
Harnessing ML
F with the Power of System F

Giulio Manzonetto1⋆ and Paolo Tranquilli2⋆⋆

1 Laboratoire LIPN, CNRS UMR 7030
Université Paris Nord, France

giulio.manzonetto@lipn.univ-paris13.fr

2 LIP, CNRS UMR 5668, INRIA,
ENS de Lyon, Université Claude Bernard Lyon 1, France

paolo.tranquilli@ens-lyon.fr

Abstract. We provide a strong normalization result for ML
F, a type

system generalizing ML with first-class polymorphism as in system F.
The proof is achieved by translating ML

F into a calculus of coercions,
and showing that this calculus is just a decorated version of system F.
Keywords: ML

F, strong normalization, coercions, polymorphic types.

1 Introduction

One of the most efficient techniques for assuring that a program“behaves well” is
static type-checking: types are assigned to every subexpression of a program, so
that consistency of such an assignment (checked at compile time) implies well-
behavedness. Such assignment may be explicit, i.e. requiring the programmer to
annotate the types at key points in the program (e.g. variables), as in C or Java.
Otherwise we can free the programmer of the hassle and leave to an automatic
type reconstructor, part of the compiler, the boring part of scattering the code
with types. One of the most prominent examples of this approach is ML [1] and
its dialects, a functional programming language, as such based on λ-calculus.

In this context type polymorphism allows greater flexibility, making it pos-
sible to reuse code that works with elements of different types. For example
an identity function will have type α → α for any α, so one can give it the
type ∀(α)(α → α). However full polymorphism (like in system F [2]) leads to
undecidable type systems: no automatic reconstructor would be available. For
this reason ML has the so called second-class polymorphism (i.e. available only
for named variables), more restricted but allowing a type inference procedure.
Unfortunately, the programmer is also forced to use second-class polymorphism
only. One could wish for a more flexible approach, where one would write just
enough type annotations to let the compiler’s type reconstructor do the job,
while still being able to employ first-class polymorphism, if desired.

ML
F [3] answers this call by providing a partial type annotation mechanism

with an automatic type reconstructor. This extension allows to write system F

⋆ Supported by Digiteo/Île-de-France project COLLODI (2009-28HD).
⋆⋆ Supported by ANR project COMPLICE (ANR-08-BLANC-0211-01).

2 Giulio Manzonetto and Paolo Tranquilli

programs, which is not possible in general in ML, while remaining conservative:
ML programs still type-check without needing any annotation. An important
feature are principal type schemata, lacking in system F, which are obtained
by employing a downward bounded quantification ∀(α ≥ σ)τ , called a flexible
quantifier. Such a type intuitively denotes that τ may be instantiated to any
τ {σ′/α}, provided that σ′ is an instantiation of σ. Usual quantification is recov-
ered by allowing ⊥ (morally equivalent to ∀α.α) as bound. ML

F also uses a rigid
quantifier ∀(α = σ)τ , fundamental for type inference but not for the semantics3.

One of the properties of well-behavedness that a type system can assure is
strong normalization (SN), that is the termination of all typable programs what-
ever execution strategy is used. For example, system F is strongly normalizing.
As already pointed out, system F is contained in ML

F; it is not yet known, but it
is conjectured [3], that the inclusion is strict. This makes the question of SN of
ML

F a non-trivial one, to which we answer positively in this paper. The result is
proved via a suitable simulation in system F, with additional decorations dealing
with the complex type instantiations possible in ML

F.

Our starting point is xML
F [4], the Church version of ML

F, briefly presented
in section 2. In xML

F type inference and the rigid quantifier ∀(α = σ)τ are aban-
doned, with the aim of providing an internal language to which a compiler might
map the surface language briefly presented above (which in fact is denoted more
precisely by eML

F4). Compared to Church-style system F, the type reduction→ι

of xML
F is more complex, and may a priori cause unexpected glitches: it could

cause non-termination, or block the reduction of a β-redex. To prove that none
of this happens, we use as target language of our translation a decoration of
system F, the coercion calculus Fc, which has its own interest. Indeed, xML

F has
syntactic entities (the instantiations φ) testifying an instance relation between
types, and it is natural to regard them as coercions. The delicate point is that
some of these instantiations (the “abstractions” !α) behave in fact as variables,
abstracted when introducing a bounded quantifier: in a way, ∀(α ≥ σ)τ expects
a coercion from σ to α, whatever the choice for α may be.

A question naturally arising is: what does it mean to be a coercion in this
context, where such operations of coercion abstraction and substitution are avail-
able? Our answer, which works for xML

F, is in the form of a type system (Fc,
Figure 2). In section 3 we will show the good properties enjoyed by Fc: it is a
decoration of system F, so it is SN; moreover it has a coercion erasure which
ideally recovers the actual semantics of a term, and establishes a weak bisimula-
tion with system F, where coercion reductions→c take the role of silent actions,
while β-reduction →β remains the observable one.

The generality of coercion calculus allows then to lift these results to xML
F via

the above mentioned translation (section 4). The main idea of the translation is
the same as the one shown for eML

F in [5], where however no dynamic property

3 Indeed ∀(α = σ)τ can be regarded as being τ {σ/α}.
4 There is also a completely annotation-free version, iML

F, clearly at the cost of loosing
type inference. For details on the different versions ofML

F, the reader may be referred
to http://gallium.inria.fr/~remy/mlf/.

http://gallium.inria.fr/~remy/mlf/

Harnessing ML
F with the Power of System F 3

was studied. Here we finally produce a proof of SN for all versions of ML
F.

Moreover the bisimulation result for xML
F establishes once and for all that it

can be used as an internal language for eML
F, as the additional type structure

cannot block reductions of the intended program.

Notations. Given reductions →1 and →2, we write →1→2 (resp. →12) for their

concatenation (resp. their union). Moreover←,
+
→,

=
→ and

∗

→ denote the trans-
pose, the transitive, the reflexive and the transitive-reflexive closures of → re-
spectively. In confluence diagrams, solid arrows denote reductions one starts
with, while dashed arrows are the entailed ones.

2 A Short Introduction to ML
Fand its Variants

Currently, ML
F comes in a Curry-style version iML

F, where no type informa-
tion is needed, and a type-inference version eML

F requiring partial type infor-
mation. However, eML

F is not completely in Church-style, since a large amount
of type information is still inferred. A truly Church-style version of ML

F, called
xML

F, has been recently introduced in [4] and will be our main object of study
in this paper. However, we will draw conclusions for iML

F and eML
F too.

All the syntactic definitions of xML
F can be found in Figure 1. Types include:

usual variable and arrow types; a type ⊥ corresponding to system F’s type ∀α.α;
the flexible quantification ∀(α ≥ σ)τ generalizing ∀α.τ of system F. Intuitively,
∀(α ≥ σ)τ restricts the variable α to range just over instances of σ. The variable
α is bound in τ but not in σ. The instantiation φ maps a type σ to a type τ
which is an instance of σ. Thus φ can be seen as a ‘witness’ of the instance
relation holding between σ and τ . In ∀(α ≥)φ, α is bounded in φ.

Environments Γ are finite maps assigning types (resp. bounds) to term (resp.
type) variables. We write: dom(Γ) for the set of all term and type variables
that are bound by Γ ; ftv(τ) for the set of type variables appearing free in τ .
Environments of shape Γ, α ≥ τ, Γ ′ or Γ, x : τ, Γ ′ are well-formed if ftv(τ) ⊆
dom(Γ). All environments in this paper are supposed to be well-formed.

Reduction rules are divided into→β (regular β-reductions) and→ι, reducing
instantiations. We recall (from [4, Sec. 2.1]) that both →β and →ι enjoy subject
reduction. One of the ι-steps uses the definition of type instantiation τφ, giving
the unique type such that Γ ⊢ φ : τ ≤ τφ, if φ type-checks.

Convention 1. The let construct is added mainly to accommodate eML
F’s type

reconstructor. Thus, in the whole paper we suppose that in all xML
F terms every

letx= a in b has been replaced by (λ(x : σ)b)a, with σ the correct type of a.

The type erasure ⌈a⌉ of an xML
F (or eML

F) term a is straightforwardly defined by
erasing all type and instantiation annotations, mapping a to an ordinary λ-term.
From [4, Lemma 7, Theorem 6 and §4.2] we know the following.

Theorem 2. For every iML
F or eML

F term a, there is an xML
F term [[a]] such

that ⌈[[a]]⌉ = ⌈a⌉5.

5 We only need to apply type erasure on the right for partially annotated eML
F terms.

4 Giulio Manzonetto and Paolo Tranquilli

Syntactic definitions

α, β, . . . (type variables) x, y, z, . . . (variables)
σ, τ ::= α | σ → τ | ⊥ | ∀(α ≥ σ)τ (types) a, b, c ::= x | λ(x : τ)a | ab
φ, ψ ::= τ | φ;ψ | 1 | & | ` | Λ(α ≥ τ)a | aφ

| !α | ∀(≥ φ) | ∀(α ≥)φ
(instantiations)

| letx= a in b
(terms)

Γ ::= ∅ | Γ, α ≥ τ | Γ, x : τ (environments) A,B ::= a | φ (expressions)

Instantiation rules

IBot
Γ ⊢ τ : ⊥ ≤ τ

Γ, α ≥ τ ⊢ φ : τ1 ≤ τ2
IUnder

Γ ⊢ ∀(α ≥)φ : ∀(α ≥ τ)τ1 ≤ ∀(α ≥ τ)τ2

α ≥ τ ∈ Γ
IAbs

Γ ⊢ !α : τ ≤ α

Γ ⊢ φ : τ1 ≤ τ2
IInside

Γ ⊢ ∀(≥ φ) : ∀(α ≥ τ1)τ ≤ ∀(α ≥ τ2)τ

α /∈ ftv(τ)
IIntro

Γ ⊢ ` : τ ≤ ∀(α ≥ ⊥)τ
IElim

Γ ⊢ & : ∀(α ≥ σ)τ ≤ σ {τ/α}

Γ ⊢ φ : τ1 ≤ τ2 Γ ⊢ ψ : τ2 ≤ τ3
IComp

Γ ⊢ φ;ψ : τ1 ≤ τ3
IId

Γ ⊢ 1 : τ ≤ τ

Typing rules

Γ (x) = τ
Var

Γ ⊢ x : τ

Γ ⊢ a : τ Γ, x : τ ⊢ b : σ
Let

Γ ⊢ let x= a in b : σ

Γ, x : τ ⊢ a : σ
Abs

Γ ⊢ λ(x : τ)a : τ → σ

Γ ⊢ a : σ → τ Γ ⊢ b : σ
App

Γ ⊢ ab : τ

Γ, α ≥ σ ⊢ a : τ α /∈ ftv(Γ)
TAbs

Γ ⊢ Λ(α ≥ σ)a : ∀(α ≥ σ)τ

Γ ⊢ a : τ Γ ⊢ φ : τ ≤ σ
TApp

Γ ⊢ aφ : σ

Type instantiation

τ (!α) := α, ⊥τ := τ, τ1 := τ, τ (φ;ψ) := (τφ)ψ,
τ` := ∀(α ≥ ⊥)τ, α /∈ ftv(τ), (∀(α ≥ σ)τ)& := τ {σ/α} ,
(∀(α ≥ σ)τ)(∀(≥ φ)) := ∀(α ≥ σφ)τ, (∀(α ≥ σ)τ)(∀(α ≥)φ) := ∀(α ≥ σ)(τφ).

Reduction rules

(λ(x : τ)a)b→β a {x/b} a` →ι Λ(α ≥ ⊥)a, α /∈ ftv(τ)
letx= b in a→β a {x/b} (Λ(α ≥ τ)a)& →ι a {1/!α} {τ/α}

a1 →ι a (Λ(α ≥ τ)a)(∀(α ≥)φ) →ι Λ(α ≥ τ)(aφ)
a(φ;ψ) →ι (aφ)ψ (Λ(α ≥ τ)a)(∀(≥ φ)) →ι Λ(α ≥ τφ)a{φ; !α/!α}

Fig. 1: Syntactic definitions, typing and reduction rules of xML
F.

3 The Coercion Calculus Fc

In this section we will introduce the coercion calculus Fc, which is (as shown in
subsection 3.2) a decoration of system F accompanied by a type system. Before
introducing the details, we point out that the version of Fc presented here is
tailored down to suit xML

F. As such, there are natural choices that have been
intentionally left out or restrained. If Fc is to serve as a good metatheory of co-
ercions, more liberal choices and constructs are needed, as discussed at page 12.
The syntax, the type system and the reduction rules of Fc

6 are presented in

Harnessing ML
F with the Power of System F 5

Syntactic definitions

α, β, . . . (type variables) Γ ::= ∅ | x : τ, Γ
σ, τ ::= α | σ → τ | x : σ ⊸ α, Γ

(regular env.)

| κ→ τ | ∀α.τ
(types)

L ::= ∅ | z : τ (linear env.)
κ ::= σ ⊸ τ (coercion types) Γ ;L (environments)
ζ ::= τ | κ (type expr.) Γ ;⊢t a : σ (term judgements)
x, y, z, . . . (variables) Γ ;⊢c a : σ ⊸ τ (coercion judgements)
a, b ::= x | λx.a | λx.a | λx.a Γ ; z : τ ⊢ℓ a : σ (linear judgements)

| ab | a ⊲ b | a ⊳ b
(terms)

⊢xy, x, y ∈ { t, c, ℓ } stands for ⊢x or ⊢y.
u, v ::= λx.a | λx.u | x ⊲ u (c-values)

Typing rules

Γ (y) = ζ
Ax

Γ ;⊢tℓ y : ζ

Γ, x : τ ;⊢t a : σ
Abs

Γ ;⊢t λx.a : τ → σ

Γ ;⊢t a : σ → τ Γ ;⊢t b : σ
App

Γ ;⊢t ab : τ

LAx
Γ ; z : τ ⊢ℓ z : τ

Γ ; z : τ ⊢ℓ a : σ
LAbs

Γ ;⊢c λz.a : τ ⊸ σ

Γ, x : κ;L ⊢tℓ a : σ
CAbs

Γ ;L ⊢tℓ λx.a : κ→ σ

Γ ;⊢c a : σ1 ⊸ σ2 Γ ;L ⊢tℓ b : σ1

LApp
Γ ;L ⊢tℓ a ⊲ b : σ2

Γ ;L ⊢tℓ a : κ→ σ Γ ⊢c b : κ
CApp

Γ ;L ⊢tℓ a ⊳ b : σ

Γ ;L ⊢tℓ a : σ α /∈ ftv(Γ ;L)
Gen

Γ ;L ⊢tℓ a : ∀α.σ

Γ ;L ⊢tℓ a : ∀α.σ
Inst

Γ ;L ⊢tℓ a : σ {τ ′/α}

Reduction rules

(λx.a)b→β a {b/x} , (λx.a) ⊳ b →c a {b/x} , (λx.a) ⊲ b→c a {b/x} ,

(λx.u) ⊳ b→cv u {b/x} , (λx.a) ⊲ u→cv a {u/x} , if u is a c-value.

Fig. 2: Syntactic definitions, typing and reduction rules of coercion calculus.

Figure 2. In this calculus the notion of ‘coercion’ is captured by suitable types.

Definition 3 (Coercion). An Fc term a is a coercion if Γ ;⊢c a : σ ⊸ τ .

The use of linear implication for the type of coercions is not casual. Indeed the
type system can be seen as a fragment of DILL, the dual intuitionistic linear
logic [6]. This captures an aspect of coercions: they consume their argument
without erasing it (as they must preserve it) nor duplicate it (as there is no
true computation, just a type recasting). Environments are of shape Γ ;L, where
Γ is a map from variables to type expressions, and L is the linear part of the
environment, containing (contrary to DILL) at most one assignment. Notice the
restriction to σ ⊸ α for coercion variables, which might at first seem overtly
restrictive. However, Theorem 21 relies on this restriction, though the preceding
results do not. Alternative, more permissive restrictions preserving the bisimu-
lation result are left for future work.

Typing judgments come in three sorts. However, the subscripts we use to
distinguish them (⊢t, ⊢c and ⊢ℓ) are only for easy recognition, as the sort of the
judgment can be recovered from the shape of the environment and the type.

6 We present the coercion calculus in Curry-style, whereas arguably its usefulness
outside of this work would rather be in Church-style (which is easy to define).

6 Giulio Manzonetto and Paolo Tranquilli

A note on DILL and λ-calculus. The language presented in [6] is the term calculus
of the logical system, and as such has a constructor for every logical rule. Notably,
that work provides no intuitionistic arrow, as the translation A→ B ∼= !A⊸ B
is preferred. Employing DILL as a type system for ordinary λ-terms leads to a
system (which we might call Fℓ) using types rather than terms to strictly differ-
entiate between linear and regular constructs. This system is known as folklore7

but, as far as we know, it has never been studied in the literature. The ab-
sence of a thorough presentation of Fℓ prevents us from deriving properties such
as subject reduction (Proposition 8) more or less directly from a more general
framework. We leave to further work the rather straightforward presentation of
such a system together with a more general version of Fc, along the lines hinted
at page 12.

Syntax. Fc terms are extensions of usual λ-terms with two abstractions λ, λ
and two applications ⊲, ⊳. The linear abstraction λ (whose application is ⊲) is
used by coercions to ask for the regular term to coerce, so they cannot erase or
duplicate it. The coercion abstraction λ(whose application is ⊳) can be used in
regular or coercion terms to ask for a coercion, so it is not subject to particular
restrictions. The applications ⊲, ⊳ locate coercions within the terms without
carrying the typing around: the triangle’s side indicates where the coercion is.

Reductions. Reduction steps are divided into →β (the actual computation) and
→c (the coercion reduction). The reduction →c has a conditional subreduction
→cv that fires c-redexes only when c-values are at the right of the ⊲ or left of
the ⊳. Intuitively, this reduction is what is strictly necessary to “unearth” a λ-
abstraction. Its main role here is that it is general enough to have bisimulation
(Theorem 21) and small enough to correspond to xML

F’s ι-steps (Lemma 28).
As usual, rules are closed by context.

3.1 Some Basic Properties of Fc

We start presenting some basic properties of the coercion calculus. The first
statements restrain the shape and the behaviour of coercions.

Remark 4. A coercion a is necessarily either a variable or a coercion abstraction,
as Ax and LAbs are the only rules having a coercion type in the conclusion.

proof in

tech. app.
← Lemma 5. If Γ ;L ⊢cℓ a : ζ then no subterm of a is of the form λx.b or bc. In

particular a is β-normal.

Lemma 6. Let a be an Fc term. If Γ ;⊢c a : σ ⊸ τ , then a is cv-normal.

Proof. Immediate by Lemma 5: there cannot be any subterm λx.a′ of a, so in
particular a does not contain any c-value. ⊓⊔

7 As an example we might cite [7], where a fragment of Fℓ is used to characterize
polytime functions.

Harnessing ML
F with the Power of System F 7

Following are basic properties of type systems. Note that though there are two
substitution results (points (ii), (iii) below) to accommodate the two types of
environment, no weakening property is available to add the linear assignment.

Lemma 7 (Weakening and substitution). We have the following:

→
proof in

tech. app.(i) Γ ;L ⊢tcℓ a : ζ and x /∈ dom(Γ ;L) entail Γ, x : ζ′;L ⊢tcℓ a : ζ;
(ii) Γ ;⊢tc a : ζ′ and Γ, x : ζ′;L ⊢tcℓ b : ζ entail Γ ;L ⊢tcℓ b {a/x} : ζ;
(iii) Γ ;L ⊢tℓ a : σ and Γ ;x : σ ⊢ℓ b : ζ entail Γ ;L ⊢tℓ b {a/x} : ζ.

Proposition 8 (Subject reduction). If a →βc b and Γ ;L ⊢tℓc a : ζ, then

→
proof in

tech. app.
Γ ;L ⊢tℓc b : ζ.

Proposition 9 (Confluence). All of →β, →c, →cv and →βc are confluent.

Proof. The proof by Tait-Martin Löf’s technique of parallel reductions does not
pose particular issues. ⊓⊔

3.2 Coercion Calculus as a Decoration of System F

The following definition presents the coercion calculus as a simple decoration of
usual Curry-style system F. The latter can be recovered by just collapsing the
extraneous constructs ⊸, λ, λ, ⊳ and ⊲ to their regular counterpart. Notably
this will lead to a strong normalization result.

Definition 10. The decoration erasure is defined by:

|α| := α, |ζ → τ | := |ζ| → |τ |, |σ ⊸ τ | := |σ| → |τ |,

|x| := x, |λx.a| = |λx.a| = | λx.a| := λx.|a|, |a ⊳ b| = |a ⊲ b| = |ab| := |a||b|,

|Γ |(y) := |Γ (y)| for y ∈ dom(Γ), |Γ ; z : τ | := |Γ |, z : |τ |.

The next lemma ensures that the decoration erasure preserves typability (with
system F’s typability denoted by ⊢F).

Lemma 11. Let a be an Fc term. If Γ ;L ⊢tℓ a : ζ then |Γ ;L| ⊢F |a| : |ζ|.

Proof. It suffices to see that through | . | all the new rules collapse to their regular
counterpart: LAx becomes Ax, CAbs, LAbs become Abs, and CApp, LApp

become App. In the latter cases the weakening lemma for ⊢F may have to be
applied to add the missing z : |τ | to one of the two branches. ⊓⊔

Lemma 12. Given an Fc term a we have |a| {|b|/x} = |a {b/x} |. Moreover, if
a→βc b then |a| → |b|. The converse is also true if a is typable.

Proof. The first two claims are immediate. The converse needs the typability
hypothesis: take |a| = (λx.b′1)b

′

2, then there are bi with |bi| = b′i and a is one
of nine combinations ((λx.b1)b2, (λx.b1)b2, (λx.b1) ⊳ b2, etc.). However as a is
typable only the three matching combinations are possible, giving rise to the
three possible redexes in the coercion calculus. ⊓⊔

Corollary 13 (Termination). The coercion calculus is strongly normalizing.

Proof. Immediate by Lemmas 11 and 12, using the strong normalization of sys-
tem F [2, Sec. 14.3]. ⊓⊔

8 Giulio Manzonetto and Paolo Tranquilli

3.3 Preservation of the Semantics

We will now turn to establishing why coercions a : τ ⊸ σ can be truly called
such. First, we need a way to extract the semantics of a term, i.e., a way to strip
it of the structure one may have added to it in order to manage coercions.

Definition 14. The coercion erasure is defined by

⌊x⌋ := x, ⌊λx.a⌋ := λx.⌊a⌋, ⌊ab⌋ := ⌊a⌋⌊b⌋,

⌊λx.a⌋ = ⌊ λx.a⌋ := ⌊a⌋, ⌊a ⊳ b⌋ := ⌊a⌋, ⌊a ⊲ b⌋ := ⌊b⌋.

proof in

tech. app.
← Lemma 15.

(i) If Γ, x : κ;L ⊢tℓ a : σ then x /∈ fv(⌊a⌋);
(ii) if Γ ; z : τ ⊢ℓ a : σ then ⌊a⌋ = z.

Notice that property (i) above entails that ⌊ . ⌋ is well-defined with respect to
α-equivalence on regular, typed terms: given a term λx.a issued from a coer-
cion abstraction, ⌊ λx.a⌋ = ⌊a⌋ is independent from x. This is not the case for
coercions, as for example ⌊λx.x⌋ = x.

As for property (ii), it greatly restricts the form of a coercion: if a : σ ⊸

τ then it is either a variable or an abstraction λx.a′ (as already written in
Remark 4), with ⌊a′⌋ = x. Apart when they are variables, coercions are essen-
tially identities.

One may ask whether the erasure maps Fc to a larger set of terms than
system F. We do not know yet, though we conjecture it is the case.

Conjecture 16. There is an Fc term a such that ⌊a⌋ is not typable in system F.

A note on unrestricted coercion variables. If we dropped the condition on co-
ercion variables, namely that they are typed σ ⊸ α in the context, we would
get even more than the above conjecture, but too much, as the coercion erasure
would cover the whole of the untyped λ-calculus. It would suffice to use two coer-
cion variables yo→o : o⊸ (o→ o) and yo : (o→ o) ⊸ o modelling the recursive
type o→ o ≃ o. For example, we would have aδ := yo ⊲ (λx.(yo→o ⊲ x)x) : o and
a∆ := (yo→o ⊲ aδ)aδ : o, though ⌊a∆⌋ = (λx.xx)(λx.xx) is the renown divergent
and untypable term.

Lemma 17. ⌊a {b/x}⌋ = ⌊a⌋ {⌊b⌋/x}.

Proof. Immediate induction. ⊓⊔

proof in

tech. app.
← Lemma 18. If Γ ;x : τ ⊢ℓ a : σ and b→β c, then a {b/x} →β a {c/x}.

Proof (sketch). Essentially the proof is by linearity of x in a. Formally it is
carried out by an easy induction on the derivation. ⊓⊔

The following will state some basic dynamic properties of coercion reductions.
Intuitively we will prove that β-steps are actual steps of the semantics (point
(ii)) and that c-steps preserves it in a strong sense: they are collapsed to the
equality (point (iii)) and they preserve β-steps (point (i)).

Harnessing ML
F with the Power of System F 9

proof in

tech. app.
← Proposition 19. Suppose that a is an Fc term. Then:

(i) if b1 ←c a→β b2 then there is c with b1 →β c
∗

←c b2;
(ii) if a→β b then ⌊a⌋ → ⌊b⌋;
(iii) if a→c b then ⌊a⌋ = ⌊b⌋.

a b2

b1 c

β

c c∗
β

In order to truly see coercions as additional information that is not strictly
needed for reduction, one may ask that some converse of property (ii) should
also hold. Here the condition on coercion variables (x : σ ⊸ α) starts to play a
role8. Indeed in general this is not the case: take a = λy.(y ⊲ I)I with I = λx.x,
that would be typable with ;⊢ a : (σid ⊸ σid)→ σid (where σid := ∀α.(α→ α)).
Its coercion erasure is typable but it has a redex that is blocked by a coercion
variable.

With the condition on coercion variables in place we are ready to prove a
complete correspondence between the β-reductions of the coerced terms and the
ones of their coercion erasure. In fact Theorem 21 states that a 7→ ⌊a⌋ is a weak
bisimulation for →β, taking →cv as the silent actions on the side of coercion
calculus. The proof uses the following lemma.

→
proof in

tech. app.
Lemma 20. Every typable cv-normal term a such that ⌊a⌋ = λx.b is a c-value.
In particular if a has an arrow type then a = λx.c with ⌊c⌋ = b.

Theorem 21 (Bisimulation of ⌊ . ⌋). If Γ ;⊢t a : σ, then

⌊a⌋ →β b iff a
∗

→cv→β c with ⌊c⌋ = b.

a c

⌊a⌋ b

cv∗ β

m

β

Proof. The if part is given by Proposition 19. For the only if part we can suppose
that a = a1a2 with ⌊a1⌋ = λx.d, so that (λx.d)⌊a2⌋ is the redex fired in ⌊a⌋, i.e.
b = d {⌊a2⌋/x}. We can reduce to such a case reasoning by structural induction
on a, discarding all the parts of the context where the reduction does not occur.

As a1 is applied to a2 there is a derivation giving Γ ′;⊢t a1 : τ → τ ′ for some
Γ ′, τ, τ ′. We can then cv-normalize a1 to a′1 (Corollary 13), which by subject
reduction has the same type. Moreover by Proposition 19(iii) ⌊a′1⌋ = ⌊a1⌋ =
λx.d, and we conclude by Lemma 20 that a′1 = λx.e with ⌊e⌋ = d, and we

finally get a1a2
∗

→cv (λx.e)a2 →β e {a2/x}. Now by Lemma 17 ⌊e {a2/x}⌋ =
⌊e⌋ {⌊a2⌋/x} = d {⌊a2⌋/x} = b and we are done. ⊓⊔

Notice that the above result entails bisimulation with→c as a more general silent
action: Proposition 19 gives the if part, while →cv ⊆ →c gives the only if one.

4 The Translation

A translation from xML
F terms and instantiations into the coercion calculus

is given in Figure 3. The idea is that instantiations can be seen as coercions;
thus a term starting with a type abstraction Λ(α ≥ τ) becomes a term waiting
for a coercion of type τ• ⊸ α, and a term aφ is becomes a◦ coerced by φ◦. The

8 All the results shown so far are valid also without such a condition.

10 Giulio Manzonetto and Paolo Tranquilli

Types and contexts

α• := α, (σ → τ)• := σ• → τ•, (x : τ)• := x : τ•,

⊥• := ∀α.α, (∀(α ≥ σ)τ)• := ∀α.(σ•

⊸ α) → τ•, (α ≥ τ)• := iα : τ• ⊸ α.

Instantiations

τ◦ := λx.x, (`)◦ := λx. λiα.x, (φ;ψ)◦ := λz.ψ◦ ⊲ (φ◦ ⊲ z),
(!α)◦ := iα, (&)◦ := λx.x ⊳ λz.z, (1)◦ := λz.z,

(∀(≥ φ))◦ := λx. λiα.x ⊳ (λz.iα ⊲ (φ
◦ ⊲ z)),

(∀(α ≥)φ)◦ := λx. λiα.φ
◦ ⊲ (x ⊳ iα).

Terms

x◦ := x, (λ(x : τ)a)◦ := λx.a◦, (ab)◦ := a◦b◦,

(Λ(α ≥ τ)a)◦ := λiα.a
◦, (aφ)◦ := φ◦ ⊲ a◦.

Fig. 3: Translation of types, instantiations and terms into the coercion calculus.
For every type variable α we suppose fixed a fresh term variable iα.

rest of this section is devoted to showing how this translation and the properties
of the coercion calculus lead to the main result of this work, SN of both xML

F

and eML
F. First one needs to show that the translation maps to typed terms.

As expected, type instantiations are mapped to coercions.

proof in

tech. app.
← Lemma 22. Let a be an xML

F term and φ be an instantiation:

(i) if Γ ⊢ φ : σ ≤ τ then Γ •;⊢c φ◦ : σ•
⊸ τ•.

(ii) if Γ ⊢ a : σ then Γ •;⊢t a◦ : σ•.

With the substitution lemma below we will have simulation within reach.

proof in

tech. app.
← Lemma 23. Let A be an xML

F term or an instantiation. Then we have:

(i) (A {b/x})◦ = A◦ {b◦/x},
(ii) (A {1/!α} {τ/α})◦ = A◦ {λz.z/iα},
(iii) (A {φ; !α/!α})◦ = A◦ {(λz.iα ⊲ (φ◦ ⊲ z))/iα}.

Theorem 24 (Coercion calculus simulates xML
F). If a→β b (resp. a→ι b)

proof in

tech. app.
← in xML

F, then a◦ →β b
◦ (resp. a◦

+
→c b

◦) in coercion calculus.

Proof. (Sketch) As the translation is contextual, it sufficies to analyze each re-
duction rule, perform the reductions and apply Lemma 23 where needed. ⊓⊔

Corollary 25 (Termination). xML
F is strongly normalizing.

The above already shows SN of xML
F, however in order to prove that eML

F

is also normalizing we need to make sure that ι-redexes cannot block β ones: in
other words, a bisimulation result. We first need some technical lemmas, proved
by structural induction. We recall that ⌈a⌉ is the type erasure of a (page 3).

Lemma 26. The type erasure of an xML
F term a coincides with the coercion

erasure of its translation, i.e. ⌈a⌉ = ⌊a◦⌋.

Harnessing ML
F with the Power of System F 11

Lemma 27.

(i) If a◦ →β b then a→β c with c
◦ = b;

(ii) if a◦ →cv b then a→ι c with b
=
→cv c

◦.

a c

a◦ b

β

β

a c

a◦ b c◦

ι

cv cv=proof in

tech. app.
←

Notice that the above is not true in general for →c in place of →cv: for example
x& is normal in xML

F, but (x&)◦ = (λy.y) ⊲ x→c x.

The following lemma allows us lift to xML
F the reduction in coercion calculus

that bisimulates β-steps (see Theorem 21).

Lemma 28 (Lifting). Given a typed xML
F term a, we have

that if a◦
∗

→cv→β b then a
∗

→ι→β c with b
∗

→c c
◦.

a c

a◦ b c◦

ι∗ β

cv∗ β c∗

Proof. As →cv is strongly normalizing (Corollary 13), we can reason by well-
founded induction on a◦ with respect to →cv.

First let us suppose that a◦ →β b: we then apply Lemma 27(i) and get the

result directly. Suppose then that a◦
+
→cv→β b. We have the following diagram:

a a1 c

a◦1 c◦

a◦ b

ι ι∗ β

cv∗ β c∗

cv cv∗

cv=

β

cv∗
c∗

(i)

(ii) (iii)

(iv)

where (i) comes from Lemma 27(ii), (ii) is by confluence (Proposition 9), (iii) is

by Proposition 19(i) and (iv) is by inductive hypothesis, as a◦
+
→cv a

◦

1. ⊓⊔

Theorem 29 (Bisimulation of ⌈ . ⌉). Given a typed xML
F

term a, we have that ⌈a⌉ →β b iff a
∗

→ι→β c with ⌈c⌉ = b.

a c

⌈a⌉ b

ι∗ β

m

β

Proof. For the if part, by Theorem 24 we have a◦
∗

→c→β c
◦, which by Lemma 26

and Proposition 19 implies ⌈a⌉ = ⌊a◦⌋ →β ⌊c◦⌋ = ⌈c⌉. For the only if part,

as ⌊a◦⌋ = ⌈a⌉ →β b, by Theorem 21 a◦
∗

→cv→β b′ with ⌊b′⌋ = b. Now by

Lemma 28 we have that b′
∗

→c c
◦ with a

∗

→ι→β c. To conclude, we see that
⌈c⌉ = ⌊c◦⌋ = ⌊b′⌋ = b, where we used Lemma 26 and Proposition 19(iii). ⊓⊔

The above proof may be completely carried out within xML
F, by applying a

suitably modified version of Lemma 20. However, we preferred this formulation

→
proof in

tech. app.
since it provides a better understanding of what happens on the side of the
coercion calculus.

Corollary 30. Terms typed in iML
F and eML

F are strongly normalizing.

Proof. Immediate by the above result and Theorem 2. ⊓⊔

12 Giulio Manzonetto and Paolo Tranquilli

Further work. We were able to prove new results for ML
F (namely SN and

bisimulation of xML
F with its type erasure) by employing a more general calculus

of coercions. It becomes natural then to ask whether its type system may be a
framework to study coercions in general. A first natural target are the coercions
arising from Leijen’s translation of ML

F [5], which is more optimized than ours,
in the sense that it does not add additional and unneeded structure to system
F types. We plan then to study the coercions arising in Fη [8] or when using
subtyping [9]. As explained at the start of section 3, Fc was purposely tailored
down to suit xML

F, stripping it of natural features.

A first, easy extension would consist in more liberal types and typing rules,
allowing coercion polymorphism, coercion abstraction of coercions or even co-
ercions between coercions (i.e. allowing types ∀α.κ, κ1 → κ2 and κ1 ⊸ κ2).
To progress further however, one would need a way to build coercions of arrow
types, which are unneeded in xML

F. Namely, given coercions c1 : σ2 ⊸ σ1 and
c2 : τ1 ⊸ τ2, there should be a coercion c1 ⇒ c2 : (σ1 → τ1) ⊸ (σ2 → τ2), allow-
ing a reduction (c1 ⇒ c2) ⊲ λx.a→c λx.c2 ⊲ a {c1 ⊲ x/x}. This could be achieved
either by introducing it as a primitive, by translation or by special typing rules.
Indeed, if some sort of η-expansion would be available while building a coercion,
one could write c1 ⇒ c2 := λf.λx.(c2 ⊲ (f(c1 ⊲ x))). However how to do this
without loosing bisimulation is under investigation.

References

1. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press,
Cambridge, MA, USA (1997)

2. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Number 7 in Cambridge
tracts in theoretical computer science. Cambridge University Press (1989)

3. Le Botlan, D., Rémy, D.: MLF: Raising ML to the power of System F. In: Proc. of
International Conference on Functional Programming (ICFP’03). (2003) 27–38

4. Rémy, D., Yakobowski, B.: A Church-style intermediate language for MLF. Sub-
mitted (July 2009)

5. Leijen, D.: A type directed translation of MLF to System F. In: Proc. of Interna-
tional Conference on Functional Programming (ICFP’07), ACM Press (2007)

6. Barber, A., Plotkin, G.: Dual intuitionistic linear logic. Technical report LFCS-96-
347, University of Edinburgh (1997)

7. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda
calculus. Inf. Comput. 207(1) (2009) 41–62

8. Mitchell, J.C.: Coercion and type inference. In: Proc. of 11th symposium on Prin-
ciples of programming languages (POPL’84), ACM (1984) 175–185

9. Crary, K.: Typed compilation of inclusive subtyping. In: Proc. of International
Conference on Functional Programming (ICFP’00). (2000) 68–81

A Technical Proofs

This technical appendix is devoted to give full proofs of the results in the paper.

Harnessing ML
F with the Power of System F 13

Lemma 5. If Γ ;L ⊢cℓ a : ζ then no subterm of a is of the form λx.b or bc. In
particular a is β-normal.

Proof. Let us call regular the terms of form λx.b or bc. We proceed by induction
on the derivation of a. If Γ ;⊢c a : σ ⊸ τ then the last rule is either Ax (in
which case a is a variable and the result follows) or LAbs from Γ ; z : σ ⊢ℓ a′ : τ
with a = λz.a′. Inductive hypothesis yields that no strict subterm of a (i.e. no
subterm of a′) is regular.

If Γ ; z : σ ⊢ℓ a : τ then we reason by cases on the last rule. If it is LAx then
a = w and we are done; in all other cases it is sufficient to note that:

– a is not regular, and
– the premise or both the premises of the rule are of one of the two forms, so

inductive hypothesis applies to every immediate subterm(s). ⊓⊔

Lemma 7 (Weakening and substitution). We have the following:

(i) Γ ;L ⊢tcℓ a : ζ and x /∈ dom(Γ ;L) entail Γ, x : ζ′;L ⊢tcℓ a : ζ;
(ii) Γ ;⊢tc a : ζ′ and Γ, x : ζ′;L ⊢tcℓ b : ζ entail Γ ;L ⊢tcℓ b {a/x} : ζ;
(iii) Γ ;L ⊢tℓ a : σ and Γ ;x : σ ⊢ℓ b : ζ entail Γ ;L ⊢tℓ b {a/x} : ζ.

Proof. The weakening result is obtained by a trivial induction on the size of the
derivation. As usual, one may have to change the bound variable in the Gen

rule.
For the substitution results, both are obtained by induction on the size of

the derivation for b, by cases on its last rule.

– Ax: for (ii), if b = x then the derivation of a is what looked for, as ζ′ = ζ and
b {a/x} = a; otherwise b {a/x} = b and we are done; (ii) does not happen.

– LAx: for (ii) L = z : σ and b = z 6= x, so Γ ; z : σ ⊢ℓ z = z {a/x} : σ and we
are done; for (iii) necessarily b = x, ζ = σ and b {a/x} = a and we are done.

– Abs,App and LAbs: trivial application of inductive hypothesis for (ii), while
it does not apply for (iii) as the judgment for b cannot be a linear one.

– CAbs, Gen and Inst: for these unary rules both (ii) and (iii) are trivial.
– CApp and LApp: for (ii) the substitution distributes as usual; for (iii) it must

be noted that x does not appear free in one of the two subterms (as it does not
appear in the assignment). Indeed we will have (b1⊳b2) {a/x} = (b1 {a/x})⊳b2
(resp. (b1 ⊲ b2) {a/x} = b1 ⊲ (b2 {a/x})) and inductive hypothesis is needed
for just one of the two branches. ⊓⊔

The following standard lemma is used in some of the following results.

Lemma 31. If Γ ;L ⊢tcℓ a : ζ, then there is a derivation of the same judgment
where no Inst rule follows immediately a Gen one.

Proof. One uses the following remark: if we have a derivation π of Γ ;L ⊢tcℓ a : ζ
then for any τ there is a derivation of the same size, which we will denote by
π {τ/α}, giving Γ {τ/α} ;L {τ/α} ⊢tcℓ a : ζ {τ/α}. To show it, it suffices to
substitute τ for all α’s, possibly renaming bound variables along the process.

14 Giulio Manzonetto and Paolo Tranquilli

One then shows this standard result by structural induction on the size of
the derivation π of Γ ;L ⊢tcℓ a : ζ. Suppose in fact that there is an Inst rule
immediately after a Gen one. Then there is a subderivation π′ of the following
shape:

π′′

...
Γ ′;L′ ⊢tℓ b : σ α /∈ ftv(Γ ′;L′)

Gen
Γ ′;L′ ⊢tℓ b : ∀α.σ

Inst
Γ ′;L′ ⊢tℓ b : σ {τ/α}

By applying the above remark it suffices to substitute π′ in π with π′′ {τ/α},
as Γ ′ {τ/α} ;L′ {τ/α} = Γ ′;L′. The derivation thus obtained is smaller by two
rules, so inductive hypothesis applies and we are done. ⊓⊔

Proposition 8 (Subject reduction). If a →βc b and Γ ;L ⊢tℓc a : ζ, then
Γ ;L ⊢tℓc b : ζ.

Proof. By Lemma 31 we can suppose that in the derivation of a : ζ there is no
Inst rule immediately following a Gen. One then reasons by induction on the
size of the derivation to settle the context closure, stripping the cases down to
when the last rule of the derivation is one of the application rules App, CApp or
LApp which introduces the redex (λx.c)d, (λx.c) ⊳ d or (λx.c) ⊲ d. Moreover we
can see that no Gen or Inst rule is present between the abstraction rule and the
application one: if there were any, then as no Inst follows Gen we would have a
sequence of Inst rules followed by Gen ones. However the former cannot follow
an abstraction, while the latter cannot precede an application on the function
side.

– (λx.c)d →β c {d/x}: then Γ, x : σ;⊢t c : τ and Γ ;⊢t d : σ, and Lemma 7(ii)
settles the case;

– (λx.c) ⊳ d →c c {d/x}: the rule introducing λx.c must be CAbs, with Γ, x :
κ;L ⊢tℓ c : σ and Γ ;⊢c d : κ, and again Lemma 7(ii) entails the result;

– (λx.c) ⊲ d →c c {d/x}: here λx.c is introduced by LAbs, so Γ ;x : τ ⊢ℓ c : σ
and Γ ;L ⊢tℓ d : τ , and it is Lemma 7(iii) that applies. ⊓⊔

Lemma 15.

(i) If Γ, x : κ;L ⊢tℓ a : σ then x /∈ fv(⌊a⌋);
(ii) if Γ ; z : τ ⊢ℓ a : σ then ⌊a⌋ = z.

Proof. Both are proved by induction on the derivation, by cases on the last rule.

(i) As the judgment is not a coercion one, Ax cannot yield a = x, nor can
LAx. Inductive hypothesis applies seamlessly for rules Abs, App, CAbs,
Gen and Inst. The LAbs rule cannot be the last one of the derivation.
Finally, rule CApp (resp. LApp) gives ⌊a⌋ = ⌊b ⊳ c⌋ = ⌊b⌋ (resp. ⌊a⌋ =
⌊b ⊲ c⌋ = ⌊c⌋), and inductive hypothesis applied to the left (resp. right)
branch gives the result.

Harnessing ML
F with the Power of System F 15

(ii) The judgment is required to be a linear one: Ax, Abs, App and LAbs do
not apply. For LAx we have a = w and we are done. For all the other rules
the result follows by inductive hypothesis, possibly chasing the Γ ; z : τ
environment left or right in the CApp and LApp rules respectively. ⊓⊔

Lemma 18. If Γ ;x : τ ⊢ℓ a : σ and b→β c, then a {b/x} →β a {c/x}.

Proof. By induction on the derivation, by cases on the last rule used: Ax, Abs,
App and LAbs do not apply; LAx is trivial (as a = x); in CAbs, Gen and
Inst the inductive hypothesis easily yields the inductive step; finally in CApp

and LApp the inductive hypothesis is applied only to the left and right premises
respectively, giving the needed one step by context closure. ⊓⊔

Proposition 19. Suppose that a is an Fc term. Then:

(i) if b1 ←c a→β b2 then there is c with b1 →β c
∗

←c b2;
(ii) if a→β b then ⌊a⌋ → ⌊b⌋;
(iii) if a→c b then ⌊a⌋ = ⌊b⌋.

a b2

b1 c

β

c c∗
β

Proof.

(i) We consider the case where the two redexes are not orthogonal: by non-
overlapping one contains the other, and we can suppose that a is the biggest
of the two, closing the diagram by context in the other cases.
If a = (λx.d)e, then the diagram is closed straightforwardly, whether the
c-redex is in d or in e (in which case many or no c-steps may be needed).
When firing a = (λx.d) ⊲ e then by typing λx.d is a coercion, so we have a
derivation ending in Γ ;x : σ ⊢ℓ d : τ , with Γ ;⊢t e : σ (we are silently using
Lemma 31 here). As d cannot contain any β-redex, the other redex fired in
the diagram is in e, so e→β e

′. Thus b1 = d {e/x} and b2 = (λx.d) ⊲ e′ →c

d {e′/x}. By Lemma 18 we have that b1 →β d {e′/x} and we are done.
If firing a = (λx.d) ⊳ e we have that e is a coercion, which cannot contain
any β-redex, so we have d →β d′ and b2 = (λx.d′) ⊳ e. We easily get
b2 →c d

′ {e/x} ←β d {e/x} = b1.
(ii) By Lemma 17, as ⌊(λx.c)d⌋ = (λx.⌊c⌋)⌊d⌋ → ⌊c⌋ {⌊d⌋/x} = ⌊c {d/x}⌋.
(iii) Proceeding by context closure, suppose a = (λx.c)⊳d (resp. a = (λx.c)⊲d),

so b = c {d/x}. In the first case we will have ⌊a⌋ = ⌊c⌋ and Γ, x : κ;L ⊢tℓ
c : σ for some typing derivation. Then by Lemmas 15(i) and 17 we have
that x /∈ fv(⌊c⌋) and ⌊b⌋ = ⌊c⌋ {⌊d⌋/x} = ⌊c⌋ = ⌊a⌋ and we are done.
In the latter case we have ⌊a⌋ = ⌊d⌋, and Γ ;x : τ ⊢ℓ c : σ. Lemmas 15(ii)
and 17 entail ⌊b⌋ = ⌊c⌋ {⌊d⌋/x} = x {⌊d⌋/x} = ⌊d⌋ = ⌊a⌋ and we are again
done. ⊓⊔

Lemma 20. Every typable cv-normal term a such that ⌊a⌋ = λx.b is a c-value.
In particular if a has an arrow type then a = λx.c with ⌊c⌋ = b.

Proof. We reason by structural induction on a. Notice a cannot be a variable or a
regular application, as its erasure is an abstraction. Following are the remaining
cases.

16 Giulio Manzonetto and Paolo Tranquilli

– a = λy.d: a is a c-value.
– a = λy.d: as ⌊d⌋ = ⌊a⌋ = λx.b inductive hypothesis applies and d is a c-value,

hence a is a c-value too.
– a = λy.d: this case cannot happen, as no coercion has an abstraction as

erasure.
– a = d ⊳ e: by inductive hypothesis (⌊d⌋ = ⌊a⌋ = λx.b) we have that d is a

c-value. We arrive to a contradiction ruling out all the alternatives for d:

• d = λy.f would make d ⊲ e impossible to type;
• d = λy.f with f a c-value is impossible as d⊲e would be a valid cv-redex;
• d = x⊲f with f a c-value is impossible as, before the CApp introducing
d⊲ e, d would be typed by a type variable α (as x would necessarily have
type σ ⊸ α), which in no way could lead to the necessary type κ→ τ .

– a = d ⊲ e: by inductive hypothesis (⌊e⌋ = ⌊a⌋ = λx.b) e is a c-value. As d
is a coercion, by Remark 4 it can either be a variable (in which case we are
done) or an abstraction. The latter however is impossible as a would be a
valid cv-redex.

For the consequence about an arrow-typed a, it suffices to see that λy.u gives
rise to a (possibly generalized) type κ→ τ , while x⊲u gives a (not generalizable)
type variable. So in this case the only possibility for a is to be an abstraction
λx.c. The fact that ⌊c⌋ = b follows from the definition of ⌊a⌋. ⊓⊔

The following lemma is needed for proving Lemma 22 below.

Lemma 32. (σ {τ/α})• = σ• {τ•/α}.

Proof. By structural induction on σ.

– σ = α: (α {τ/α})• = τ• = α• {τ•/α}.
– σ = β 6= α: (β {τ/α})• = β• = β• {τ•/α}.
– σ = σ1 → σ2: we have ((σ1 → σ2) {τ/α})• = (σ1 {τ/α} → σ2 {τ/α})• =

(σ1 {τ/α})• → (σ2 {τ/α})•. By the induction hypothesis, this is equal to
σ•

1 {τ
•/α} → σ•

2 {τ
•/α} = (σ•

1 → σ•

2) {τ
•/α}.

– σ = ⊥: (⊥{τ/α})• = ⊥• = ∀β.β = (∀β.β) {τ•/α} = ⊥• {τ•/α}.
– σ = ∀β ≥ σ1.σ2 (supposing β /∈ ftv(τ) ∪ {α}):

((∀β ≥ σ1.σ2) {τ/α})
• = (∀β ≥ σ1 {τ/α} .σ2 {τ/α})

•

= ∀β.((σ1 {τ/α})
•
⊸ β)→ σ•

2 {τ
•/α}

= ∀β.(σ•

1 {τ
•/α}⊸ β)→ σ•

2 {τ
•/α}

= (∀β.(σ•

1 ⊸ β)→ σ•

2) {τ
•/α} = (∀β ≥ σ1.σ2)

• {τ•/α}

where we applied inductive hypothesis for the third equality. ⊓⊔

Lemma 22. Let a be an xML
F term and φ be an instantiation:

(i) if Γ ⊢ φ : σ ≤ τ then Γ •;⊢c φ◦ : σ•
⊸ τ•.

(ii) if Γ ⊢ a : σ then Γ •;⊢t a◦ : σ•.

Harnessing ML
F with the Power of System F 17

Proof. (i) By induction on the derivation of Γ ⊢ φ : σ ≤ τ .

– IBot, Γ ⊢ τ : ⊥ ≤ τ . We have to prove that Γ •;⊢c λx.x : (∀α.α) ⊸ τ•.
This follows by applying LAbs, Inst and LAx.

– IAbstr, Γ ⊢ !α : τ ≤ α where α ≥ τ ∈ Γ . We have to prove Γ •;⊢c iα :
τ• ⊸ α, which follows from Ax since iα : τ• ⊸ α ∈ Γ •.

– IUnder, Γ ⊢ ∀(α ≥)φ : ∀(α ≥ σ)τ1 ≤ ∀(α ≥ σ)τ2. By induction hypothesis
we have a proof π of Γ ′;⊢c φ◦ : τ•1 ⊸ τ•2 where Γ ′ := Γ •, iα : σ•

⊸ α. Let
L := x : ∀α.(σ•

⊸ α)→ τ•1 .

π...
Γ ′;⊢c φ◦ : τ•1 ⊸ τ•2

LAx
Γ ′;L ⊢ℓ x : (∀(α ≥ σ)τ1)•

Inst
Γ ′;L ⊢ℓ x : (σ•

⊸ α)→ τ•1
Ax

Γ ′;⊢c iα : σ•
⊸ α

CApp......
Γ ′;L ⊢ℓ x ⊳ iα : τ•1

LApp
Γ ′;L ⊢ℓ φ◦ ⊲ (x ⊳ iα) : τ•2

CAbs
Γ •;L ⊢ℓ λiα.φ◦ ⊲ (x ⊳ iα) : (σ•

⊸ α)→ τ•2
Gen

Γ •;L ⊢ℓ λiα.φ◦ ⊲ (x ⊳ iα) : ∀α.(σ•
⊸ α)→ τ•2

LAbs
Γ •;⊢c λx. λiα.φ◦ ⊲ (x ⊳ iα) : (∀(α ≥ σ)τ1)• ⊸ (∀(α ≥ σ)τ2)•

– IComp, Γ ⊢ φ;ψ : τ1 ≤ τ3. By induction hypothesis we have a proof π1 of
Γ •;⊢c φ◦ : τ•1 ⊸ τ•2 , and a proof π2 of Γ •;⊢c ψ◦ : τ•2 ⊸ τ•3 . Then we can
build the following proof:

π2...
Γ •;⊢c ψ◦ : τ•2 ⊸ τ•3

π1...
Γ •;⊢c φ◦ : τ•1 ⊸ τ•2

LAx
Γ •; z : τ•1 ⊢ℓ z : τ•1

LApp
Γ •; z : τ•1 ⊢ℓ φ

◦ ⊲ z : τ•2
LApp

Γ •; z : τ•1 ⊢ℓ ψ
◦ ⊲ (φ◦ ⊲ z) : τ•3

LAbs
Γ •;⊢c λz.ψ◦ ⊲ (φ◦ ⊲ z) : τ•1 ⊸ τ•3

– IInside, Γ ⊢ ∀(≥ φ) : ∀(α ≥ τ1)σ ≤ ∀(α ≥ τ2)σ. We can suppose α /∈
ftv(Γ) = ftv(Γ •). We set L := x : (∀(α ≥ τ1)σ)

• and Γ ′ := Γ •, iα : (τ•2 ⊸

α). By induction hypothesis (and Lemma 7(i)) we have a proof of Γ ′;⊢c φ◦ :
τ•1 ⊸ τ•2 . By mixing it with Γ ′;⊢c iα : τ•2 ⊸ α and going through the same
derivation as above for IComp, we get a proof π of Γ ′;⊢c λz.iα ⊲ (φ◦ ⊲ z) :
τ•1 ⊸ α.

LAx
Γ ′;L ⊢ℓ x : (∀(α ≥ τ1)σ)•

Inst
Γ ′;L ⊢ℓ x : (τ•1 ⊸ α)→ σ•

π...
Γ ′;⊢c λz.iα ⊲ (φ◦ ⊲ z) : τ•1 ⊸ α

CApp
Γ ′;L ⊢ℓ x ⊳ (λz.iα ⊲ (φ◦ ⊲ z)) : σ•

CAbs
Γ •;L ⊢ℓ λiα.x ⊳ (λz.iα ⊲ (φ◦ ⊲ z)) : (τ•2 ⊸ α)→ σ•

Gen
Γ •;L ⊢ℓ λiα.x ⊳ (λz.iα ⊲ (φ◦ ⊲ z)) : (∀(α ≥ τ2)σ)•

LAbs
Γ •;⊢c λx. λiα.x ⊳ (λz.iα ⊲ (φ◦ ⊲ z)) : (∀(α ≥ τ1)σ)• ⊸ (∀(α ≥ τ2)σ)•

18 Giulio Manzonetto and Paolo Tranquilli

– IIntro, Γ ⊢ ` : τ ≤ ∀(α ≥ ⊥)τ where α /∈ ftv(τ). By α-conversion we
can choose any α /∈ ftv(Γ •;x : τ•), so the Gen rule in the following proof is
applicable:

LAx
Γ •, iα : (∀β.β) ⊸ α;x : τ• ⊢ℓ x : τ•

CAbs
Γ •;x : τ• ⊢ℓ λiα.x : ((∀β.β) ⊸ α)→ τ•

Gen
Γ •;x : τ• ⊢ℓ λiα.x : (∀(α ≥ ⊥)τ)•

LAbs
Γ •;⊢c λx. λiα.x : τ• ⊸ (∀(α ≥ ⊥)τ)•

– IElim, Γ ⊢ & : ∀(α ≥ σ)τ ≤ σ {τ/α}. Note that α can be chosen not in
ftv(σ•) and that (τ {σ/α})• = τ• {σ•/α} holds by Lemma 32. Let L := x :
∀α.(σ•

⊸ α)→ τ•.

LAx
Γ •;L ⊢ℓ x : ∀α.(σ•

⊸ α)→ τ•
Inst

Γ •;L ⊢ℓ x : (σ•
⊸ σ•)→ τ• {σ•/α}

LAx
Γ •; z : σ• ⊢ℓ z : σ•

LAbs
Γ •;⊢c λz.z : σ•

⊸ σ•

CApp
Γ •;L ⊢ℓ x ⊳ λz.z : τ• {σ•/α}

LAbs
Γ •;⊢c λx.x ⊳ λz.z : (∀(α ≥ σ)τ)• ⊸ (τ {σ/α})•

– IId, Γ ⊢ 1 : τ ≤ τ . We have Γ •;⊢c λz.z : τ• ⊸ τ• by LAbs and LAx.

(ii) By induction on the derivation of Γ ⊢ a : σ.

– Var, Γ ⊢ x : τ , where Γ (x) = τ . We then get Γ •;⊢t x : τ• by Ax.
– Abs, Γ ⊢ λ(x : τ)a : τ → σ. By induction hypothesis we have a proof of
Γ •, x : τ•;⊢t a : σ• which by Abs gives Γ •;⊢t λx.a : τ• → σ•.

– App, Γ ⊢ ab : τ . By induction hypothesis we have proofs for Γ •;⊢t a :
τ• → σ• and π2 of Γ •;⊢t b : τ• giving Γ •;⊢t ab : σ• by App.

– TAbs, Γ ⊢ Λ(α ≥ σ)a : ∀(α ≥ σ)τ where α /∈ ftv(Γ). It follows that
α /∈ ftv(Γ •), and as by induction hypothesis we have a proof π of Γ •, iα :
σ•

⊸ α;⊢t a◦ : τ• we have

π...
Γ •, iα : σ•

⊸ α;⊢t a◦ : τ•
CAbs

Γ •;⊢t λiα.a◦ : (σ•
⊸ α)→ τ•

Gen
Γ •;⊢t λiα.a

◦ : ∀α.(σ•
⊸ α)→ τ•

– TApp, Γ ⊢ aφ : σ. Since Γ ⊢ φ : τ ≤ σ holds we have a proof of Γ •;⊢c φ◦ :
τ• ⊸ σ• by point (i) of this lemma. By induction hypothesis we have also
a proof of Γ •;⊢t a◦ : τ•. The two together combined with a LApp rule give
Γ •;⊢t φ◦ ⊲ a◦ : σ•. ⊓⊔

Lemma 23. Let A be a term or an instantiation. Then we have:

(i) (A {b/x})◦ = A◦ {b◦/x},
(ii) (A {1/!α} {τ/α})◦ = A◦ {λz.z/iα},
(iii) (A {φ; !α/!α})◦ = A◦ {(λz.iα ⊲ (φ◦ ⊲ z))/iα}.

Harnessing ML
F with the Power of System F 19

Proof. All three results are carried out by structural induction on A. The in-
ductive steps of (i) are straightforward, taking into account that if A = φ then
φ {b/x} = φ.

For (ii), when A is a term the inductive step is immediate. Otherwise:

– A = σ: we have (σ {1/!α} {τ/α})◦ = (σ {τ/α})◦ = λx.x, which is equal to
(λx.x) {λz.z/iα} = σ◦ {λz.z/iα}.

– A = !α: we have (!α {1/!α} {τ/α})◦ = (1)◦ = λz.z = iα {λz.z/iα} =
(!α)◦ {λz.z/iα} .

– A = ∀(≥ φ): we have

(∀(≥ φ) {1/!α} {τ/α})◦ = (∀(≥ φ {1/!α} {τ/α}))◦

= λx. λiβ.x ⊳ (λz.iβ ⊲ ((φ {1/!α} {τ/α})◦ ⊲ z))
(inductive hypothesis) = λx. λiβ.x ⊳ (λz.iβ ⊲ ((φ◦ {λz.z/iα}) ⊲ z))

= (λx. λiβ.x ⊳ (λz.iβ ⊲ (φ◦ ⊲ z))) {λz.z/iα}
= (∀(≥ φ))◦ {λz.z/iα} .

– A = ∀(β ≥)φ: we have (supposing β /∈ ftv(τ) ∪ {α}):

((∀(β ≥)φ) {1/!α} {τ/α})◦ = (∀(β ≥)φ {1/!α} {τ/α})◦

= λz.iβ.(φ {1/!α} {τ/α})◦ ⊲ (x ⊳ iβ)
(inductive hypothesis) = λz.iβ.(φ

◦ {λz.z/iα}) ⊲ (x ⊳ iβ)
= (λz.iβ.φ

◦ ⊲ (x ⊳ iβ)) {λz.z/iα}
= (∀(β ≥)φ)◦ {λz.z/iα} .

– A = `: we have (` {1/!α} {τ/α})◦ = `◦ = λx. λiβ .x = `◦ {λz.z/iα} .
– A = &: we have (& {1/!α} {τ/α})◦ = &◦ = λx.x ⊳ λy.y = &◦ {λz.z/iα} .
– A = φ;ψ: we have

((φ;ψ) {1/!α} {τ/α})◦ = (φ {1/!α} {τ/α} ;ψ {1/!α} {τ/α})◦

= λx.(ψ {1/!α} {τ/α})◦ ⊲ ((φ {1/!α} {τ/α})◦ ⊲ x)
(inductive hypothesis) = λx.(ψ◦ {λz.z/iα}) ⊲ ((φ◦ {λz.z/iα}) ⊲ x)

= (λx.ψ◦ ⊲ (φ◦ ⊲ x)) {λz.z/iα}
= (φ;ψ)◦ {λz.z/iα} .

– A = 1: we have (1 {1/!α} {τ/α})◦ = 1◦ = λx.x = 1◦ {λz.z/iα}.

For (iii), once again, the inductive steps where A is a term are immediate.
Otherwise:

– A = σ: we have (σ {φ; !α/!α})◦ = σ◦ = (λx.x) {(λz.iα ⊲ (φ◦ ⊲ z))/iα} =
σ◦ {(λz.iα ⊲ (φ◦ ⊲ z))/iα}.

– A = !α: we have

(!α {φ; !α/!α})◦ = (φ; !α)◦

= λz.iα ⊲ (φ
◦ ⊲ z)

= iα {λz.iα ⊲ (φ◦ ⊲ z)/iα}
= (!α)◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα} .

20 Giulio Manzonetto and Paolo Tranquilli

– A = ∀(≥ φ): we have

(∀(≥ φ) {φ; !α/!α})◦ = (∀(≥ φ {φ; !α/!α}))◦

= λx. λiβ .x ⊳ (λz.iβ ⊲ ((φ {φ; !α/!α})◦ ⊲ z))
(ind. hyp.) = λx. λiβ .x ⊳ (λz.iβ ⊲ ((φ◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα}) ⊲ z))

= (λx. λiβ.x ⊳ (λz.iβ ⊲ (φ◦ ⊲ z))) {λz.iα ⊲ (φ◦ ⊲ z)/iα}
= (∀(≥ φ))◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα} .

– A = ∀(β ≥)φ: we have (with β /∈ ftv(φ) ∪ {α})

((∀(β ≥)φ) {φ; !α/!α})◦ = (∀(β ≥)φ {φ; !α/!α})◦

= λz.iβ.(φ {φ; !α/!α})◦ ⊲ (x ⊳ iβ)
(ind. hyp.) = λz.iβ.(φ

◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα}) ⊲ (x ⊳ iβ)
= (λz.iβ.φ

◦ ⊲ (x ⊳ iβ)) {λz.iα ⊲ (φ◦ ⊲ z)/iα}
= (∀(β ≥)φ)◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα} .

– A = `: (` {φ; !α/!α})◦ = `
◦ = λx. λiβ .x = `

◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα} .
– A = &: we have (& {φ; !α/!α})◦ = λx.x ⊳ λy.y = &◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα} .
– A = φ;ψ: we have

((φ;ψ) {φ; !α/!α})◦

= (φ {φ; !α/!α} ;ψ {φ; !α/!α})◦

= λx.(ψ {φ; !α/!α})◦ ⊲ ((φ {φ; !α/!α})◦ ⊲ x)
(ind. hyp.) = λx.(ψ◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα}) ⊲ ((φ◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα}) ⊲ x)

= (λx.ψ◦ ⊲ (φ◦ ⊲ x)) {λz.iα ⊲ (φ◦ ⊲ z)/iα}
= (φ;ψ)◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα} .

– A = 1: we have (1 {φ; !α/!α})◦ = 1◦ = λx.x = 1◦ {λz.iα ⊲ (φ◦ ⊲ z)/iα}. ⊓⊔

Theorem 24 (Coercion calculus simulates xML
F). If a→β b (resp. a→ι b)

in xML
F, then a◦ →β b

◦ (resp. a◦
+
→c b

◦) in coercion calculus.

Proof. As the translation is contextual, it is sufficient to analyze each case of
the reduction rules.

– (λ(x : τ)a)b →β a {b/x}. We have ((λ(x : τ)a)b)◦ = (λx.a◦)b◦, β-reducing
to a◦ {b◦/x}, which is (a {b/x})◦ by Lemma 23(i).

– a1→ι a. We have (a1)◦ = λz.z ⊲ a◦ →c z {a◦/z} = a◦.
– a(φ;ψ)→ι aφψ. We have (a(φ;ψ))◦ = (λz.ψ◦⊲(φ◦⊲z))⊲a◦ →c ψ

◦⊲(φ◦⊲a◦)
which is equal to (aφψ)◦.

– a` →ι Λ(α ≥ ⊥)a. Here we have (a`)◦ = (λx.λiα.x) ⊲ a
◦ →c λiα.a =

(Λ(α ≥ ⊥)a)◦.
– (Λ(α ≥ τ)a)&→ι a {1/!α} {τ/α}. Here, we have:

((Λ(α ≥ τ)a)&)◦ = (λx.x ⊳ λz.z) ⊲ λiα.a
◦

→c (λiα.a
◦) ⊳ λz.z

→c a
◦ {λz.z/iα} = (a {1/!α} {τ/α})◦, by Lemma 23(ii).

Harnessing ML
F with the Power of System F 21

– (Λ(α ≥ τ)a)(∀(α ≥)φ)→ι Λ(α ≥ τ)aφ. We have:

(

(Λ(α ≥ τ)a)(∀(α ≥)φ)
)

◦

= (λx. λiα.φ
◦ ⊲ (x ⊳ iα)) ⊲ (λiα.a

◦)

→c λiα.φ
◦ ⊲ ((λiα.a

◦) ⊳ iα))

→c λiα.φ
◦ ⊲ a◦ = (Λ(α ≥ τ)aφ)◦.

– (Λ(α ≥ τ)a)(∀(≥ φ))→ι Λ(α ≥ τφ)a {φ; !α/!α}. We have:

(

(Λ(α ≥ τ)a)(∀(≥ φ))
)

◦

=
(

λx. λiα.x ⊳ (λz.iα ⊲ (φ
◦ ⊲ z))

)

⊲ (λiα.a
◦)

→c λiα.(λiα.a
◦) ⊳ (λz.iα ⊲ (φ

◦ ⊲ z))

→c λiα.a
◦ {(λz.iα ⊲ (φ

◦ ⊲ z))/iα}

= λiα.(a {φ; !α/!α})
◦ = (Λ(α ≥ τφ)a {φ; !α/!α})◦, by Lemma 23(iii). ⊓⊔

Lemma 27.

(i) If a◦ →β b then a→β c with c
◦ = b;

(ii) if a◦ →cv b then a→ι c with b
=
→cv c

◦.

a c

a◦ b

β

β

a c

a◦ b c◦

ι

cv cv=

Proof. By structural induction on a. Let us first settle point (i).

– a = x (a◦ = x): impossible.
– a = λ(x : τ)a1 (a◦ = λx.a◦1), Λ(α ≥ τ)a1 (a◦ = λiα.a

◦

1): the reduction takes
necessarily place in a◦1 and the inductive step is completed.

– a = a1φ (a◦ = φ◦ ⊲ a◦1): we see that φ◦ is a coercion by Lemma 22(i) and
is thus β-normal by Lemma 5, so the reduction takes place in a◦1 and we
proceed as above.

– a = a1a2: from a◦ = a◦1a
◦

2 we can as above reduce to the case where a
is the redex to be fired. We then have a◦1 = λx.a′3 and b = a′3 {a

◦

2/x},
and necessarily a1 = λ(x : τ)a3 with a◦3 = a′3, so a →β a3 {a2/x} and
(a3 {a2/x})◦ = b by Lemma 23(i).

We now move to point (ii). We can exclude a = x, and the inductive steps are
trivial for a equal to λ(x : τ)a1, a1a2 and Λ(α ≥ τ)a1, as the cv-reduction
necessarily takes place in a strict subterm. It only remains the case a = a1φ,
where a◦ = φ◦ ⊲ a◦1.

If a◦ is not the immediate redex of the reduction, then the latter must take
place in a◦1, as φ

◦ is typed as a coercion (Lemma 22(i)) and is thus cv-normal
(Lemma 6). Inductive hypothesis then applies to a1 and we are done.

Suppose therefore that φ◦ ⊲a◦1 is the redex being fired. The only way for a◦1 to
be a c-value is that either a1 = λ(x : τ)a3 for any a3, or a1 = Λ(α ≥ τ)a2 (resp.
a1 = a2!α) with a

◦

2 a c-value. First, we prove that a1φ is necessarily a redex in
xML

F. It would not be a redex only in the following cases.

– φ = τ : impossible as it requires a1 to be of type ⊥, which is excluded by all
three alternatives for a1.

– φ = !β: this is likewise impossible as φ◦ ⊲ a◦1 = iβ ⊲ a
◦

1 would not be a redex.

22 Giulio Manzonetto and Paolo Tranquilli

– a1 not of the form Λ(α ≥ τ)a2 and φ = &, ∀(≥ ψ) or ∀(α ≥)ψ: excluding
that a1 starts with a Λ, we have a1 = λ(x : τ)a2 or a1 = a2!α. The type of a1
would then be an arrow type or a type variable respectively, which are both
incompatible with all the listed instantiations, which require a quantifier.

So there is c with a1φ →ι c obtained by firing a1φ itself. Now take the steps
φ◦ ⊲ a◦1

∗

→c c
◦ simulating a1φ →ι c, as shown in the proof of Theorem 24. We

can then inspect such a proof and see that the first step always fires the redex
φ◦ ⊲ a◦1 (i.e. is the step we started with), which is then followed by at most one
c-step, which is a cv one if a◦1 is a c-value. ⊓⊔

B An Alternative Proof of Bisimulation

In this section we provide an alternative proof of Theorem 29, completely car-
ried out within the xML

F system (given the SN result for xML
F). This proof is

provided as a comparison to the one using Fc. We first need this intermediate
lemma, which is a version of Lemma 20 in xML

F.

Lemma 33. If a is typable and ι-normal and ⌈a⌉ = λx.b, then it is of one of
the following forms, with c ι-normal:

– a = λ(x : τ)c with ⌈c⌉ = b;
– a = Λ(α ≥ τ)c;
– a = c!α.

In particular if a is typed with some arrow type τ → σ, then a = λ(x : τ)c.

Proof. By induction on a. As ⌈a⌉ = λx.b then a is neither an application nor a
variable. Let us suppose that a is not of one of the above listed forms. The only
remaining case is a = a′φ with a′ ι-normal and φ 6= !α. By inductive hypothesis
(as ⌈a′⌉ = ⌈a⌉ = λx.b) we have that a′ is one among λ(x : τ)c′, Λ(α ≥ τ)c′ and
c′!α, with c′ ι-normal.

Now let us rule out all the cases for φ.

– φ = σ: impossible as none of the three alternatives for a′ is typable by ⊥;
– φ = 1, ψ1;ψ2 or `: impossible as a′φ would not be ι-normal;
– φ = ∀(α ≥)ψ, ∀(≥ ψ) or &: by typing a′ must be Λ(α ≥ τ)c′, as the other

two alternatives would give an arrow and a variable type respectively, which
is not compatible with these instantiations; however this is not possible as
a′φ would form a ι-redex.

This concludes the proof. In case a has an arrow type τ → σ, the only compatible
form is a = λ(x : τ)c. ⊓⊔

Proof (Alternative proof of Theorem 29). The if part is immediate by verifying
that a→∗

ι a
′ implies ⌈a⌉ = ⌈a′⌉, and a′ →β c implies ⌈a′⌉ →β ⌈c⌉.

For the only if part, let a0 be the ι-normal form of a (which exists as →ι is
SN by Theorem 24). We have that ⌈a0⌉ = ⌈a⌉ →β b: if we prove that a0 →β c
with ⌈c⌉ = b we are done. Let us reason by induction on a0.

Harnessing ML
F with the Power of System F 23

– a0 = x: impossible, as ⌈a0⌉ = x is not reducible.
– a0 = λ(x : τ)a1, Λ(α ≥ τ)a1 or a1φ: the reduction takes place in ⌈a1⌉ and

inductive hypothesis applies smoothly giving a β-reduction in a1, and thus
in a0.

– a0 = a1a2: if the reduction takes place in ⌈a1⌉ or ⌈a2⌉ then the inductive
hypothesis applies as above. Suppose then that ⌈a1⌉⌈a2⌉ is itself the redex
being fired, i.e. ⌈a1⌉ = λx.d and b = d {⌈a2⌉/x}. As a1 is typed with some
σ → τ (in order to form the application) and ⌈a1⌉ = λx.d, by Lemma 33
we have that a1 = λ(x : σ)a3 with ⌈a3⌉ = d, so a0 = (λ(x : σ)a3)a2 →β

a3 {a2/x} and ⌈a3 {a2/x}⌉ = d {⌈a2⌉/x} = b. ⊓⊔

	Harnessing MLF with the Power of System SN
	Introduction
	A Short Introduction to MLFand its Variants
	The Coercion Calculus Fc
	Some Basic Properties of Fc
	Coercion Calculus as a Decoration of System SN
	Preservation of the Semantics

	The Translation
	References
	Technical Proofs
	An Alternative Proof of Bisimulation

