sound, complete, and terminating decision algorithm: the condition gives us exactly the right conditions needed to reuse the subtyping algorithm devised for ground types.
- An intuitive relation: the algorithm returns intuitive results (actually, it helps to better understand twisted examples)

Examples of subtyping relations

Examples

We can internalize properties such as:

$$
(\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma) \sim \alpha \vee \beta \rightarrow \gamma
$$

Examples

We can internalize properties such as:

$$
(\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma) \sim \alpha \vee \beta \rightarrow \gamma
$$

or distributivity laws:

$$
(\alpha \vee \beta \times \gamma) \sim(\alpha \times \gamma) \vee(\beta \times \gamma)
$$

Examples

We can internalize properties such as:

$$
(\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma) \sim \alpha \vee \beta \rightarrow \gamma
$$

or distributivity laws:

$$
(\alpha \vee \beta \times \gamma) \sim(\alpha \times \gamma) \vee(\beta \times \gamma)
$$

and combining them deduce:

$$
\left(\alpha \times \gamma \rightarrow \delta_{1}\right) \wedge\left(\beta \times \gamma \rightarrow \delta_{2}\right) \leq(\alpha \vee \beta \times \gamma) \rightarrow \delta_{1} \vee \delta_{2}
$$

Examples

We can internalize properties such as:

$$
(\alpha \rightarrow \gamma) \wedge(\beta \rightarrow \gamma) \sim \alpha \vee \beta \rightarrow \gamma
$$

or distributivity laws:

$$
(\alpha \vee \beta \times \gamma) \sim(\alpha \times \gamma) \vee(\beta \times \gamma)
$$

and combining them deduce:

$$
\left(\alpha \times \gamma \rightarrow \delta_{1}\right) \wedge\left(\beta \times \gamma \rightarrow \delta_{2}\right) \leq(\alpha \vee \beta \times \gamma) \rightarrow \delta_{1} \vee \delta_{2}
$$

Of course the problematic relation never holds, whatever the t :

$$
(t \times \alpha) \not \leq(t \times \neg t) \vee(\alpha \times t)
$$

We can prove relevant relations on infinite types, eg., for the type of generic α-lists:

$$
\alpha-\text { list }=\mu z .(\alpha \times z) \vee \text { nil }
$$

We can prove relevant relations on infinite types, eg., for the type of generic α-lists:

$$
\alpha \text {-list }=\mu z .(\alpha \times z) \vee \text { nil }
$$

we can prove that it contains both the α-lists of even length

$$
\underbrace{\mu z \cdot(\alpha \times(\alpha \times z)) \vee \text { nil }}_{\alpha \text {-lists of even length }} \leq \underbrace{\mu z \cdot(\alpha \times z) \vee \text { nil }}_{\alpha \text {-lists }}
$$

and the α-lists with of odd length

$$
\underbrace{\mu z \cdot(\alpha \times(\alpha \times z)) \vee(\alpha \times \text { nil })}_{\alpha \text {-lists of odd length }} \leq \underbrace{\mu z \cdot(\alpha \times z) \vee \text { nil }}_{\alpha-l i s t s}
$$

We can prove relevant relations on infinite types, eg., for the type of generic α-lists:

$$
\alpha \text {-list }=\mu z .(\alpha \times z) \vee \text { nil }
$$

we can prove that it contains both the α-lists of even length

$$
\underbrace{\mu z \cdot(\alpha \times(\alpha \times z)) \vee \text { nil }}_{\alpha \text {-lists of even length }} \leq \underbrace{\mu z \cdot(\alpha \times z) \vee \text { nil }}_{\alpha \text {-lists }}
$$

and the α-lists with of odd length

$$
\underbrace{\mu z \cdot(\alpha \times(\alpha \times z)) \vee(\alpha \times \text { nil })}_{\alpha \text {-lists of odd length }} \leq \underbrace{\mu z \cdot(\alpha \times z) \vee \text { nil }}_{\alpha-\text {-lists }}
$$

and that it is itself contained in the union of the two, that is:

$$
\alpha \text {-list } \sim(\mu z .(\alpha \times(\alpha \times z)) \vee \text { nil }) \vee(\mu z .(\alpha \times(\alpha \times z)) \vee(\alpha \times \text { nil }))
$$

We can prove relevant relations on infinite types, eg., for the type of generic α-lists:

$$
\alpha \text {-list }=\mu z .(\alpha \times z) \vee \text { nil }
$$

we can prove that it contains both the α-lists of even length

$$
\underbrace{\mu z \cdot(\alpha \times(\alpha \times z)) \vee \text { nil }}_{\alpha \text {-lists of even length }} \leq \underbrace{\mu z \cdot(\alpha \times z) \vee \text { nil }}_{\alpha \text {-lists }}
$$

and the α-lists with of odd length

$$
\underbrace{\mu z \cdot(\alpha \times(\alpha \times z)) \vee(\alpha \times \text { nil })}_{\alpha \text {-lists of odd length }} \leq \underbrace{\mu z \cdot(\alpha \times z) \vee \text { nil }}_{\alpha \text {-lists }}
$$

and that it is itself contained in the union of the two, that is:

$$
\alpha \text {-list } \sim(\mu z .(\alpha \times(\alpha \times z)) \vee \text { nil }) \vee(\mu z .(\alpha \times(\alpha \times z)) \vee(\alpha \times \text { nil }))
$$

And we can prove far more complicated relations (see paper).

Subtyping algorithm

Subtyping Algorithm: $t_{1} \leq t_{2}$

Step 1: Transform the subtyping problem into an emptiness decision problem:

$$
\left.t_{1} \leq t_{2} \Longleftrightarrow \forall \eta \cdot \llbracket t_{1}\right] \rrbracket \cap \subseteq\left[[t _ { 2 }] \rrbracket \eta \Longleftrightarrow \forall \eta \cdot \left[\left[t_{1} \wedge \neg t_{2}\right] \rrbracket \eta=\varnothing \Longleftrightarrow t_{1} \wedge \neg t_{2} \leq \mathbb{0}\right.\right.
$$

Subtyping Algorithm: $t_{1} \leq t_{2}$

Step 1: Transform the subtyping problem into an emptiness decision problem:
$\left.t_{1} \leq t_{2} \Longleftrightarrow \forall \eta \cdot \llbracket t_{1} \rrbracket \rrbracket \subseteq \llbracket t_{2} \rrbracket \eta \Longleftrightarrow \forall \eta \cdot \llbracket t_{1} \wedge \neg t_{2}\right] \rrbracket \eta=\varnothing \Longleftrightarrow t_{1} \wedge \neg t_{2} \leq \mathbb{0}$
Step 2: Put the type whose emptiness is to be decided in disjunctive normal form.

$$
\bigvee_{i \in I} \bigwedge_{j \in J} \ell_{i j}
$$

where $a::=b|t \times t| t \rightarrow t|\mathbb{O}| \mathbb{1} \mid \alpha$ and $\ell::=a \mid \neg a$

Subtyping Algorithm: $t_{1} \leq t_{2}$

Step 1: Transform the subtyping problem into an emptiness decision problem:
$t_{1} \leq t_{2} \Longleftrightarrow \forall \eta \cdot \llbracket t_{1} \rrbracket \rrbracket \subseteq \subseteq\left[t_{2} \rrbracket \rrbracket \eta \Longleftrightarrow \forall \eta \cdot \llbracket\left[t_{1} \wedge \neg t_{2}\right] \rrbracket \eta=\varnothing \Longleftrightarrow t_{1} \wedge \neg t_{2} \leq \mathbb{0}\right.$
Step 2: Put the type whose emptiness is to be decided in disjunctive normal form.

$$
\bigvee_{i \in I} \bigwedge_{j \in J} \ell_{i j}
$$

where $a::=b|t \times t| t \rightarrow t|\mathbb{O}| \mathbb{1} \mid \alpha$ and $\ell::=a \mid \neg a$

Step 3: Simplify mixed intersections:

Solve:

$$
\bigwedge_{i \in I} a_{i} \bigwedge_{j \in J} \neg a_{j}^{\prime} \bigwedge_{h \in H} \alpha_{h} \bigwedge_{k \in K} \neg \beta_{k}
$$

where all a have the same toplevel constructor.

Step 4: Eliminate toplevel negative variables.,

$$
\forall \eta \cdot[[t \rrbracket \eta=\varnothing \Longleftrightarrow \forall \eta \cdot[\llbracket t[\neg \alpha / \alpha]]] \eta=\varnothing
$$

so replace $\neg \beta_{k}$ for β_{k} (forall $k \in K$)
Solve:

$$
\bigwedge_{i \in I} a_{i} \bigwedge_{j \in J} \neg a_{j}^{\prime} \bigwedge_{h \in H} \alpha_{h}
$$

Step 4: Eliminate toplevel negative variables.,

$$
\forall \eta \cdot[[t] \eta=\varnothing \Longleftrightarrow \forall \eta \cdot[[t[\neg \alpha / \alpha]]] \eta=\varnothing
$$

so replace $\neg \beta_{k}$ for β_{k} (forall $k \in K$)
Solve:

$$
\bigwedge_{i \in I} a_{i} \bigwedge_{j \in J} \neg a_{j}^{\prime} \bigwedge_{h \in H} \alpha_{h}
$$

Step 5: Eliminate toplevel variables.

$$
\bigwedge_{t_{1} \times t_{2} \in P} t_{1} \times t_{2} \bigwedge_{h \in H} \alpha_{h} \leq \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N} t_{1}^{\prime} \times t_{2}^{\prime}
$$

holds if and only if

$$
\bigwedge_{t_{1} \times t_{2} \in P} t_{1} \sigma \times t_{2} \sigma \bigwedge_{h \in H} \gamma_{h}^{1} \times \gamma_{h}^{2} \leq \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N} t_{1}^{\prime} \sigma \times t_{2}^{\prime} \sigma
$$

where $\sigma=\left[\left(\gamma_{h}^{1} \times \gamma_{h}^{2}\right) \vee \alpha_{h} / \alpha_{h}\right]_{h \in H}$
(similarly for arrows)

Step 6: Eliminate toplevel constructors, memoize, and recurse.

$$
\begin{equation*}
\bigwedge_{t_{1} \times t_{2} \in P} t_{1} \times t_{2} \leq \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N} t_{1}^{\prime} \times t_{2}^{\prime} \tag{3}
\end{equation*}
$$

Equation (3) holds if and only if for all $N^{\prime} \subseteq N$,

$$
\forall \eta \cdot\left(\llbracket \bigwedge_{t_{1} \times t_{2} \in P} t_{1} \wedge \bigwedge_{t_{1}^{\prime} \times t_{2}^{\prime} \in N^{\prime}} \neg t_{1}^{\prime} \rrbracket \eta=\varnothing \text { or } \llbracket \bigwedge_{t_{1} \times t_{2} \in P} t_{2} \wedge \bigwedge_{t_{1}^{\prime} \times t_{2}^{\prime} \in N \backslash N^{\prime}} \neg t_{2}^{\prime} \rrbracket \eta=\varnothing\right)
$$

Apply convexity to distribute the quantification over the or's:

$$
\forall \eta \cdot\left(\llbracket \bigwedge_{t_{1} \times t_{2} \in P} t_{1} \wedge \bigwedge_{t_{1}^{\prime} \times t_{2}^{\prime} \in N^{\prime}} \neg t_{1}^{\prime} \rrbracket \eta=\varnothing\right) \text { or } \forall \eta \cdot\left(\llbracket \bigwedge_{t_{1} \times t_{2} \in P} t_{2} \wedge \bigwedge_{t_{1}^{\prime} \times t_{2}^{\prime} \in N \backslash N^{\prime}} \neg t_{2}^{\prime} \rrbracket \eta=\varnothing\right)
$$

Yielding the following simplification:
(similarly for arrows)

$$
\forall N^{\prime} \subseteq N .\left(\bigwedge_{t_{1} \times t_{2} \in P} t_{1} \leq \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N^{\prime}} t_{1}^{\prime}\right) \text { or }\left(\bigwedge_{t_{1} \times t_{2} \in P} t_{2} \leq \bigvee_{t_{1}^{\prime} \times t_{2}^{\prime} \in N \backslash N^{\prime}} t_{2}^{\prime}\right)
$$

Outline

(10) Set-theoretic types
(11) Semantic Subtyping
(12) Application to a language.
(13) Adding Parametric Polymorphism: the Types
(14) Adding Parametric Polymorphism: the Language

A motivating example in Haskell

$$
\begin{aligned}
& \text { map : : }(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \text { map } f \text { l = case l of } \\
& \text { | [] -> [] } \quad \text { (} \mathrm{x} \text { : } \mathrm{xs} \text {) (} \mathrm{x} \text { : map } \mathrm{f} x \mathrm{x} \text {) }
\end{aligned}
$$

A motivating example in Haskell

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of } \\
& \left.\left\lvert\, \begin{array}{lll}
{[]} & -> & {[]} \\
(x & : x s
\end{array}\right.\right)->(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \left\lvert\, \begin{array}{c}
\text { Int }->\left(x^{\prime} \bmod ^{\prime} 2\right) \\
->x
\end{array}\right.
\end{aligned}
$$

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of } \\
& \left.\left\lvert\, \begin{array}{ll}
{[]} & -> \\
\mid(x] & x s
\end{array}\right.\right)->(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \mid \text { Int }->\underset{->}{x}\left(x^{\prime} \bmod ^{\prime} 2\right)=0
\end{aligned}
$$

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f l=\text { case } l \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int }->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0 \\
& \text { _ -> } \mathrm{x}
\end{aligned}
$$

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f l=\text { case } l \text { of } \\
& \left.\left\lvert\, \begin{array}{ll}
{[]} & -> \\
(x] & x S
\end{array}\right.\right) \rightarrow(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int }->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0 \\
& \text { _ -> } \mathrm{x}
\end{aligned}
$$

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { even : : (Int } \rightarrow \text { Bool) } \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { cason of } \\
& \text { Lype case } \underbrace{\left.\left\lvert\, \begin{array}{l}
\text { Int }-> \\
\mid->x
\end{array} x^{\prime} \bmod ^{\prime} 2\right.\right)}==0
\end{aligned}
$$

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
\operatorname{map}: & (\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
\operatorname{map} f 1 & =\text { case } 1 \text { of } \\
& \left\lvert\, \begin{array}{ll}
{[1]->[]} \\
& (x: x s) \rightarrow(f x: \operatorname{map} f x s)
\end{array}\right.
\end{aligned}
$$

$$
\text { even :: (Int } \rightarrow \text { Bool) }(\text { (alnt }) \rightarrow \text { (aInt)) }
$$

$$
\text { even } x=\text { cason of }
$$

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost) [cf. typing of balance]

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of } \\
& \left.\left\lvert\, \begin{array}{ll}
{[]} & -> \\
\mid(x] & x s
\end{array}\right.\right)->(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int -> (x 'mod' 2) == } 0 \\
& \text { _ -> } \mathrm{x}
\end{aligned}
$$

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.
Common pattern for functional data structures: red-black trees balancing; ZDD operations; XML nodes modification

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of } \\
& \left.\left\lvert\, \begin{array}{lll}
{[]} & -> & {[]} \\
(x & : x s
\end{array}\right.\right)->(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int }->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0 \\
& \text { _ -> } \mathrm{x}
\end{aligned}
$$

- Expression: if the argument is an integer then return the Boolean expression otherwise return the argument
- Type: when applied to an Int it returns a Bool; when applied to an argument that is not an Int it returns a result of the same type.

The combination of type-case and intersections yields statically typed dynamic overloading.

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of } \\
& \left.\left\lvert\, \begin{array}{ll}
{[]} & -> \\
(x] & x s
\end{array}\right.\right) \rightarrow(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int }->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0 \\
& \text { _ -> } \mathrm{x}
\end{aligned}
$$

This example as a yardstick. I want to define a language that:

(1) Can define both map and even

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f l=\text { case } l \text { of } \\
& \left.\left\lvert\, \begin{array}{lll}
{[]} & -> \\
(x & : & x s
\end{array}\right.\right) \rightarrow(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int }->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0 \\
& \text { _ -> x }
\end{aligned}
$$

This example as a yardstick. I want to define a language that:

(1) Can define both map and even
(2) Can check the types specified in the signature

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int -> (x 'mod' 2) == } 0 \\
& \text { _ -> } x
\end{aligned}
$$

This example as a yardstick. I want to define a language that:

(1) Can define both map and even
(2) Can check the types specified in the signature
(3) Can deduce the type of the partial application map even

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of } \\
& \left.\left\lvert\, \begin{array}{lll}
{[]} & -> \\
(x & : & x s
\end{array}\right.\right) \rightarrow(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int -> (x 'mod' 2) == } 0 \\
& \text { _ -> } x
\end{aligned}
$$

This example as a yardstick. I want to define a language that:
(1) Can define both map and even
(2) Can check the types specified in the signature
(3) Can deduce the type of the partial application map even

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of } \\
& \left.\left\lvert\, \begin{array}{lll}
{[]} & -> \\
(x & : & x s
\end{array}\right.\right) \rightarrow(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int -> (x 'mod' 2) == } 0 \\
& \text { _ -> x }
\end{aligned}
$$

This example as a yardstick. I want to define a language that:
(1) Can define both map ar Tough!
(2) Can check the types sp
(3) Can deduce the type of the partial application map even

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of } \\
& \left.\left\lvert\, \begin{array}{ll}
{[]} & -> \\
\mid(x] & x s
\end{array}\right.\right)->(f x: \operatorname{map} f x s) \\
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int }->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0 \\
& \text { _ -> } x
\end{aligned}
$$

We expect map even to have the following type:
$([$ Int $] \rightarrow[$ Bool $]) \wedge$
$([\alpha \backslash$ Int $] \rightarrow[\alpha \backslash$ Int $]) \wedge$
$([\alpha \vee \operatorname{Int}] \rightarrow[(\alpha \backslash \operatorname{Int}) \vee$ Bool $])$

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int }->\left(x{ }^{\prime} \bmod ^{\prime} 2\right)=0 \\
& \text { _ -> } \mathrm{x}
\end{aligned}
$$

We expect map even to have the following type:
$([$ Int $] \rightarrow[$ Bool $]) \wedge$
$([\alpha \backslash$ Int $] \rightarrow[\alpha \backslash$ Int $]) \wedge$
$([\alpha \vee \operatorname{Int}] \rightarrow[(\alpha \backslash \operatorname{Int}) \vee B o o l])$
int lists are transformed into bool lists lists w/o ints return the same type ints in the arg. are replaced by bools

A motivating example in Haskell (almost) [cf. typing of balance]

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
& \operatorname{map} f 1=\text { case } 1 \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { even }::(\text { Int } \rightarrow \text { Bool }) \wedge((\alpha \backslash \text { Int }) \rightarrow(\alpha \backslash \text { Int })) \\
& \text { even } x=\text { case } x \text { of } \\
& \text { Int -> (x 'mod' 2) }==0 \\
& \text { _ -> } \mathrm{x}
\end{aligned}
$$

We expect map even to have the following type:
$([$ Int $] \rightarrow[$ Bool $]) \wedge$
$[\alpha \backslash$ Int $] \rightarrow[\alpha \backslash$ Int $]) \wedge$
$(\alpha \alpha$ Int $] \rightarrow[(\alpha \backslash$ Int $) \vee$ Bool $])$

int lists are transformed into bool lists

 lists w/o ints return the same type ints in the arg. are replaced by boolsDifficult because of expansion: needs a set of type substitutions —rather than just one - to unify the domain and the argument types.

The rule for applications

1. In the type system:

$$
\begin{aligned}
& \text { (APPL) } \\
& \frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
\end{aligned}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow].

The rule for applications

1. In the type system:

$$
\begin{aligned}
& (\text { APPL) } \\
& \frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
\end{aligned}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow].

2. Subsumption elimination:

$$
\begin{aligned}
& \text { (APPL-ALGORITHM) } \\
& \frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t \quad \Gamma \vdash_{\mathcal{A}} e_{2}: s}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}} \quad \begin{array}{l}
t \leq 0 \rightarrow \mathbb{1} \\
s \leq \operatorname{dom}(t)
\end{array}
\end{aligned}
$$

The rule for applications

1. In the type system:

(APP)

$$
\frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow].

2. Subsumption elimination:

$$
\begin{aligned}
& \text { (ApPL-ALGORITHM) } \\
& \frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}} \underbrace{}_{\mathcal{A}} e_{2}: s \\
& \text { conditions } \\
& \text { for Typeobility }
\end{aligned}
$$

The rule for applications

1. In the type system:

$$
\begin{aligned}
& (\text { APPL) } \\
& \frac{\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s}{\Gamma \vdash e_{1} e_{2}: u}
\end{aligned}
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow].

2. Subsumption elimination:

$$
\begin{aligned}
& \text { (APPL-ALGORITHM) } \\
& \frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t \quad \Gamma \vdash_{\mathcal{A}} e_{2}: s}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}} \quad \begin{array}{l}
t \leq 0 \rightarrow \mathbb{1} \\
s \leq \operatorname{dom}(t)
\end{array}
\end{aligned}
$$

The rule for applications

1. In the type system:

$$
\begin{aligned}
& (\mathrm{APPL}) \\
& \Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s \\
& \Gamma \vdash e_{1} e_{2}: u
\end{aligned}
$$

[The type of the function is subsumed to an arrow and the type of the

argument is subsumed to the domain of this arrow].
2. Subsumption elimination:

$$
\begin{aligned}
& \text { (APPL-ALGORITHM) } \\
& \frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t \quad \Gamma \vdash_{\mathcal{A}} e_{2}: s}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}}
\end{aligned} \begin{aligned}
& t \leq 0 \rightarrow \mathbb{1} \\
& s \leq \operatorname{dom}(t)
\end{aligned}
$$

3. Inference of type substitutions $\left[\right.$ where $\left.t\left[\sigma_{i}\right]_{i \in I} \stackrel{\text { det }}{=} \bigwedge_{i \in I} t \sigma_{i}\right]$

$$
\begin{aligned}
& \text { (APPL-INFERENCE) } \\
& \frac{\exists\left[\sigma_{i}\right]_{i \in I},\left[\sigma_{j}^{\prime}\right]_{j \in J} \quad \Gamma \vdash_{I} e_{1}: t \quad \Gamma \vdash_{I} e_{2}: s}{\Gamma \vdash_{I} e_{1} e_{2}: \min \left\{u \mid t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq s\left[\sigma_{i}\right]_{i \in I} \rightarrow u\right\}} \quad t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq 0 \rightarrow \mathbb{1} \\
& s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in J}\right)
\end{aligned}
$$

The rule for applications

1. In the type system:
(APPL)
$\Gamma \vdash e_{1}: s \rightarrow u \quad \Gamma \vdash e_{2}: s$

$$
\Gamma \vdash e_{1} e_{2}: u
$$

[The type of the function is subsumed to an arrow and the type of the argument is subsumed to the domain of this arrow].
2. Subsumption elimination:

$$
\begin{aligned}
& \text { (APPL-ALGORITHM) } \\
& \frac{\Gamma \vdash_{\mathcal{A}} e_{1}: t \quad \Gamma \vdash_{\mathcal{A}} e_{2}: s}{\Gamma \vdash_{\mathcal{A}} e_{1} e_{2}: \min \{u \mid t \leq s \rightarrow u\}} \quad \begin{array}{l}
t \leq 0 \rightarrow \mathbb{1} \\
s \leq \operatorname{dom}(t)
\end{array}
\end{aligned}
$$

3. Inference of type substitutions conditions Typeability $\quad\left[\right.$ where $\left.t\left[\sigma_{i}\right]_{i \in 1} \stackrel{\text { def }}{=} \Lambda_{i \in 1} t \sigma_{i}\right]$

$$
\begin{aligned}
& \text { (APPL-INEERENC) } \\
& \exists\left[\sigma_{i}\right]_{i \in I},\left[\sigma_{j}^{\prime}\right]_{j \in \nu} \Gamma \vdash_{I} e_{1}: t \quad \Gamma \vdash_{I} e_{2}: s \quad t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq \mathbb{O} \rightarrow \mathbb{1} \\
& \Gamma \vdash_{I} e_{1} e_{2}: \min \left\{u \mid t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq s\left[\sigma_{i}\right]_{i \in I} \rightarrow u\right\} \quad s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in}\right.
\end{aligned}
$$

Tallying problem

The problem of inferring the type of an application is thus to find for s and t given, two sets $\left[\sigma_{i}\right]_{i \in l},\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq \mathbb{O} \rightarrow \mathbb{1} \quad \text { and } \quad s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in J}\right)
$$

Tallying problem

The problem of inferring the type of an application is thus to find for s and t given, two sets $\left[\sigma_{i}\right]_{i \in I},\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq \mathbb{O} \rightarrow \mathbb{1} \quad \text { and } \quad s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in J}\right)
$$

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)

Let s and t be two types. A type-substitution σ is a solution for the tallying of (s, t) iff $s \sigma \leq t \sigma$.

Tallying problem

The problem of inferring the type of an application is thus to find for s and t given, two sets $\left[\sigma_{i}\right]_{i \in I},\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq \mathbb{O} \rightarrow \mathbb{1} \quad \text { and } \quad s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in J}\right)
$$

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)

Let s and t be two types. A type-substitution σ is a solution for the tallying of (s, t) iff $s \sigma \leq t \sigma$.

Generally: let $C=\left\{\left(s_{1} \leq t_{1}\right), \ldots,\left(s_{n} \leq t_{n}\right)\right\}$ a constraint set. A type-substitution σ is a solution for the tallying of C iff $s \sigma \leq t \sigma$ for all $(s \leq t) \in C$.

Tallying problem

The problem of inferring the type of an application is thus to find for s and t given, two sets $\left[\sigma_{i}\right]_{i \in I},\left[\sigma_{j}^{\prime}\right]_{j \in J}$ such that:

$$
t\left[\sigma_{j}^{\prime}\right]_{j \in J} \leq \mathbb{O} \rightarrow \mathbb{1} \quad \text { and } \quad s\left[\sigma_{i}\right]_{i \in I} \leq \operatorname{dom}\left(t\left[\sigma_{j}^{\prime}\right]_{j \in J}\right)
$$

This can be reduced to solving a suite of tallying problems:

Definition (Type tallying)

Let s and t be two types. A type-substitution σ is a solution for the tallying of (s, t) iff $s \sigma \leq t \sigma$.

Generally: let $C=\left\{\left(s_{1} \leq t_{1}\right), \ldots,\left(s_{n} \leq t_{n}\right)\right\}$ a constraint set. A type-substitution σ is a solution for the tallying of C iff $s \sigma \leq t \sigma$ for all $(s \leq t) \in C$.

Type tallying is decidable and a sound and complete set of solutions for every tallying problem can be effectively found in three simple steps.

Step 1: Decompose constraints.

Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form $\alpha \leq t$ or $t \leq \alpha$.

Step 1: Decompose constraints.

Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form $\alpha \leq t$ or $t \leq \alpha$.

Example:

1. $\left\{\left(s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}\right)\right\} \rightsquigarrow\left\{\left(s_{2} \leq \mathbb{O}\right)\right\}$ or $\left\{\left(s_{2} \leq s_{1}\right),\left(t_{1} \leq t_{2}\right)\right\}$

Step 1: Decompose constraints.

Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form $\alpha \leq t$ or $t \leq \alpha$. Step 2: Merge constraints on the same variable.

- if $\alpha \leq t_{1}$ and $\alpha \leq t_{2}$ are in C, then replace them by $\alpha \leq t_{1} \wedge t_{2}$;
- if $s_{1} \leq \alpha$ and $s_{2} \leq \alpha$ are in C, then replace them by $s_{1} \vee s_{2} \leq \alpha$; Possibly decompose the new constraints generated by transitivity.

Example:

1. $\left\{\left(s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}\right)\right\} \rightsquigarrow\left\{\left(s_{2} \leq 0\right)\right\}$ or $\left\{\left(s_{2} \leq s_{1}\right),\left(t_{1} \leq t_{2}\right)\right\}$

Step 1: Decompose constraints.

Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form $\alpha \leq t$ or $t \leq \alpha$. Step 2: Merge constraints on the same variable.

- if $\alpha \leq t_{1}$ and $\alpha \leq t_{2}$ are in C, then replace them by $\alpha \leq t_{1} \wedge t_{2}$;
- if $s_{1} \leq \alpha$ and $s_{2} \leq \alpha$ are in C, then replace them by $s_{1} \vee s_{2} \leq \alpha$; Possibly decompose the new constraints generated by transitivity.

Example:

1. $\left\{\left(s_{1} \rightarrow t_{1} \leq s_{2} \rightarrow t_{2}\right)\right\} \rightsquigarrow\left\{\left(s_{2} \leq 0\right)\right\}$ or $\left\{\left(s_{2} \leq s_{1}\right),\left(t_{1} \leq t_{2}\right)\right\}$
2. $\{(\operatorname{Int} \leq \alpha),($ Bool $\leq \alpha)\} \quad \rightsquigarrow \quad\{($ Int $\vee \operatorname{Bool} \leq \alpha)\}$

Step 1: Decompose constraints.

Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form $\alpha \leq t$ or $t \leq \alpha$. Step 2: Merge constraints on the same variable.

- if $\alpha \leq t_{1}$ and $\alpha \leq t_{2}$ are in C, then replace them by $\alpha \leq t_{1} \wedge t_{2}$;
- if $s_{1} \leq \alpha$ and $s_{2} \leq \alpha$ are in C, then replace them by $s_{1} \vee s_{2} \leq \alpha$;

Possibly decompose the new constraints generated by transitivity. Step 3: Transform into a set of equations.
After Step 2 we have constraint-sets of the form $\left\{s_{i} \leq \alpha_{i} \leq t_{i} \mid i \in[1 . . n]\right\}$ where α_{i} are pairwise distinct.
(1) select $s \leq \alpha \leq t$ and replace it by $\alpha=(s \vee \beta) \wedge t$ with β fresh.
(2) substitute $(s \vee \beta) \wedge t$ for all α in the other constraints of C
(3) repeat with another constraint

Step 1: Decompose constraints.

Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form $\alpha \leq t$ or $t \leq \alpha$. Step 2: Merge constraints on the same variable.

- if $\alpha \leq t_{1}$ and $\alpha \leq t_{2}$ are in C, then replace them by $\alpha \leq t_{1} \wedge t_{2}$;
- if $s_{1} \leq \alpha$ and $s_{2} \leq \alpha$ are in C, then replace them by $s_{1} \vee s_{2} \leq \alpha$;

Possibly decompose the new constraints generated by transitivity. Step 3: Transform into a set of equations. After Step 2 we have constraint-sets of the form $\left\{s_{i} \leq \alpha_{i} \leq t_{i} \mid i \in[1 . . n]\right\}$ where α_{i} are pairwise distinct.
(1) select $s \leq \alpha \leq t$ and replace it by $\alpha=(s \vee \beta) \wedge t$ with β fresh.
(2) substitute $(s \vee \beta) \wedge t$ for all α in the other constraints of C
(3) repeat with another constraint

Example:

Step 1: Decompose constraints.
Use the set-theoretic decomposition rules to transform C into a set of constraint sets whose constraints are of the form $\alpha \leq t$ or $t \leq \alpha$. Step 2: Merge constraints on the same variable.

- if $\alpha \leq t_{1}$ and $\alpha \leq t_{2}$ are in C, then replace them by $\alpha \leq t_{1} \wedge t_{2}$;
- if $s_{1} \leq \alpha$ and $s_{2} \leq \alpha$ are in C, then replace them by $s_{1} \vee s_{2} \leq \alpha$;

Possibly decompose the new constraints generated by transitivity. Step 3: Transform into a set of equations. After Step 2 we have constraint-sets of the form $\left\{s_{i} \leq \alpha_{i} \leq t_{i} \mid i \in[1 . . n]\right\}$ where α_{i} are pairwise distinct.
(1) select $s \leq \alpha \leq t$ and replace it by $\alpha=(s \vee \beta) \wedge t$ with β fresh.
(2) substitute $(s \vee \beta) \wedge t$ for all α in the other constraints of C
(3) repeat with another constraint

At the end we have a sets of equations $\left\{\alpha_{i}=u_{i} \mid i \in[1 . . n]\right\}$ that (with some care) are contractive. By Courcelle there exists a solution, ie, a substitution for $\alpha_{1}, \ldots, \alpha_{n}$ into (possibly recursive regular) types t_{1}, \ldots, t_{n} (in which the fresh β 's are free variables).

Example: map even

Start with the following tallying problem:

$$
\left(\alpha_{1} \rightarrow \beta_{1}\right) \rightarrow\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right] \leq s \rightarrow \gamma
$$

where $s=($ Int \rightarrow Bool $) \wedge(\alpha \backslash$ Int $\rightarrow \alpha \backslash$ Int $)$ is the type of even

Example: map even

Start with the following tallying problem:

$$
\left(\alpha_{1} \rightarrow \beta_{1}\right) \rightarrow\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right] \leq s \rightarrow \gamma
$$

where $s=($ Int \rightarrow Bool $) \wedge(\alpha \backslash$ Int $\rightarrow \alpha \backslash$ Int $)$ is the type of even

- The algorithm generates 9 constraint-sets: one is unsatisfiable ($s \leq \mathbb{0}$); four are implied by the others; remain

$$
\begin{aligned}
& \left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq 0\right\},\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \text { Int }, \text { Bool } \leq \beta_{1}\right\}, \\
& \left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \backslash \text { Int }, \alpha \backslash \text { Int } \leq \beta_{1}\right\}, \\
& \left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \vee \text { Int },(\alpha \backslash \text { Int }) \text { VBool } \leq \beta_{1}\right\}
\end{aligned}
$$

Example: map even

Start with the following tallying problem:

$$
\left(\alpha_{1} \rightarrow \beta_{1}\right) \rightarrow\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right] \leq s \rightarrow \gamma
$$

where $s=($ Int \rightarrow Bool $) \wedge(\alpha \backslash$ Int $\rightarrow \alpha \backslash$ Int $)$ is the type of even

- The algorithm generates 9 constraint-sets: one is unsatisfiable ($s \leq 0$); four are implied by the others; remain

$$
\begin{aligned}
& \left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq 0\right\},\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \text { Int }, \text { Bool } \leq \beta_{1}\right\} \\
& \left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \backslash \text { Int }, \alpha \backslash \text { Int } \leq \beta_{1}\right\}, \\
& \left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \vee \text { Int },(\alpha \backslash \text { Int }) \vee \text { Bool } \leq \beta_{1}\right\}
\end{aligned}
$$

- Four solutions for γ :

$$
\begin{aligned}
& \{\gamma=[] \rightarrow[]\} \\
& \{\gamma=[\text { Int }] \rightarrow[\text { Bool }]\} \\
& \{\gamma=[\alpha \backslash \text { Int }] \rightarrow[\alpha \backslash \text { Int }]\} \\
& \{\gamma=[\alpha \vee \text { Int }] \rightarrow[(\alpha \backslash \text { Int }) \text { VBool }]\} .
\end{aligned}
$$

Example: map even

Start with the following tallying problem:

$$
\left(\alpha_{1} \rightarrow \beta_{1}\right) \rightarrow\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right] \leq s \rightarrow \gamma
$$

where $s=($ Int \rightarrow Bool $) \wedge(\alpha \backslash$ Int $\rightarrow \alpha \backslash$ Int $)$ is the type of even

- The algorithm generates 9 constraint-sets: one is unsatisfiable ($s \leq 0$); four are implied by the others; remain

$$
\begin{aligned}
& \left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq 0\right\},\left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \text { Int }, \text { Bool } \leq \beta_{1}\right\} \\
& \left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \backslash \text { Int }, \alpha \backslash \text { Int } \leq \beta_{1}\right\}, \\
& \left\{\gamma \geq\left[\alpha_{1}\right] \rightarrow\left[\beta_{1}\right], \alpha_{1} \leq \alpha \vee \text { Int },(\alpha \backslash \text { Int }) \vee \text { Bool } \leq \beta_{1}\right\}
\end{aligned}
$$

- Four solutions for γ :

$$
\begin{aligned}
& \{\gamma=[] \rightarrow[]\} \\
& \{\gamma=[\text { Int }] \rightarrow[\text { Bool }]\} \\
& \{\gamma=[\alpha \backslash \text { Int }] \rightarrow[\alpha \backslash \text { Int }]\} \\
& \{\gamma=[\alpha \vee \text { Int }] \rightarrow[(\alpha \backslash \text { Int }) \text { VBool }]\} .
\end{aligned}
$$

- The last two are minimal and we take their intersection:

$$
\{\gamma=([\alpha \backslash \text { Int }] \rightarrow[\alpha \backslash \text { Int }]) \wedge([\alpha \vee \text { Int }] \rightarrow[(\alpha \backslash \text { Int }) \vee \text { Bool }])\}
$$

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct solutions) and complete (any other solution can be derived from them).

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture decidability (N.B.: the problem is unrelated to type- reconstruction for intersection types since we have recursive types).

On completeness and decidability

The algorithm produces a set of solutions that is sound (it finds only correct solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture decidability (N.B.: the problem is unrelated to type- reconstruction for intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our algorithm finds an equivalent or more general solution. However, this solution is not necessary the first solution found.
In a dully execution of the algorithm on map even the good solution is the second one.

On completeness and decidability

> The algorithm produces a set of solutions that is sound (it finds only correct solutions) and complete (any other solution can be derived from them).

Decidability: The algorithm is a semi-decision procedure. We conjecture decidability (N.B.: the problem is unrelated to type- reconstruction for intersection types since we have recursive types).

Completeness: For every solution of the inference problem, our algorithm finds an equivalent or more general solution. However, this solution is not necessary the first solution found.
In a dully execution of the algorithm on map even the good solution is the second one.

Principality: This raises the problem of the existence of principal types: may an infinite sequence of increasingly general solutions exist?

References

- Frisch et al: Semantic Subtyping: dealing set-theoretically with function, union, intersection, and negation types. JACM, vol. 55, n. 4, 2008. Reference publication for monomorphic semantic subtyping.
- G. Castagna: Covariance and Contravariance: a fresh look at an old issue (a primer in advanced type systems for learning functional programmers). Logical Methods in Computer Science. 2019 (To appear).
A simple introduction to semantic subtyping and a detailed description of the implementation of subtyping and type-checking algorithms.
- G. Castagna and Z. Xu: Set-theoretic foundation of parametric polymorphism and subtyping. In ICFP 11.
Subtyping for polymorphic set-theoretic types
- Castagna et al.: Polymorphic Functions with Set-Theoretic Types.

Part 1 (POPL 14) and Part 2 (POPL 15).
Languages with polymorphic set-theoretic types

- T. Petrucciani: Polymorphic Set-Theoretic Types for Functional Languages. PhD thesis, March 2019.
Type reconstruction for polymorphic set-theoretic types

To try it out

- CDuce: http://www.cduce.org.
- For polymorphism use the development branch available at https://gitlab.math.univ-paris-diderot.fr/cduce)
- For a flavor of type reconstruction try the interactive interpreter at http://www.cduce.org/ocaml/bi

Gradual Typing

Outline

(15) Main ideas
(16) Formal system
(17) Algorithmic Aspects
(18) Criteria for Gradual Typing
(19) Implementation issues
(20) References

Outline

(15) Main ideas
(16) Formal system
(17) Algorithmic Aspects
(18) Criteria for Gradual Typing
(19) Implementation issues
(20) References

Motivating example: reminder

```
function double (x ) {
    (<condition>) ? 2*x : x.concat(x)
}
```

Cannot give a type to x that works with both $2 * \mathrm{x}$ and x . concat (x)

Motivating example: reminder

```
function double (x : ?) {
    (<condition>) ? 2*x : x.concat(x)
}
```

Cannot give a type to x that works with both $2 * \mathrm{x}$ and x . concat (x)
Solution

Add an unknown/type "?"

Motivating example: reminder

```
function double (x : ?) {
    (<condition>) ? 2*x : x.concat(x)
}
```

Cannot give a type to x that works with both $2 * \mathrm{x}$ and x . concat (x)

Solution

Add an unknown/type "?"

Develop a type theory for "?" such that:

- No solution for? for some execution \Rightarrow statically reject
- No problem for any solution for ? \Rightarrow statically accept, do nothing
- For each possible execution there exists some solution for ? \Rightarrow statically accept and add run-time checks

Reject at compile time:

function wrong (x : ?) \{
return (2*x $+x(2)$); //cannot be a number and a function \}

Reject at compile time:

```
function wrong (x : ?) {
    return (2*x + x(2)); //cannot be a number and a function
}
Accept as is:
function ok (x : ?) {
    if (typeof(x) === "number"){ return 42 } else { return x }
}
Intuitively the function has type: ? }->\mathrm{ ( number | ?)
```


Reject at compile time:

```
function wrong (x : ?) {
    return (2*x + x(2)); //cannot be a number and a function
}
```


Accept as is:

```
function ok (x : ?) {
```

 if (typeof(x) === "number") \{ return 42 \} else \{ return \(x\) \}
 \}
Intuitively the function has type: ? \rightarrow (number | ?)

Accept and insert checks:

```
function double (x : ?) {
    (<condition>) ? 2*x : x.concat(x)
}
Compile as
function double (x : ?) {
    (<condition>) ? 2*(x\langlenumber\rangle) : (x\langlestring\rangle).concat(x\langlestring\rangle)
}
```


Rationale

Mix static and dynamic typing

Rationale

Mix static and dynamic typing

```
function double (x : ?) {
    (<condition>) ? 2*x : x.concat(x)
```

function apply (f : number --> number, x : number) \{
return (f x);
\}
apply (double , (double 42))

Rationale

Mix static and dynamic typing

```
Dynamically typed:
function double (x : ?) {
    (<condition>) ? 2*x : x.concat(x)
Statically typed:
function apply (f : number --> number, x : number) {
    return (f x);
}
Mixed typing:
apply (double , (double 42))
```


Rationale

Mix static and dynamic typing

```
Dynamically typed:
function double (x : ?) {
    (<condition>) ? 2*x : x.concat(x)
Statically typed:
function apply (f : number --> number, x : number) {
    return (f x);
}
Mixed typing:
apply (double , (double 42))
```


Add checks at the boundaries：

$$
\begin{gathered}
\text { apply (double , (double 42)) } \\
\text { must be compiled as }
\end{gathered}
$$

$$
\text { apply (double〈number } \rightarrow \text { number }\rangle \text {, (double 42) 〈number〉) }
$$

A hot topic

Prominent Languages with Gradual Typing:

- Typed Racket
- Reticulated Python
- TypeScript (Microsoft)
- Flow (Facebook)
- Hack (Facebook)
- Dart (Google)
- Thorn
- Safe Typescript

A hot topic

Prominent Languages with Gradual Typing:

- Typed Racket
- Reticulated Python
- TypeScript (Microsoft)
- Flow (Facebook)
- Hack (Facebook)
- Dart (Google)
- Thorn
- Safe Typescript
- Retrofitted on existing languages
- New languages

A hot topic

Prominent Languages with Gradual Typing:

- Typed Racket
- Reticulated Python
- TypeScript (Microsoft)
- Flow (Facebook)
- Hack (Facebook)
- Dart (Google)
- Thorn
- Safe Typescript
- Retrofitted on existing languages
- New languages
- Insert checks at run-time (a.k.a. sound gradual typing)
- Permissive typing (no checks inserted)
- Strict typing
- Occurrence typing

Roadmap

- Add "?" to types
(2) Define a typing discipline for programs with "?"
- A well-typed program must still be well-typed with less-precise annotations
- Less-precise annotations may make a program to become well-typed
(3) Use the typing derivation to add dynamic type-checks at the boundaries between statically-type and dynamically-typed parts
- Using less precise annotations in a well-typed program must not yield failures of dynamic checks (preserve semantics)
- Failures of dynamic checks are due only to the dynamically-typed parts

Type precision: the lesser the "?", the more precise the type.

Outline

(15) Main ideas
(16) Formal system
(17) Algorithmic Aspects
(18) Criteria for Gradual Typing
(9) Implementation issues
(20) References

Gradual Typing

Simply-typed λ-calculus types:

$$
\text { Types } \quad T::=\text { Bool } \mid \text { Int } \mid T \rightarrow T
$$

Gradual Typing

[Siek\&Taha 2006]

Simply-typed λ-calculus types: Types $\quad T::=$ Bool | Int $\mid T \rightarrow T$

Gradual Typing

Simply-typed λ-calculus types:

$$
\text { Types } \quad T::=\text { Bool } \mid \text { Int } \mid \quad T \rightarrow T \quad \text { ? }
$$

A new consistency relation " \sim " governs implicit casts involving "?":
$\overline{\text { Bool } \sim \text { Bool }} \quad \overline{\text { Int } \sim \text { Int }} \quad \overline{T \sim ?} \quad \overline{? \sim T} \quad \frac{S_{1} \sim T_{1} \quad S_{2} \sim T_{2}}{S_{1} \rightarrow S_{2} \sim T_{1} \rightarrow T_{2}}$

Gradual Typing

Simply-typed λ-calculus types:

$$
\text { Types } \quad T::=\text { Bool } \mid \text { Int } \mid \quad T \rightarrow T \quad \text { ? }
$$

A new consistency relation " \sim " governs implicit casts involving "?":
$\overline{\text { Bool } \sim \text { Bool }} \quad \overline{\text { Int } \sim \operatorname{Int}} \quad \overline{T \sim ?} \quad \overline{? \sim T} \quad \frac{S_{1} \sim T_{1} r}{S_{1} \rightarrow S_{2} \sim T_{1}}$

Relax application for consistent types:

$$
\left[\rightarrow \mathrm{ELIM}_{\sim}\right] \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: U \quad U \sim S}{\Gamma \vdash a b: T}
$$

Gradual Typing

Simply-typed λ-calculus types:

$$
\text { Types } \quad T::=\text { Bool } \mid \text { Int }|T \rightarrow T| ?
$$

A new consistency relation " \sim " governs implicit casts involving "?":
$\overline{\text { Bool } \sim \text { Bool }} \quad \overline{\text { Int } \sim \text { Int }} \quad \overline{T \sim ?} \quad \overline{? \sim T} \quad \frac{S_{1} \sim T_{1} \quad S_{2} \sim T_{2}}{S_{1} \rightarrow S_{2} \sim T_{1} \rightarrow T_{2}}$

Relax application for consistent types:

$$
\left[\rightarrow \mathrm{ELIM}_{\sim}\right] \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: U \quad U \sim S}{\Gamma \vdash a b: T}
$$

Use the type derivation to insert casts

Gradual Typing

Simply-typed λ-calculus types:

$$
\text { Types } \quad T::=\text { Bool } \mid \text { Int }|T \rightarrow T| ?
$$

A new consistency relation " \sim " governs implicit casts involving "?":
$\overline{\text { Bool } \sim \text { Bool }} \quad \overline{\text { Int } \sim \text { Int }} \quad \overline{T \sim ?} \quad \overline{? \sim T} \quad \frac{S_{1} \sim T_{1} \quad S_{2} \sim T_{2}}{S_{1} \rightarrow S_{2} \sim T_{1} \rightarrow T_{2}}$

Relax application for consistent types:

$$
\left[\rightarrow \mathrm{ELIM}_{\sim}\right] \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: U \quad U \sim S}{\Gamma \vdash a b: T}
$$

Use the type derivation to insert casts

$$
[\rightarrow \text { ELIM } \sim] \frac{\Gamma \vdash a: S \rightarrow T^{\text {compies }} a^{\prime} \quad \Gamma \vdash b: U^{\text {complies }} b^{\prime} \quad U \sim S}{\Gamma \vdash a b: T^{\text {compiles }} a(b\langle S\rangle)}(U \not \equiv S)
$$

Gradual Typing

Simply-typed λ-calculus types:

$$
\text { Types } \quad T::=\text { Bool } \mid \text { Int }|T \rightarrow T| ?
$$

A new consistency relation " \sim " governs implicit casts involving "?":
$\overline{\text { Bool } \sim \text { Bool }} \quad \overline{\text { Int } \sim \operatorname{Int}} \quad \overline{T \sim ?} \quad \overline{? \sim T} \quad \frac{S_{1} \sim T_{1} \quad S_{2} \sim T_{2}}{S_{1} \rightarrow S_{2} \sim T_{1} \rightarrow T_{2}}$

Relax application for consistent types:

$$
\begin{aligned}
& {\left[\rightarrow \text { ELIM }_{\sim}\right] \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: U}{\Gamma \vdash a b: T} \begin{array}{l}
\begin{array}{l}
\text { The remaining compilation rules } \\
\text { implement the identity (they do } \\
\text { not modify the compiled term) }
\end{array} \\
\text { Use the type derivation to insert casts }
\end{array}}
\end{aligned}
$$

$$
[\rightarrow \text { ELIM } \sim] \frac{\Gamma \vdash a: S \rightarrow T^{\text {compies }} a^{\prime} \quad \Gamma \vdash b: U^{\text {complies }} b^{\prime} \quad U \sim S}{\Gamma \vdash a b: T^{\text {compies }} a(b\langle S\rangle)}(U \not \equiv S)
$$

Problems

- The consistency relation must not be transitive:

Since Int~? and ? \sim Bool, then transitivity would imply Int \sim Bool:

$$
\frac{\vdash \lambda x: \text { Int } . x+1: \text { Int } \rightarrow \text { Int } \quad \vdash \text { true : Bool } \quad \text { Int } \sim \text { Bool }}{\vdash(\lambda x: \text { Int } x+1) \text { true }: \text { Int }}
$$

Problems

- The consistency relation must not be transitive:

Since Int~? and ? \sim Bool, then transitivity would imply Int \sim Bool:

$$
\frac{\vdash \lambda x: \text { Int } . x+1: \text { Int } \rightarrow \text { Int } \quad \vdash \text { true : Bool } \quad \text { Int } \sim \text { Bool }}{\vdash(\lambda x: \text { Int } x+1) \text { true }: \text { Int }}
$$

it is hard to work with a non-transitive relation.

- It has a flavor of substitutivity ... but not always:
function double (x: ?) \{ (<condition>) ? 2*x: x.concat(x) \} function apply (f : number-.>number, x : number) \{return (f x) \} apply (double, (double 42))

It compiles as apply (double \langle Int \rightarrow Int $\rangle,($ double $(42\langle ?\rangle))\langle$ Int $\rangle)$

Problems

- The consistency relation must not be transitive:

Since Int~? and ? \sim Bool, then transitivity would imply Int~Bool:

$$
\frac{\vdash \lambda x: \text { Int } . x+1: \text { Int } \rightarrow \text { Int } \quad \vdash \text { true : Bool } \quad \text { Int } \sim \text { Bool }}{\vdash(\lambda x: \text { Int } x+1) \text { true }: \text { Int }}
$$

it is hard to work with a non-transitive relation.

- It has a flavor of substitutivity ... but not always:
function double (x: ?) \{ (<condition>) ? 2*x: x.concat(x) \} function apply (f : number-.>number, x : number) \{return (f x) \} apply (double, (double 42))

It compiles as apply (double \langle Int \rightarrow Int $\rangle,($ double(42 $\langle ?\rangle))\langle$ Int $\rangle)$

- Casting ? \rightarrow ? to Int \rightarrow Int is ok.

Problems

- The consistency relation must not be transitive:

Since Int~? and ? \sim Bool, then transitivity would imply Int~Bool:

$$
\frac{\vdash \lambda x: \text { Int } . x+1: \text { Int } \rightarrow \text { Int } \quad \vdash \text { true : Bool } \quad \text { Int } \sim \text { Bool }}{\vdash(\lambda x: \text { Int } x+1) \text { true }: \text { Int }}
$$

it is hard to work with a non-transitive relation.

- It has a flavor of substitutivity ... but not always:
function double (x: ?) \{ (<condition>) ? 2*x: x.concat(x) \} function apply (f : number-.>number, x : number) \{return (f x) \} apply (double, (double 42))

It compiles as apply (double〈Int \rightarrow Int \rangle, (double(42〈? $)$) \langle Int $\rangle)$

- Casting ? \rightarrow ? to Int \rightarrow Int is ok.
- Casting ? to Int is ok.

Problems

- The consistency relation must not be transitive:

Since Int~? and ? \sim Bool, then transitivity would imply Int~Bool:

$$
\frac{\vdash \lambda x: \text { Int } . x+1: \text { Int } \rightarrow \text { Int } \quad \vdash \text { true : Bool } \quad \text { Int } \sim \text { Bool }}{\vdash(\lambda x: \text { Int } x+1) \text { true }: \text { Int }}
$$

it is hard to work with a non-transitive relation.

- It has a flavor of substitutivity ... but not always:
function double (x: ?) \{ (<condition>) ? 2*x: x.concat(x) \}
function apply (f : number-.>number, x : number) \{return (f x) \} apply (double, (double 42))

It compiles as apply (double \langle Int \rightarrow Int \rangle, (double(42〈? $\rangle)$) \langle Int $\rangle)$

- Casting ? \rightarrow ? to Int \rightarrow Int is ok.
- Casting ? to Int is ok.
- Casting an Int to ? looks weird

Problems

- The $\left[\rightarrow\right.$ Elım $\left._{\sim}\right]$ rule looks more an algorithic step than a typing rule:

$$
\begin{aligned}
& \begin{array}{l}
{[\rightarrow \mathrm{ELIM} \sim]} \\
\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: U \quad U \sim S \\
\Gamma \vdash a b: T
\end{array} \frac{\begin{array}{l}
{\left[\rightarrow \mathrm{ELIM}_{\leq}\right]} \\
\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T
\end{array} \quad \Gamma \vdash_{\mathcal{A}} b: U \quad U \leq S}{\Gamma \vdash_{\mathcal{A}} a b: T} \quad l
\end{aligned}
$$

Problems

- The $\left[\rightarrow\right.$ ELIm $\left._{\sim}\right]$ rule looks more an algorithic step than a typing rule:

$$
\begin{aligned}
& {[\rightarrow \mathrm{ELIM} \sim]} \\
& \Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: U \quad U \sim S \\
& \Gamma \vdash a b: T
\end{aligned} \frac{\begin{array}{l}
{\left[\rightarrow \mathrm{ELIM}_{\leq}\right]} \\
\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T
\end{array} \quad \Gamma \vdash_{\mathfrak{A}} b: U}{\Gamma \vdash_{\mathcal{A}} a b: T}
$$

We need a more principled methodology

Problems

- The $\left[\rightarrow\right.$ Elım $\left._{\sim}\right]$ rule looks more an algorithic step than a typing rule:

$$
\begin{aligned}
& \begin{array}{l}
{\left[\rightarrow \mathrm{ELIM}_{\sim}\right]} \\
\Gamma \vdash a: S \rightarrow T \\
\Gamma \vdash b: U
\end{array} \quad U \sim S \\
& \Gamma \vdash a b: T
\end{aligned} \frac{\begin{array}{l}
{\left[\rightarrow \mathrm{ELIM}_{\leq}\right]} \\
\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T
\end{array} \quad \Gamma \vdash_{\mathcal{A}} b: U}{\Gamma \vdash_{\mathcal{A}} a b: T} \quad U \leq S
$$

We need a more principled methodology

Let's take inspiration from what we did for subtyping

Precision and Materialization

The precision relation " \sqsubseteq ":

Precision relates a type with unknown "?" components to the types it may dynamically become at run time.

Precision and Materialization

The precision relation " \sqsubseteq ":
Precision relates a type with unknown "?" components to the types it may dynamically become at run time.

Informally

> The less "?" it uses, the more precise a type is.

Precision and Materialization

The precision relation " \sqsubseteq ":
Precision relates a type with unknown "?" components to the types it may dynamically become at run time.

Informally

The less "?" it uses, the more precise a type is.
Can be defined by induction for simple types:

$$
\begin{array}{lll}
& \frac{S_{1} \sqsubseteq T_{1} \quad S_{2} \sqsubseteq T_{2}}{? \sqsubseteq T} & \frac{S_{1} \rightarrow S_{2} \sqsubseteq T_{1} \rightarrow T_{2}}{T \sqsubseteq T}
\end{array} \quad \frac{T_{1} \sqsubseteq T_{2} \quad T_{2} \sqsubseteq T_{3}}{T_{1} \sqsubseteq T_{3}}
$$

Precision and Materialization

The precision relation " \sqsubseteq ":
Precision relates a type with unknown "?" components to the types it may dynamically become at run time.

Informally

The less "?" it uses, the more precise a type is.
Can be defined by induction for simple types:

$$
\begin{array}{ll}
? \sqsubseteq T & \frac{S_{1} \sqsubseteq T_{1} \quad S_{2} \sqsubseteq T_{2}}{S_{1} \rightarrow S_{2} \sqsubseteq T_{1} \rightarrow T_{2}}
\end{array} \quad T \sqsubseteq T \quad \frac{T_{1} \sqsubseteq T_{2} \quad T_{2} \sqsubseteq T_{3}}{T_{1} \sqsubseteq T_{3}}
$$

- It is not subtyping

Precision and Materialization

The precision relation " \sqsubseteq ":
Precision relates a type with unknown "?" components to the types it may dynamically become at run time.

Informally

The less "?" it uses, the more precise a type is.

Can be defined by induction for simple types:

$$
\begin{array}{lll}
\boldsymbol{?} \sqsubseteq T & \frac{S_{1} \sqsubseteq T_{1} \quad S_{2} \sqsubseteq T_{2}}{S_{1} \rightarrow S_{2} \sqsubseteq T_{1} \rightarrow T_{2}} & \overline{T \sqsubseteq T}
\end{array}
$$

- It is not subtyping
- It is a pre-order

Precision and Materialization

The precision relation " \sqsubseteq ":
Precision relates a type with unknown "?" components to the types it may dynamically become at run time.

Informally

The less "?" it uses, the more precise a type is.
Can be defined by induction for simple types:

$$
\begin{array}{lll}
& \frac{S_{1} \sqsubseteq T_{1} \quad S_{2} \sqsubseteq T_{2}}{? \sqsubseteq T} & \frac{S_{1} \rightarrow S_{2} \sqsubseteq T_{1} \rightarrow T_{2}}{S_{1}}
\end{array} \quad \overline{T \sqsubseteq T} \quad \frac{T_{1} \sqsubseteq T_{2} \quad T_{2} \sqsubseteq T_{3}}{T_{1} \sqsubseteq T_{3}}
$$

- It is not subtyping
- It is a pre-order

Intuition

$T \sqsubseteq T^{\prime}$ means that at run-time type T may turn out to be the type T^{\prime} we say that T may materialize into T^{\prime}

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

$$
\text { ? } \sqsubseteq ? \rightarrow \text { ? } \sqsubseteq ? \rightarrow \text { Int } \sqsubseteq \text { Int } \rightarrow \text { Int }
$$

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

$$
\text { ? } \sqsubseteq ? \rightarrow \text { ? } \sqsubseteq ? \rightarrow \text { Int } \sqsubseteq \text { Int } \rightarrow \text { Int }
$$

but:

$$
\text { ? } \sqsubseteq \text { Int } \nsubseteq \text { ? }
$$

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

$$
\text { ? } \sqsubseteq ? \rightarrow \text { ? } \sqsubseteq ? \rightarrow \text { Int } \sqsubseteq \text { Int } \rightarrow \text { Int }
$$

but:

$$
\text { ? } \sqsubseteq \text { Int } \nsubseteq \text { ? }
$$

This means that it can be used in a subsumption-like rule:

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T}
$$

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

$$
\text { ? } \sqsubseteq ? \rightarrow \text { ? } \sqsubseteq ? \rightarrow \text { Int } \sqsubseteq \text { Int } \rightarrow \text { Int }
$$

but:

$$
\text { ? } \sqsubseteq \text { Int } \nsubseteq \text { ? }
$$

This means that it can be used in a subsumption-like rule:

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T}
$$

We can add it to any type system to embed gradual typing in it.

Precision and Materialization

The precision relation is a pre-order thus, in particular, it is transitive:

$$
\text { ? } \sqsubseteq ? \rightarrow \text { ? } \sqsubseteq ? \rightarrow \text { Int } \sqsubseteq \text { Int } \rightarrow \text { Int }
$$

but:

$$
\text { ? } \sqsubseteq \text { Int } \nsubseteq \text { ? }
$$

This means that it can be used in a subsumption-like rule:

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T}
$$

We can add it to any type system to embed gradual typing in it.

Rationale

> As subtyping caputures "safe replacement", so precision captures "potential materialization".

Precision and Materialization

Since potential materialization does not mean assured materialization, then we have to check it at run-time:

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \stackrel{\text { compiles }}{\text { cos }} a^{\prime} \quad S \sqsubseteq T}{\Gamma \vdash a: T^{-\cdots-1} \xlongequal{\text { compiess }} a^{\prime}\langle T\rangle}
$$

Precision and Materialization

Since potential materialization does not mean assured materialization, then we have to check it at run-time:

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \stackrel{\text { comples }}{ } \frac{a^{\prime}}{\Gamma \vdash a: T} T^{\text {compiles }} a^{\prime}\langle T\rangle}{}
$$

Rationale

- Subtyping = assured materialization (cast always works)
- Precision = possible materialization (cast may fail)

Precision and Materialization

Since potential materialization does not mean assured materialization, then we have to check it at run-time:

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \stackrel{\text { comples }}{ } \frac{a^{\prime}}{\Gamma \vdash a: T} T^{\text {compiles }} a^{\prime}\langle T\rangle}{}
$$

Rationale

- Subtyping = assured materialization (cast always works)
- Precision = possible materialization (cast may fail)

From a logical viewpoint:
[SUBSUMPTION]

$$
\frac{\Gamma \vdash a: S \xrightarrow{\text { compies }} a^{\prime} \quad S \leq T}{\Gamma \vdash a: T \stackrel{\text { compieses }}{ } a^{\prime}(T)}
$$

Subsumption as implicit coercions (subtyping)
[MATERIALIZE]

$$
\frac{\Gamma \vdash a: S^{\text {compiles }} a^{\prime} \quad S \sqsubseteq T}{\Gamma \vdash a: T^{\text {compiles }} a^{\prime}\langle T\rangle}
$$

Materialization as explicit casts (precision)

Summing up

Summing up

(1) Take your favorite typed language
(2) Add "?" to types
(3) Add the materialization rule (with suitable \square)
(9) Compile to insert casts
©
Types $\quad T::=$ Int \mid Bool $\mid T \rightarrow T$
Terms $a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots$

$$
(\lambda x: T . a) b \longrightarrow a[b / x]
$$

[VAR]	$[\rightarrow$ INTRO] $\Gamma, x: S \vdash a: T$	$[\rightarrow \mathrm{ELIM}]$ $\Gamma \vdash x: \Gamma(x)$		
$\Gamma \vdash \lambda x: S . a: S \rightarrow T$			\quad	$\Gamma \vdash a b: T$
:---				

Summing up

(1) Take your favorite typed language
(2) Add "?" to types
(3) Add the materialization rule (with suitable ■)
(3)
$\begin{array}{lrll}\text { Types } \quad T: & \text { Int } \mid \text { Bool } \mid T \rightarrow T \\ \text { Terms } & a, b & ::= & x|a b| \lambda x: T . a|1| 2 \mid \ldots\end{array}$

[VAR]	$[\rightarrow$ INTRO] $\Gamma, x: S \vdash a: T$	$[\rightarrow \mathrm{ELIM}]$ $\Gamma \vdash x: \Gamma(x)$

Summing up

(1) Take your favorite typed language
(2) Add "?" to types
(3) Add the materialization rule (with suitable $\sqsubseteq) ~$
(9)
©
$\begin{array}{lrl}\text { Types } \quad T: & := & \text { Int } \mid \text { Bool } \mid T \rightarrow T \quad \text { ? } \\ \text { Terms } a, b & ::=x|a b| \lambda x: T . a|1| 2 \mid \ldots\end{array} \quad(\lambda x: T . a) b \longrightarrow a[b / x]$

[VAR]	$\begin{aligned} & {[\rightarrow \text { INTRO }]} \\ & \quad \Gamma, x: S \vdash a: T \end{aligned}$	$\begin{aligned} & {[\rightarrow \text { ELIM }]} \\ & \Gamma \vdash a: S \rightarrow T \end{aligned}$	$\Gamma \vdash b: S$
$\overline{\Gamma \vdash x: \Gamma(x)}$	$\Gamma \vdash \lambda x: S . a: S \rightarrow T$	$\Gamma \vdash a b$	
[Materialize]			
$\Gamma \vdash a: S$	$S \sqsubseteq T$		

Summing up

(1) Take your favorite typed language
(2) Add "?" to types
(3) Add the materialization rule (with suitable $\sqsubseteq) ~$
(9) Compile to insert casts
©
Types $\quad T::=$ Int \mid Bool $|T \rightarrow T|$? Terms $a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots$

$$
(\lambda x: T . a) b \longrightarrow a[b / x]
$$

[VAR]	$[\rightarrow$ Intro] $\Gamma, x: S \vdash a: T$	$[\rightarrow$ ELIM] $\Gamma \vdash x: \Gamma(x)$		
$\Gamma \vdash \lambda x: S . a: S \rightarrow T$			\quad	$\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S$
:---				
$\Gamma \vdash a b: T$				

[MATERIALIZE]

$$
\frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T}
$$

[MATERIALIZE ${ }_{\text {compll }}$]

$$
\frac{\Gamma \vdash a: S \stackrel{\text { comiles }}{\text { col }} a^{\prime} \quad S \sqsubseteq T}{\Gamma \vdash a: T}
$$

Summing up

(1) Take your favorite typed language
(2) Add "?" to types
(3) Add the materialization rule (with suitable \sqsubseteq)
(9) Compile to insert casts
(5) Et voila: you have added gradual typing

Types $\quad T::=$ Int \mid Bool $|T \rightarrow T|$?
Terms $a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots$

$$
\begin{aligned}
& \text { [VAR] }[\rightarrow \text { INTRO }] \quad[\rightarrow \text { ELIM }] \\
& \Gamma, x: S \vdash a: T \\
& \Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S \\
& \overline{\Gamma \vdash x: \Gamma(x)} \quad \overline{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \\
& \Gamma \vdash a b: T \\
& \text { [Materialize] } \\
& \Gamma \vdash a: S \quad S \sqsubseteq T \\
& \Gamma \vdash a: T
\end{aligned}
$$

Summing up

(1) Take your favorite typed language
(2) Add "?" to types
(3) Add the materialization rule (with suitable \sqsubseteq)
(9) Compile to insert casts
(3) Et voila: you have added gradual typing

Types $\quad T::=$ Int \mid Bool $|T \rightarrow T|$?
Terms $a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots$
$(\lambda x: T . a) b \longrightarrow a[b / x]$

$$
\begin{aligned}
& \text { [VAR] [} \rightarrow \text { INTRO] }[\rightarrow \text { ELIM }] \\
& \Gamma, x: S \vdash a: T \quad \Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S \\
& \Gamma \vdash x: \Gamma(x) \quad \Gamma \vdash \lambda x: S . a: S \rightarrow T \quad \Gamma \vdash a b: T \\
& \text { [MATERIALIzE] } \\
& \Gamma \vdash a: S \quad S \sqsubseteq T \\
& \Gamma \vdash a: T \\
& \text { [MATERIALIZE }{ }_{\text {Compll }} \text {] } \\
& \frac{\Gamma \vdash a: S \stackrel{\text { compies }}{\text { col }} a^{\prime} \quad S \sqsubseteq T}{\Gamma \vdash a: T \xrightarrow{\text { complies }} a^{\prime}\langle T\rangle}
\end{aligned}
$$

Summing up

(1) Take your favorite typed language
(2) Add "?" to types
(3) Add the materialization rule (with suitable \sqsubseteq)
(9) Compile to insert casts
(3) Et voila: you have added gradual typing

Types $\quad T::=$ Int \mid Bool $|T \rightarrow T|$?
Terms $a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots$
$(\lambda x: T . a) b \longrightarrow a[b / x]$

$$
\begin{aligned}
& \begin{array}{l}
{[\mathrm{VAR}]} \\
\overline{\Gamma \vdash x: \Gamma(x)}
\end{array} \\
& \text { [} \rightarrow \text { INTRO] } \\
& \Gamma, x: S \vdash a: T \\
& \text { [} \rightarrow \text { ELIM] } \\
& \Gamma \vdash a: S \rightarrow T \quad \text { Гトb:S } \\
& \Gamma \vdash x: \Gamma(x) \quad \Gamma \vdash \lambda x: S . a: S \rightarrow T \\
& \Gamma \vdash a b: T \\
& \text { [MATERIALIZE] } \\
& \Gamma \vdash a: S \quad S \sqsubseteq T \\
& \Gamma \vdash a: T \\
& \text { [MATERIALIZE }{ }_{\text {Compll }} \text {] } \\
& \frac{\Gamma \vdash a: S \stackrel{\text { compies }}{\text { comb }} a^{\prime} \quad S \sqsubseteq T}{\Gamma \vdash a: T \xrightarrow{\text { compiles }} a^{\prime}\langle T\rangle}
\end{aligned}
$$

Summing up

(1) Take your favorite typed language
(2) Add "?" to types
(3) Add the materialization rule (with suitable \sqsubseteq)
(9) Compile to insert casts
(3) Et voila: you have added gradual typing

Types $\quad T::=$ Int \mid Bool $|T \rightarrow T|$?
Terms $a, b::=x|a b| \lambda x:$ T.a|1|2|...

YES!...as long as you don't pretend to implement it!!!

Summing up

(1) Take your favorite typed language
(2) Add "?" to types
(3) Add the materialization rule (with suitable \sqsubseteq)
(9) Compile to insert casts
(6) Et voila: you have added gradual typing

Types $\quad T::=$ Int \mid Bool $|T \rightarrow T|$?
Terms $a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots$

YES!...as long as you don't pretend to implement it!!!

Algorithmic aspects

From more theoretical to more practical ones:

Algorithmic aspects

From more theoretical to more practical ones:

- Materialization elimination: as we had to eliminate subsumption to get a type-checking algorithm so we have to do the same for [MATERIALIZE].

Algorithmic aspects

From more theoretical to more practical ones:

- Materialization elimination: as we had to eliminate subsumption to get a type-checking algorithm so we have to do the same for [MATERIALIZE].
- Implementation of casts: the implementation of the cast calculus is not trivial. How do we check casts? In particular, how do we handle functional casts:

$$
(\text { double }\langle\text { Int } \rightarrow \text { Int }\rangle)(42) \quad \longrightarrow \quad ? ? ? ?
$$

Algorithmic aspects

From more theoretical to more practical ones:

- Materialization elimination: as we had to eliminate subsumption to get a type-checking algorithm so we have to do the same for [MATERIALIZE].
- Implementation of casts: the implementation of the cast calculus is not trivial. How do we check casts? In particular, how do we handle functional casts:

$$
(\text { double }\langle\text { Int } \rightarrow \text { Int }\rangle)(42) \quad \longrightarrow \quad ? ? ? ?
$$

- Error messages: when a cast fails which part of the program is to blame?

Algorithmic aspects

From more theoretical to more practical ones:

- Materialization elimination: as we had to eliminate subsumption to get a type-checking algorithm so we have to do the same for [MATERIALIZE].
- Implementation of casts: the implementation of the cast calculus is not trivial. How do we check casts? In particular, how do we handle functional casts:

$$
(\text { double }\langle\text { Int } \rightarrow \text { Int }\rangle)(42) \quad \longrightarrow \text { ???? }
$$

- Error messages: when a cast fails which part of the program is to blame?
- Efficient implementation: how to avoid accumulation of cast compositions (i.e., stack overflow) and how to implement efficiently tail recursion for functions with casts?

Algorithmic aspects

From more theoretical to more practical ones:

- Materialization elimination: as we had to eliminate subsumption to get a type-checking algorithm so we have to do the same for [MATERIALIZE].
- Implementation of casts: the implementation of the cast calculus is not trivial. How do we check casts? In particular, how do we handle functional casts:

$$
(\text { double }\langle\text { Int } \rightarrow \text { Int }\rangle)(42) \quad \longrightarrow \quad ? ? ? ?
$$

- Error messages: when a cast fails which part of the program is to blame?
- Efficient implementation: how to avoid accumulation of cast compositions (i.e., stack overflow) and how to implement efficiently tail recursion for functions with casts?

But before that, let me show you that the approach works and it is pretty general

A principled approach

Simply Typed Lambda Calculus

Syntax:

$$
\begin{array}{lr}
\text { Types } & T::=\text { Int } \mid \text { Bool } \mid T \rightarrow T \\
\text { Terms } a, b::=x|a b| \lambda x: \text { T.a| } 1|2| \ldots
\end{array}
$$

Semantics:
$(\beta) \quad(\lambda x: T . a) b \longrightarrow a[b / x]$
Typing

$$
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash a b: T}
$$

A principled approach

Simply Typed Lambda Calculus

Syntax:

$$
\begin{aligned}
& \text { Types } \quad T::=\text { Int } \mid \text { Bool }|T \rightarrow T| ? \\
& \text { Terms } a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots
\end{aligned}
$$

Semantics:
(β)
$(\lambda x: T . a) b \quad \longrightarrow a[b / x]$

Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: \Gamma(x)}{} \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T}
\end{gathered}
$$

A principled approach

Simply Typed Lambda Calculus

Syntax:
Types $\quad T::=$ Int \mid Bool $\mid T \rightarrow T$?
Terms $a, b::=x|a b| \lambda x: T . a|2| \ldots$
Semantics:
(β)
$(\lambda x \cdot T$)
Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: \Gamma(x)}{} \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T}
\end{gathered}
$$

A principled approach

Simply Typed Lambda Calculus

Syntax:

$$
\begin{aligned}
& \text { Types } \quad T::=\text { Int } \mid \text { Bool }|T \rightarrow T| ? \\
& \text { Terms } a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots
\end{aligned}
$$

Semantics:

$$
\text { [MATERIALIZE } \left.{ }_{\text {CompIL }}\right] \frac{\Gamma \vdash a: S \stackrel{\text { compiles }}{---a^{\prime}} \quad S \sqsubseteq T}{\Gamma \vdash a: T-T^{\text {complies }} a^{\prime}\langle T\rangle}
$$

Typing

$$
\begin{aligned}
& \frac{\Gamma \vdash x: \Gamma(x)}{} \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
& \text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T}
\end{aligned}
$$

A principled approach

Simply Typed Lambda Calculus + Gradual Typing

Syntax:

$$
\begin{aligned}
& \text { Types } \quad T::=\text { Int } \mid \text { Bool }|T \rightarrow T| ? \\
& \text { Terms } a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots
\end{aligned}
$$

Semantics:

Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: \Gamma(x)}{} \quad \frac{\Gamma, x \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T}
\end{gathered}
$$

A principled approach

Simply Typed Lambda Calculus + Gradual Typing + Subtyping

Syntax:

$$
\begin{aligned}
& \text { Types } \quad T::=\text { Int } \mid \text { Bool }|T \rightarrow T| ? \\
& \text { Terms } a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots
\end{aligned}
$$

Semantics:

$$
\text { [MATERIALIZE } \left.{ }_{\text {CompIL }}\right] \frac{\Gamma \vdash a: S \stackrel{\text { compiles }}{---a^{\prime}} \quad S \sqsubseteq T}{\Gamma \vdash a: T-T^{\text {complies }} a^{\prime}\langle T\rangle}
$$

Typing

$$
\begin{aligned}
\frac{\Gamma \vdash x: S \vdash a: T}{\Gamma \vdash x: \Gamma(x)} & \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash \lambda x: S . a: S \rightarrow T}
\end{aligned}
$$

Soundness

If the reduction semantics of the cast calculus is reasonably defined (see later) then:

Theorem (Soundness)
If $\Gamma \vdash a: T$, then $\Gamma \vdash a: T \stackrel{\text { compies }}{\sim} a^{\prime}$ and

- either a^{\prime} reduces to a value of type T
- or á diverges
- or a^{\prime} fails for a cast on a dynamic type

Soundness

If the reduction semantics of the cast calculus is reasonably defined (see later) then:

Theorem (Soundness)
If $\Gamma \vdash a: T$, then $\Gamma \vdash a: T \stackrel{\text { compies }}{\sim} a^{\prime}$ and

- either a^{\prime} reduces to a value of type T
- or á diverges
- or a^{\prime} fails for a cast on a dynamic type

HM Polymorphism

Syntax:

Types	T	$::=$ Int \mid Bool $\|T \rightarrow T\| \alpha$
Schemas σ	$::=T \mid \forall \alpha . \sigma$	
Terms a, b	$::=x\|a b\| \lambda x . a \mid$ let $x=a$ in $b\|1\| 2 \mid \ldots$	

Semantics:
$(\beta) \quad(\lambda x \cdot a) b \quad \longrightarrow a[b / x]$
Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: S \vdash a: T}{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\frac{\Gamma \vdash a: \sigma_{1}}{\Gamma \vdash \operatorname{let} x=x: \sigma_{1} \vdash b: \sigma_{2}} \quad \frac{\Gamma \vdash a: T}{} \quad \alpha \notin \mathrm{fv}(\Gamma) \\
\Gamma \vdash a: \forall \alpha \cdot T
\end{gathered} \frac{\Gamma \vdash a: \forall \alpha \cdot T}{\Gamma \vdash a: T[S / \alpha]}
$$

HM Polymorphism + Gradual Typing

Syntax:

Types	T	$::=$ Int \mid Bool $\|T \rightarrow T\| \alpha \mid ?$
Schemas σ	$::=T \mid \forall \alpha \cdot \sigma$	
Terms a, b	$::=x\|a b\| \lambda x . a \mid$ let $x=a$ in $b\|1\| 2 \mid \ldots$	

Semantics:

Typing

$$
\left[\text { MATERIALIZE }_{\text {Compil }}\right] \frac{\Gamma \vdash a: S \stackrel{\text { compiles }}{ } \frac{S \sqsubseteq T}{\Gamma \vdash a: T \stackrel{\text { compiles }}{\prime}} a^{\prime}\langle T\rangle}{\Gamma-\cdots}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash x: \Gamma(x)}{\Gamma \vdash x: S \vdash a: T} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \operatorname{let} x=a \text { in } b: \sigma_{2}} \quad \frac{\Gamma \vdash a: T}{\Gamma \vdash a: \forall \alpha . T} \quad \frac{\Gamma \vdash a: \forall \alpha \cdot T}{\Gamma \vdash a: T[S / \alpha]} \\
\quad \text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T}
\end{gathered}
$$

HM Polymorphism + Gradual Typing

Syntax:

Types	T	$::=$ Int \mid Bool $\|T \rightarrow T\| \alpha \mid ?$
Schemas σ	$::=T \mid \forall \alpha \cdot \sigma$	
Terms a, b	$::=x\|a b\| \lambda x . a \mid$ let $x=a$ in $b\|1\| 2 \mid \ldots$	

Semantics:

Typing

$$
\left[\text { MATERIALIZE }_{\text {Compil }}\right] \frac{\Gamma \vdash a: S \stackrel{\text { compiles }}{ } \frac{S \sqsubseteq T}{\Gamma \vdash a: T \stackrel{\text { compiles }}{\prime}} a^{\prime}\langle T\rangle}{\Gamma-\cdots}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash x: S \vdash a: T}{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \operatorname{let} x=a \text { in } b: \sigma_{2}} \quad \frac{\Gamma \vdash a: T}{\Gamma \vdash a: \forall \alpha . T} \quad \frac{\Gamma \vdash a: \forall \alpha \cdot T}{\Gamma \vdash a: T[S / \alpha]} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T} \quad \text { [SUBSUM] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T}
\end{gathered}
$$

HM Polymorphism + Gradual Typing

Syntax:

Types	T	$::=$	Int \mid Bool $\mid T \rightarrow T$
Schemes	σ	$::=$	$T \mid \forall \alpha . \sigma$
Terms	a, b	$::=$	$x\|a b\| \lambda x . a \mid$ let

Some details are missing:
annotations and no inference
gradual types ... but that's it!!

Semantics:

Typing

$$
\Gamma \vdash a: T T^{\text {complies }} a^{\prime}\langle T\rangle
$$

$$
\begin{gathered}
\frac{\Gamma \vdash x: S \vdash a: T}{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \operatorname{let} x=a \text { in } b: \sigma_{2}} \quad \frac{\Gamma \vdash a: T}{\Gamma \vdash a: \forall \alpha \cdot T} \quad \frac{\Gamma \vdash a: \forall \alpha \cdot T}{\Gamma \vdash a: T[S / \alpha]} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T} \quad S \sqsubseteq T \\
\text { [SUBSUM] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T}
\end{gathered}
$$

HM Polymorphism + Gradual Typing

Syntax:

Semantics:

$$
\left[\text { MATERIALIZE }_{\text {Compile }}\right] \frac{\Gamma \vdash a: S \stackrel{\text { compiles }}{-\cdots} a^{\prime} \quad S \sqsubseteq T}{\Gamma \vdash a: T \stackrel{\text { compiles }}{\cdots} a^{\prime}\langle T\rangle}
$$

Typing

$$
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash a b: T}
$$

$$
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \text { let } x=a \text { in } b: \sigma_{2}} \quad \frac{\Gamma \vdash a: T \alpha \notin \mathrm{fv}(\Gamma)}{\Gamma \vdash a: \forall \alpha . T} \quad \frac{\Gamma \vdash a: \forall \alpha . T}{\Gamma \vdash a: T[S / \alpha]}
$$

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T} \text { [SUBSUM] } \frac{\Gamma \vdash a: S \quad S \leq T}{\Gamma \vdash a: T}
$$

Outline

(15) Main ideas
(16) Formal system
(17) Algorithmic Aspects
(18) Criteria for Gradual Typing
(19) Implementation issues
(20) References

1. Type-checking algorithm

$$
\begin{array}{cc}
\frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash x: \Gamma(x)} & \frac{\Gamma \vdash \lambda x: S . a: S \rightarrow T}{\Gamma \vdash} \\
\frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \quad \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T}
\end{array}
$$

1. Type-checking algorithm

$$
\begin{array}{cc}
\frac{\Gamma \vdash x: S \vdash a: T}{\Gamma \vdash x: \Gamma(x)} & \frac{\Gamma, x \nmid}{\Gamma \vdash \lambda x: S \cdot a: S \rightarrow T} \\
\frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \quad \frac{[\text { [MATERIALIZE] }}{}+\frac{\Gamma \sqsubseteq S}{\Gamma \vdash a: T}
\end{array}
$$

1. Type-checking algorithm

$$
\begin{gathered}
\frac{\Gamma, x: S \vdash_{\mathcal{A}} a: T}{\Gamma \vdash_{\mathcal{A}} x: \Gamma(x)} \frac{\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T}{} \\
{\left[\rightarrow E L_{\sqsubseteq} \sqsubseteq\right] \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T}{\Gamma \vdash_{\mathcal{A}} a b: T} \exists V \cdot \mathcal{A} b: U} \\
\hline
\end{gathered}
$$

1. Type-checking algorithm

$$
\begin{gathered}
\frac{\Gamma \vdash_{\mathcal{A}} x: \Gamma(x)}{} \frac{\Gamma, x: S \vdash_{\mathcal{A}} a: T}{\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T} \\
{\left[\rightarrow \mathrm{ELIM}_{\sqsubseteq}\right] \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T}{\Gamma \vdash_{\mathcal{A}} a b: T} \quad \Gamma \vdash_{\mathcal{A}} b: U} \\
\exists V . S \sqsubseteq V, U \sqsubseteq V
\end{gathered}
$$

It is a sound and complete algorithm:

$$
\Gamma \vdash a: T \quad \Longleftrightarrow \quad \Gamma \vdash \mathcal{A} a: S \text { and } S \sqsubseteq T
$$

1. Type-checking algorithm

$$
\begin{gathered}
\frac{\Gamma, x: S \vdash_{\mathcal{A}} a: T}{\Gamma \vdash_{\mathcal{A}} x: \Gamma(x)} \frac{\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T}{} \\
{\left[\rightarrow \text { ELIM }_{\sqsubseteq}\right] \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T}{\Gamma \vdash_{\mathcal{A}} a b: T} \exists \vdash_{\mathcal{A}} b: U} \\
\end{gathered}
$$

It is a sound and complete algorithm:

$$
\Gamma \vdash a: T \quad \Longleftrightarrow \quad \Gamma \vdash \mathcal{A} a: S \text { and } S \sqsubseteq T
$$

Actually this is the good old [\rightarrow ELIM~] rule of Siek\&Taha (but defined for a sensible relation):

$$
\left[\rightarrow \mathrm{ELIM}_{\sim}\right] \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: U \quad U \sim S}{\Gamma \vdash a b: T}
$$

since $U \sim S \Longleftrightarrow \exists V . S \sqsubseteq V, U \sqsubseteq V$

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique typing derivation: we know where to put casts.

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique typing derivation: we know where to put casts. Indeed:

$$
[\rightarrow \mathrm{ELIM}] \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T \quad \Gamma \vdash_{\mathfrak{A}} b: U}{\Gamma \vdash_{\mathcal{A}} a(b): T} \exists V . S \sqsubseteq V, U \sqsubseteq V
$$

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique typing derivation: we know where to put casts. Indeed:

$$
[\rightarrow E L I M \sqsubseteq] \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T \quad \Gamma \vdash_{\mathcal{A}} b: U}{\Gamma \vdash_{\mathcal{A}} a(b): T} \exists V . S \sqsubseteq V, U \sqsubseteq V
$$

corresponds to the derivation

$$
\underset{\operatorname{MATER} \frac{\Gamma \vdash a: S \rightarrow T \quad \frac{S \sqsubseteq V \quad T \sqsubseteq T}{S \rightarrow T \sqsubseteq V \rightarrow T}}{\Gamma \vdash a: V \rightarrow T} \quad \frac{\Gamma \vdash b: U \quad U \sqsubseteq V}{\Gamma \vdash b: V}}{\Gamma \vdash_{\mathcal{A}} a(b): T} \text { MATER }
$$

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique typing derivation: we know where to put casts. Indeed:

$$
[\rightarrow \mathrm{ELIM}] \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T \quad \Gamma \vdash_{\mathcal{A}} b: U}{\Gamma \vdash_{\mathcal{A}} a(b): T} \exists V . S \sqsubseteq V, U \sqsubseteq V
$$

corresponds to the derivation which tells us where to put cast:

$$
\underset{\operatorname{MATER} \frac{\Gamma \vdash a: S \rightarrow T \quad \frac{S \sqsubseteq V \quad T \sqsubseteq T}{S \rightarrow T \sqsubseteq V \rightarrow T}}{\Gamma \vdash a\langle V \rightarrow T\rangle: V \rightarrow T} \quad \frac{\Gamma \vdash b: U \quad U \sqsubseteq V}{\Gamma \vdash b\langle V\rangle: V} \text { MATER }}{\Gamma \vdash_{\mathcal{A}} a\langle V \rightarrow T\rangle(b\langle V\rangle): T}
$$

2. Compilation

Thanks to the algorithm every well-typed term is a associated to a unique typing derivation: we know where to put casts. Indeed:

$$
[\rightarrow \mathrm{ELIM}] \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T \quad \Gamma \vdash_{\mathfrak{A}} b: U}{\Gamma \vdash_{\mathcal{A}} a(b): T} \exists V . S \sqsubseteq V, U \sqsubseteq V
$$

corresponds to the derivation which tells us where to put cast:

$$
\underset{\operatorname{MATER} \frac{\Gamma \vdash a: S \rightarrow T \quad \frac{S \sqsubseteq V \quad T \sqsubseteq T}{S \rightarrow T \sqsubseteq V \rightarrow T}}{\Gamma \vdash a\langle V \rightarrow T\rangle: V \rightarrow T} \quad \frac{\Gamma \vdash b: U \quad U \sqsubseteq V}{\Gamma \vdash b\langle V\rangle: V}}{\Gamma \vdash_{\mathscr{A}} a\langle V \rightarrow T\rangle(b\langle V\rangle): T} \text { MATER }
$$

Which V shall we use? well, obviously:

$$
V=\min _{\sqsubseteq}\{W \mid S \sqsubseteq W, U \sqsubseteq W\}
$$

2. Compilation

This yields the following compilation rule:

$$
\begin{aligned}
& \text { [} \rightarrow \text { ELIM■СомріL] } \\
& \Gamma \vdash a: S \rightarrow T \xrightarrow{\text { compiles }} a^{\prime} \quad \Gamma \vdash b: U^{\text {compiles }} \cdots b^{\prime} \\
& \Gamma \vdash_{\mathcal{A}} a b: T \xrightarrow{\text { compilies }} a^{\prime}\langle V \rightarrow T\rangle\left(b^{\prime}\langle V\rangle\right) \quad\left(V=\min _{\sqsubseteq}\{W \mid S \sqsubseteq W, U \sqsubseteq W\}\right)
\end{aligned}
$$

2. Compilation

This yields the following compilation rule:

$$
\begin{aligned}
& \text { [} \rightarrow \text { ELIM } \\
& \Gamma \vdash a: S \rightarrow T \xrightarrow{\text { compies }} a^{\prime} \quad \Gamma \vdash b: U^{\text {comppies }} \cdots b^{\prime} \\
& \Gamma \vdash_{\mathcal{A}} a b: T \xrightarrow{\text { compilies }} a^{\prime}\langle V \rightarrow T\rangle\left(b^{\prime}\langle V\rangle\right) \quad\left(V=\min _{\sqsubseteq}\{W \mid S \sqsubseteq W, U \sqsubseteq W\}\right)
\end{aligned}
$$

Of course we do not insert the corresponding cast when $V=S$ or $V=U$.

2. Compilation

This yields the following compilation rule:

$$
\begin{aligned}
& {[\rightarrow \text { ELIM } \sqsubseteq \text { CompıI }]} \\
& \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash \vdash_{\mathcal{A}} a b: T-T_{\text {compies }}^{\text {compmiles }} a^{\prime}} \quad \Gamma \vdash b: U^{\prime}\langle V \rightarrow T\rangle\left(b^{\prime}\langle V\rangle\right)
\end{aligned}
$$

Of course we do not insert the corresponding cast when $V=S$ or $V=U$.
Cast insertion different from Siek\&Taha: we cast both the function and the arguement:

We only use "upcast", that is cast from less precise to more precise types. This is formalized by the [MATERIALIZE] rule for the language with casts (all the other rules are as before)

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a\langle T\rangle: T}
$$

2. Compilation

This yields the following compilation rule:

$$
\begin{aligned}
& \text { [} \rightarrow \text { ELIM_ССомрII] } \\
& \Gamma \vdash a: S \rightarrow T^{\text {compiles }} a^{\prime} \quad \Gamma \vdash b: U^{\text {compiles }} b^{\prime} \\
& \Gamma \vdash_{\mathcal{A}} a b: T \xrightarrow{\text { compiles }} a^{\prime}\langle V \rightarrow T\rangle\left(b^{\prime}\langle V\rangle\right)
\end{aligned}
$$

Of course we do not insert the corresponding cast when $V=S$ or $V=U$.
Cast insertion different from Siek\&Taha: we cast both the function and the arguement:

We only use "upcast", that is cast from less precise to more precise types. This is formalized by the [MATERIALIZE] rule for the language with casts (all the other rules are as before)

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a\langle T\rangle: T}
$$

The compilation rules map well-typed terms into well-typed terms: terms are cast to types more precise than their static type.

2. Compilation

This yields the following compilation rule:

$$
\begin{aligned}
& \text { [} \rightarrow \text { ELIM_ССомрII] } \\
& \Gamma \vdash a: S \rightarrow T^{\text {compiles }} a^{\prime} \quad \Gamma \vdash b: U^{\text {compies }} b^{\prime} \\
& \Gamma \vdash_{\mathcal{A}} a b: T \xrightarrow{\text { compiles }} a^{\prime}\langle V \rightarrow T\rangle\left(b^{\prime}\langle V\rangle\right)
\end{aligned}
$$

Of course we do not insert the corresponding cast when $V=S$ or $V=U$.
Cast insertion different from Siek\&Taha: we cast bo arguement:
We only use "upcast", that is cast from less precise

It's time to speak of this language with casts This is formalized by the [MATERIALIZE] rule for the language with (all the other rules are as before)

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a\langle T\rangle: T}
$$

The compilation rules map well-typed terms into well-typed terms: terms are cast to types more precise than their static type.

The cast language

Gradually Typed Language

Syntax:
Types $\quad T::=$ Int \mid Bool $|T \rightarrow T|$?

Terms $a, b::=x|a b| \lambda x: T . a|1| 2 \mid \ldots$
Typing

$$
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash a b: T}
$$

The cast language

Gradually Typed Language

Syntax:

$$
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T}
$$

The cast language

Gradually Typed Language

Syntax:
Types $\quad T::=$ Int \mid Bool $\mid T \rightarrow T$?

Terms $a, b::=x|a b| \lambda x: T . a|a\langle T\rangle| 1|2| \ldots$
Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: \Gamma(x)}{} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a\langle T\rangle: T}
\end{gathered}
$$

The cast language

Gradually Typed Language

Syntax:
Types $\quad T::=$ Int \mid Bool $\mid T \rightarrow T$?

Terms $a, b::=x|a b| \lambda x: T . a|a\langle T\rangle| 1|2| \ldots$
Typing

$$
\begin{gathered}
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a\langle T\rangle: T}
\end{gathered}
$$

Semantics:

$$
(\beta) \quad(\lambda x: T . a) b \quad \longrightarrow a[b / x]
$$

The cast language

Gradually Typed Language with Casts

Syntax:
Types $\quad T::=$ Int \mid Bool $|T \rightarrow T|$?

Terms $a, b::=x|a b| \lambda x: T . a|a\langle T\rangle| 1|2| \ldots$
Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: \Gamma(x)}{} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a\langle T\rangle: T}
\end{gathered}
$$

Semantics:

$$
(\beta) \quad(\lambda x: T . a) b \quad \longrightarrow a[b / x]
$$

The cast language

Gradually Typed Language with Casts

Syntax:

$$
\begin{aligned}
& \text { Types } \quad T::=\text { Int } \mid \text { Bool } \mid T \rightarrow T \text { ? } \\
& \text { Terms } a, b::=x|a b| \lambda x: T . a|a\langle T\rangle| 1|2| \ldots
\end{aligned}
$$

Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: \Gamma(x)}{} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a\langle T\rangle: T}
\end{gathered}
$$

Semantics:
(β)
$(\lambda x: T . a) b \longrightarrow a[b / x]$

Still missing the semantics for casts

The cast language

What is the dynamic semantics of casts?

The cast language

What is the dynamic semantics of casts?

Easy for non functional values:
$\begin{array}{lll}3\langle\text { Int }\rangle & \longrightarrow & 3 \\ 3\langle\text { Bool }\rangle & \longrightarrow & \text { Fail }\end{array}$

The cast language

What is the dynamic semantics of casts?

Easy for non functional values:

$3\langle$ Int \rangle	\longrightarrow	3
3〈Bool	\longrightarrow	Fail

If T is not an arrow type, then for $a\langle T\rangle$ check whether the result of a is of type T

The cast language

What is the dynamic semantics of casts?

Easy for non functional values:

$3\langle$ Int \rangle	\longrightarrow	3
$3\langle$ Bool \rangle	\longrightarrow	Fail

If T is not an arrow type, then for $a\langle T\rangle$ check whether the result of a is of type T

Not so trivial for functions:

```
function foo (x : ?) {
    if (x == 42) { return (2*x)} else { true }
}
Consider foo \(\langle\) Int \(\rightarrow\) Int \(\rangle\).
```


The cast language

What is the dynamic semantics of casts?

Easy for non functional values:

$3\langle$ Int \rangle	\longrightarrow	3
3〈Bool	\longrightarrow	Fail

If T is not an arrow type, then for $a\langle T\rangle$ check whether the result of a is of type T

Not so trivial for functions:

```
function foo (x : ?) {
    if (x == 42) { return (2*x)} else { true }
```

\}

Consider $\mathrm{foo}\langle$ Int \rightarrow Int \rangle. Function foo is not of type Int \rightarrow Int

The cast language

What is the dynamic semantics of casts?

Easy for non functional values:

$3\langle$ Int \rangle	\longrightarrow	3
3〈Bool	\longrightarrow	Fail

If T is not an arrow type, then for $a\langle T\rangle$ check whether the result of a is of type T

Not so trivial for functions:

```
function foo (x : ?) {
    if (x == 42) { return (2*x)} else { true }
}
```

Consider $\mathrm{foo}\langle$ Int \rightarrow Int \rangle. Function foo is not of type Int \rightarrow Int, nevertheless (foo<Int \rightarrow Int \rangle) (42) must not fail: it's applied to an Int and returns an Int.

The cast language

What is the dynamic semantics of casts？

Easy for non functional values：

$3\langle$ Int \rangle	\longrightarrow	3
3〈Bool	\longrightarrow	Fail

If T is not an arrow type，then for $a\langle T\rangle$ check whether the result of a is of type T

Not so trivial for functions：

```
function foo (x : ?) {
```

 if (\(\mathrm{x}==42\)) \{ return \((2 * \mathrm{x})\}\) else That is easy, but what about
 \}

Consider foo Int \rightarrow Int \rangle ．Function foo is nol（foo〈Int \rightarrow Int \rangle ）（exp）？ ss （foo〈Int \rightarrow Int \rangle ）（42）must not fail：it＇s applied to an Int anmerns an Int．

The cast language

What is the dynamic semantics of casts?

Easy for non functional values:

$3\langle$ Int \rangle	\longrightarrow	3
3〈Bool	\longrightarrow	Fail

If T is not an arrow type, then for $a\langle T\rangle$ check whether the result of a is of type T
Not so trivial for functions:

```
function foo (x : ?) {
    if (x == 42) { return (2*x)} else { true }
}
```

Consider $\mathrm{foo}\langle$ Int \rightarrow Int \rangle. Function foo is not of type Int \rightarrow Int, nevertheless (foo〈Int \rightarrow Int \rangle) (42) must not fail: it's applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

The cast language

What is the dynamic semantics of casts?

Easy for non functional values:

$3\langle$ Int \rangle	\longrightarrow	3
3〈Bool	\longrightarrow	Fail

If T is not an arrow type, then for $a\langle T\rangle$ check whether the result of a is of type T
Not so trivial for functions:

```
function foo (x : ?) {
    if (x == 42) { return (2*x)} else { true }
}
```

Consider $\mathrm{foo}\langle$ Int \rightarrow Int \rangle. Function foo is not of type Int \rightarrow Int, nevertheless (foo〈Int \rightarrow Int \rangle) (42) must not fail: it's applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

$$
(\text { foo }\langle\text { Int } \rightarrow \text { Int }\rangle)(\exp)
$$

The cast language

What is the dynamic semantics of casts?

Easy for non functional values:

$3\langle$ Int \rangle	\longrightarrow	3
3〈Bool	\longrightarrow	Fail

If T is not an arrow type, then for $a\langle T\rangle$ check whether the result of a is of type T
Not so trivial for functions:

```
function foo (x : ?) {
    if (x == 42) { return (2*x)} else { true }
}
```

Consider $\mathrm{foo}\langle$ Int \rightarrow Int \rangle. Function foo is not of type Int \rightarrow Int, nevertheless (foo〈Int \rightarrow Int \rangle) (42) must not fail: it's applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

$$
(\text { foo }\langle\text { Int } \rightarrow \text { Int }\rangle)(42)
$$

The cast language

What is the dynamic semantics of casts?

Easy for non functional values:

$3\langle$ Int \rangle	\longrightarrow	3
3〈Bool	\longrightarrow	Fail

If T is not an arrow type, then for $a\langle T\rangle$ check whether the result of a is of type T
Not so trivial for functions:

```
function foo (x : ?) {
    if (x == 42) { return (2*x)} else { true }
}
```

Consider $\mathrm{foo}\langle$ Int \rightarrow Int \rangle. Function foo is not of type Int \rightarrow Int, nevertheless (foo〈Int \rightarrow Int \rangle) (42) must not fail: it's applied to an Int and returns an Int.

Delay the dynamic check of a type until you get to non-functional values

$$
(\text { foo }\langle\text { Int } \rightarrow \text { Int }\rangle)(42) \quad \longrightarrow \quad(\text { foo }(42\langle\text { Int }\rangle))\langle\text { Int }\rangle
$$

The cast language

Syntax:
Types $\quad T::=$ Int \mid Bool $\mid T \rightarrow T \quad$?

Values $\quad v::=\lambda x$:T.a | 1 | 2 | \ldots
Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: \Gamma(x)}{} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a\langle T\rangle: T}
\end{gathered}
$$

Semantics:

$$
\begin{array}{rlrl}
(\lambda x: T . a) v & \longrightarrow a[v / x] & & \\
v\langle T\rangle & \longrightarrow v & \text { if } T \neq S_{1} \rightarrow S_{2} \text { and } \vdash v: T \\
v\langle T\rangle & \longrightarrow & \text { Fail } & \text { if } T \neq S_{1} \rightarrow S_{2} \text { and } \forall v: T \\
\left(v_{1}\langle S \rightarrow T\rangle\right) v_{2} & \longrightarrow & \left(v_{1}\left(v_{2}\langle S\rangle\right)\langle T\rangle\right. &
\end{array}
$$

The cast language

The cast language is sound:

Theorem (Soundness)

For every term a of the cast language, if $\Gamma \vdash a: T$, then

- either a reduces to a value of type T
- or a diverges
- or a reduces to Fail
[no stuck term]

What are the consenquences of this theorem on our initial language?
How does it fit our framework? Let me first add a further bit

Tracking errors

The message Fail is not very useful for debugging

Tracking errors

The message Fail is not very useful for debugging

We can modify compilation to track the origine of failures:

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \stackrel{\text { compies }}{\Gamma-\cdots: a^{\prime}} \quad S \sqsubseteq T}{\Gamma \vdash a:-\cdots \text { compies }} a^{\prime}\langle T\rangle^{\ell}
$$

where ℓ is a pointer to the source code of a

Tracking errors

The message Fail is not very useful for debugging

We can modify compilation to track the origine of failures:
where ℓ is a pointer to the source code of a
Then it suffices to change the semantics of the cast language to return this pointer:
Semantics:

$$
\begin{array}{rll}
(\lambda x: T . a) v & \longrightarrow a[v / x] & \\
v\langle T\rangle^{\ell} & \longrightarrow v & \text { if } T \neq S_{1} \rightarrow S_{2} \text { and } \vdash v: T \\
v\langle T\rangle^{\ell} & \longrightarrow \text { blame } \ell & \text { if } T \neq S_{1} \rightarrow S_{2} \text { and } \forall v: T \\
\left(v_{1}\langle S \rightarrow T\rangle^{\ell}\right) v_{2} & \longrightarrow\left(v_{1}\left(v_{2}\langle S\rangle^{\ell}\right)\langle T\rangle^{\ell}\right. &
\end{array}
$$

Outline

(15) Main ideas

(16) Formal system
(17) Algorithmic Aspects
(18) Criteria for Gradual Typing
(9) Implementation issues
(20) References

Criterion: Type Soundness

Every expression must only result in values whose type agrees with the static type of the expression.

Criterion: Type Soundness

Every expression must only result in values whose type agrees with the static type of the expression.

Theorem (Soundness)

If $\Gamma \vdash a: T$, then $\Gamma \vdash a: T^{\text {compiles }} a^{\prime}$ and

- either a^{\prime} reduces to a value of type T
- or á diverges
- or a^{\prime} fails for a cast on a dynamic type

Criterion: Type Soundness

Every expression must only result in values whose type agrees with the static type of the expression.

Theorem (Soundness)

If $\Gamma \vdash a: T$, then $\Gamma \vdash a: T \stackrel{\text { compiles }}{\ldots} a^{\prime}$ and

- either a^{\prime} reduces to a value of type T
- or á diverges
- or a^{\prime} fails for a cast on a dynamic type

A Corollary of the soundness of the cast calculus and of the following lemma of type preservation.
Lemma. If $\Gamma \vdash a: T$ then then $\Gamma \vdash a: T \xrightarrow{\text { comples }} a^{\prime}$ and $\Gamma \vdash a^{\prime}: S \sqsubseteq T$

Criterion: Blame Tracking

When a runtime type error occurs, it is never the fault of a statically typed region of code.

Criterion: Blame Tracking

When a runtime type error occurs, it is never the fault of a statically typed region of code.

Theorem (Blame Theorem)

Let $C[a]$ be a program such that ? does not occur in a. If $\Gamma \vdash C[a]: T \xrightarrow{\text { complies }} b b$ and $b \longrightarrow$ blame ℓ, then $\ell \in C[]$ and $\ell \notin a$.

Criterion: Gradual Guarantee

Using less precise types must not change the outcome of type checking or of running a program.

Criterion: Gradual Guarantee

Using less precise types must not change the outcome of type checking or of running a program.

An expression a is less precise than b, written $a \sqsubseteq b$, if a is b but with less precise annotations.

Note: a dynamically typed version of a is where all annotations are ?: it is a minimal element in the precision lattice.

Criterion: Gradual Guarantee

Using less precise types must not change the outcome of type checking or of running a program.

An expression a is less precise than b, written $a \sqsubseteq b$, if a is b but with less precise annotations.

Note: a dynamically typed version of a is where all annotations are ?: it is a minimal element in the precision lattice.

Theorem (Gradual Guarantee)

If $\Gamma \vdash a: T^{\text {comples }} a^{\prime}$ and $b \sqsubseteq a$, then:

- $\Gamma \vdash b: T^{\prime} \xrightarrow{\text { compiles }} b^{\prime}$ and $T^{\prime} \sqsubseteq T$
- if $a^{\prime} \longrightarrow v$, then $b^{\prime} \longrightarrow v^{\prime}$ and $v^{\prime} \sqsubseteq v$.

Outline

(15) Main ideas

(16) Formal system
(17) Algorithmic Aspects
(18) Criteria for Gradual Typing
(19) Implementation issues
(20) References

A hint to efficient implementation

A gradually typed tail-recursive function:

```
let rec odd : Int -> ? = fun n ->
    if n = 0 then false
    else (even (n-1))
and even : Int -> Bool = fun n ->
    if n = 0 then true
    else (odd (n-1))
```


A hint to efficient implementation

A gradually typed tail-recursive function: In Siek\&Taha it is compiled into:

```
let rec odd : Int -> ? = fun n ->
    if n = 0 then false<?>
    else (even (n-1))<?>
and even : Int -> Bool = fun n ->
    if n = 0 then true
    else (odd (n-1))<Bool>
```


A hint to efficient implementation

A gradually typed tail-recursive function:

```
let rec odd : Int -> ? = fun n ->
    if n = 0 then false<?>
    else (even (n-1))<?>
and even : Int -> Bool = fun n ->
    if n = 0 then true
    else (odd (n-1))<Bool>
```

It produces accumulation of casts:

```
odd 5 \longrightarrow (even 4)<?>
    \longrightarrow(odd 3)<Bool><?>
    \longrightarrow (even 2)<?><Bool><?>
    \longrightarrow (odd 1)<Bool><?><Bool><?>
    \longrightarrow (even 0)<?><Bool><?><Bool><?>
```


A hint to efficient implementation

A gradually typed tail-recursive function:

$$
\begin{aligned}
& \text { let rec odd : Int }->?=\text { fun } n-> \\
& \text { if } n=0 \text { then false<?> } \\
& \text { else (even }(n-1))<?> \\
& \text { and even }: \text { Int }->\text { Bool }=\text { fun } n-> \\
& \text { if } n=0 \text { then true } \\
& \text { else (odd }(n-1))<\text { Bool> }
\end{aligned}
$$

It produces accumulation of casts:

$$
\begin{aligned}
\text { odd } 5 & \longrightarrow(\text { even } 4)<?> \\
& \longrightarrow(\text { odd 3)<Bool><?> } \\
& \longrightarrow \text { (even 2)<?><Bool><?> } \\
& \longrightarrow \text { (edd 1)<Bool><?><Bool><? } 0 \text {) <?><Bool><? }
\end{aligned}
$$

Solution: specific implementation of tail-recursion combine with cast compression via intersection types:

$$
E\langle\tau\rangle\left\langle\tau^{\prime}\right\rangle \text { can be "compressed" to } E\left\langle\tau \wedge \tau^{\prime}\right\rangle \text {. }
$$

HM Polymorphism + Gradual Typing

Syntax:
Types $\quad T::=$ Int \mid Bool $|T \rightarrow T| \alpha \mid$?
Schemas $\sigma::=T \mid \forall \alpha . \sigma$
Terms $a, b::=x|a b| \lambda x . a \mid$ let $x=a$ in $b|1| 2 \mid \ldots$ Semantics:

$$
\text { [MATERIALIZE } \text { Compil } \frac{\Gamma \vdash a: S \stackrel{\text { compiles }}{ } \frac{S^{\prime}}{\Gamma \vdash a: T^{\text {complies }}} a^{\prime}\langle T\rangle}{\Gamma}
$$

Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: S \vdash a: T}{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \operatorname{let} x=a \text { in } b: \sigma_{2}} \quad \frac{\Gamma \vdash a: T \alpha \notin \mathrm{fv}(\Gamma)}{\Gamma \vdash a: \forall \alpha \cdot T} \quad \frac{\Gamma \vdash a: \forall \alpha \cdot T}{\Gamma \vdash a: T[S / \alpha]} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T}
\end{gathered}
$$

HM Polymorphism + Gradual Typing

Syntax:
Types $\quad T::=$ Int \mid Sol $|T \rightarrow T| \alpha \mid$?
Schemes $\sigma::=T \mid \forall \alpha . \sigma$
Terms $a, b::=x|a b| \lambda x . a \mid$ let $x=a$ in $b|1| 2 \mid \ldots$
Semantics:

Typing

$$
\begin{gathered}
\frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \operatorname{let} x=a \text { in } b: \sigma_{2}} \quad \frac{\Gamma \vdash a: T \alpha \notin \mathrm{fv}(\Gamma)}{\Gamma \vdash a: \forall \alpha \cdot T} \quad \frac{\Gamma \vdash a: \forall \alpha \cdot T}{\Gamma \vdash a: T[S / \alpha]} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T} \quad \text { [SUBSUM] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T}
\end{gathered}
$$

HM Polymorphism + Gradual Typing

Syntax:
Types $\quad T::=$ Int \mid Boor $\mid T \rightarrow T$

Schemes $\sigma::=T \mid \forall \alpha . \sigma$
Terms $a, b::=x|a b| \lambda x . a \mid$ let

Some details are missing:
annotations and no inference or gradual types ... but that's it!!

Semantics:

Typing

$$
\begin{gathered}
\frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash b: S}{\Gamma \vdash a b: T} \\
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \text { let } x=a \text { in } b: \sigma_{2}} \quad \frac{\Gamma \vdash a: T \alpha \notin \mathrm{fv}(\Gamma)}{\Gamma \vdash a: \forall \alpha \cdot T} \quad \frac{\Gamma \vdash a: \forall \alpha \cdot T}{\Gamma \vdash a: T[S / \alpha]} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T} \quad \text { [SUBSUM] } \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T}
\end{gathered}
$$

HM Polymorphism + Gradual Typing

Syntax:
$\begin{array}{lllll}\text { Types } & T & ::= & \text { Int } \mid \text { Dol }|T \rightarrow T| & \text { That's all, but how } \\ \text { Schemes } & \sigma & ::= & T \mid \forall \alpha . \sigma & \\ \text { do I implement it?!? }\end{array}$
Semantics:

Typing

$$
\overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x \cdot a: S \rightarrow T} \quad \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash a b: T}
$$

$$
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \text { let } x=a \text { in } b: \sigma_{2}} \quad \frac{\Gamma \vdash a: T \quad \alpha \notin \mathrm{fv}(\Gamma)}{\Gamma \vdash a: \forall \alpha . T} \quad \frac{\Gamma \vdash a: \forall \alpha . T}{\Gamma \vdash a: T[S / \alpha]}
$$

$$
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: S \quad S \sqsubseteq T}{\Gamma \vdash a: T} \text { [SUBSUM] } \frac{\Gamma \vdash a: S \quad S \leq T}{\Gamma \vdash a: T}
$$

The missing details

Syntax:
StaticTypes $\quad T::=$ Int \mid Boor $|T \rightarrow T| \alpha$
GradualTypes $\tau::=$ Int \mid Sol $|\tau \rightarrow \tau| \alpha \mid$?
Schemes $\quad \sigma::=T \mid \forall \alpha . \sigma$
Terms $\quad a, b::=x|a b| \lambda x . a|\lambda x: \tau . a|$ let $x=a$ in $b|1| 2$
Typing

$$
\begin{gathered}
\frac{\Gamma \vdash x: \Gamma(x)}{} \quad \frac{\Gamma \vdash a: \tau^{\prime} \rightarrow \tau \quad \Gamma \vdash b: \tau^{\prime}}{\Gamma \vdash a b: \tau} \\
\frac{\Gamma, x: \tau \vdash a: \tau^{\prime}}{\Gamma \vdash \lambda x: \tau \cdot a: \tau \rightarrow \tau^{\prime}} \\
\frac{\Gamma \vdash a: \sigma_{1} \quad \Gamma, x: \sigma_{1} \vdash b: \sigma_{2}}{\Gamma \vdash \text { let } x=a \text { in } b: \sigma_{2}} \quad \frac{\Gamma \vdash a: \tau \vdash a: \tau}{\Gamma \vdash a \cdot a: S \rightarrow \tau} \\
\text { [MATERIALIZE] } \frac{\Gamma \vdash a: \tau^{\prime} \quad \tau^{\prime} \sqsubseteq \tau}{\Gamma \vdash a: \tau} \\
\text { [SUBSUMe] } \frac{\Gamma \vdash a: \tau^{\prime} \quad \tau^{\prime} \leq \tau}{\Gamma \vdash a: \tau}
\end{gathered}
$$

Part 1: Without subtyping

We generate sets D of type constraints

$$
D::=\varnothing\left|\left(t_{1} \dot{\leq} t_{2}\right) \cup D\right|(\tau \doteq \alpha) \cup D
$$

Then we find a type substitution θ that solves D that is

- for all ($t_{1} \leq t_{2}$) we have $t_{1} \theta=t_{2} \theta$
- for all $(\tau \sqsubseteq \alpha)$ we have $\tau \theta \sqsubseteq \alpha \theta$ and $\tau \theta$ is a static type

Constraint generation

We do not directly generate type constraint. We first generate structured constraints of the form ${ }^{1}$:

$$
C::=(t \dot{\leq} t)|(\tau \dot{\sqsubseteq} \alpha)|(x \dot{\sqsubseteq}) \mid \text { def } x: \tau \text { in } C|\exists \vec{\alpha} . C| C \wedge C
$$

${ }^{1}$ Let constraints are omitted for the sake of simplicity

Constraint generation

We do not directly generate type constraint. We first generate structured constraints of the form ${ }^{1}$:

$$
C::=(t \dot{\leq} t)|(\tau \dot{\sqsubseteq} \alpha)|(x \dot{\sqsubseteq} \alpha) \mid \text { def } x: \tau \text { in } C|\exists \vec{\alpha} . C| C \wedge C
$$

$$
\begin{aligned}
\langle\langle x: t\rangle\rangle & =\exists \alpha \cdot(x \dot{\sqsubseteq} \alpha) \wedge(\alpha \dot{\leq} t) \\
\langle\langle(\lambda x . e): t\rangle\rangle & =\exists \alpha_{1}, \alpha_{2} \cdot\left(\operatorname{def} x: \alpha_{1} \text { in }\left\langle\left\langle e: \alpha_{2}\right\rangle\right\rangle\right) \wedge\left(\alpha_{1} \dot{\sqsubseteq} \alpha_{1}\right) \wedge\left(\alpha_{1} \rightarrow \alpha_{2} \dot{\leq} t\right) \\
(\lambda x: \tau . e): t\rangle\rangle & =\exists \alpha_{1}, \alpha_{2} .\left(\operatorname{def} x: \tau \text { in }\left\langle\left\langle e: \alpha_{2}\right\rangle\right\rangle\right) \wedge\left(\tau \doteq \alpha_{1}\right) \wedge\left(\alpha_{1} \rightarrow \alpha_{2} \dot{\leq} \dot{\leq}\right) \\
\left\langle\left\langle e_{1} e_{2}: t\right\rangle\right\rangle & =\exists \alpha \cdot\left\langle\left\langle e_{1}: \alpha \rightarrow t\right\rangle\right\rangle \wedge\left\langle\left\langle e_{2}: \alpha\right\rangle\right\rangle
\end{aligned}
$$

${ }^{1}$ Let constraints are omitted for the sake of simplicity

Constraint generation

We do not directly generate type constraint. We first generate structured constraints of the form ${ }^{1}$:

$$
C::=(t \dot{\leq} t)|(\tau \dot{\sqsubseteq} \alpha)|(x \dot{\sqsubseteq} \alpha) \mid \text { def } x: \tau \text { in } C|\exists \vec{\alpha} . C| C \wedge C
$$

$$
\begin{aligned}
\langle\langle x: t\rangle\rangle & =\exists \alpha \cdot(x \dot{\sqsubseteq} \alpha) \wedge(\alpha \dot{\leq} t) \\
\langle\langle(\lambda x \cdot e): t\rangle\rangle & =\exists \alpha_{1}, \alpha_{2} \cdot\left(\operatorname{def} x: \alpha_{1} \operatorname{in}\left\langle\left\langle e: \alpha_{2}\right\rangle\right\rangle\right) \wedge\left(\alpha_{1} \dot{\sqsubseteq} \alpha_{1}\right) \wedge\left(\alpha_{1} \rightarrow \alpha_{2} \dot{\leq} t\right) \\
(\lambda x: \tau . e): t\rangle\rangle & =\exists \alpha_{1}, \alpha_{2} \cdot\left(\operatorname{def} x: \tau \operatorname{in}\left\langle\left\langle e: \alpha_{2}\right\rangle\right\rangle\right) \wedge\left(\tau \doteq \alpha_{1}\right) \wedge\left(\alpha_{1} \rightarrow \alpha_{2} \dot{\leq} \dot{t}\right) \\
\left\langle\left\langle e_{1} e_{2}: t\right\rangle\right\rangle & =\exists \alpha \cdot\left\langle\left\langle e_{1}: \alpha \rightarrow t\right\rangle\right\rangle \wedge\left\langle\left\langle e_{2}: \alpha\right\rangle\right\rangle
\end{aligned}
$$

Note that $\langle\langle(\lambda x: ? . x):$ Int \rightarrow Int $\rangle\rangle$ can be solved, whereas $\langle\langle(\lambda x . x): ~ ? \rightarrow$? $\rangle\rangle$ cannot.
${ }^{1}$ Let constraints are omitted for the sake of simplicity

Rewriting constraints

We then rewrite the structured constraints to obtain a set D of type constraints:

Rewriting constraints

We then rewrite the structured constraints to obtain a set D of type constraints:

$$
\begin{array}{ll}
& \begin{array}{l}
\Gamma(x)=\forall \vec{\alpha} \cdot \tau \\
\Gamma \vdash(x \dot{\sqsubseteq}) \rightsquigarrow\{\tau[\vec{\alpha}:=\vec{\beta}] \dot{\sqsubseteq} \alpha\} \\
\vec{\beta} \text { FRESH }
\end{array}
\end{array}
$$

Rewriting constraints

We then rewrite the structured constraints to obtain a set D of type constraints:

$$
\begin{gathered}
\overline{\Gamma \vdash(x \dot{\sqsubseteq}) \rightsquigarrow\{\tau[\vec{\alpha}:=\vec{\beta}] \dot{\sqsubseteq}\}} \begin{array}{c}
\Gamma(x)=\forall \vec{\alpha} \cdot \tau \\
\vec{\beta} \text { FRESH }
\end{array} \\
\frac{(\Gamma, x: \tau) \vdash C \rightsquigarrow D}{\Gamma \vdash \operatorname{def} x: \tau \text { in } C \rightsquigarrow D} \\
\frac{\Gamma \vdash C_{1} \rightsquigarrow D_{1} \quad \Gamma \vdash C_{2} \rightsquigarrow D_{2}}{\Gamma \vdash C_{1} \wedge C_{2} \rightsquigarrow D_{1} \cup D_{2}}
\end{gathered}
$$

Solving constraints

Everything is finally solved using standard unification:
(1) we replace every occurence of ? in materialization constraints by a distinct fresh type variable;
(2) we unify;
(3) we replace every residual fresh type variable back to ?.

Solving constraints

Everything is finally solved using standard unification:

(1) we replace every occurence of ? in materialization constraints by a distinct fresh type variable;
(2) we unify;
(3) we replace every residual fresh type variable back to ?.

For example, the constraint

$$
? \rightarrow ? \rightarrow ? \dot{\square} \mathrm{Bool} \rightarrow \alpha
$$

Solving constraints

Everything is finally solved using standard unification:

(1) we replace every occurence of ? in materialization constraints by a distinct fresh type variable;
(2) we unify;
(3) we replace every residual fresh type variable back to ?.

For example, the constraint

$$
? \rightarrow ? \rightarrow ? 亡 \text { Bool } \rightarrow \alpha
$$

will become

$$
X_{1} \rightarrow X_{2} \rightarrow X_{3} \dot{\sqsubseteq} \text { Bool } \rightarrow \alpha
$$

Solving constraints

Everything is finally solved using standard unification:

(1) we replace every occurence of ? in materialization constraints by a distinct fresh type variable;
(2) we unify;
(3) we replace every residual fresh type variable back to ?.

For example, the constraint

$$
? \rightarrow ? \rightarrow ? \dot{\square} \mathrm{Bool} \rightarrow \alpha
$$

will become

$$
X_{1} \rightarrow X_{2} \rightarrow X_{3} \sqsubseteq \text { Bool } \rightarrow \alpha
$$

and solving it will return the unifier

$$
\theta: X_{1} \mapsto \operatorname{Bool} ; X_{2} \mapsto \beta ; X_{3} \mapsto \gamma ; \alpha \mapsto(\beta \rightarrow \gamma)
$$

Solving constraints

Everything is finally solved using standard unification:

(1) we replace every occurence of ? in materialization constraints by a distinct fresh type variable;
(2) we unify;
(3) we replace every residual fresh type variable back to ?.

For example, the constraint

$$
? \rightarrow ? \rightarrow ? \dot{\square} \mathrm{Bool} \rightarrow \alpha
$$

will become

$$
X_{1} \rightarrow X_{2} \rightarrow X_{3} \dot{\sqsubseteq} \text { Bool } \rightarrow \alpha
$$

and solving it will return the unifier

$$
\theta: X_{1} \mapsto \operatorname{Bool} ; X_{2} \mapsto \beta ; X_{3} \mapsto \gamma ; \alpha \mapsto(\beta \rightarrow \gamma)
$$

The application of $e_{1}:($ Bool $\rightarrow \alpha) \rightarrow \alpha$ to $e_{2}: ? \rightarrow ? \rightarrow$? has thus type ? \rightarrow ?

Compilation and Results

To summarize, given an expression e, and a constraint derivation \mathcal{D} of $\Gamma \vdash\langle\langle e: t\rangle\rangle \rightsquigarrow D$, we can compute a unifier θ satisfying \mathcal{D}.

Compilation and Results

To summarize, given an expression e, and a constraint derivation \mathcal{D} of $\Gamma \vdash\langle\langle e: t\rangle\rangle \rightsquigarrow D$, we can compute a unifier θ satisfying \mathcal{D}.

This derivation and the associated unifier can be used to compile e in a straightforward way: to every materialization constraint introduced in \mathcal{D} corresponds a cast.
For instance
if $\mathcal{D}=\Gamma ; \vdash\langle\langle x: t\rangle\rangle \rightsquigarrow\{(\tau \dot{\sqsubseteq}),(\alpha \leq t)\}$ and θ is a solution for $\{(\tau \dot{\sqsubseteq} \alpha),(\alpha \leq t)\}$ then

Compilation and Results

To summarize, given an expression e, and a constraint derivation \mathcal{D} of $\Gamma \vdash\langle\langle e: t\rangle\rangle \rightsquigarrow D$, we can compute a unifier θ satisfying \mathcal{D}.

This derivation and the associated unifier can be used to compile e in a straightforward way: to every materialization constraint introduced in \mathcal{D} corresponds a cast.
For instance
if $\mathcal{D}=\Gamma ; \vdash\langle\langle x: t\rangle\rangle \rightsquigarrow\{(\tau \dot{\sqsubseteq} \alpha),(\alpha \leq t)\}$ and θ is a solution for $\{(\tau \dot{\sqsubseteq} \alpha),(\alpha \leq t)\}$ then

$$
\mathcal{D} ; \theta \vdash x^{\text {compiles }}>x\langle\alpha \theta\rangle
$$

Inference (and compilation) for this system is sound, type-preserving and complete w.r.t. the declarative system.

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of adding one subsumption rule.

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of adding one subsumption rule.

Constraint generation is also unchanged, unification constraints just become subtyping constraints.

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of adding one subsumption rule.

Constraint generation is also unchanged, unification constraints just become subtyping constraints.

However, to solve constraints such as $\left\{\left(\alpha \leq t_{1}\right),\left(\alpha \leq t_{2}\right)\right\}$ we have to compute greatest lower bounds.

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of adding one subsumption rule.

Constraint generation is also unchanged, unification constraints just become subtyping constraints.

However, to solve constraints such as $\left\{\left(\alpha \leq t_{1}\right),\left(\alpha \leq t_{2}\right)\right\}$ we have to compute greatest lower bounds.

For example,

$$
\text { fun } x \text {-> if (fst } x \text {) then (} 1+\text { snd } x \text {) else } x
$$

should be of type (Bool \times Int) \rightarrow (Int \mid (Bool \times Int))

Part 3: Adding Set-Theoretic Types

The types become:

| StaticTypes | T | $::=$ Int \mid Bool $\|T \rightarrow T\| T \vee T\|\neg T\|$ Any $\mid \alpha$ |
| :--- | :--- | :--- | :--- |
| GradualTypes | τ | $::=$ Int \mid Bool $\|\tau \rightarrow \tau\| \alpha \mid ?$ |
| Schemas | σ | $::=T \mid \forall \alpha . \sigma$ |

Constraints are unchanged. However, the inference algorithm is now based on the tallying algorithm of Castagna et al. [2015], rather than unification (but the principle is the same).

$$
\left\{\left(\alpha \dot{\leq} t_{1}\right),\left(\alpha \dot{\leq} t_{2}\right)\right\} \rightsquigarrow\left\{\left(\alpha \dot{\leq} t_{1} \wedge t_{2}\right)\right\}
$$

Part 3: Adding Set-Theoretic Types

The types become:

| StaticTypes | T | $::=$ Int \mid Bool $\|T \rightarrow T\| T \vee T\|\neg T\|$ Any $\mid \alpha$ |
| :--- | :--- | :--- | :--- |
| GradualTypes | τ | $::=$ Int \| Bool $\|\tau \rightarrow \tau\| \alpha \mid ?$ |
| Schemas | σ | $::=T \mid \forall \alpha . \sigma$ |

Constraints are unchanged. However, the inference algorithm is now based on the tallying algorithm of Castagna et al. [2015], rather than unification (but the principle is the same).

$$
\left\{\left(\alpha \dot{\leq} t_{1}\right),\left(\alpha \dot{\leq} t_{2}\right)\right\} \rightsquigarrow\left\{\left(\alpha \dot{\leq} t_{1} \wedge t_{2}\right)\right\}
$$

Soundness still holds for the inference algorithm, but completeness no longer holds.

Outline

(15) Main ideas

(16) Formal system
(17) Algorithmic Aspects
(18) Criteria for Gradual Typing
(19) Implementation issues
(20) References

To go further

Some starting points:

- Objects: Siek \& Taha (ECOOP 2007)
- Type inference: Siek \& Vachharajani (DLS 2008), Garcia \& Cimini (POPL 2015) [both superseded by Castagna \& al (POPL 2019)]
- Occurrence Typing: Tobin-Hochstadt \& Felleisen (POPL 2008)
- Foundational approach: Garcia \& Clark \& Tanter (POPL 2016)
- Gradual Guarantees: Siek\& Vitousek \& Cimini \& Boyland (SNAPL 2015)
- Second order parametric polymorphism: Igarashi et al. (ICFP 2017), Xie \& Bi \& Oliveira (ESOP 2018)
- Union and intersection types: Castagna \& Lanvin (ICFP 2017)
- Implementation aspects: Takikawa et al. (POPL 2016), Bauman et al. (OOPSLA 2017), Kuhlenschmidt et al. (PLDI 2019), Castagna \& Duboc \& Lanvin \& Siek (IFL 2019)
- Type inference, subtyping, union and intersection types: Castagna \& Lanvin \& Petrucciani \& Siek (POPL 2019) The full monty!

