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Abstract. We recently introduced an extensional model of the pure λ-
calculus living in a cartesian closed category of sets and relations. In this
paper, we provide sufficient conditions for categorical models living in
arbitrary cpo-enriched cartesian closed categories to have H

∗, the max-
imal consistent sensible λ-theory, as their equational theory. Finally, we
prove that our relational model fulfils these conditions.
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Introduction

The first model of λ-calculus, namely D∞, was postulated by Scott in 1969 in
the category of complete lattices and continuous functions. After Scott’s D∞, a
large number of models have been introduced in various categories of domains.
For example, the continuous semantics [15] is given in the cartesian closed cat-
egory (ccc, for short) whose objects are complete partial orders and morphisms
are Scott continuous functions. The stable semantics [3] and the strongly sta-
ble semantics [5] are refinements of the continuous semantics which have been
introduced to capture the notion of ‘sequential’ continuous function.

Although these semantics are very rich (in each of them it is possible to
build up 2ℵ0 models having pairwise distinct λ-theories) they are also hugely
incomplete: there is a continuum of λ-theories that cannot be presented as equa-
tional theories of continuous, stable, or strongly stable models (see [14]). For
this reason, researchers are today shifting their attention towards less canonical
structures and categories [11, 7, 13, 1, 12]. This is also due to a widespread grow-
ing interest in two branches of computer science which are strongly related to the
semantics of λ-calculus: game semantics and linear logic. The categories arising
in these fields are often non-standard since they can have morphisms which are
not functions and/or they can be non-well-pointed.

At the moment, there is a lack of general methods for a uniform treatment
of models living in non-standard semantics. For instance, the classic method for
turning a categorical model into a λ-model asked for well-pointed categories
[2, Sec. 5.5], whilst, in collaboration with Bucciarelli and Ehrhard, we have
recently shown that such a requirement was unnecessary [6]. In the same paper
we have also built an extensional model D of λ-calculus living in a (highly) non-
well-pointed ccc of sets and relations, which has been previously studied as a
semantic framework for linear logic [8, 4]. We conjectured that D can be seen as



a “relational version” of Scott’s D∞ and, hence, that its equational theory is the
maximal consistent sensible λ-theory H∗ (just like for D∞). Unfortunately, the
classic methods to characterize the equational theory of a model are not directly
applicable to our model D , since it lives in a non-well-pointed category.

In the present paper, we provide sufficient conditions for categorical models
living in possibly non-well-pointed, but cpo-enriched, ccc’s to have H∗ as their
equational theory. The idea of the proof is that we want to find a class of models
(as large as possible) satisfying an Approximation Theorem. More precisely, we
want to be able to characterize the interpretation of a λ-term M as the least
upper bound of the interpretations of its approximants. These approximants are
particular terms of an auxiliary calculus, due to Wadsworth [16], and called here
the labelled λ⊥-calculus, which is strongly normalizable and Church-Rosser.

Then we define the “well stratifiable ⊥-models”, and we show that they
model Wadsworth’s calculus and satisfy the Approximation Theorem. As a con-
sequence, we get that every well stratifiable ⊥-model U equates all λ-terms
having the same Böhm tree; in particular, U is sensible, i.e., it equates all un-
solvable λ-terms. Finally we prove, under the additional hypothesis that U is
extensional, that the theory of U is H∗.

At the end of the paper, we show that our relational model D of [6] fulfils
these conditions, thus its equational theory is H∗.

1 Preliminaries

To keep this article self-contained, we summarize some definitions and results.
With regard to the λ-calculus we follow the notation and terminology of [2].

Multisets and sequences. Let S be a set. A multiset m over S can be defined
as an unordered list m = [a1, a2, . . .] with repetitions such that ai ∈ S for all
i. A multiset m is called finite if it is a finite list, we denote by [] the empty
multiset. We will write Mf(S) for the set of all finite multisets over S. Given two
multisets m1 = [a1, a2, . . .] and m2 = [b1, b2, . . .] the multiset union of m1, m2 is
defined by m1 ⊎ m2 = [a1, b1, a2, b2, . . .].

A N-indexed sequence σ = (m1, m2, . . . ) of multisets is quasi-finite if mi = []
holds for all but a finite number of indices i. If S is a set, we denote by Mf(S)(ω)

the set of all quasi-finite N-indexed sequences of multisets over S.

Cartesian closed categories. Let C be a cartesian closed category (ccc, for
short). We denote by A×B the product of A and B, by [A ⇒ B] the exponential
object and by ev ∈ C([A ⇒ B]×A, B) the evaluation morphism. For any C and
f ∈ C(C ×A, B), Λ(f) ∈ C(C, [A ⇒ B]) stands for the (unique) morphism such
that evAB ◦ (Λ(f) × IdA) = f . Finally, 1 denotes the terminal object and !A the
only morphism in C(A,1). We recall that in a ccc the following equalities hold:

(pair) 〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 Λ(f) ◦ g = Λ(f ◦ (g × Id)) (Curry)
(beta) ev ◦ 〈Λ(f), g〉 = f ◦ 〈Id, g〉 Λ(ev) = Id (Id-Curry)

We say that C is well-pointed if, for all f, g ∈ C(A, B), whenever f 6= g, there
exists a morphism h ∈ C(1, A) such that f ◦ h 6= g ◦ h.



The ccc C is cpo-enriched if every homset is a cpo (C(A, B),⊑(A,B),⊥(A,B)),
composition is continuous, pairing and currying are monotonic, and the following
strictness conditions hold: (l-strict) ⊥ ◦ f = ⊥, (ev-strict) ev ◦ 〈⊥, f〉 = ⊥.

MRel: a relational semantics. We shortly present the category MRel. The
objects of MRel are all the sets. A morphism from S to T is a relation from
Mf(S) to T , in other words, MRel(S, T ) = P(Mf(S) × T ). The identity of
S is the relation IdS = {([a], a) : a ∈ S} ∈ MRel(S, S). The composition of
s ∈ MRel(S, T ) and t ∈ MRel(T, U) is defined by:

t ◦ s = {(m, c) : ∃(m1, b1), . . . , (mk, bk) ∈ s such that
m = m1 ⊎ . . . ⊎ mk and ([b1, . . . , bk], c) ∈ t}.

The categorical product S × T of two sets S and T is their disjoint union. The
terminal object 1 is the empty set, and !S is the empty relation.
MRel is cartesian closed, non-well-pointed and has countable products [6, Sec. 4].

The λ-calculus. Let Var be a countably infinite set of variables. The set Λ of
λ-terms is inductively defined as usual: x ∈ Λ, for each x ∈ Var; if M, N ∈ Λ
then MN ∈ Λ; if M ∈ Λ then λx.M ∈ Λ, for each x ∈ Var.

Concerning specific λ-terms, we set I ≡ λx.x and Ω ≡ (λx.xx)(λx.xx).
Given a reduction rule →R we write ։R (=R) for its transitive and reflexive

(and symmetric) closure. A λ-term M is solvable if M ։β λx1 . . . xn.yN1 · · ·Nk

for some x1, . . . , xn ∈ Var, N1, . . . , Nk ∈ Λ (n, k ≥ 0); otherwise M is unsolvable.
A λ-theory is any congruence on Λ, containing =β. A λ-theory is: consistent if

it does not equate all λ-terms; extensional if it contains =η; sensible if it equates
all unsolvable λ-terms. The set of all λ-theories, ordered by inclusion, forms a
complete lattice. We denote by H∗ the greatest consistent sensible λ-theory.

The Böhm tree BT(M) of a λ-term M is defined as follows: if M is unsolvable,
then BT(M) = ⊥, that is, BT(M) is a tree with a unique node labelled by ⊥; if
M is solvable and λx1 . . . xn.yM1 · · ·Mk is its principal hnf [2, Def. 8.3.10], then:

BT(M) = λx1 . . . xn.y
kkk SSS

BT(M1) · · · BT(Mk)

We call B the λ-theory equating all λ-terms having the same Böhm tree. Given
two Böhm trees t, t′ we define t ⊆BT t′ if, and only if, t results from t′ by
replacing some subtrees with ⊥. The relation ⊆BT is transferred on λ-terms by
setting M ⊑BT N if, and only if, BT(M) ⊆BT BT(N).

We write M ⊑η,∞ N if BT(N) is a (possibly infinite) η-expansion of BT(M)
(see [2, Def. 10.2.10]). For example, let us consider J ≡ Θ(λjxy.x(jy)), where Θ
is Turing’s fixpoint combinator [2, Def. 6.1.4]. Then x ⊑η,∞ Jx, since

Jx =β λz0.x(Jz0) =β λz0.x(λz1.z0(Jz1))
=β λz0.x(λz1.z0(λz2.z1(Jz2))) =β . . .

Using ⊑η,∞, we can define another relation on λ-terms which will be useful in
Subsec. 2.6. For all M, N ∈ Λ we set M -η N if there exist M ′, N ′ such that
M ⊑η,∞ M ′ ⊑BT N ′ ⊒η,∞ N . Let us provide an example of this situation:



λx.x
||

II
⊑η,∞ λx.x

rr II
⊑BT λx.x

rr II
⊒η,∞ λx.x

rr BB

x ⊥ λz.x λz0.x ⊥ λz.x λz0.x y λz.x λz0.x y x

z λz1.z0 z λz1.z0 z λz1.z0

λz2.z1 λz2.z1 λz2.z1

...
...

...
Finally, we write M ≃η N for M -η N -η M .

2 Well Stratifiable Categorical Models

The λ-theory H∗ was first introduced by Hyland [10] and Wadsworth [16], who
proved (independently) that the theory of D∞ is H∗. This proof has been ex-
tended by Gouy in [9] with the aim of showing that also the stable analogue of
D∞ had H∗ as equational theory. Actually, his result is more powerful and covers
many suitably stratifiable models living in “regular” ccc’s. However, all regular
ccc’s have (particular) cpo’s as objects and (particular) continuous functions as
morphisms, hence only concrete categories can be regular. Concerning models
in non-well-pointed categories, Di Gianantonio et al. provided in [7] a similar
proof, but it only works for non-concrete categories of games.

In this section we provide sufficient conditions for models living in (possi-
bly non-well-pointed) cpo-enriched ccc’s to have H∗ as equational theory. All
syntactic notions and results we will use were already present in the literature,
whilst the semantic results are our own contribution.

2.1 A Uniform Interpretation of λ-Terms

A model of λ-calculus U is a reflexive object in a ccc C, i.e., a triple (U, Ap, λ)
such that U is an object of C, and λ ∈ C([U ⇒ U ], U) and Ap ∈ C(U, [U ⇒ U ])
satisfy Ap ◦ λ = Id[U⇒U ]. U is called extensional when moreover λ ◦ Ap = IdU .

A λ-term M is usually interpreted as morphisms |M |I ∈ C(U I , U) for some
finite subset I ⊂ Var containing the free variables of M . The arbitrary choice
of I is tedious to treat when dealing with the equalities induced by a model.
Fortunately, when the underlying category has countable products, we are able
to interpret all λ-terms in the homset C(UVar, U) just slightly modifying the
usual definition of interpretation (see [2, Def. 5.5.3(vii)]). Indeed, given M ∈ Λ,
we can define |M |Var ∈ C(UVar, U) by structural induction on M , as follows:

– |x|Var = πVar
x ,

– |NP |Var = |N |Var • |P |Var, where • = ev ◦ (Ap × Id),
– |λx.N |Var = λ◦Λ(|N |Var◦ηx), where ηx = ΠVar

Var−{x}×Id ∈ C(UVar×U, UVar).

Hence, for the sake of simplicity, we will work in ccc’s having countable
products. This is just a simplification: all the work done in this section could
be adapted to cover also categorical models living in ccc’s without countable
products but the statements and the proofs would be significantly more technical.



We set Th(U ) = {(M, N) : |M |Var = |N |Var}. Th(U ) is called the λ-theory
induced by U (or just the (equational) theory of U ). It is easy to check that if
U is an extensional model then Th(U ) is an extensional λ-theory.

2.2 Stratifiable Models in Cpo-Enriched Ccc’s

The classic methods for proving that the theory of a categorical model is H∗

require that the λ-terms are interpreted as elements of a cpo and that the mor-
phisms involved in the definition of the interpretation are continuous functions.
Thus, working possibly outside well-pointed categories, it becomes natural to
consider categorical models living in cpo-enriched ccc’s.

From now on, and until the end of the section, we consider a fixed (non-
trivial) categorical model U = (U, Ap, λ) living in a cpo-enriched ccc C having
countable products.

Since in a cpo-enriched ccc pairing and currying are monotonic we get the
following corollary.

Corollary 1. The operations • and λ ◦ Λ(− ◦ ηx) are continuous.

To lighten the notation we write ⊑ and ⊥ respectively for ⊑(UVar,U) and ⊥(UVar,U).

Definition 1. The model U is a ⊥-model if the following two conditions hold:
(i) ⊥ • a = ⊥ for all a ∈ C(UVar, U),
(ii) λ ◦ Λ(⊥(UVar×U,U)) = ⊥.

Stratifications of models are done by using special morphisms, acting at the
level of C(U, U) and called projections.

Definition 2. Given an object U of a category C, a morphism p ∈ C(U, U) is
a projection from U to U if p ⊑(U,U) IdU and p ◦ p = p.

From now on, we also fix a family (pk)k∈N of projections from U to U such
that (pk)k∈N is increasing with respect to ⊑(U,U) and ⊔k∈Npk = IdU .

Notation 1. Given a morphism a ∈ C(UVar, U) we write ak for pk ◦ a.

Remark 1. Since the pk’s are increasing, ⊔k∈Npk = IdU , and composition is
continuous, we have for every morphism a ∈ C(UVar, U):

(i) ak ⊑ a,
(ii) a = ⊔k∈Nak.

Definition 3. The model U is called:
(i) stratified (by (pk)k∈N) if ak+1 • b = (a • bk)k;
(ii) well stratified (by (pk)k∈N) if, moreover, a0 • b = (a • ⊥)0.

Of course, the fact that U is a (well) stratified model depends on the family
(pk)k∈N we are considering. Hence, it is natural and convenient to introduce the
notion of (well) stratifiable model.

Definition 4. The model U is stratifiable (well stratifiable) if there exists a
family (pk)k∈N making U stratified (well stratified).

The aim of this section is in fact to prove that every extensional well strati-
fiable ⊥-model has H∗ as equational theory.



2.3 Modelling the Labelled λ⊥-Calculus in U

We recall now the definition of the labelled λ⊥-calculus (see [16] or [2, Sec. 14.1]).
We consider a set C = {ck : k ∈ N} of constants called labels, together with a
constant ⊥ to indicate lack of information.

The set Λlab
⊥ of labelled λ⊥-terms is inductively defined as follows: ⊥ ∈ Λlab

⊥ ;

x ∈ Λlab
⊥ , for every x ∈ Var; if M, N ∈ Λlab

⊥ then MN ∈ Λlab
⊥ ; if M ∈ Λlab

⊥ then

λx.M ∈ Λlab
⊥ , for every x ∈ Var; if M ∈ Λlab

⊥ then ckM ∈ Λlab
⊥ , for every ck ∈ C.

We will denote by Λ⊥ the subset of Λlab
⊥ consisting of those terms that do

not contain any label; note that Λ ( Λ⊥ ( Λlab
⊥ .

The labelled λ⊥-terms can be interpreted in U ; the intuitive meaning of
ckM is the k-th projection applied to the meaning of M . Hence, we define the
interpretation function as the unique extension of the interpretation function of
λ-terms such that:

– |⊥|Var = ⊥,
– |ckM |Var = pk ◦ |M |Var = (|M |Var)k, for all M ∈ Λlab

⊥ and k ∈ N.

Since the ccc C is cpo-enriched, all labelled λ⊥-terms are interpreted in the
cpo (C(UVar, U),⊑,⊥). Hence we can transfer this ordering, and the correspon-
ding equality, on Λlab

⊥ as follows.

Definition 5. For all M, N ∈ Λlab
⊥ we set M ⊑U N iff |M |Var ⊑ |N |Var,

Moreover, we write M =U N iff M ⊑U N and N ⊑U M .

It is straightforward to check that both ⊑U and =U are contextual.
The notion of substitution can be extended to Λlab

⊥ by setting: ⊥[M/x] = ⊥

and (ckM)[N/x] = ck(M [N/x]) for all M, N ∈ Λlab
⊥ . We now show that U is

sound for the β-conversion extended to Λlab
⊥ .

Lemma 1. For all M, N ∈ Λlab
⊥ we have (λx.M)N =U M [N/x].

Proof. By [2, Lemma 5.5.5] we know that (λx.M)N =U M [N/x] still holds for
λ-calculi extended with constants c, if |c|Var = u◦!UVar for some u ∈ C(1, U).
Hence, this lemma holds since the interpretation defined above is equal to that
obtained by setting: |ck|Var = λ ◦ Λ(pk)◦!UVar and |⊥|Var = ⊥(1,U)◦!UVar .

We now introduce the reduction rules on labelled λ⊥-terms which generate
the labelled λ⊥-calculus.

Definition 6.
The ω-reduction is defined by: The γ-reduction is defined by:
⊥M →ω ⊥ c0(λx.M)N →γ c0(M [⊥/x])
λx.⊥ →ω ⊥ ck+1(λx.M)N →γ ck(M [ckN/x]).

The ǫ-reduction is defined by:
ck⊥ →ǫ ⊥,
ck(cnM) →ǫ cmin(k,m)M .



The calculus on Λlab
⊥ generated by the ω-, γ-, ǫ-reductions is called labelled

λ⊥-calculus. Note that the β-reduction is not considered here.

Theorem 1. [2, Thm. 14.1.12 and 14.2.3] The labelled λ⊥-calculus is strongly
normalizable and Church Rosser.

We now show that the interpretation of a labelled λ⊥-term, in a well stratified
⊥-model, is invariant along its ω-, ǫ-, γ-reduction paths.

Proposition 1. If U is a well stratified ⊥-model, then for all M, N ∈ Λlab
⊥ :

(i) ⊥M =U ⊥, (iv) cn(cmM) =U cmin(n,m)M,
(ii) λx.⊥ =U ⊥, (v) (c0λx.M)N =U c0(M [⊥/x]),
(iii) ck⊥ =U ⊥, (vi) (ck+1λx.M )N =U ck(M [ckN/x]).

Proof. (i) |⊥M |Var = |⊥|Var • |M |Var = ⊥ • |M |Var, which is ⊥ by Def. 1(i).
(ii) |λx.⊥|Var = λ ◦ Λ(|⊥|Var ◦ ηx) = λ ◦ Λ(⊥ ◦ ηx). Using (l-strict) this is equal
to λ ◦ Λ(⊥(UVar×U,U)), which is ⊥ by Def. 1(ii). On the other side, |⊥|Var = ⊥.
(iii) |ck⊥|Var = ⊥k, hence by Rem. 1 we obtain ⊥k ⊑ ⊔k∈N⊥k = ⊥. The other
inequality is clear.
(iv) |cn(cmM)|Var = pn ◦pm ◦ |M |Var. By continuity of ◦, and since the sequence
(pk)k∈N is increasing and every pk ⊑(U,U) IdU we obtain pn ◦ pm = pmin(n,m).

(v) |(c0λx.M)N |Var = (|λx.M |Var)0 • |N |Var by def. of | − |Var

= (|λx.M |Var • ⊥)0 by Def. 3(ii)
= |c0((λx.M)⊥)|Var by def. of | − |Var

= |c0(M [⊥/x])|Var by Lemma 1.

(vi) |(ck+1λx.M)N |Var = (|λx.M |Var)k+1 • |N |Var by def. of | − |Var

= (|λx.M |Var • (|N |Var)k)k by Def. 3(i)
= |ck((λx.M)(ckN))|Var by def. of | − |Var

= |ck(M [ckN/x])|Var by Lemma 1.

Corollary 2. If U is a well stratified ⊥-model, then for all M, N ∈ Λlab
⊥ ,

M =ωγǫ N implies M =U N .

Thus, every well stratifiable ⊥-model is a model of the labelled λ⊥-calculus.

2.4 Completely Labelled λ⊥-Terms

We now study the properties of those labelled λ⊥-terms M which are completely
labelled. This means that every subterm of M “has” a label.

Definition 7. The set of completely labelled λ⊥-terms is defined by induction:
ck⊥ is a completely labelled λ⊥-term, for every k; ckx is a completely labelled
λ⊥-term, for every x and k; if M, N ∈ Λlab

⊥ are completely labelled then also

ck(MN) and ck(λx.M) are completely labelled for every x and k.

Note that every completely labelled λ⊥-term is β-normal, since every lambda
abstraction is “blocked” by a ck.



Definition 8. A complete labelling L of a term M ∈ Λ⊥ is a map which assigns
to each subterm of M a natural number.

Notation 2. Given a term M ∈ Λ⊥ and a complete labelling L of M , we denote
by ML the resulting completely labelled λ⊥-term.

It is easy to check that the set of all complete labellings of M is directed with
respect to the following partial ordering: L1 ⊑lab L2 iff for each subterm N of
M we have L1(N) ≤ L2(N). By structural induction on the subterms of M one
proves that L1 ⊑lab L2 implies ML1 ⊑U ML2 . Therefore, the set of ML such
that L is a complete labelling of M , is also directed with respect to ⊑U .

Lemma 2. If U is a well stratified ⊥-model, then for all M ∈ Λ⊥ we have
|M |Var = ⊔L|ML|Var.

Proof. By straightforward induction on M , using a = ⊔k∈Nak and Cor. 1.

2.5 The Approximation Theorem and Applications

Approximation theorems are an important tool in the analysis of the λ-theories
induced by the models of λ-calculus. In this section we provide an Approximation
Theorem for the class of well stratified ⊥-models: we show that the interpretation
of a λ-term in a well stratified ⊥-model U is the least upper bound of the
interpretations of its direct approximants. From this it follows first that Th(U )
is sensible, and second that B ⊆ Th(U ).

Definition 9. Let M, N ∈ Λ⊥, then:

1. N is an approximant of M if there is a context C[−1, . . . ,−k] over Λ⊥,
with k ≥ 0, and M1, . . . , Mk ∈ Λ⊥ such that N ≡ C[⊥, . . . ,⊥] and M ≡
C[M1, . . . , Mk];

2. N is an approximate normal form (app-nf, for short) of M if, furthermore,
it is βω-normal.

Given M ∈ Λ, we define the set A(M) of all direct approximants of M as
follows: A(M) = {W ∈ Λ⊥ : ∃N, (M ։β N) and W is an app-nf of N}.

It is easy to check that if M is unsolvable then A(M) = {⊥}.
The proof of the following lemma is straightforward once recalled that, if

N ∈ A(M), then M results (up to β-conversion) from N by replacing some ⊥
in N by other terms.

Lemma 3. If U is a well stratifiable ⊥-model and M ∈ Λ, then for all N ∈
A(M) we have N ⊑U M .

Given M ∈ Λlab
⊥ we will denote by M ∈ Λ⊥ the term obtained from M by

erasing all labels.

Lemma 4. For all M ∈ Λlab
⊥ , we have that M ⊑U M .



Proof. By Rem. 1(i) we have (|M |Var)k ⊑ |M |Var, and this implies ckM ⊑U M .
We conclude the proof since ⊑U is contextual.

The following syntactic property is a consequence of the results in [2, Sec. 14.3].

Proposition 2. Let M ∈ Λ and L be a complete labelling of M . If nf(ML) is

the ωγǫ-normal form of ML, then nf(ML) ∈ A(M).

Theorem 2. (Approximation Theorem) If U is a well stratified ⊥-model, then
for all M ∈ Λ:

|M |Var =
⊔

A(M),

where
⊔

A(M) =
⊔
{|W |Var : W ∈ A(M)}.

Proof. Let L be a complete labelling for M . From Thm. 1 there is a unique ωǫγ-
normal form of ML. We denote this normal form by nf(ML). Since ML ։ǫγω

nf(ML), and U is a model of the labelled λ⊥-calculus (Prop. 2), we have ML =U

nf(ML). Moreover, Prop. 2 implies that nf(ML) ∈ A(M) and hence nf(ML) ⊑U

nf(ML) by Lemma 4. This implies that |nf(ML)|Var ⊑
⊔
A(M). Since L is an

arbitrary complete labelling for M , we have: |M |Var = ⊔L|ML|Var, by Lemma 2
this is equal to ⊔L|nf(ML)|Var ⊑

⊔
A(M). The opposite inequality is clear.

Corollary 3. M ∈ Λ is unsolvable iff M =U ⊥.

Proof. (⇒) If M is unsolvable, then A(M) = {⊥}. Hence, M =U ⊥ by Thm. 2.
(⇐) If M is solvable, then by [2, Thm. 8.3.14] there exist N1, . . . , Nk ∈ Λ, with
k ≥ 0, such that MN1 · · ·Nk =U I. Since U is a ⊥-model, M =U ⊥ would
imply I =U ⊥ (by Def. 1(i)) and U would be trivial. Contradiction.

Corollary 4. If U is a well stratifiable ⊥-model, then Th(U ) is sensible.

We show that the notion of Böhm tree can be also generalized to terms in Λ⊥.

Definition 10. For all M ∈ Λ⊥ we write BT(M) for the Böhm tree of the λ-
term obtained by substituting Ω for all occurrences of ⊥ in M . Vice versa, for
all M ∈ Λ we denote by M [k] ∈ Λ⊥ the (unique) βω-normal form such that

BT(M [k]) = BTk(M) (where BTk(M) is the Böhm tree of M pruned at level k).

It is straightforward to check that, for every λ-term M , M [k] ∈ A(M). Vice
versa, the following proposition is a consequence of the Approximation Theorem.

Proposition 3. If U is a well stratifiable ⊥-model then, for all M ∈ Λ, |M |Var =
⊔k∈N|M [k]|Var.

Proof. For all W ∈ A(M), there exists a k ∈ N such that all the nodes in BT(W )
have depth less than k. Thus W ⊑BT M [k] and W ⊑U M [k] by Thm. 2.

Corollary 5. If N ⊑BT M then N ⊑U M .

Proof. If N ⊑BT M then for all k ∈ N we have N [k] ⊑BT M . By Lemma 3
N [k] ⊑U M . Thus |N |Var = ⊔k∈N|N [k]|Var ⊑ |M |Var by Prop. 3.

As a direct consequence we get the following result.

Theorem 3. If U is a well stratifiable ⊥-model, then B ⊆ Th(U ).



2.6 A General Class of Models of H∗

We recall that the λ-theory H∗ can be defined in terms of Böhm trees as follows:
M =H∗ N if, and only if, M ≃η N (see [2, Thm. 16.2.7]).

The definition of ≃η has been recalled in Sec. 1, together with those of ⊑BT ,
⊑η,∞, -η. However, for proving that Th(U ) = H∗, the following alternative
characterization of ⊑η,∞ will be useful.

Theorem 4. [2, Lemma 10.2.26] The following conditions are equivalent:
– M ⊑η,∞ N ,

– for all k ∈ N there exists Pk ∈ Λ such that Pk ։η M , and P
[k]
k = N [k].

Lemma 5. If U is an extensional well stratified ⊥-model then, for all M ∈ Λ⊥

and x ∈ Var, x ⊑η,∞ M implies cnx ⊑U M for all n ∈ N.

Proof. From [2, Def. 10.2.10], we can assume that M ≡ λy1 . . . ym.xM1 · · ·Mm

with yi ⊑η,∞ Mi. The proof is done by induction on n. If n = 0, then:
c0x =U λy1, . . . ym.c0xy1 · · · ym since U is extensional,

=U λy1, . . . ym.c0(x⊥)y2 · · · ym since U is well stratified (Def. 3(ii)),
...

...
...

=U λy1, . . . ym.c0(x⊥ · · · ⊥) since U is well stratified (Def. 3(ii)),
⊑U λy1, . . . ym.x⊥ · · ·⊥ by Lemma 4,
⊑U λy1 . . . ym.xM1 · · ·Mm by ⊥ ⊑U Mi.

If n > 0, then:
cnx =U λy1, . . . ym.cnxy1 · · · ym since U is extensional,

=U λy1 . . . ym.cn−1(x(cn−1y1))y2 . . . ym since U is stratified (Def. 3(i)),
...

...
...

=U λy1 . . . ym.cn−m(x(cn−1y1) · · · (cn−mym)) since U is stratified (Def. 3(i)).
Recalling that yi ⊑η,∞ Mi, we have:

λy1 . . . ym.cn−m(x(cn−1y1) · · · (cn−mym))
⊑U λy1 . . . ym.cn−m(xM1 · · ·Mm) since cn−iyi ⊑U Mi by I.H.,
⊑U λy1 . . . ym.xM1 · · ·Mm by Lemma 4.

Lemma 6. Let U be an extensional well stratified ⊥-model and M, N, W ∈ Λ⊥.
If W is a βω-normal form such that W ⊑BT M and M ⊑η,∞ N , then W ⊑U N .

Proof. The proof is done by induction on the structure of W .
If W ≡ ⊥, then it is trivial.
If W ≡ x then M ≡ x and we conclude by Lemma 5 since |x|Var = ⊔n∈N(|x|Var)n.
If W ≡ λx1 . . . xm.yW1 · · ·Wr, then M =β λx1 . . . xm.yM1 · · ·Mr and every Wi

is a βω-normal form such that Wi ⊑BT Mi (for i ≤ r). By M ⊑η,∞ N , we
can assume that N =βη λx1 . . . xm+s.yN1 · · ·Nr+s, with xm+k ⊑η,∞ Nr+k (for
1 ≤ k ≤ s) and Mi ⊑η,∞ Ni (for i ≤ r). From xm+k ⊑η,∞ Nr+k we obtain, using
the previous lemma, that xm+k ⊑U Nr+k. Moreover, since Wi ⊑BT Mi ⊑η,∞ Ni,
the induction hypothesis implies Wi ⊑U Ni. Hence, W ⊑U N .

Lemma 7. If U is an extensional well stratifiable ⊥-model then for all M, N ∈ Λ:



(i) M ⊑η,∞ N implies M =U N ,
(ii) M -η N implies M ⊑U N .

Proof. (i) Suppose that M ⊑η,∞ N . Since all W ∈ A(M) are βω-normal forms
such that W ⊑BT M , the Approximation Theorem and Lemma 6 imply that
M ⊑U N . We prove now that also N ⊑U M holds. By the characterization
of ⊑η,∞ given in Thm. 4 we know that for all k ∈ N there exists a λ-term

Pk such that Pk ։η M and P
[k]
k = N [k]. Since every P

[k]
k ∈ A(Pk), we have

P
[k]
k ⊑U Pk; also, from the extensionality of U , Pk =U M . Thus, by Prop. 3, we

have |N |Var = ⊔k∈N|N [k]|Var = ⊔k∈N|P [k]
k |Var ⊑ |M |Var. This implies N ⊑U M .

(ii) Suppose now that M -η N . By definition, there exist two λ-terms M ′ and
N ′ such that M ⊑η,∞ M ′ ⊑BT N ′ ⊒η,∞ N . We conclude as follows: M =U M ′

by (i), M ′ ⊑U N ′ by Thm. 3, and N ′ =U N , again by (i).

Theorem 5. If U is a well stratifiable extensional ⊥-model living in a cpo-
enriched ccc (having countable products), then Th(U ) = H∗.

Proof. By Lemma 7(ii) we have that M ≃η N implies M =U N . Thus, H∗ ⊆
Th(U ). We conclude since H∗ is the maximal sensible consistent λ-theory.

3 An Extensional Relational Model of λ-Calculus

In this section we recall the definition of our model D of [6], which is extensional
by construction. Finally, we prove that Th(D) = H∗ by applying Thm. 5.

3.1 A Relational Analogue of D∞

We build a family of sets (Dn)n∈N as follows: D0 = ∅, Dn+1 = Mf(Dn)(ω). Since
the operation S 7→ Mf(S)(ω) is monotonic on sets, and since D0 ⊆ D1, we have
Dn ⊆ Dn+1 for all n ∈ N. Finally, we set D =

⋃
n∈NDn.

So we have D0 = ∅ and D1 = {([], [], . . . )}. The elements of D2 are quasi-finite
sequences of multisets over a singleton, and so on.

To define an isomorphism in MRel between D and [D ⇒ D](= Mf(D)×D)
just remark that every element σ = (σ0, σ1, σ2, . . .) ∈ D stands for the pair
(σ0, (σ1, σ2, . . .)) and vice versa. Given σ ∈ D and m ∈ Mf(D), we write m · σ
for the element τ ∈ D such that τ1 = m and τi+1 = σi. This defines a bijection
between Mf(D) × D and D, and hence an isomorphism in MRel as follows:

Proposition 4. The triple D = (D, Ap, λ) where:
– λ = {([(m, σ)], m · σ) : m ∈ Mf(D), σ ∈ D} ∈ MRel([D ⇒ D], D),
– Ap = {([m · σ], (m, σ)) : m ∈ Mf(D), σ ∈ D} ∈ MRel(D, [D ⇒ D]),

is an extensional categorical model of λ-calculus.

Proof. It is easy to check that λ ◦ Ap = IdD and Ap ◦ λ = Id[D⇒D].

We now prove that Th(D) = H∗. From Thm. 5 it is enough to check that
MRel is cpo-enriched and D is a well stratifiable ⊥-model.



Theorem 6. The ccc MRel is cpo-enriched.

Proof. It is clear that, for all sets S, T , the homset (MRel(S, T ),⊆, ∅) is a cpo,
that composition is continuous, and pairing and currying are monotonic. Finally,
it is easy to check that the strictness conditions hold.

Theorem 7. D is a well stratifiable ⊥-model, thus Th(D) = H∗.

Proof. By definition of Ap and λ it is straigthforward to check that ∅•a = ∅, for
all a ∈ MRel(DVar, D), and that λ ◦ Λ(∅) = ∅, hence D is a ⊥-model. Let now
pn = {([σ], σ) : σ ∈ Dn}, where (Dn)n∈N is the family of sets which has been
used to build D. Since (Dn)n∈N is increasing also (pn)n∈N is, and furthermore
⊔n∈Npn = {([σ], σ) : σ ∈ D} = IdD. Then, easy calculations show that D enjoys
conditions (i) and (ii) of Def. 3.
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