Emptiness of multi-pushdown automata is
2ETIME-complete

Mohamed Faouzi Atity Benedikt Bollig?, and Peter Habermehi

! LIAFA, CNRS and University Paris Diderot, France,
email:(ati g+thaberm) @i afa. jussieu.fr
2 LSV, ENS Cachan, CNRS, INRIA, emabol | i g@ sv. ens-cachan. fr

Abstract. We considemulti-pushdown automata multi-stack extension of
pushdown automata that comes with a constraint on staclatpes: a pop can
only be performed on the first non-empty stack (which implieg we assume a
linear ordering on the collection of stacks). We show thatemptiness problem
for multi-pushdown automata is 2ETIME-complete wrt. thentoer of stacks.

Containment in 2ETIME is shown by translating an automatdo a grammar

for which we can check if the generated language is empty.Ider bound is

established by simulating the behavior of an alternatingnfumachine working

in exponential space. We also compare multi-pushdown aatwmith the model

of bounded-phase multi-stack (visibly) pushdown automata

1 Introduction

Various classes of pushdown automata with multiple staek® lbeen proposed and
studied in the literature. The main goals of these efforéstatofold. First, one may
aim at extending the expressive power of pushdown autorgatag beyond the class
of context-free languages. Second, multi-stack systemsmualel recursive concur-
rent programs, in which any sequential process is equipptdanfinite-state control
and, in addition, can access its own stack to connect proeezhlls to their corre-
sponding returns. In general, however, multi-stack exterssof pushdown automata
are Turing powerful and therefore come along with undediialof basic decision
problems. To retain desirable decidability properties w$hmlown automata, such as
emptiness, one needs to restrict the model accordinghg]|rBreveglieri et al. define
multi-pushdown automatéMPDA), which impose a linear ordering on stacks. Stack
operations are henceforth constrained in such a way thgp ajperation is reserved to
the first non-empty stack. These automata are suitable telbent-server systems of
processes with remote procedure calls. Another posgilbditegain decidability in the
presence of several stacks is to restrict the domain of wpuds. In [8], La Torre et al.
definebounded-phase multi-stack visibly pushdown autorttadanded-phase MVPA).
Only those runs are taken into consideration that can beispdi a given number of
phases, where each phase admits pop operations of oneufzarstack only. In the
above-mentioned cases, the respective emptiness probldatidable. In [9], the re-
sults of [8] are used to show decidability results for reséil queue systems.

In this paper, we resume the study of MPDA and, in particalansider their empti-
ness problem. The decidability of this problem, which is ¢gide if an automaton ad-
mits some accepting run, is fundamental for verificationppses. We show that the

emptiness problem for MPDA is 2ETIME-complete. Recall tARTIME is the class
of all decision problems solvable by a deterministic Turingchine in time22"" for
some constard. In proving the upper bound, we correct an error in the ddugiitha
proof given in [3]2 We keep their main idea: MPDA are reduced to equivatkspith
n-grammars Deciding emptiness for these grammars then amounts tdiclgeempti-
ness of an ordinary context-free grammar. For proving 2EH4hardness, we borrow an
idea from [10], where a 2ETIME lower bound is shown for bouhgdase pushdown-
transducer automata. We also show ttiat-MPDA are strictly more expressive than
m-phase MVPA providing an alternative proof of decidabilitiithe emptiness prob-
lem for bounded-phase MVPA.

The paper is structured as follows: In Section 2, we intredMéDA formally, as
well as deptha-grammars. Sections 3 and 4 then establish the 2ETIME uppebr a
respectively, lower bound of the emptiness problem for MP@hAich constitutes our
main result. In Section 5, we compare MPDA with bounded-p¥PA. We conclude
by identifying some directions for future work. Missing pfe can be found in [1].

2 Multi-pushdown automata and depths-grammars

In this section we defineulti-pushdown automataith n» > 1 pushdown stacks and
their corresponding grammars. We essentially follow thin@ens of [3].

Multi-pushdown automata Our automata have one read-only left to right input tape
andn > 1 read-write memory tapes (stacks) with a last-in-first-@wiriting policy. In
each move, the following actions are performed:

read one or zero symbol from the input tape and move past #uesyambol
read the symbol on the top of the first non-empty stack staftom the left
switch the internal state

for eachi € {1,...,n}, write afinite stringy; on thei-th pushdown stack

Definition 1. For n > 1, an (n-)multi-pushdown automatofm-MPDA or MPDA) is a
tupleM = (Q, X, I, 6, qv, F, Zy) where:

— @ is afinite non-empty set a@fternal states

— X (input) andI” (memory) are finite disjoint alphabets,

- 0:Qx (Zw{e}) x I' - 29*I")" js atransition mapping
— qo is theinitial state

— F C Qs the set offinal statesand

— Zy € I'is theinitial memory symbal

A configurationof M is an(n + 2)-tuple (g, z;v1,...,v.) With g € Q, z € X*,
and~i,...,v, € I'*. Thetransition relation3, is the transitive closure of the binary
relationtj; over configurations, defined as follows:

<Q7a'x;6a"'76aA’yia"'77n> I_M <q/737;061,- --aai—17@i7i7~-~,04n’7n>

3 A similar correction of the proof has been worked out indefesly by the authors of [3]
themselves [4]. They gave an explicit construction for theecof three stacks that can be
generalized to arbitrarily many stacks.

Table 1.A 2-MPDA for {e} U {a"1b" c"1 a™2b"2¢"2 - - - @'k bikc™* | k > 1 andiy, ..., ik > 0}

M = ({QOa .. ~7Q37(If}: {CL, b7 C}a {A7Ba ZO7ZI}757 qo, {qf}7ZO)

5(@0767 ZO) = {(Qf,é, E)} 5((]2,() A) = {(q2767 E)}
5((]0,G7Z0) = {(q17A207B21)} 5((]276 ZO) = {(q3a€7 E)}
5((]176’*’4) = {(q27AvE)} 5(Q3,E Zl) = {(Q(),ZO,E)}
5(q1,a,A) = {(qlvAAvB)} 6((]376 B) = {(Q3767 6)}

if (¢,a1,...,a,) € d(q,a,A), wherea € X' U {e}.

The language ofM accepted by final states defined as the set of words €
X* such that there arey,...,y, € I'* andq € F with {(q,x; Zp,€,...€) Fiy
(q,€71,-..,7m). Thelanguage ofM accepted by empty stacldenoted byL (M), is
defined as the set of wordse X* such that there ig € Q with (g, z; Zo,¢,...€) Fiy,
(g,€€,...,€).

Lemma 2 ([3]). The languages accepted hyMPDA by final state are the same as the
languages accepted byMPDA by empty stacks.

Table 1 shows an example oR2aMPDA. Notice that it accepts the same language
by final state and by empty stacks.

We need the following normal form ef-MPDA for the proof of our main theorem.
The normal form restricts the operation on sta2ke n: pushing one symbol on these
stacks is only allowed while popping a symbol from the firgtckt and popping a
symbol from them pushes a symbol onto the first stack. Furtbex, the number of
symbols pushed on the first stack is limited to two and theksifghabets are distinct.

Definition 3. An-MPDA (Q, X, I', 0, qo, F, Zy) withn > 2 is in normal form if

- I = U, 'Y where thel)’s are pairwise disjoint memory alphabets whose
elements are denoted by*), B, etc., andZ, € 'V,
— Only the following transmons are aIIowed
e Forall AN ¢ 7™ anda € X U {e}, 6(¢,a, AM) C {(¢'¢,...,¢) | ¢ €
QtUA UA, Wlth
* Ay ={(¢,BYCW¢,....e) | ¢ e QABD,CcH e TV}
x Ay ={(q, ¢, e,AZ),e,...,e) |l €QANAD e A2<i<n}.
e Forall 7 with 2 gignandae Y U {e},
8(g,a, A C{(¢,BY,¢,...,e) | ¢ € QA BY e IV},

Lemma 4. An n-MPDA M can be transformed into an-MPDA M’ in normal form
with linear blowup in its size such th@t(M) = L(M’).

Proof. The proof makes use of the ideas from [3], where a proof for remabform
for D™-grammars (see below) is given. Notice, however, that weataise the same
normal form as the one of [3] for MPDA. O

Next, we recall some properties of the class of languagegrezed byn-MPDA.
We start by defining a renaming operationrénamingof X' to X’ is a functionf :
Y — X'.Itis extended to strings and languages in the natural Wi&y;i ...ax) =
flar)-...- f(ay) andf(L) = |U,c, f(z). The following can be shown following [3].

3

Lemma 5. (Closure Properties) The class of languages recognized-ByPDA is clo-
sed under union, concatenation, and Kleene-star. Moregwezn ann-MPDA M over
the alphabet” and a renaming functiorf : X~ — X, it is possible to construct an
n-MPDA M’ over X’ such thatL (M) = f(L(M)).

Depth-n-grammars We now define the notion of a deptikgrammar. Lel/y andVr
be finite disjoint alphabets and 1ét“ and), “ for i € {1,...,n} ben + 1 characters
not in Vy U V. An n-list is a finite string of the forme = w(ag)1(a2)2. .. (m)n
wherew € V anda; € Vy forall i with 1 <4 < n.

Definition 6. A depthn-grammar (O™-grammar) is atuples = (Vy, Vr, P, S) where
Vn and Vp are the finite disjoint sets afion-terminaland terminal symbolsrespec-
tively, S € Vy is the axiom, andP is a finite set ofproductionsof the formA — @
with A € Vy anda@ ann-list.

For clarity, we may drop empty componentslists in the productions as follows:
A — w(e)y...(e), iswritten asA — w, A — (€)1 ... (¢), is written asA — ¢, and
A— we)y...(e)i—1(a;)i(€)it1 .. (€)n iswritten asA — w(«;);.

We define thederivation relationon n-lists as follows. Leti € {1,...,n} and
let 3 = (€)1...(€)i-1(AB)i(Bi+1)i+1-- - (Bn)n be ann-list, wheres; € Vy; for all
j€{i,...,n}. Then,

2B = zw(ar)i(as)a. .. (@i—1)i—1(iBi)i(@it1)it1 - - - (@nBn)n

if A— w(ag)i(ag)z2...(ay), is aproduction and € V. Notice that only leftmost
derivations are defined. As usual we denotebythe reflexive and transitive closure of
=. Aterminal stringr € V isderivablefrom S'if (S)1(€)2...(€)n =" z(€)1 .. (€)n-
This will be also denoted by =* x. The language generated by>&-grammarG is
LG)={z eV} |S="x}.

Definition 7. LetG = (Vy, Vi, P, S) be aD™-grammar. Then, the underlying context-
free grammar isG.s = (Vy,Vr, Py, S) with Py = {A — way ..o | A —
w(ay)y ... (an)n € P}

The following lemma from [3] is obtained by observing that thnguage generated
by a D™-grammar is empty iff the language generated by its undeglgiontext-free
grammarG s is empty. Furthermore, it is well-known that emptiness afteat-free
grammars can be decided in time linear in its size.

Lemma 8. The emptiness problem 6f*-grammars is decidable in linear time.

3 Emptiness of MPDA is in 2ETIME

In this section, we show that the emptiness problem-dPDA is in 2ETIME. We first
show thatn-MPDA correspond ta"-grammars with a double exponential number of
non-terminal symbols. To do so, we correct a constructivargin [3]. Then, emptiness
of D™-grammars is decidable using the underlying context-fraengnar (Lemma 8).

Theorem 9. A languagel is accepted by am-MPDA iff it is generated by a>"-
grammar.

In the following we give a sketch of the proof. The “if”-dirgon is obvious, since
a grammar is just an automaton with one state. For the “offglifection, let L be a
language accepted by empty stacks bynaMPDA M = (Q, X, T4, qo, F, Zy). By
Lemma 4, we assume, without loss of generality, thais in normal form. We will
construct aD™-grammarG; = (Viy, X, P, S) such that.(G ;) =

Intuitively, we generalize the proof for the case2efIPDA [7]. In [3], an incorrect
proof was given for the case afMPDA. Recently, the authors of [3] independently
gave a generalizable proof f8B¥MPDA, which is similar to ours [4]. The general proof
idea is the same as for the corresponding proof for pushdowomneta. To eliminate
states, one has to guess the sequence of states throughttwniahtomaton goes by
adding pairs of state symbols to the non-terminal symbote®ftorresponding gram-
mar. We do this for the first stack. However, when the firstistggts empty, the other
stacks may be not empty and one has to know the state in whichutomaton is in
this situation. For this, we have to guess for all the other-empty stacks and each of
their non-terminal symbols the state in which the automatitiibe when reading these
symbols?

To do this for then-th stack, a pair of state symbols is enough. For(the 1)-th
stack, in addition to guessing the state, we also have to khewurrent state on top of
then-th stack to be able to push correctly symbols ontortie stack. Therefore, a pair
of pairs of states4(in total) is needed. For th@.—2)-th stack, we need to remember the
current state and the states on top ofthe 1)-th stack and on top of the-th stack (in
total 8 states) and so on. Therefore, there will3¥estate symbols to be guessed in the
first stack. Furthermore we have special state symbols {denp) to indicate that the
i-th stack is empty. In Fig. 1 we give an intuitive examplesthating the construction.

Now we define the gramma®,; = (Vy, X, P, .S) formally. To defineVy, we
first provide symbols of level denoted byl;. Fori with 2 < i < n, let¢f be states
pairwise different and different from any state @f(these are the symbols indicating
that the corresponding stack is empty). States of Ieeeé denoted by); and defined
as follows :Q,, = Q U {¢¢} and for alli such tha < i < n, @Q; = (Q X Q41 X

X Qn)U{gf}, andQr = Q x Q2 x - -+ x Q,,. We denote byy; states of);. Then,
V; = Qi xI'xQ;andVy = {S} U |J;_, Vi. Notice that a state ip; different fromg;
has exactly2" ¢ components. Therefot®y| < (|Q| + 1)2"" |I'|. The setP contains
exactly the following productions, which are partitionetbi five types ¢ € X' U {¢}):

Tl S - ([(q()v QSa R} qz,)v ZOa (qla q%7 cre q;)])l
if there isk with 2 < k < n + 1 such that

e forall i with 2 < i < k we haveg} = ¢f
e if kK <n,theng; = (¢, q,i_l_l, .o qh)

T2 [(q17q§,-~-7qi),A(”,q1] — a([(q, qg qr), BY,¢3lg3,CM, g3
if (¢*, BMCW ¢,...,¢)€d(q",a,AM)

“ The proof in [3] incorrectly assumes that this state is thaeséor each stack when the first
stack gets empty.

[T (@ (a5, (2, 43), 47), 45, 43)
A
(91, (95, (92,93),97), (93, 94), g3)
(g1, (g5, (42, 93),97), (43, q4), g3)
B
(g3, (92, (93,94),g8), (43, 94), 93)
(g3, (92, (g3,94),9s), (43, q4), g3) (g5, (92,93),97) q3
o A2 A@
| (g2, (g2, (93, 94), 98), (93, 94), g8) | q5 [] ‘N
(Tar, (a5, (a2, 43), a7), (@3, 92), 43 |
B
(g3, (g2, (g3,494),g8), (43, 94), q3) _ _
(g3, (g2, (g3,94), 98), (43, q4), g3) (g5, (g2,93),97) (g3, q4) q3
cM e 43 A
| (a2, (92, (93, 94), 48), (43, 94), g8) | I 95 | q5 a5
(T2, (43, 41), a8) |
B(®)
(g5, (g2, 93),97) _ -
(g3, (92, (g3,94), 98), (43, q4), g3) (g5, (92, 93),97) (g3, q4) q3
c™ i) 43 4@
(g2, (g2, (93, 94), a8), (g3, 94), q8) I 95 | 95 |41 |
(T2, (43, 94), a8) | a8
B® A@®
(g5, (92,493), q97) q3
(g5, (92, 93), q7) (g3, q4) q3
A2 A® A@
[] I 5 43 |94 |

Fig. 1. A sketch of a partial derivation (from top to bottom) of a depgtgrammar corresponding
to a run of &4-MPDA where three symbols are popped from the first stackenthitee symbols
are pushed onto the other stacks. In each configuratiore ifitst stack is non-empty, then the
state symbols on top of the other stacks can be found on tdpedfrst stack as well. In the last
configuration, the top symbols of the other stacks can bedamtop of the second stack.

T3 [(qlv Q%v') Jl'—la q;‘l7 qg:'L+17') Q}z)vA(l)v (q27 Q%a SRER) Jl'—la qu‘v q31_+17 S q',ll)]
— a([q?,B(j),q;])j if q;‘.’ # ¢S and(q? e, .. . 6BY e ... €)e gt a, AD)
T4 [(¢" qjy1s -5 an). AV q]]
—a([(q", 45, @51, 4f Gj 15 - an), BY. (6,65, -, a3)]h
if (¢*, BM¢,....€) €6(q",a,AY)), and there ig with 2 < k < n + 1 such that
e forall i with 2 < i < min(k, j) we haveg? = ¢¢
e for all i with min(k, j) <i < k we haveg} = g2 = ¢¢
o if k<n, thenq,ﬁ = (q2,qz+1,. . .,qfl)

T5 [(q:l?q%? .. -7q1:!7,)’A(1)’ (q2)q%) b "q}l)] —a if (q2’€7' b 76) E 6(q1)a7 A(l))

The grammar corresponding to the example in Table 1 can bedfogu[l]. The
following key lemma formalizes the intuition about derieais of the grammady,; by
giving invariants satisfied by them (illustrated in Fig. This lemma is the basic ingre-
dient of the full proof of Theorem 9, which can be found in [ituitively, condition
1 says that the first element of the first stack contains the sianbols on top of the

other stacks. Condition 2 says that the last state symbdieifirst stack are of the form
allowing condition 3 to be true when the corresponding syimspopped. Condition 3
says that if the first stack is empty, then the top of the first-@ampty stack contains the
same state symbols as the top of the other stacks. Condétiand 5 say that the state
symbols guessed form a chain through the stacks.

Lemma 10. Letw(y1)(72) . .. (7,) be ann-list different from(e); .. . (¢),, appearing
in a derivation of the grammag ;.

11y = [(¢", g3,q%), AW (¢%,42,...,q?)]y; with v} € V7, then for alli
with 2 < i < n, if 5; is empty, therg} = ¢f, elsey; = [q}, BY, ¢¥]y/ with
/ *
v € Vit
2. fv =~i[(¢' gk, ..., q2), AW, (¢3,43, ..., q3)] with~] € V¥, then there exists
k with 2 < k < n + 1 such that we have both for allwith 2 < i < k, qf =qf
andk < nimpliesqy; = (¢°, a3 4, --,4>)- .
3. Suppose that; = e. Leti be the smallesk such thaty; is not empty and let
vi = (¢ @} s ah), AW, gF)v) with 5] € V;*. Then, for allj > i, we have:
if 5, is empty, them} = ¢5, elsey; = [q}, AY), g3]} with+/ € V.
4. Forallz with 2 <4 < n, if 7; is not empty then for some> 1,
v =lak AV, a?a?, AL q?). . [al 7, AN qfllad, ALY, gf] and for alll with
1<1<j, ¢ #¢.
5. If v1 is not empty, then for some> 1,
1 1 j—1 1]] 1 I+1
=gl AV, a?)a2, A a3 a7 A ddllad, AV ¢

By observing that the size of the gramn@@y, corresponding to an MPDA/ in
the construction used in the proof of Theorem 9 is double e&pbal in the number of
stacks and using Lemma 8 we obtain the following corollary.

Corollary 11. The emptiness problem of MPDA is in 2ETIME.

In the next Section, it is shown that the double exponenpakn bound is tight.

4 Emptiness of MPDA is 2ETIME-hard

In this section, we prove that the emptiness problem of MPD2ETIME-hard. This is
done by adapting a construction in [10], where it is shown tieatain bounded-phase
pushdown-transducer automata capture precisely the ZEEEME.

Theorem 12. The emptiness problem for MPDA is 2ETIME-hard under logspae
ductions.

Proof. It is well-known that the class of problems solvable by aigding Turing ma-
chines in space bounded By™ for somed (call it AESPACE) equals 2ETIME [5].
Thus, it is sufficient to show that any problem in AESPACE camdauced, in logarith-
mic space, to the emptiness problem for MPDA.

So letT be an alternating Turing machine working in space bounde’byLet
furthermorew be an input forT" of lengthn. We construct (in logarithmic space) from

C3 C4 Cg Cr C1o C11 C13 Ci4g
Fig. 2. A run of an alternating Turing machine

T andw an MPDA M with 2dn + 4 stacks such that the languageidfis non-empty
iff w is accepted by". The simulation off’ proceeds in two phases: (1) guesses a
possible accepting run @f onw; (2) M verifies if the guess is indeed a run.

Without loss of generality, we can assume that a transitfdfi & basically of the
forme — (c1Ac2)V(csAceq) V...V (cp—1Acy) (Where configuration changes are local),
i.e., from configuratior, we might switch to botlkr; andc, or bothcz andcey and so
on. This allows us to represent a runfofas a complete finite binary tree, as shown in
Fig. 2, whose nodes are labeled with configurations. Noteetheh configuration will
be encoded as a string, as will be made precise below. Thesraccepting if all leaf
configurations are accepting. Following the idea of [10]wyige the labeled tree as the
string (letc” denote the reverse of

colerleales || 5 || ea |l cilch || esles || g Il er || e7leslet |
csleglero || o [ern || eialeg || erzlers || cfs || cra || chyletaleslcq

It is generated by the (sketched) context-free grammar

A — O[iAOéi —+ OziBOéi + aiHai
B — |A] A

where thew; are the atomic building blocks of an encoding of a configoratf 7.

This string allows us to access locally those pairs of condiions that are related by
an edge in the tree and thus need to agree with a transitinallfsithe grammar can
make sure that all leafs are accepting configurations artdhbanitial configuration
corresponds to the input. Using two stacks, we can generate such a word encoding
of a (possible) run of” and write it onto the second stack, say withat the top, while
leaving the first stack empty behind us (cf. Fig. 3(a)).

The MPDA M now checks if the word written onto stack 2 stems from a run of
T'. To this aim, we first extract from stack 2 any pair of configiarss that needs to be
compared wrt. the transition relation 6f For this purpose, some of the configurations
need to be duplicated. Corresponding configurations atewside by side as follows:
By means of two further stacks, 3 and 4, we transfer the cordiguns located on stack
2 and separated by the symbglénto the third stack (in reverse order), hereby copying
some configuration by writing it onto the fourth stack (cfg F3(b)).

It still remains to verify that:y andcg belong to a transition df’, as well asc;,
andcy4, etc. The encoding of one single configuration .. (¢, a;) . . . aga» Will now
allow us to compare two configurations letter by letter. I$ tae form(—, a;, as,€)
(a1,a2,as,€) ... (ai—1,(q,a;),a;11,€)...(azan_1,asan, —, €) Where the component
e denotes a “transitiont — ¢’ A ¢”, which has been selected to be executed next
and which has been guessed in the above grammar. We wouldoligempare the
k-th letter of one with the:-th letter of another configuration. To access correspond-
ing letters simultaneously, we divide the configurationsstacks 3 and 4 into two,

I Co 1 _0/ -
. 4
cs .
. a2 o
Lo Ci [cs QY (B2 [B1] [ah] [ab]
‘. X C12 a:1 Ba é Qi Qas
™
£ L2 | |1 7 2 b1 B B3
T
& Ca Cy @ 7 A B1 B3
C’V‘ CT c °, ’ ’
<3 3 1 ﬁl (6% aq (%) Gy

O ‘s _

: Co Cs ﬂ4 QY Qs (o %) oy
s cl z : oy | |ah 5 /
C8 1 Co : Qg (e %] 2 4

| ¢o | Lco] Ll | A1] Lol Las] LB2] LBal

2 3 4 3 5 6 7 8
(a) (b) (©)

Fig. 3. Guessing and verifying a run of an alternating Turing maghin

using two further stacks, 5 and 6. We continue this until egponding letters are ar-
ranged one below the other. This procedure, which reqidesadditional stacks, is
illustrated in Fig. 3(c) where each; and 3; stands for an atomic symbol of the form
(a1, a2, as, e). Note that, in some cases, we encounter pairs of the forn) whereas

in some other cases, we face pairs of the fdrih (¢')"). Whether we deal with the
reverse of a configuration or not can be recognized on the lodgis border symbols
(i.e., (—, a1, az2,€) OF (agan_1,aszan, —, €)). Consider, for example, stacks 3 and 4 in
Fig. 3(b). We want to comparg andcs wherec is of the form(—, a;, as,¢€) ..., i.e.,

it is read in the correct order. Supposés of the formcy — ¢ A ¢. Then, locally
comparingcy andcg, we can check whethef = cs. If, at the bottom of stack 3, we
comparec] = (agan_y, Ggan, —, €) ... With ¢f, ande is of the formcy — ¢ A ¢/, then
we need to check if = ¢;. In other words, the order in which a configuration is read
indicates if we follow the right or left successor in the & the) run. ad

From Corollary 11 and Theorem 12, we deduce our main result:

Theorem 13. The emptiness problem of MPDA is 2ETIME-complete undepkes
reductions’

5 Comparison to bounded-phase multi-stack pushdown autonta

In this section, we recalh-phasemulti-stack (visibly) pushdown automage. > 1)
defined in [8] and show that they are strictly less expregsiaa2m-MPDA.

Multi-stack visibly pushdown automata Forn > 1, ann-stack call-return alphabet
isatupley, = ({(X%, Xi)} e, ny» Zine) Of pairwise disjoint finite alphabets. For

5 The emptiness problem of MPDA is 2EXPTIME-complete, toorédtyy, 2EXPTIME de-
notes the class of all decision problems solvable by a dététic Turing machine in time
exp(exp(n?)) for some constand (exp(z) denoting2®). Note that 2EXPTIME is a robust
complexity class. On the other hand, 2ETIME is not robustt @snot closed under logspace
reductions.

i€ {1,...,n}, X is the set otalls of the stack, X! is the set ofeturns of the stack
i, and X;,,; is the set ofinternal actions For any such¥,,, let X, = U;;l XX =
UL, X, Y= X, U XU Xy, foreveryi € {1,...,n},and¥ = Y. U X, U Dy

Definition 14. A multi-stack visibly pushdown automaton (MVPAyer then-stack
call-return alphabetC,, = ({(X7, £}) }icq1,....n}» Zint) ISatupleN = (Q, [A, qo, F)
where(is a finite set ofstates " is a finitestack alphabetontaining a distinguished
stack symbal, A C (@ x X x Q@ x (I'\{L}))U(Q@x X, x I'x Q)U(Q X Xyt X Q)
is thetransition relationgy € @ is theinitial statg andF' C @ is the set offinal states

A configuration ofN is an(n + 2)-tuple (¢, z;v1,...,7,) Whereq € Q, z € X*,
and for alli € {1,...,n}, v, € I'* is the content of stack Thetransition relation
F is the transitive closure of the binary relatier; over configurations, defined as
follows: (q, az;¥1,...,vn) FN (¢, 2;71, ... ,7,,) if one of the following cases holds:

1. Internal move: a € Xy, (¢,a,¢") € A, andy; =~} foreveryi € {1,...,n}.

2. Push onto stacki: a € X7, v} = ~; for everyj # i, and there isd € I"\ {1}
such that(q, a,q’, A) € Aandy, = Av;.

3. Pop from stacki: a € X, 7§ = v; for everyj # 4, and there isA € I" such that
(g,a,A,q") € Aandeitherd # 1 andy; = Ay},orA= 1L andy; =+, = L.

A stringz € X* is acceptedby N if there arey,,...,vy, € I'* andq € F such that
(go,x;L,..., L) Fy (¢, 7,-..,7). The language ofV, denotedL(N), is the set
of all strings accepted biy.

Definition 15. For m > 1, an m-phase multi-stack visibly pushdown automaton (
MVPA) over then-stack call-return alphabel’,, is a tuple K = (m,Q, I, A, qo, F)

whereN = (Q, I, 4, qo, F) is an MVPA over X,,. The language accepted Wy is

,,,,,

Finally, we recall that the class of languages acceptead#VPA is closed under
union, intersection, renaming, and complementation [8wEeler, one easily shows:

Lemma 16. The class of languages of-MVPA is not closed under Kleene-star.

2m-MPDA are strictly more expressive than m-MVPA We now show that, for
anym > 1, 2m-MPDA are strictly more expressive than-MVPA. Let us fix an
m-MVPA K = (m,Q,I,A,qo,F) over X, = ({(Z5,)} g, n}» Zint), With

N =(Q, I A, q,F)an MVPA.

Proposition 17. For every sequencg, . .., i, € {1,...,n}, itis possible to construct
a2m-MPDA M such thatL(M) = L(N) 0 ((Z%)* -+ (2%m)*).

In the following, we sketch the proof. Intuitively, any couotption of N accepting
astringz € L(N) N ((X%)*--- (X%)*) can be decomposed into phases, where in
each phase (saj), N can only pop from the stack (but it can push onto all stacks).

~Letj € {1,...,m} be the current phase o¥ and for everyl € {1,...,n}, let
ki =min({k|j <k < m Ai, =1}U{m+1}) denote the closest phasefif . .., m}

10

such thatvV can pop from thé-th stack if the phase ilslj (note thatk:gj =), if such

phase does not exist, théf = m + 1.

We construct @mn-MPDA M over X' such that the following invariant is preserved
during the simulation ofV when its current phase js the content of thé-th stack of
N is stored in thg2k] — 1)-th stack of M if k] # m + 1. Then, an internal move
(labeled byn € X;,,;) of N is simulated by an internal move (labeleddyof A7; a pop
rule (labeled by: € X,7) of N from thei;-th stack corresponds to a pop rule (labeled
by a) of M from the(2;j — 1)-th stack; and a push rule (labeled by= X') onto the
I-th stack of N is simulated by a push rule (labeled byof M onto the(2k] — 1)-th
stack ifk{ # (m + 1), else by an internal move (labeled byof M .

On switching phase fromto (5 + 1) if k{jl % m+ 1, whenN is able once again
to pop from the(i;)-th stack,M moves the content of th@; — 1)-th stack onto the
(Qkfjl — 1)-th stack using th€2;)-th stack as an intermediary one, else it removes the
content of thg2; — 1)-th stack. Observe that all the above described behaviargana
the stated invariant sindg ™' = &/ for everyl # i;.

We are now ready to present the main result of this section.

Theorem 18. 2m-MPDA are strictly more expressive than-MVPA.

Proof. For everym-MVPA K over the stack aIphabéﬁn one can construct &m-
MPDA M over X such thatL(M) = L(K) by considering all possible orderings of
phases (fixing for each phase the stack which can be poppdd)sing Proposition
17. To provestrict inclusion, we notice that the class of languages recogrigetin-
MPDA is closed under Kleene-star (Lemma 5) but the classrgfuages ofn-MVPA

is not (Lemma 16). O

2m-MPDA are strictly more expressive than m-MPA In the following, we ex-
tend the previous result tm-phase multi-stack pushdown automata over non-visible
alphabets (defined in [8]). A multi-stack pushdown automdtalled MPA) over (non-
visible) alphabety is simply ann-stack automaton witlk-moves, that can push and
pop from any stack when reading any letter. Also, we definphase version of these
(calledm-MPA). An m-MPA is an MPA using at most-phases, where in each phase
one can pop from one distinguished stack, and push on any sitiek.

Theorem 19. 2m-MPDA are strictly more expressive than-MPA.

The idea behind proving inclusion is that for amyMPA K over Y, it is possible
to construct ann-MVPA K’ over ', = ({(2'5, ') }ic(1...nys D), With 272 =
(Zu{e}) x{c} x{i}, X' = (T U{e}) x {r} x {i}, andX’;,,; = (X U{e}) x {int},
such that every transition ane X' U {¢} that pushes onto the statks transformed to
a transition on(a, ¢, i), transitions oru that pop the stack are changed to transitions
on(a,r,1), and the remaining-transitions are changed to transitions olerint). Let
f be a renaming function that maps each symaok;, i), (a,r, i), and(a,int) to a.
Then,w € L(K) iff there is somew’ € L(K’) such thatw = f(w’). It follows that
L(K) = f(L(K")). Consider now th&m-MPDA M’ over X’ constructed fromk”
such thatL(M') = L(K'), thanks to Theorem 18. Then, it is possible to construct

11

from M’ a 2m-MPDA M over X such thatL(M) = f(L(M’)) (Lemma 5) which
implies thatL(M) = L(K). To prove thestrict inclusion we use the easy to see fact
thatm-MPA are not closed under Kleene-star whergasMPDA are (Lemma 5).

6 Conclusion

We have shown that the emptiness problem for multi-pushdawomata (MPDA) is
2ETIME-complete. The study of the emptiness problem is tts ditep of a compre-
hensive study of verification problems for MPDA. For stanbdpushdown automata,
a lot of work has been done recently (see for example [2]) eonicg various model-
checking problems. It will be interesting to see how theseillte carry over to MPDA
and at which cost. A basic ingredient of model-checking albms is typically to char-
acterize the set of successors or predecessors of setsfigiurations. For MPDA, this
problem remains to be studied. Another class of extendeldowen automata has re-
cently been studied extensively: the class of higher-gpdehdown automata (HPDA,
see for example [6]). It is quite easy to see that HPDA of ordean simulate MPDA
with n stacks (which allows us to use all verification results foldARalso for MPDA).
However, the converse is wrong, since emptiness of push@oiomata of orden is
(n—1)-EXPTIME-complete [6]. Therefore, it is interesting to dyudedicated algo-
rithms for the verification of MPDA.

References

1. M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of nwitishdown automata
is 2ETIME-complete. Research Report LSV-08-16, LSV, ENShaa, May 2008.
http://wwmv. | sv. ens-cachan. fr/ Publ i s/ RAPPORTSLSV/ PDF/ rr-1 sv-2008- 16. pdf.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability gsialof pushdown automata: Appli-
cation to model-checking. IRroceedings of CONCUR'9%olume 1243 ol ecture Notes
in Computer Scien¢gages 135-150. Springer, 1997.

3. L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespidézzi. Multi-push-down languages
and grammarslInternational Journal of Foundations of Computer Scient8):253—-292,
1996.

. L. Breveglieri, A. Cherubini, and S. Crespo Reghizzi.sp@@al communication.

. Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeygiternation. J. ACM
28(1):114-133, 1981.

6. J. Engelfriet. Iterated stack automata and complexitysgsinformation and Computatign
95(1):21-75, 1991.

7. P. San Pietro. Two-stack automata. Technical Report/®-Dipartimento di elettronica e
informazione, Politechnico di Milano, 1992.

8. S. La Torre, P. Madhusudan, and G. Parlato. A robust classmext-sensitive languages.
In Proceedings of LICSages 161-170. IEEE, 2007.

9. S. La Torre, P. Madhusudan, and G. Parlato. Context-lemliadalysis of concurrent queue
systems. IrProceedings of TACAS'Q8ecture Notes in Computer Science, pages 299-314.
Springer, 2008.

10. S.LaTorre, P. Madhusudan, and G. Parlato. An infiniteraaton characterization of double

exponential time. IProceedings of CSL'Q& ecture Notes in Computer Science. Springer,
2008. to appear.

(20N

12

