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Abstract. We considermulti-pushdown automata, a multi-stack extension of
pushdown automata that comes with a constraint on stack operations: a pop can
only be performed on the first non-empty stack (which impliesthat we assume a
linear ordering on the collection of stacks). We show that the emptiness problem
for multi-pushdown automata is 2ETIME-complete wrt. the number of stacks.
Containment in 2ETIME is shown by translating an automaton into a grammar
for which we can check if the generated language is empty. Thelower bound is
established by simulating the behavior of an alternating Turing machine working
in exponential space. We also compare multi-pushdown automata with the model
of bounded-phase multi-stack (visibly) pushdown automata.

1 Introduction

Various classes of pushdown automata with multiple stacks have been proposed and
studied in the literature. The main goals of these efforts are twofold. First, one may
aim at extending the expressive power of pushdown automata,going beyond the class
of context-free languages. Second, multi-stack systems may model recursive concur-
rent programs, in which any sequential process is equipped with a finite-state control
and, in addition, can access its own stack to connect procedure calls to their corre-
sponding returns. In general, however, multi-stack extensions of pushdown automata
are Turing powerful and therefore come along with undecidability of basic decision
problems. To retain desirable decidability properties of pushdown automata, such as
emptiness, one needs to restrict the model accordingly. In [3], Breveglieri et al. define
multi-pushdown automata(MPDA), which impose a linear ordering on stacks. Stack
operations are henceforth constrained in such a way that a pop operation is reserved to
the first non-empty stack. These automata are suitable to model client-server systems of
processes with remote procedure calls. Another possibility to regain decidability in the
presence of several stacks is to restrict the domain of inputwords. In [8], La Torre et al.
definebounded-phase multi-stack visibly pushdown automata(bounded-phase MVPA).
Only those runs are taken into consideration that can be split into a given number of
phases, where each phase admits pop operations of one particular stack only. In the
above-mentioned cases, the respective emptiness problem is decidable. In [9], the re-
sults of [8] are used to show decidability results for restricted queue systems.

In this paper, we resume the study of MPDA and, in particular,consider their empti-
ness problem. The decidability of this problem, which is to decide if an automaton ad-
mits some accepting run, is fundamental for verification purposes. We show that the



emptiness problem for MPDA is 2ETIME-complete. Recall that2ETIME is the class
of all decision problems solvable by a deterministic Turingmachine in time22dn

for
some constantd. In proving the upper bound, we correct an error in the decidability
proof given in [3].3 We keep their main idea: MPDA are reduced to equivalentdepth-
n-grammars. Deciding emptiness for these grammars then amounts to checking empti-
ness of an ordinary context-free grammar. For proving 2ETIME-hardness, we borrow an
idea from [10], where a 2ETIME lower bound is shown for bounded-phase pushdown-
transducer automata. We also show that2m-MPDA are strictly more expressive than
m-phase MVPA providing an alternative proof of decidabilityof the emptiness prob-
lem for bounded-phase MVPA.

The paper is structured as follows: In Section 2, we introduce MPDA formally, as
well as depth-n-grammars. Sections 3 and 4 then establish the 2ETIME upper and,
respectively, lower bound of the emptiness problem for MPDA, which constitutes our
main result. In Section 5, we compare MPDA with bounded-phase MVPA. We conclude
by identifying some directions for future work. Missing proofs can be found in [1].

2 Multi-pushdown automata and depth-n-grammars

In this section we definemulti-pushdown automatawith n ≥ 1 pushdown stacks and
their corresponding grammars. We essentially follow the definitions of [3].

Multi-pushdown automata Our automata have one read-only left to right input tape
andn ≥ 1 read-write memory tapes (stacks) with a last-in-first-out rewriting policy. In
each move, the following actions are performed:

– read one or zero symbol from the input tape and move past the read symbol
– read the symbol on the top of the first non-empty stack starting from the left
– switch the internal state
– for eachi ∈ {1, . . . , n}, write a finite stringαi on thei-th pushdown stack

Definition 1. For n ≥ 1, an (n-)multi-pushdown automaton(n-MPDA or MPDA) is a
tupleM = (Q, Σ, Γ, δ, q0, F, Z0) where:

– Q is a finite non-empty set ofinternal states,
– Σ (input) andΓ (memory) are finite disjoint alphabets,
– δ : Q × (Σ ⊎ {ǫ}) × Γ → 2Q×(Γ ∗)n

is a transition mapping,
– q0 is theinitial state,
– F ⊆ Q is the set offinal states, and
– Z0 ∈ Γ is theinitial memory symbol.

A configurationof M is an(n + 2)-tuple 〈q, x; γ1, . . . , γn〉 with q ∈ Q, x ∈ Σ∗,
andγ1, . . . , γn ∈ Γ ∗. Thetransition relation⊢∗

M is the transitive closure of the binary
relation⊢M over configurations, defined as follows:

〈q, ax; ǫ, . . . , ǫ, Aγi, . . . , γn〉 ⊢M 〈q′, x; α1, . . . , αi−1, αiγi, . . . , αnγn〉

3 A similar correction of the proof has been worked out independently by the authors of [3]
themselves [4]. They gave an explicit construction for the case of three stacks that can be
generalized to arbitrarily many stacks.
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Table 1.A 2-MPDA for {ǫ} ∪ {ai1bi1ci1ai2bi2ci2 · · · aikbikcik | k ≥ 1 andi1, . . . , ik > 0}

M = ({q0, . . . , q3, qf}, {a, b, c}, {A, B, Z0, Z1}, δ, q0, {qf}, Z0)

δ(q0, ǫ, Z0) = {(qf , ǫ, ǫ)} δ(q2, b, A) = {(q2, ǫ, ǫ)}
δ(q0, a, Z0) = {(q1, AZ0, BZ1)} δ(q2, ǫ, Z0) = {(q3, ǫ, ǫ)}
δ(q1, ǫ, A) = {(q2, A, ǫ)} δ(q3, ǫ, Z1) = {(q0, Z0, ǫ)}
δ(q1, a, A) = {(q1, AA, B)} δ(q3, c, B) = {(q3, ǫ, ǫ)}

if (q′, α1, . . . , αn) ∈ δ(q, a, A), wherea ∈ Σ ∪ {ǫ}.
The language ofM accepted by final stateis defined as the set of wordsx ∈

Σ∗ such that there areγ1, . . . , γn ∈ Γ ∗ and q ∈ F with 〈q0, x; Z0, ǫ, . . . ǫ〉 ⊢∗
M

〈q, ǫ; γ1, . . . , γn〉. The language ofM accepted by empty stacks, denoted byL(M), is
defined as the set of wordsx ∈ Σ∗ such that there isq ∈ Q with 〈q0, x; Z0, ǫ, . . . ǫ〉 ⊢

∗
M

〈q, ǫ; ǫ, . . . , ǫ〉.

Lemma 2 ([3]). The languages accepted byn-MPDA by final state are the same as the
languages accepted byn-MPDA by empty stacks.

Table 1 shows an example of a2-MPDA. Notice that it accepts the same language
by final state and by empty stacks.

We need the following normal form ofn-MPDA for the proof of our main theorem.
The normal form restricts the operation on stacks2 to n: pushing one symbol on these
stacks is only allowed while popping a symbol from the first stack, and popping a
symbol from them pushes a symbol onto the first stack. Furthermore, the number of
symbols pushed on the first stack is limited to two and the stack alphabets are distinct.

Definition 3. A n-MPDA (Q, Σ, Γ, δ, q0, F, Z0) with n ≥ 2 is in normal form if

– Γ =
⋃n

i=1 Γ (i) where theΓ (i)’s are pairwise disjoint memory alphabets whose
elements are denoted byA(i), B(i), etc., andZ0 ∈ Γ (1).

– Only the following transitions are allowed:
• For all A(1) ∈ Γ (1) anda ∈ Σ ∪ {ǫ}, δ(q, a, A(1)) ⊆ {(q′, ǫ, . . . , ǫ) | q′ ∈

Q} ∪ ∆1 ∪ ∆2 with
∗ ∆1 = {(q′, B(1)C(1), ǫ, . . . , ǫ) | q′ ∈ Q ∧ B(1), C(1) ∈ Γ (1)},
∗ ∆2 = {(q′, ǫ, . . . , ǫ, A(i), ǫ, . . . , ǫ) | q′ ∈ Q ∧ A(i) ∈ Γ (i) ∧ 2 ≤ i ≤ n}.

• For all i with 2 ≤ i ≤ n anda ∈ Σ ∪ {ǫ},
δ(q, a, A(i)) ⊆ {(q′, B(1), ǫ, . . . , ǫ) | q′ ∈ Q ∧ B(1) ∈ Γ (1)}.

Lemma 4. An n-MPDA M can be transformed into ann-MPDA M ′ in normal form
with linear blowup in its size such thatL(M) = L(M ′).

Proof. The proof makes use of the ideas from [3], where a proof for a normal form
for Dn-grammars (see below) is given. Notice, however, that we do not use the same
normal form as the one of [3] for MPDA. ⊓⊔

Next, we recall some properties of the class of languages recognized byn-MPDA.
We start by defining a renaming operation: Arenamingof Σ to Σ′ is a functionf :
Σ → Σ′. It is extended to strings and languages in the natural way:f(a1 . . . ak) =
f(a1) · . . . · f(ak) andf(L) =

⋃
x∈L f(x). The following can be shown following [3].
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Lemma 5. (Closure Properties) The class of languages recognized byn-MPDA is clo-
sed under union, concatenation, and Kleene-star. Moreover, given ann-MPDAM over
the alphabetΣ and a renaming functionf : Σ → Σ′, it is possible to construct an
n-MPDAM ′ overΣ′ such thatL(M ′) = f(L(M)).

Depth-n-grammars We now define the notion of a depth-n-grammar. LetVN andVT

be finite disjoint alphabets and let“(“ and“)i“ for i ∈ {1, . . . , n} ben + 1 characters
not in VN ∪ VT . An n-list is a finite string of the formα = w(α1)1(α2)2 . . . (αn)n

wherew ∈ V ∗
T andαi ∈ V ∗

N for all i with 1 ≤ i ≤ n.

Definition 6. A depth-n-grammar (Dn-grammar) is a tupleG = (VN , VT , P, S) where
VN andVT are the finite disjoint sets ofnon-terminaland terminal symbols, respec-
tively, S ∈ VN is the axiom, andP is a finite set ofproductionsof the formA → α

with A ∈ VN andα ann-list.

For clarity, we may drop empty components ofn-lists in the productions as follows:
A → w(ǫ)1 . . . (ǫ)n is written asA → w, A → (ǫ)1 . . . (ǫ)n is written asA → ǫ, and
A → w(ǫ)1 . . . (ǫ)i−1(αi)i(ǫ)i+1 . . . (ǫ)n is written asA → w(αi)i.

We define thederivation relationon n-lists as follows. Leti ∈ {1, . . . , n} and
let β = (ǫ)1 . . . (ǫ)i−1(Aβi)i(βi+1)i+1 . . . (βn)n be ann-list, whereβj ∈ V ∗

N for all
j ∈ {i, . . . , n}. Then,

xβ ⇒ xw(α1)1(α2)2 . . . (αi−1)i−1(αiβi)i(αi+1)i+1 . . . (αnβn)n

if A → w(α1)1(α2)2 . . . (αn)n is a production andx ∈ V ∗
T . Notice that only leftmost

derivations are defined. As usual we denote by⇒∗ the reflexive and transitive closure of
⇒. A terminal stringx ∈ V ∗

T is derivablefromS if (S)1(ǫ)2 . . . (ǫ)n ⇒∗ x(ǫ)1 . . . (ǫ)n.
This will be also denoted byS ⇒∗ x. The language generated by aDn-grammarG is
L(G) = {x ∈ V ∗

T | S ⇒∗ x}.

Definition 7. LetG = (VN , VT , P, S) be aDn-grammar. Then, the underlying context-
free grammar isGcf = (VN , VT , Pcf , S) with Pcf = {A → wα1 . . . αn | A →
w(α1)1 . . . (αn)n ∈ P}.

The following lemma from [3] is obtained by observing that the language generated
by a Dn-grammar is empty iff the language generated by its underlying context-free
grammarGcf is empty. Furthermore, it is well-known that emptiness of context-free
grammars can be decided in time linear in its size.

Lemma 8. The emptiness problem ofDn-grammars is decidable in linear time.

3 Emptiness of MPDA is in 2ETIME

In this section, we show that the emptiness problem ofn-MPDA is in 2ETIME. We first
show thatn-MPDA correspond toDn-grammars with a double exponential number of
non-terminal symbols. To do so, we correct a construction given in [3]. Then, emptiness
of Dn-grammars is decidable using the underlying context-free grammar (Lemma 8).
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Theorem 9. A languageL is accepted by ann-MPDA iff it is generated by aDn-
grammar.

In the following we give a sketch of the proof. The “if”-direction is obvious, since
a grammar is just an automaton with one state. For the “only if”-direction, letL be a
language accepted by empty stacks by ann-MPDA M = (Q, Σ, Γ, δ, q0, F, Z0). By
Lemma 4, we assume, without loss of generality, thatM is in normal form. We will
construct aDn-grammarGM = (VN , Σ, P, S) such thatL(GM ) = L.

Intuitively, we generalize the proof for the case of2-MPDA [7]. In [3], an incorrect
proof was given for the case ofn-MPDA. Recently, the authors of [3] independently
gave a generalizable proof for3-MPDA, which is similar to ours [4]. The general proof
idea is the same as for the corresponding proof for pushdown automata. To eliminate
states, one has to guess the sequence of states through whichthe automaton goes by
adding pairs of state symbols to the non-terminal symbols ofthe corresponding gram-
mar. We do this for the first stack. However, when the first stack gets empty, the other
stacks may be not empty and one has to know the state in which the automaton is in
this situation. For this, we have to guess for all the other non-empty stacks and each of
their non-terminal symbols the state in which the automatonwill be when reading these
symbols.4

To do this for then-th stack, a pair of state symbols is enough. For the(n−1)-th
stack, in addition to guessing the state, we also have to knowthe current state on top of
then-th stack to be able to push correctly symbols onto then-th stack. Therefore, a pair
of pairs of states (4 in total) is needed. For the(n−2)-th stack, we need to remember the
current state and the states on top of the(n−1)-th stack and on top of then-th stack (in
total 8 states) and so on. Therefore, there will be2n state symbols to be guessed in the
first stack. Furthermore we have special state symbols (denotedqe

i ) to indicate that the
i-th stack is empty. In Fig. 1 we give an intuitive example illustrating the construction.

Now we define the grammarGM = (VN , Σ, P, S) formally. To defineVN , we
first provide symbols of leveli denoted byVi. For i with 2 ≤ i ≤ n, let qe

i be states
pairwise different and different from any state ofQ (these are the symbols indicating
that the corresponding stack is empty). States of leveli are denoted byQi and defined
as follows :Qn = Q ∪ {qe

n} and for alli such that2 ≤ i < n, Qi = (Q × Qi+1 ×
· · · ×Qn) ∪ {qe

i }, andQ1 = Q×Q2 × · · · ×Qn. We denote byqi states ofQi. Then,
Vi = Qi×Γ ×Qi andVN = {S} ∪

⋃n
i=1 Vi. Notice that a state inQi different fromqe

i

has exactly2n−i components. Therefore|VN | ≤ (|Q| + 1)2
n+1

|Γ |. The setP contains
exactly the following productions, which are partitioned into five types (a ∈ Σ ∪ {ǫ}):

T1 S → ([(q0, q
e
2, . . . , q

e
n), Z0, (q

1, q1
2
, . . . , q1

n)])1
if there isk with 2 ≤ k ≤ n + 1 such that
• for all i with 2 ≤ i < k we haveq1

i = qe
i

• if k ≤ n, thenq1
k = (q1, q1

k+1
,. . ., q1

n)

T2 [(q1, q1
2
, . . . , q1

n), A(1), q2
1
] → a([(q4, q1

2
, . . . , q1

n), B(1), q3
1
][q3

1
, C(1), q2

1
])1

if (q4, B(1)C(1), ǫ, . . . , ǫ) ∈ δ(q1, a, A(1))

4 The proof in [3] incorrectly assumes that this state is the same for each stack when the first
stack gets empty.
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Fig. 1.A sketch of a partial derivation (from top to bottom) of a depth-4-grammar corresponding
to a run of a4-MPDA where three symbols are popped from the first stack while three symbols
are pushed onto the other stacks. In each configuration, if the first stack is non-empty, then the
state symbols on top of the other stacks can be found on top of the first stack as well. In the last
configuration, the top symbols of the other stacks can be found on top of the second stack.

T3 [(q1, q1
2
,. . ., q1

j−1
, q1

j , q1
j+1

,. . ., q1
n), A(1), (q2, q1

2
, . . . , q1

j−1
, q2

j , q1
j+1

, . . . , q1
n)]

→ a([q2
j , B(j), q1

j ])j if q2
j 6= qe

j and(q2, ǫ, . . . , ǫ, B(j), ǫ, . . . , ǫ) ∈ δ(q1, a, A(1))

T4 [(q1, q1
j+1

, . . . , q1
n), A(j), q1

j ]

→ a([(q4, qe
2, . . . , q

e
j−1, q

1
j , q1

j+1
, . . . , q1

n), B(1), (q2, q2
2
, . . . , q2

n)])1

if (q4, B(1), ǫ, . . . , ǫ) ∈ δ(q1, a, A(j)), and there isk with 2 ≤ k ≤ n + 1 such that
• for all i with 2 ≤ i < min(k, j) we haveq2

i = qe
i

• for all i with min(k, j) ≤ i < k we haveq1
i = q2

i = qe
i

• if k ≤ n, thenq2
k = (q2, q2

k+1
,. . ., q2

n)

T5 [(q1, q1
2, . . . , q

1
n), A(1), (q2, q1

2, . . . , q
1
n)] → a if (q2, ǫ, . . . , ǫ) ∈ δ(q1, a, A(1))

The grammar corresponding to the example in Table 1 can be found in [1]. The
following key lemma formalizes the intuition about derivations of the grammarGM by
giving invariants satisfied by them (illustrated in Fig. 1).This lemma is the basic ingre-
dient of the full proof of Theorem 9, which can be found in [1].Intuitively, condition
1 says that the first element of the first stack contains the state symbols on top of the
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other stacks. Condition 2 says that the last state symbols inthe first stack are of the form
allowing condition 3 to be true when the corresponding symbol is popped. Condition 3
says that if the first stack is empty, then the top of the first non-empty stack contains the
same state symbols as the top of the other stacks. Conditions4 and 5 say that the state
symbols guessed form a chain through the stacks.

Lemma 10. Let w(γ1)(γ2) . . . (γn) be ann-list different from(ǫ)1 . . . (ǫ)n appearing
in a derivation of the grammarGM .

1. If γ1 = [(q1, q1
2
, . . . , q1

n), A(1), (q2, q2
2
, . . . , q2

n)]γ′
1 with γ′

1 ∈ V ∗
1 , then for all i

with 2 ≤ i ≤ n, if γi is empty, thenq1
i = qe

i , elseγi = [q1
i , B(i), q3

i ]γ′
i with

γ′
i ∈ V ∗

i .
2. If γ1 = γ′

1[(q
1, q1

2
, . . . , q1

n), A(1), (q3, q3
2
, . . . , q3

n)] with γ′
1 ∈ V ∗

1 , then there exists
k with 2 ≤ k ≤ n + 1 such that we have both for alli with 2 ≤ i < k, q3

i = qe
i

andk ≤ n impliesq3
k = (q3, q3

k+1
, . . . , q3

n).
3. Suppose thatγ1 = ǫ. Let i be the smallestk such thatγk is not empty and let

γi = [(q1, q1
i+1

, . . . , q1
n), A(i), q2

i ]γ′
i with γ′

i ∈ V ∗
i . Then, for allj > i, we have:

if γj is empty, thenq1
j = qe

j , elseγj = [q1
j , A(j), q3

j ]γ′
j with γ′

j ∈ V ∗
j .

4. For all i with 2 ≤ i ≤ n, if γi is not empty then for somej ≥ 1,
γi = [q1

i , A
(i)
1 , q2

i ][q2
i , A

(i)
2 , q3

i ] . . . [qj−1

i , A
(i)
j−1, q

j
i ][qj

i , A
(i)
j , qe

i ] and for alll with
1 ≤ l ≤ j, ql

i 6= qe
i .

5. If γ1 is not empty, then for somej ≥ 1,
γ1 = [q1

1
, A

(1)
1 , q2

1
][q2

1
, A

(1)
2 , q3

1
] . . . [qj−1

1 , A
(1)
j−1, q

j
1][qj

1, A
(1)
j , q

j+1

1 ].

By observing that the size of the grammarGM corresponding to an MPDAM in
the construction used in the proof of Theorem 9 is double exponential in the number of
stacks and using Lemma 8 we obtain the following corollary.

Corollary 11. The emptiness problem of MPDA is in 2ETIME.

In the next Section, it is shown that the double exponential upper bound is tight.

4 Emptiness of MPDA is 2ETIME-hard

In this section, we prove that the emptiness problem of MPDA is 2ETIME-hard. This is
done by adapting a construction in [10], where it is shown that certain bounded-phase
pushdown-transducer automata capture precisely the class2ETIME.

Theorem 12. The emptiness problem for MPDA is 2ETIME-hard under logspace re-
ductions.

Proof. It is well-known that the class of problems solvable by alternating Turing ma-
chines in space bounded by2dn for somed (call it AESPACE) equals 2ETIME [5].
Thus, it is sufficient to show that any problem in AESPACE can be reduced, in logarith-
mic space, to the emptiness problem for MPDA.

So letT be an alternating Turing machine working in space bounded by2dn. Let
furthermorew be an input forT of lengthn. We construct (in logarithmic space) from
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c0
c1

c2

c3 c4

c5

c6 c7

c8

c9

c10 c11

c12

c13 c14

Fig. 2.A run of an alternating Turing machine

T andw an MPDAM with 2dn + 4 stacks such that the language ofM is non-empty
iff w is accepted byT . The simulation ofT proceeds in two phases: (1)M guesses a
possible accepting run ofT onw; (2) M verifies if the guess is indeed a run.

Without loss of generality, we can assume that a transition of T is basically of the
form c → (c1∧c2)∨(c3∧c4)∨. . .∨(ch−1∧ch) (where configuration changes are local),
i.e., from configurationc, we might switch to bothc1 andc2 or bothc3 andc4 and so
on. This allows us to represent a run ofT as a complete finite binary tree, as shown in
Fig. 2, whose nodes are labeled with configurations. Note that each configuration will
be encoded as a string, as will be made precise below. The run is accepting if all leaf
configurations are accepting. Following the idea of [10], wewrite the labeled tree as the
string (letcr denote the reverse ofc)

c0|c1|c2|c3 ‖ cr
3 ‖ c4 ‖ cr

4|c
r
2 ‖ c5|c6 ‖ cr

6 ‖ c7 ‖ cr
7|c

r
5|c

r
1 ‖

c8|c9|c10 ‖ cr
10 ‖ c11 ‖ cr

11|c
r
9 ‖ c12|c13 ‖ cr

13 ‖ c14 ‖ cr
14|c

r
12|c

r
8|c

r
0

It is generated by the (sketched) context-free grammar

A → αiAαi + αiBαi + αi‖αi

B → |A ‖ A|

where theαi are the atomic building blocks of an encoding of a configuration of T .
This string allows us to access locally those pairs of configurations that are related by
an edge in the tree and thus need to agree with a transition. Finally, the grammar can
make sure that all leafs are accepting configurations and that the initial configuration
corresponds to the inputw. Using two stacks, we can generate such a word encoding
of a (possible) run ofT and write it onto the second stack, say withc0 at the top, while
leaving the first stack empty behind us (cf. Fig. 3(a)).

The MPDA M now checks if the word written onto stack 2 stems from a run of
T . To this aim, we first extract from stack 2 any pair of configurations that needs to be
compared wrt. the transition relation ofT . For this purpose, some of the configurations
need to be duplicated. Corresponding configurations are written side by side as follows:
By means of two further stacks, 3 and 4, we transfer the configurations located on stack
2 and separated by the symbol “|” onto the third stack (in reverse order), hereby copying
some configuration by writing it onto the fourth stack (cf. Fig. 3(b)).

It still remains to verify thatc0 andc8 belong to a transition ofT , as well asc12

andc14, etc. The encoding of one single configurationa1 . . . (q, ai) . . . a2dn will now
allow us to compare two configurations letter by letter. It has the form(−, a1, a2, e)
(a1, a2, a3, e) . . . (ai−1, (q, ai), ai+1, e) . . . (a2dn−1, a2dn ,−, e) where the component
e denotes a “transition”c → c′ ∧ c′′, which has been selected to be executed next
and which has been guessed in the above grammar. We would liketo compare the
k-th letter of one with thek-th letter of another configuration. To access correspond-
ing letters simultaneously, we divide the configurations onstacks 3 and 4 into two,
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Fig. 3.Guessing and verifying a run of an alternating Turing machine

using two further stacks, 5 and 6. We continue this until corresponding letters are ar-
ranged one below the other. This procedure, which requires2dn additional stacks, is
illustrated in Fig. 3(c) where eachαi andβi stands for an atomic symbol of the form
(a1, a2, a3, e). Note that, in some cases, we encounter pairs of the form(c, c′) whereas
in some other cases, we face pairs of the form(cr, (c′)r). Whether we deal with the
reverse of a configuration or not can be recognized on the basis of its border symbols
(i.e., (−, a1, a2, e) or (a2dn−1, a2dn ,−, e)). Consider, for example, stacks 3 and 4 in
Fig. 3(b). We want to comparec0 andc8 wherec0 is of the form(−, a1, a2, e) . . ., i.e.,
it is read in the correct order. Supposee is of the formc0 → c ∧ c′. Then, locally
comparingc0 andc8, we can check whetherc′ = c8. If, at the bottom of stack 3, we
comparecr

1 = (a2dn−1, a2dn ,−, e) . . . with cr
0 ande is of the formc0 → c ∧ c′, then

we need to check ifc = c1. In other words, the order in which a configuration is read
indicates if we follow the right or left successor in the (tree of the) run. ⊓⊔

From Corollary 11 and Theorem 12, we deduce our main result:

Theorem 13. The emptiness problem of MPDA is 2ETIME-complete under logspace
reductions.5

5 Comparison to bounded-phase multi-stack pushdown automata

In this section, we recallm-phasemulti-stack (visibly) pushdown automata(m ≥ 1)
defined in [8] and show that they are strictly less expressivethan2m-MPDA.

Multi-stack visibly pushdown automata Forn ≥ 1, ann-stack call-return alphabet
is a tupleΣ̃n = 〈{(Σi

c, Σ
i
r)}i∈{1,...,n}, Σint〉 of pairwise disjoint finite alphabets. For

5 The emptiness problem of MPDA is 2EXPTIME-complete, too. Hereby, 2EXPTIME de-
notes the class of all decision problems solvable by a deterministic Turing machine in time
exp(exp(nd)) for some constantd (exp(x) denoting2x). Note that 2EXPTIME is a robust
complexity class. On the other hand, 2ETIME is not robust, asit is not closed under logspace
reductions.
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i ∈ {1, . . . , n}, Σi
c is the set ofcalls of the stacki, Σi

r is the set ofreturns of the stack
i, andΣint is the set ofinternal actions. For any suchΣ̃n, let Σc =

⋃n
i=1 Σi

c, Σr =⋃n
i=1 Σi

r, Σi = Σc ∪ Σi
r ∪ Σint, for everyi ∈ {1, . . . , n}, andΣ = Σc ∪ Σr ∪ Σint.

Definition 14. A multi-stack visibly pushdown automaton (MVPA)over then-stack
call-return alphabetΣ̃n = 〈{(Σi

c, Σ
i
r)}i∈{1,...,n}, Σint〉 is a tupleN = (Q, Γ, ∆, q0, F )

whereQ is a finite set ofstates, Γ is a finitestack alphabetcontaining a distinguished
stack symbol⊥, ∆ ⊆ (Q×Σc×Q×(Γ \{⊥}))∪(Q×Σr×Γ ×Q)∪(Q×Σint×Q)
is thetransition relation, q0 ∈ Q is theinitial state, andF ⊆ Q is the set offinal states.

A configuration ofN is an(n + 2)-tuple〈q, x; γ1, . . . , γn〉 whereq ∈ Q, x ∈ Σ∗,
and for alli ∈ {1, . . . , n}, γi ∈ Γ ∗ is the content of stacki. The transition relation
⊢∗

N is the transitive closure of the binary relation⊢N over configurations, defined as
follows: 〈q, ax; γ1, . . . , γn〉 ⊢N 〈q′, x; γ′

1, . . . , γ
′
n〉 if one of the following cases holds:

1. Internal move: a ∈ Σint, (q, a, q′) ∈ ∆, andγi = γ′
i for everyi ∈ {1, . . . , n}.

2. Push onto stacki: a ∈ Σi
c, γ′

j = γj for everyj 6= i, and there isA ∈ Γ \ {⊥}
such that(q, a, q′, A) ∈ ∆ andγ′

i = Aγi.
3. Pop from stack i: a ∈ Σi

r, γ′
j = γj for everyj 6= i, and there isA ∈ Γ such that

(q, a, A, q′) ∈ ∆ and eitherA 6= ⊥ andγi = Aγ′
i, or A = ⊥ andγi = γ′

i = ⊥.

A string x ∈ Σ∗ is acceptedby N if there areγ1, . . . , γn ∈ Γ ∗ andq ∈ F such that
〈q0, x;⊥, . . . ,⊥〉 ⊢∗

N 〈q, ǫ; γ1, . . . , γn〉. The language ofN , denotedL(N), is the set
of all strings accepted byN .

Definition 15. For m ≥ 1, an m-phase multi-stack visibly pushdown automaton (m-
MVPA) over then-stack call-return alphabet̃Σn is a tupleK = (m, Q, Γ, ∆, q0, F )

whereN = (Q, Γ, ∆, q0, F ) is an MVPA over Σ̃n. The language accepted byK is
L(K) =

⋃
i1,...,im∈{1,...,n}

(
L(N) ∩

(
(Σi1)∗ · · · (Σim)∗

))
.

Finally, we recall that the class of languages accepted bym-MVPA is closed under
union, intersection, renaming, and complementation [8]. However, one easily shows:

Lemma 16. The class of languages ofm-MVPA is not closed under Kleene-star.

2m-MPDA are strictly more expressive than m-MVPA We now show that, for
any m ≥ 1, 2m-MPDA are strictly more expressive thanm-MVPA. Let us fix an
m-MVPA K = (m, Q, Γ, ∆, q0, F ) over Σ̃n = 〈{(Σi

c, Σ
i
r)}i∈{1,...,n}, Σint〉, with

N = (Q, Γ, ∆, q0, F ) an MVPA.

Proposition 17. For every sequencei1, . . . , im ∈ {1, . . . , n}, it is possible to construct
a 2m-MPDA M such thatL(M) = L(N) ∩

(
(Σi1)∗ · · · (Σim)∗

)
.

In the following, we sketch the proof. Intuitively, any computation ofN accepting
a stringx ∈ L(N) ∩

(
(Σi1)∗ · · · (Σim)∗

)
can be decomposed intom phases, where in

each phase (sayj), N can only pop from the stackij (but it can push onto all stacks).
Let j ∈ {1, . . . , m} be the current phase ofN and for everyl ∈ {1, . . . , n}, let

k
j
l = min

(
{k | j ≤ k ≤ m ∧ ik = l}∪{m+1}

)
denote the closest phase in{j, . . . , m}
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such thatN can pop from thel-th stack if the phase iskj
l (note thatkj

ij
= j), if such

phase does not exist, thenk
j
l = m + 1.

We construct a2m-MPDA M overΣ such that the following invariant is preserved
during the simulation ofN when its current phase isj: the content of thel-th stack of
N is stored in the(2k

j
l − 1)-th stack ofM if k

j
l 6= m + 1. Then, an internal move

(labeled bya ∈ Σint) of N is simulated by an internal move (labeled bya) of M ; a pop
rule (labeled bya ∈ Σ

ij
r ) of N from theij-th stack corresponds to a pop rule (labeled

by a) of M from the(2j − 1)-th stack; and a push rule (labeled bya ∈ Σl
c) onto the

l-th stack ofN is simulated by a push rule (labeled bya) of M onto the(2k
j
l − 1)-th

stack ifkj
l 6= (m + 1), else by an internal move (labeled bya) of M .

On switching phase fromj to (j + 1) if k
j+1
ij

6= m + 1, whenN is able once again
to pop from the(ij)-th stack,M moves the content of the(2j − 1)-th stack onto the
(2k

j+1
ij

− 1)-th stack using the(2j)-th stack as an intermediary one, else it removes the
content of the(2j−1)-th stack. Observe that all the above described behaviors maintain
the stated invariant sincekj+1

l = k
j
l for everyl 6= ij .

We are now ready to present the main result of this section.

Theorem 18. 2m-MPDA are strictly more expressive thanm-MVPA.

Proof. For everym-MVPA K over the stack alphabet̃Σn one can construct a2m-
MPDA M overΣ such thatL(M) = L(K) by considering all possible orderings of
phases (fixing for each phase the stack which can be popped) and using Proposition
17. To provestrict inclusion, we notice that the class of languages recognizedby 2m-
MPDA is closed under Kleene-star (Lemma 5) but the class of languages ofm-MVPA
is not (Lemma 16). ⊓⊔

2m-MPDA are strictly more expressive than m-MPA In the following, we ex-
tend the previous result tom-phase multi-stack pushdown automata over non-visible
alphabets (defined in [8]). A multi-stack pushdown automaton (called MPA) over (non-
visible) alphabetΣ is simply ann-stack automaton withǫ-moves, that can push and
pop from any stack when reading any letter. Also, we definem-phase version of these
(calledm-MPA). An m-MPA is an MPA using at mostm-phases, where in each phase
one can pop from one distinguished stack, and push on any other stack.

Theorem 19. 2m-MPDA are strictly more expressive thanm-MPA.

The idea behind proving inclusion is that for anym-MPA K overΣ, it is possible
to construct anm-MVPA K ′ overΣ̃′

n = 〈{(Σ′i
c, Σ

′i
r)}i∈{1,...,n}, Σ

′
int〉, with Σ′i

c =(
Σ∪{ǫ}

)
×{c}×{i}, Σ′i

r =
(
Σ∪{ǫ}

)
×{r}×{i}, andΣ′

int =
(
Σ∪{ǫ}

)
×{int},

such that every transition ona ∈ Σ ∪ {ǫ} that pushes onto the stacki is transformed to
a transition on(a, c, i), transitions ona that pop the stacki are changed to transitions
on (a, r, i), and the remaininga-transitions are changed to transitions over(a, int). Let
f be a renaming function that maps each symbol(a, c, i), (a, r, i), and(a, int) to a.
Then,w ∈ L(K) iff there is somew′ ∈ L(K ′) such thatw = f(w′). It follows that
L(K) = f

(
L(K ′)

)
. Consider now the2m-MPDA M ′ overΣ′ constructed fromK ′

such thatL(M ′) = L(K ′), thanks to Theorem 18. Then, it is possible to construct
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from M ′ a 2m-MPDA M over Σ such thatL(M) = f
(
L(M ′)

)
(Lemma 5) which

implies thatL(M) = L(K). To prove thestrict inclusion we use the easy to see fact
thatm-MPA are not closed under Kleene-star whereas2m-MPDA are (Lemma 5).

6 Conclusion

We have shown that the emptiness problem for multi-pushdownautomata (MPDA) is
2ETIME-complete. The study of the emptiness problem is the first step of a compre-
hensive study of verification problems for MPDA. For standard pushdown automata,
a lot of work has been done recently (see for example [2]) concerning various model-
checking problems. It will be interesting to see how these results carry over to MPDA
and at which cost. A basic ingredient of model-checking algorithms is typically to char-
acterize the set of successors or predecessors of sets of configurations. For MPDA, this
problem remains to be studied. Another class of extended pushdown automata has re-
cently been studied extensively: the class of higher-orderpushdown automata (HPDA,
see for example [6]). It is quite easy to see that HPDA of ordern can simulate MPDA
with n stacks (which allows us to use all verification results for HPDA also for MPDA).
However, the converse is wrong, since emptiness of pushdownautomata of ordern is
(n−1)-EXPTIME-complete [6]. Therefore, it is interesting to study dedicated algo-
rithms for the verification of MPDA.
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