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Abstract. We introduce a uniform framework for reasoning about infinite-
state systems with unbounded control structures and unbounded data
domains. Our framework is based on constrained rewriting systems on
words over an infinite alphabet. We consider several rewriting seman-
tics: factor, prefix, and multiset rewriting. Constraints are expressed in
a logic on such words which is parametrized by a first-order theory on
the considered data domain. We show that our framework is suitable for
reasoning about various classes of systems such as recursive sequential
programs, multithreaded programs, parametrized and dynamic networks
of processes, etc. Then, we provide generic results (1) for the decidability
of the satisfiability problem of the fragment ∃∗∀∗ of this logic provided
that the underlying logic on data is decidable, and (2) for proving in-
ductive invariance and for carrying out Hoare style reasoning within this
fragment. We also show that the reachability problem if decidable for a
class of prefix rewriting systems with integer data.

1 Introduction

Software verification requires in general reasoning about infinite-state models.
The sources of infinity in software models are multiple. They can be related
for instance to the complex control these system may have due, e.g., to recur-
sive procedure calls, communication through fifo channels, dynamic creation of
concurrent processes, or the consideration of a parametric number of parallel
processes. Other important sources of infinity are related to the manipulation of
variables and (dynamic) data structures ranging over infinite data domains such
as integers, reals, arrays, heap structures like lists and trees, etc.

In the last few years, a lot of effort has been devoted to the development
of theoretical frameworks for the formal modeling and the automatic analysis
of several classes of software systems. Rewriting systems (on words or terms),
as well as related automata-based frameworks, have been shown to be adequate
for reasoning about various classes of systems such as recursive programs, mul-
tithreaded programs, parametrized or dynamic networks of identical processes,
communicating systems through fifo-channels, etc. (see, e.g., [11, 4, 13] for survey
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papers). These works address in general the problem of handling systems with
complex control structures, but where the manipulated data range of finite do-
mains, basically booleans. Other existing works address the problem of handling
models with finite control structures, but which manipulate variables over infi-
nite data domains such as counters, clocks, etc., or unbounded data structures
(over finite alphabets) such as stacks, queues, limited forms of heap memory
(e.g., lists, trees), etc. [2, 14, 29, 8, 6, 26, 25, 27, 12, 15]. Notice that the boundary
between systems with infinite control and systems with infinite data is not sharp.
For instance, recursive programs can be modeled as prefix rewrite systems which
are equivalent to pushdown systems, and (classes of) multithreaded programs
can be modeled using multiset rewrite systems which are equivalent to Petri nets
and to vector addition systems (a particular class of counter machines).

As already said, in all the works mentionned above, only one source of in-
finity is taken into account (while the others are either ignored or abstracted
away). Few works dealing with different sources of infinity have been carried out
nevertheless, but the research on this topic is still in its emerging phase [5, 1, 21,
19, 17, 3, 16]. In this paper, we propose a uniform framework for reasoning about
infinite-state systems with both unbounded control structures and unbounded
data domains. Our framework is based on word rewriting systems over infinite
alphabets where each element is composed from a label over a finite set of sym-
bols and a vector of data in a potentially infinite domain. Words over such an
alphabet are called data words and rewriting systems on such words are called
data word rewriting systems (DWRS for short). A DWRS is a set of rewriting
rules with constraints on the data carried by the elements of the words.

The framework we propose allows to consider different rewriting semantics
and different theories on data, and allows also to apply in a generic way decision
procedures and analysis techniques. The rewriting semantics we consider are
either the factor rewriting semantics (which consists in replacing any factor in
the word corresponding to the left hand side or a rule by the right hand side),
as well as the prefix and the multiset rewriting semantics. The constraints in
the rewriting systems are expressed in a logic called DWL which is an extension
of the monadic first-order theory of the natural ordering on positive integers
(corresponding to positions on the word) with a theory on data allowing to
express the constraints on the data values at each position of the word. The
theory on data, which is a parameter of the logic DWL, can be any fist-order
theory such as Presburger arithmetics, or the first-order theory on reals.

We show that this framework is expressive enough to model various classes of
infinite-state systems. Prefix rewriting systems are used to model recursive pro-
grams with global and local variables over infinite data domains. Factor rewriting
systems are used for modeling parametrized networks of processes with a linear
topology (i.e., there is a total ordering between the identities of the processes).
This is for instance the case of various parallel and/or distributed algorithms.
(We give as an example a model for the Lamport’s Bakery algorithm for mutual
exclusion.) Multiset rewriting systems can be used for modeling multithreaded
programs or dynamic/parametrized networks where the information about iden-



tities of processes is not relevant. This is the case for various systems such as
cache coherence protocols (see, e.g., [23]).

We address the decidability of the satisfiability problem of the logic DWL. We
show that this problem is undecidable for very weak theories on data already
for the fragment of ∀∗∃∗ formulas. On the other hand, we prove the generic
result that whenever the underlying theory on data has a decidable satisfiability
problem, the fragment of ∃∗∀∗ formulas of DWL has also a decidable satisfiability
problem.

Then, we address the issue of automatic analysis of DWRS models. We pro-
vide two kinds of results. First, we consider the problem of carrying out post
and pre condition reasoning based on computing immediate successors and im-
mediate predecessors of sets of configurations. We prove, again in a generic way,
that the fragment of ∃∗∀∗ formulas in DWL is effectively closed under the com-
putation of post and pre images by rewriting systems with constraints in ∃∗∀∗.
We show how this result, together with the decidability result of the satisfia-
bility problem in ∃∗∀∗, can be used for deciding whether a given assertion is
an inductive invariant of a system, or whether the specification of an action is
coherent, that is, the execution of an action starting from the pre condition leads
to configurations satisfying the post condition. The framework we present here
generalizes the one we introduced recently in [16] based on constrained multiset
rewriting systems. Our generalization to word factor and prefix rewriting sys-
tems allows to deal in a uniform and natural way with a wider class of systems
where reasoning about linearly ordered structures is needed.

Finally, we consider the problem of solving the reachability problem for a
subclass of DWRS. We provide a new decidability result of this problem for the
class of context-free prefix rewriting systems (i.e., where the left hand side of
each rule is of size 1) over the data domain of integers with difference constraints.
(Extensions of this class lead to undecidabilty.) This results generalizes a previ-
ous result we have established few years ago in [17] for a more restricted class of
systems where not all difference constraints were allowed.

Related work: Regular model checking has been defined as a uniform framework
for reasoning about infinite-state systems [29, 28, 18, 4]. However, this framework
is based on finite-state automata and transducers over finite alphabets which
does not allow to deal in a simple and natural way with systems with both
unbounded control and data domains. The same holds for similar frameworks
based on word/tree rewriting systems over a finite alphabet (e.g., [11, 13]).

Works on the analysis of models for systems with two sources of infinity such
as networks of infinite-stat processes are not very numerous in the literature. In
[5], the authors consider the case of networks of 1-clock timed systems and show
that the verification problem for a class of safety properties is decidable under
some restrictions on the used constraints. Their approach has been extended in
[21, 19] to a particular class of multiset rewrite systems with constraints (see
also [3] for recent developments of this approach). In [17], we have considered
the case of prefix rewrite systems with integer data which can be seen as models
of recursive programs with one single integer parameter. Again, under some



restrictions on the used arithmetical constraints, we have shown the decidability
of the reachability problem. The result we prove in section ?? generalization our
previous result of [17].

Recently, we have defined a generic framework for reasoning about parametrized
and dynamic networks of infinite-state processes based on constrained multiset
rewrite systems [16]. The work we present generalizes that work to other classes
of rewriting systems.

In a series of papers, Pnueli et al. developed an approach for the verification
of parameterized systems combining abstraction and proof techniques (see, e.g.,
[7]). In [7], the authors consider a logic on (parametric-bound) arrays of integers,
and they identify a fragment of this logic for which the satisfiability problem is
decidable. In this fragment, they restrict the shape of the formula (quantification
over indices) to formulas in the fragment ∃∗∀∗ similarly to what we do, and also
the class of used arithmetical constraints on indices and on the associated values.
In a recent work by Bradley and al. [20], the satisfiability problem of the logic
of unbounded arrays with integers is investigated and the authors provide a
new decidable fragment, which is incomparable to the one defined in [7], but
again which imposes similar restrictions on the quantification alternation in the
formulas, and on the kind of constraints that can be used. In contrast with
these works, our decidable logical fragment has a weaker ability of expressing
ordering constraints on positions (used, e.g., to represent identities of processes
in parametrized/dynamic networks), but allows any kind of data, provided that
the used theory on the considered data domain is decidable. For instance, we
can use in our logic general Presburger constraints whereas [7] and [20] allow
limited classes of constraints.

Let us finally mention that there are recent works on logics (first-order logics,
or temporal logics) over finite/infinite structures (words or trees) over infinite
alphabets (which can be considered as abstract infinite data domains) [10, 9,
24]. The obtained positive results so far concern logics with limited data do-
main (basically infinite sets with only equality, or sometimes with an ordering
relation), and are based on reduction to complex problems such as reachability
in Petri nets. Contrary to these works, our approach is to prefer weakening the
first-order/model language for describing the structures while preserving the ca-
pacity of expressing constraints on data. We believe that this approach could be
more useful in practice since it allows to cover a large class of applications as
this paper tries to show.

2 A logic for reasoning about words over data domains

2.1 Preliminaries

Let Σ be a finite alphabet, and let D be a potentially infinite data domain. For
a given N ∈ N such that N ≥ 1, words over Σ × DN are called N -dim data
words. Let (Σ×DN )∗ (resp. (Σ×DN )ω) be the set of finite (resp. infinite) data
words, and let (Σ × DN )∞ be the union of these two sets. Given a data word



σ, we denote by |σ| the (finite or infinite) length of σ. A word σ ∈ (Σ × DN )∞

can be considered as a mapping from [0, |σ|) to Σ × DN , i.e., σ = σ(0)σ(1) . . ..
Given e = (A, d1, . . . , dN ) ∈ Σ × DN , let label(e) denote the element A and let
data(e) denote the vector (d1, . . . , dN ). For k ∈ {1, . . . , N}, datak(e) denotes
the elements dk of e. These notations are generalized in the obvious manner to
words over Σ × DN .

2.2 A first-order logic over data words

We introduce herefater the data word logic (DWL for short) which is a first order
logic allowing to reason about data words by considering the labels as well as
the data values at each of their positions. The logic DWL is parameterized by a
(first-order) logic on the considered data domain D, i.e., by the set of operations
and the set of basic predicates (relations) allowed on elements of D.

Let Ω be a finite set of functions over D, and let Ξ be a finite set of relations
over D. Consider also a set of position variables I ranging over positive integers
and a set of data variables D ranging over data values in D, and assume that
I ∩ D = ∅. Then, the set of terms of DWL(D, Ω,Ξ) is given by the grammar:

t ::= u | δk[x] | o(t1, . . . , tn)

where k ∈ {1, . . . , N}, x ∈ I, u ∈ D, and o ∈ Ω. The set of formulas of
DWL(D, Ω,Ξ) is given by:

ϕ ::= 0 < x | x < y | A[x] | r(t1, . . . , tn) | ¬ϕ | ϕ ∨ ϕ | ∃u. ϕ | ∃x. ϕ

where x, y ∈ I, u ∈ D, A ∈ Σ, and r ∈ Ξ.
As usual, boolean connectives such as conjunction ∧ and implication ⇒ are

defined in terms of disjunction ∨ and negation ¬, and universal quantification
∀ is defined as the dual of existential quantification ∃. We also define equality
= and disequality 6= in terms of < and boolean connectives. Let x = 0 be an
abbreviation of ¬(0 < x) and let x = y be an abbreviation of ¬(x < y)∧¬(y < x).
We also write as usual t ≤ t′ for t < t′ ∨ t = t′, where t and t′ represent
either position variables or 0. Then, let t 6= t′ be an abbreviation of ¬(t = t′),
for t, t′ ∈ I ∪ {0}. We denote by DWL= the set of DWL formulas where the
only comparisons constraints between position variables, and between position
variables and 0 are equality or disequality constraints.

The notions of bound and free variables are defined as usual in first-order
logic. Given a formula ϕ, the set of free variables in ϕ is denoted FV (ϕ).

Formulas are interpreted on finite or infinite words over the alphabet Σ×DN .
Intuitively, position variables correspond to positions in the considered word. The
formula A[x] is true if A is the label of the element at the position corresponding
to the position variable x. The term δk[x] represents the kth data value attached
to the element at the position corresponding to x. Terms are built from such
data values and from data variables by applying operations in Ω. Formulas of
the form r(t1, . . . , tn) allow to express constraints on data values at different
positions of the word.



Formally, we define a satisfaction relation between such models and formulas.
Let σ ∈ (Σ ×DN )∞. In order to interpret open formulas, we need valuations of
position and data variables. Given µ : I → N and ν : D → D, the satisfaction
relation is inductively defined as follows:

σ |=µ,ν 0 < x iff 0 < µ(x)
σ |=µ,ν x < y iff µ(x) < µ(y)
σ |=µ,ν A[x] iff label(σ(µ(x))) = A

σ |=µ,ν r(t1, . . . , tm) iff r(〈t1〉σ,µ,ν , . . . , 〈tm〉σ,µ,ν)
σ |=µ,ν ¬ϕ iff σ 6|=µ,ν ϕ

σ |=µ,ν ϕ1 ∨ ϕ2 iff σ |=µ,ν ϕ1 or σ |=µ,ν ϕ2

σ |=µ,ν ∃u. ϕ iff ∃d ∈ D. σ |=µ,ν[u←d] ϕ

σ |=µ,ν ∃x. ϕ iff ∃i ∈ N. i < |σ| and σ |=µ[x←i],ν ϕ

where the mapping 〈·〉σ,µ,ν , associating to each term a data value, is inductively
defined as follows:

〈u〉σ,µ,ν = ν(u)
〈δk[x]〉σ,µ,ν = datak(σ(µ(x)))

〈o(t1, . . . , tn)〉σ,µ,ν = o(〈t1〉σ,µ,ν , . . . , 〈tn〉σ,µ,ν)

Given a formula ϕ, let [[ϕ]]µ,ν = {σ ∈ (Σ ×DN )∞ : σ |=µ,ν ϕ}. A formula ϕ
is satisfiable if and only if there exist valuations µ and ν such that [[ϕ]]µ,ν 6= ∅.
The subscripts of |= and [[·]] are omitted in the case of a closed formula.

2.3 Quantifier alternation hierarchy

A formula is in prenex form if it is written Q1z1Q2z2 . . . Qmzm. ϕ where (1)
Q1, . . . , Qm ∈ {∃,∀}, (2) z1, . . . , zm ∈ I ∪ D, and ϕ is a quantifier-free formula.
It can be proved that for every formula ϕ, there exists an equivalent formula ϕ′

in prenex form.
We consider two families {Σn}n≥0 and {Πn}n≥0 of sets of formulas defined

according to the alternation depth of existential and universal quantifiers in their
prenex form:

– Σ0 = Π0 is the set of formulas where all quantified variables are in D,
– For n ≥ 0, Σn+1 (resp. Πn+1) is the set of formulas Qz1 . . . zm. ϕ where
z1, . . . , zm ∈ I ∪ D, Q is the existential (resp. universal) quantifier ∃ (resp.
∀), and ϕ is a formula in Πn (resp. Σn).

It can be seen that, for every n ≥ 0, Σn and Πn are closed under conjunction
and disjunction, and that the negation of a Σn formula is a Πn formula and vice
versa. For every n ≥ 0, let B(Σn) denote the set of all boolean combinations
of Σn formulas. Clearly, B(Σn) subsumes both Σn and Πn, and is included in
both Σn+1 and Πn+1.



2.4 Data independent formulas

A DWL formula is data independent if it does not contain occurrences of data
predicates of the form r(t1, . . . , tn) and of quantification over data variables.
Syntactically, the set of data independent formulas is the same as the set of
formulas of the monadic first-order logic over integers with the usual ordering
relation. (Projections on the alphabet Σ of their models define star-free regular
languages.) Interpreted over data words, these formulas satisfy the following
closure properties: for every data words σ and σ′, and for every data independent
formula ϕ, if label(σ) = label(σ′), then σ |=µ,ν ϕ if and only if σ′ |=µ,ν ϕ.

3 The satisfiability problem

We investigate in this section the decidability of the satisfiability problem of
DWL. First, we can prove that the logic is undecidable for very simple data the-
ories starting from the fragment Π2. The proof is by a reduction of the halting
problem of Turing machines. The idea is to encode a computation of a ma-
chine, seen as a sequence of tape configurations, as a data word. Each position
corresponds to a cell in the tape of the machine at some configuration in the
computation. We associate to each position (1) a positive integer value corre-
sponding to its rank in a configuration, and (2) a label encoding informations
(ranging over a finite domain) such as the contents of the cell, the fact that a
cell corresponds to the location of the head, and the control state of the ma-
chine. Then, using DWL formulas in the Π2 (i.e., ∀∗∃∗) fragment, it is possible
to express that two consecutive configurations correspond indeed to a valid tran-
sition of the machine. Intuitively, this is possible because these formulas allow
to relate each cell at some configuration to the corresponding cell at the next
configuration. We need for that to use the ordering on positions to talk about
successive configurations, and the equality on the values attached to positions to
relate cells with the same rank in these successive configurations. For the logic
DWL=, since we do not have an ordering on positions, we need to attach another
value to position representing their rank in the configurations.

Theorem 1. The satisfiability problem of the fragment Π2 is undecidable for
DWL(N,=) and DWL=(N, 0, <).

Then, the main result of this section is that whenever the underlying the-
ory on data has a decidable satisfiability problem, the fragment Σ2 has also a
decidable satisfiability problem.

Theorem 2. If the satisfiability problem for FO(D, Ω,Ξ) is decidable, then the
satisfiability problem of the fragment Σ2 of DWL(D, Ω,Ξ) is also decidable.

The rest of the section is devoted to the proof of theorem above. We show that
the satisfiability problem in the fragment Σ2 of DWL(D, Ω,Ξ) can be reduced
to the satisfiability problem in logic on data FO(D, Ω,Ξ).



First of all, we need to introduce a slight modification in the definition of data
words: So far, we have considered that a data word σ is total mappings from the
interval [0, |σ|) to the alphabet Σ ×DN . Let us consider now that a word σ is a
total mapping from a set of natural numbers Sσ to the alphabet Σ×DN , where
Sσ is not necessarily an interval. Clearly, there is an isomorphism πσ from [0, |σ|)
to Sσ, and this isomorphism is monotonic. Let us denote [σ], for every word σ,
the (unique) mapping from [0, |σ|) to Σ × DN such that, for every i ∈ [0, |σ|),
[σ](i) = σ(πσ(i)).

Furthermore, assume that in the definition of the satisfaction relation |= be-
tween data words and DWL formulas, the last line (the case of existential quantifi-
cation over position variables) is substituted by: σ |=µ,ν ϕ iff ∃i ∈ Sσ. σ |=µ[x←i],ν

ϕ. Then, it can be checked that the following holds.

Lemma 1. For every data word σ, for every DWL formula ϕ, and for every
position/data variable valuations µ and ν, we have σ |=µ,ν ϕ iff [σ] |=µ,ν ϕ.

The lemma above implies that, for every two data words σ and σ′ such that
[σ] = [σ′], we have σ |=µ,ν ϕ iff σ′ |=µ,ν ϕ, for every ϕ, µ, and ν.

Before starting the proof, we need to introduce a syntactical form of Σn

formulas, for any n ≥ 1. We say that a formula in such a fragment is in special
form if it is a finite disjunction of formulas of the form

∃x1, . . . , xn∃u∀y.
(
(

∧
1≤i<j≤n

xi < xj) ∧ ϕ
)

where x = (x1, . . . , xn) and y are position variables, and u is a vector of data
variables. It is easy to show that every formula in the fragment Σn has an
equivalent Σn formula in special form.

We are now ready to stat the proof of Theorem 2. Let ϕ be a DWL formula,
and assume w.l.o.g. that ϕ is closed, in special form, and given by:

ϕ = ∃x. ∃u. ∀y. ψ

where x and y are vectors of position variables, u is a vector of data variables.
Assume also that ϕ is satisfiable, which means that there is a data word σ such
that σ |= ϕ.

Then, let Θ be the set of all possible (partial or total) mappings between the
variables in y and the variables in x. Then, we have σ |= ∃x. ∃u. ϕ(1) where

ϕ(1) =
∧
θ∈Θ

∀y.
((

(
∧

y∈dom(θ)

y = θ(y)) ∧ (
∧

y 6∈dom(θ)

∧
x∈x

y 6= x)
)
⇒ ψ

)
(1)

This means that there are positions i in the domain of σ, and there are data
values d, such that

σ |=µ,ν ϕ
(1) (2)



where µ and ν are valuations associating i with x and d with u, respectively.
Consider now the data word σ′ = σ|i, i.e., the subword of σ corresponding

to the positions in i. Then, it can be seen that (2) implies that:

σ′ |=µ,ν

∧
θ∈Θ

dom(θ)=y

∀y.
( ∧

y∈y
y = θ(y)⇒ ψ

)
(3)

which is equivalent to σ′ |= ϕ(2) where

ϕ(2) = ∃x. ∃u.
∧
θ∈Θ

dom(θ)=y

∧
y∈y

ψ[θ(y)/y] (4)

Conversely, every minimal model (according to the size of its domain) of the
formula ϕ(2) above is necessarily a model of the formula ∃x. ∃u. ϕ(1), which is
equivalent to the formula ϕ. Therefore, we have reduced the satisfiability problem
of Σ2 to the satisfiability problem in Σ1.

The last step of the proof is to reduce the satisfiability problem of the Σ1

formula ϕ(2) to the satisfiability problem of a pure data formula in FO(D, Ω,Ξ).
For that, we must get rid of the comparisons between position variables, and of
constraints on position labels.

Since the formula ϕ in special form, the values associated with the position
variables x are in the same order as their indices. Then, let ϕ(3) = ∃x. ∃u. ψ′ be
the formula obtained from ϕ(2) by replacing each constraint xi < xj by true if
i < j, or by false otherwise. The formula ϕ(3) is equivalent to the formula ϕ(2)

but has no comparison constraints between position variables. Now, since the
alphabet Σ is finite, we can build an equivalent formula to ϕ(3) which has no
label constraints: we consider a disjunction on all possible mappings λ from x to
Σ. For each of these mapping λ, we replace in ϕ(3) each occurrence of a formula
A[x] by true if λ(x) = A, or by false otherwise. Let ϕ(4) be the so obtained
formula.

Finally, we define a FO(D, Ω,Ξ) formula which is satisfiable if and only if
ϕ(4) is satisfiable. This formula is obtained by replacing in ϕ(4) terms involving
positions variables by data variables: for each variable x ∈ x and for each rank
k ∈ {1, . . . , N}, we associate a fresh data variable vx,k. Then, we remove in ϕ(4)

the quantification of x and we substitute each occurrence of a term δk(x) by the
variable vx,k.

4 Rewriting systems over data words

4.1 Rewriting rules

A data word rewriting rule over the logic DWL has the form:

A0 · · ·An 7→ B0 · · ·Bm : ϕ



where Ai, Bj ∈ Σ for all i ∈ {0, . . . , n} and j ∈ {0, . . . ,m}, and ϕ is a DWL
formula such that (1) FV (ϕ) = {x0, . . . , xn} ∪ {y0, . . . , ym}, and (2) all the
occurrences in ϕ of the variables yj are in terms of the form δk(yj) for 0 ≤ k ≤ N .
We assume in this definition that the left hand side of a rule has at least one
symbol (n ≥ 0), and that its right hand side can be empty. When B0 · · ·Bm

is empty, the formula ϕ has only free variables {x0, . . . , xn} related to the left
hand side of the rule.

Intuitively, the application of a rewriting rule to a data word σ (leading to
a new word σ′) consists in replacing in σ a subword γ such that label(γ) is
equal to A0 · · ·An by another word γ′ such that label(γ′) is equal to B0 · · ·Bm,
provided that the formula ϕ, relating the data values in σ with data values in
γ′, is satisfied. Each variable xk (resp. yk) represents the position in σ (resp. σ′)
of the kth elements of γ (resp. γ′). The formula ϕ can constrain the positions
corresponding to elements of γ as well as their attached data values w.r.t. data
values at other position in σ. Moreover, the formula ϕ can constrain the data
values in the new word by relating these data values with data values attached
to positions in σ.

4.2 Rewriting semantics

A rewriting system is given by a set of rewrite rules and a rewriting semantics.
Several rewriting relations between words can be considered depending on the
adopted semantics of rewriting. Given a set ∆ of data word rewriting rules,
we consider here four relations ⇒∆,f , ⇒∆,p, and ⇒∆,m corresponding respec-
tively to factor, prefix, and multiset rewriting. Subscripts are omitted whenever
the considered rewriting system and/or rewriting semantics are know from the
context.

Let us start by defining the semantics of factor and prefix rewriting. For
that, let us fix a rewrite system ∆. Then, for every σ, σ′ ∈ (Σ × DN )∗, we have
σ ⇒f σ

′ (resp. σ ⇒p σ
′) if and only if there exists a rewrite rule “A0 · · ·An 7→

B0 · · ·Bm : ϕ” and there exist data words α, β, γ, γ′ ∈ (Σ × DN )∗ such that

– factor rewriting: σ = αγβ and σ′ = αγ′β,
– prefix rewriting: σ = γβ, σ′ = γ′β, and |α| = 0,

with label(γ) = A0 · · ·An, label(γ′) = B0 · · ·Bm and

σ |= ϕ[(|α|+ i)/xi]0≤i≤n[datak(γ′(j))/δk[yj ]]0≤k≤N,0≤j≤m

Now, in order to define the multiset rewriting relation, we consider the equiv-
alence relation between words which abstracts away the ordering between sym-
bols: Given σ, σ′ ∈ (Σ × DN )∗, we have σ ' σ′ if and only if there exists a
permutation π of {0, . . . , |σ| − 1} such that σ(π(0)) · · ·σ(π(|σ| − 1)) = σ′. Then,
for every σ, σ′ ∈ (Σ ×DN )∗, we have σ ⇒m σ′ if and only if ∃θ, θ′ ∈ (Σ ×DN )∗

such that σ ' θ, θ ⇒f θ
′, and θ′ ' σ′.

It can be seen that for every σ, σ′ such that σ ' σ′, and for every formula ϕ
in DWL=, we have σ |= ϕ if and only if σ′ |= ϕ. This fact is not true in general for



DWL formulas. Therefore, in the case of multiset rewriting, we assume naturally
that all the constraints in the rewriting rules are in DWL=.

Given a set of rewriting rules∆, the corresponding factor, prefix, and multiset
rewriting system are denoted ∆f , ∆p, and ∆m, respectively. Let DWRS] be the
class of all ]-rewriting systems, for ] ∈ {f, p,m}.

5 Models of infinite-state systems

5.1 Recursive programs with data

We show hereafter that sequential programs with recursive procedure calls can be
translated into prefix rewriting systems. We consider that a program has several
procedures, and we assume that it uses a set of global variables g = (g1, . . . , gN )
and that each procedure has a set of local variables l = (l1, . . . , lM ). (We assume
w.l.o.g. that the local variables are the same for all procedures, all of them
ranging over some data domain D.)

A program is given by its inter-procedural control flow graphs (ICFG for
short) which is a collection of control flow graphs (CFG), one for each of its pro-
cedures. Nodes in the CFG of a procedure represent control points in its source
code, and edges represent transitions from a control point to another one. We as-
sume that each procedure Π has an initial node nΠ

in. Edges in CFGs are labeled
by statements which can be either (1) tests over the values of the global/local
variables, (2) assignments of the global/local variables, (3) procedure calls, or
(4) procedure returns leading to a termination control point. Variables are as-
signed values of expressions built from global and local variables using a set of
operations Ω. Tests over variables are first-order assertions based on a set of
predicates Ξ.

Consider an ICFG, and let N be the set of its nodes. We associate with the
considered ICFG a prefix rewriting systems over the alphabet (N∪{G})×DN+M

where G is a special symbol, N is the number of global variables, and M is
the number of local variables of each procedure. Indeed, we consider that a
configuration of the recursive program defined by the ICFG is represented by a
finite word of the form (G,d0)(n1,d1)(n2,d2) · · · (n`,d`) where ni ∈ N for all
i ≥ 1 and di ∈ DN+M for all i ≥ 0. The element (G,d0) at position 0 of the
word is used to store the value of the global variables: we assume that for every
k ∈ {1, . . . , N}, the value of the variable gk is equal to the kth element of the
vector d0. Moreover, the rest of the word (n1,d1)(n2,d2) · · · (n`,d`) represents
the call stack of the program. In the element (ni,di) of this stack, ni represents
the point at which the control of the program will return after all the calls higher
in stack (i.e., of index less than i in our word representation) will be done, and
di represents the values of the local variables which must be restored when the
control will reach the point ni: we assume that for every k ∈ {N+1, . . . , N+M},
the value of the variable lk is equal to the kth element of the vector di. Then,
the set of rewriting rules of the system associated with the considered ICFG is
defined as follows:



Test: n ϕ(g,l)−−−−→n′ where ϕ is a FO(D, Ω,Ξ) formula, is modeled by:

Gn 7→ Gn′ : ϕζ ∧ ϕid

where ζ is the substitution [δk[x0]/gk]1≤k≤N [δk[x1]/lk]N+1≤k≤N+M , and

ϕid =
N∧

i=1

N+M∧
j=N+1

δi[y0] = δi[x0] ∧ δj [y1] = δj [x1]

Assignment: n (g,l):=t(g,l)−−−−−−−−→n′ where t is a vector of Ω-terms, is modeled by:

Gn 7→ Gn′ :
N∧

i=1

N+M∧
j=N+1

δi[y0] = tiζ ∧ δj [y1] = tjζ

where ζ is the substitution defined in the previous case.

Procedure call: n call(Π)−−−−−→n′ is modeled by:

Gn 7→ GnΠ
inn
′ : ϕ′id

where

ϕ′id =
N∧

i=1

N+M∧
j=N+1

δi[y0] = δi[x0] ∧ δj [y2] = δj [x1]

Procedure return: n return−−−−→n′ is modeled by:

Gn 7→ G :
N∧

i=1

δi[y0] = δi[x0]

More general prefix rewriting systems can be used in order to handle appli-
cations where stack inspection is needed. Indeed, the side constraints we allow
in the rewriting rules can be used for the expression of global conditions on
the stack content that must be satisfied before the execution of certain actions.
This is important for modeling various control access and resource-usage scenar-
ios. For instance, operations on security-critical objects can be executed only if
certain conditions are satisfied, e.g., (1) all procedures in the call stack have a
certain permission, or (2) a “privileged” procedure is present in the call stack
and all procedures higher in the stack have a permission. These constraints can
be expressed as DWL (data independent) formulas in the fragment Σ2:

∀x. (x1 ≤ x⇒ perm[x])

∃x.
(
x1 ≤ x ∧ privilege[x] ∧ ∀y. ((x1 ≤ y ∧ y < x)⇒ perm[y])

)



5.2 Dynamic/parametrized networks of processes

Unbounded networks of identical processes can be modeled using rewriting sys-
tems. We assume that each process is defined by an extended automaton, i.e.,
a finite-control machine manipulating a set of variables v = (v1, . . . , vN ) rang-
ing over some given data domain D. More precisely, an extended automaton is
defined by a finite set of control locations Q, and a set of transitions between
these locations. Each transition is labeled by a statement which can be either a
test over the values of the variables, or an assignments of the variables. As in
section 5.1, assigned values to variables are defined using expressions built from
variables and a set of operations Ω, and tests are first-order assertions based on
a set of predicates Ξ.

Consider a network of n processes, where n is an arbitrary positive integer
(greater than 1). We represent a configuration of such a network by a word of
length n over the alphabet Q× DN . Then, to reason uniformly about networks
with an arbitrary number of processes, (1) we consider the set of all finite words
over Q× DN as possible configurations, and (2) we model the dynamics of the
whole family of networks with an arbitrary size by means of a rewriting system.
We use different rewriting semantics depending on the topology of the network.
In general, using factor rewriting systems allows to reason about networks with
a linear topology, i.e., where processes are arranged sequentially (or sometimes
as a ring). This corresponds to the case where an ordering is assumed between
the process identities (inducing a notion of neighborhood). Multiset rewriting
systems are used when the ordering between process is not relevant. This is the
case of many systems such as cache coherence protocols [23] and some classes of
multithreaded programs [22, 16].

Data rewriting systems we consider allow to model various communication
(and synchronization) schemas between processes (e.g., shared variables, rendez-
vous), tests on local and global configurations, as well as dynamic creation and
deletion of processes.

As an example, we give hereafter the model corresponding to (a simplified
version of) the Lamport’s Bakery protocol for mutual exclusion. As usual in such
protocols, the algorithms handle a set of processes which compete for entering
into a critical section. The model of each process is a machine with tree control
locations: nocs, req, and cs. The location nocs correspond to activities of the
processes outside the critical section. When the process needs to enter the critical
section, it takes a ticket with a number (a positive integer) which is bigger that
the number of all existing tickets, and moves to the control location req. Then,
the process waits at this location for his turn to enter the critical section, that
is, until the number on its tickets become the smallest of all numbers on existing
tickets. In case of a conflict (since it may happen actually that two processes
obtain the same ticket number), the process with the smallest rank (identity)
enters the critical section. Then, the process can exit the critical section and
return to the control location nocs.



The Bakery protocol can be modeled by the following factor rewriting system
∆bakery defined over the alphabet {nocs, req, cs} × N.

nocs 7→ req : ∀i. δ[y0] > δ[i]
req 7→ cs : ∀i.

(
δ[i] > 0⇒ (δ[x0] < δ[i] ∨ δ[x0] = δ[i] ∧ x0 < i)

)
∧

δ[y0] = δ[x0]
cs 7→ nocs : δ[y0] = 0

Notice that ∆bakery is a system of the class DWRSf [Π1] since all side constraints
in the rule are universally quantified formulas.

6 Post and pre condition reasoning

We address in this section the problem of checking the validity of assertions
on the configurations of systems modeled by data word rewriting systems. We
show that the fragment Σ2 of DWL is effectively closed under the computation
of one (forward or backward) rewriting step of rewriting systems in DWRS[Σ2]
(for the three considered ewriting semantics). We show how to use this result
in checking inductive invariance of given assertions, and for carrying out Hoare-
style reasoning about our models.

6.1 post and pre operators

We define hereafter the operators of immediate successors and immediate prede-
cessors. Let ∆ be a set of data word rewriting rules over the alphabet Σ × DN .
Then, for every finite data word σ ∈ (Σ×DN )∗, we define, for any ] ∈ {f, p,m}:

post∆,](σ) = {σ′ ∈ (Σ × DN )∗ : σ ⇒∆,] σ
′}

pre∆,](σ) = {σ′ ∈ (Σ × DN )∗ : σ′ ⇒∆,] σ}

representing, respectively, the set of immediate successors and predecessors of σ
in the rewrite system ∆]. Then, let post∗∆,] and pre∗∆,] be the reflexive-transitive
closure of post∆,] and pre∆,] respectively, i.e., post∗∆,](σ) (resp. pre∗∆,](σ)) is the
set of all successors (resp. predecessors) of σ in ∆]. These definitions can be
generalized straightforwardly to sets of words.

6.2 Computing post and pre images

The main result of this section is the following:

Theorem 3. Let ∆] be a rewriting system in DWRS][Σn], for ] ∈ {f, p,m} and
n ≥ 2. Then, for every DWL closed formula ϕ in the fragment Σn, the sets
post∆,]([[ϕ]]) and pre∆,]([[ϕ]]) are effectively definable by DWL formulas in the
same fragment Σn.



The rest of the section is devoted to the proof of the theorem above. Let
us consider first the problem of computing post images in the case of a factor
rewriting system.

Let ∃z. φ be a formula in Σ≥2, and let τ = A0 . . . An 7→ B0 . . . Bm : ϕ(x,y)
be a data rewriting rule, with x = {x0, . . . , xn} and y = {y0, . . . , ym}. We
suppose w.l.o.g. that the sets of variables x,y, and z are disjoint.

By definition of the factor rewriting semantics, the positions associated with
the variables x are consecutive and correspond to a factor A0 . . . An in the rewrit-
ten word. We strengthen the constraint ϕ of the rule τ in order to make this fact
explicit. Then, we define the formula

ϕ(1) = ϕ ∧
( ∧

i∈[0,n−1]

¬(∃t. xi < t < xi+1)
)
∧

∧
i∈[0,n]

Ai[xi]

By definition of data word rewriting systems, all the occurrences of positions
variables y in the constraint ϕ are used in terms of the form δk[y]. Then, we can
eliminate all occurrences of all variables in y by replacing each δk[y] in ϕ(1) by a
fresh data variable in a vector v. Let ξ : y× [1, N ]→ v be the bijective mapping
such that δk[y] is replaced by ξ(y, k). We define:

ϕ(2) = ϕ(1)[δk[y]← ξ(y, k)]y∈y,k∈[1,N ]

Then, the rule τ can be applied only on words satisfying

∃z. φ ∧ ∃x. ∃v. ϕ(2) (5)

This formula could be written in special form: For every vector t of (fresh)
position variables such that |x| ≤ |t| ≤ |x|+ |z|, consider the formula∨

θ∈Θ

∃t. ∃v. (
∧

ti,tj∈t,i<j

ti < tj) ∧ (φ ∧ ϕ(2))[x← θ(x), z← θ(z)] (6)

where Θ is the set of all total mappings from x ∪ z to t. Then, the formula (5)
is equivalent to the disjunction of all the formulas (6) for all the possible vectors
t defined as above. Let us focus in the sequel on one disjunct of the resulting
formula. Then, consider that such a disjunct is the formula:

ψ = ∃t1 . . . tp−1∃tp . . . tp+n∃tp+n+1 . . . tq∃v. φ(1)

with ∀i ∈ [0, n], θ(xi) = tp+i, p ≥ 1, p+ n ≤ q.
Let σ be a model of ψ. By definition of factor rewriting, the rule τ eliminates

from σ the factor corresponding to the position associated with the variables
tp..tp+n, and insert at position tp a new word of length m (labeled B0 · · ·Bm). By
Lemma 1, we can assume that the distance between the positions corresponding
to tp and tp+n+1 in σ is at least m + 1. Therefore, there is enough room for
inserting new positions in σ corresponding to the right hand the rule. These
positions will be associated with y.



The formula φ(2) below gives the constraints on positions and labels resulting
from the insertion of right hand side of the rule τ :

φ(2) =
( ∧

i∈[0,m]

Bi(yi)
)
∧ tp−1 < y0 ∧ ym < tp+n+1

∧
( ∧

i,j∈[0,m]
i<j

yi < yj ∧ ¬(∃x. yi < x < yj)
)
∧

( ∧
k∈[1,N ]

y∈y

δk(y) = ξ(y, k)
)

Let w be a new data variable vector of length n · N , and let η be a bi-
jective mapping from {tp, . . . , tp+n} × [1, N ] to w. (We use the mapping η for
substituting occurrences of terms δk[x] in φ(1) by fresh data variables.)

Then, the formula corresponding to postτ,f ([[ψ]]) is given by:

∃y1 . . . ym∃w∃t1 . . . tp−1∃tp+n+1 . . . tq∃v. φ(3) ∧ φ(2)

where the formula φ(3) is the result of the application to φ(1) of a transformation
	 defined inductively in Table 6.2:

φ(3) = φ(1) 	 (tp . . . tp+n, y0 . . . ym, lab, η, {t1, . . . , tp−1}, {tp+n+1, . . . , tq})

where for all i ∈ [0, n], lab(tp+i) = Ai.
The first parameter of the operator 	, called x, is a set of position variables

that are deleted. The second parameter, called y, is a set of position variables
that are not concerned by the constraint. The third parameter of 	, the mapping
lab, associates with position variables in x their label in A0, . . . , An. The fourth
parameter, η, associates with each position variable x ∈ x and each integer
k ∈ [1, N ] a variable η(x, k) in v. The last parameters, Inf and Sup, are sets
of position variables which are ordered, by the context, before resp. after the
variables in x. Intuitively 	 deletes from a formula all occurences of the variables
in x and all constraints concerning them and preserves all constraints concerning
the rest of the configuration.

Notice that the obtained formula remains in the same fragment as the original
formula since only a prefix of existential quantification is added.

It is easy to adapt the construction above in order to deal with prefix rewrit-
ing or multiset rewriting semantics. Indeed, prefix rewriting is particular case
where the rewriting position is always the position 0. For multiset rewriting, the
construction is simplified since ordering constraints are not used (see [16]).

Finally, let us mention that it is possible to define a symmetrical (and very
similar) construction for preτ,ϕ images.

6.3 Application in verification

Invariance checking consists in deciding whether a given property (1) is satis-
fied by the set of initial configurations, and (2) is stable under the transition
relation of a system. Formally, given a rewriting system ∆ and a closed formula
ϕinit defining the set of initial configurations, we say that a closed formula ϕ



(0 < z)	 (x,y, lab, η, Inf ,Sup) =

8<:
0 < z if z ∈ Inf
false if z ∈ Sup or z = xi ∈ x with i > 0
0 < y0 if z is x0

(z < z′)	 (x,y, lab, η, Inf ,Sup) =

8>>>><>>>>:
z < z′ if z, z′ ∈ Inf or z, z′ ∈ Sup
true if z ∈ Inf and (z′ ∈ Sup or z′ ∈ x)

or z ∈ x z′ ∈ Sup
or z, z′ = xi, xj ∈ x with i < j

false otherwise

A[z]	 (x,y, lab, η, Inf ,Sup) =

8<:
true if z ∈ x and lab(z) = A
false if z ∈ x and lab(z) 6= A
A[z] otherwise

r(. . . , ti, . . .)	 (x,y, lab, η, Inf ,Sup) = r(. . . , ti[δk(x)← η(x, k)]x∈x, . . .)

(¬ϕ)	 (x,y, lab, η, Inf ,Sup) = ¬(ϕ	 (x,y, lab, η, Inf ,Sup))

(ϕ1 ∨ ϕ2)	 (x,y, lab, η, Inf ,Sup) = ϕ1 	 (x,y, lab, η, Inf ,Sup)∨
ϕ2 	 (x,y, lab, η, Inf ,Sup)

(∃u. ϕ)	 (x,y, lab, η, Inf ,Sup) = ∃u. (ϕ	 (x,y, lab, η, Inf ,Sup))

(∃z. ϕ)	 (x,y, lab, η, Inf ,Sup) = ∃z.
V

y∈y

(z 6= y) ∧ (ϕ	 (x,y, lab, η, Inf ∪ {z},Sup))∨

∃z.
V

y∈y

(z 6= y) ∧ (ϕ	 (x,y, lab, η, Inf ,Sup ∪ {z}))∨W
x∈x

ϕ[z ← x])	 (x,y, lab, η, Inf ,Sup)

Table 1. The operation 	



is an inductive invariant of (∆,ϕin) if and only if (1) [[ϕinit ]] ⊆ [[ϕ]], and (2)
post∆([[ϕ]]) ⊆ [[ϕ]]. Clearly, (1) is equivalent to [[ϕinit ]] ∩ [[¬ϕ]] = ∅, and (2) is
equivalent to post∆([[ϕ]]) ∩ [[¬ϕ]] = ∅. (Notice that this fact is also equivalent to
[[ϕ]] ∩ pre∆([[¬ϕ]]) = ∅.)

Corollary 1. The problem whether a formula ϕ ∈ B(Σ1) is an inductive in-
variant of (∆,ϕinit), where ∆ ∈ DWRS[Σ2] and ϕinit ∈ Σ2, is decidable.

For example, consider the system ∆bakery ∈ DWRSf [Π1] introduced in sec-
tion 5.2. To prove that mutual exclusion is ensured, we check that the formula
ϕmutex = ∀x, y. x 6= y ⇒ ¬(cs[x] ∧ cs[y]) (i.e., it is impossible to have two dif-
ferent proceses in the critical section simultaneously) is implied by an inductive
invariant ϕinv of (∆bakery , ϕinit) where ϕinit = ∀x. nocs[x] (i.e., all processes are
idle). For that, we consider the formula

ϕinv = ∀x. cs[x]⇒
δ[x] 6= 0 ∧ ∀y. x 6= y ⇒ (δ[y] = 0 ∨ δ[x] < δ[y] ∨ δ[x] = δ[y] ∧ x < y)

Notice that all formulas ϕmutex , ϕinit , and ϕinv are in the fragment Π1. Then,
the validity of ϕinv ⇒ ϕmutex can be checked automatically by Theorem 2 since
it is a B(Σ1) formula, and the inductive invariance of ϕinv for (∆bakery , ϕinit)
can be decided by Corollary 1.

Hoare-style reasoning consists in, given two properties expressed by formulas
ϕ1 and ϕ2, and a given set of rules ∆, deciding whether starting from configura-
tions satisfying ϕ1, the property ϕ2 necessarily hold after the application of the
rules in ∆. Formally, this consists in checking that post∆([[ϕ1]]) ⊆ [[ϕ2]]. In that
case, we say that (ϕ1,∆, ϕ2) constitutes a Hoare triple.

Corollary 2. The problem whether (ϕ1,∆, ϕ2) is a Hoare triple, where ϕ1 ∈ Σ2,
∆ ∈ DWRS[Σ2] and ϕ2 ∈ Π2, is decidable.

7 Reachability analysis for integer context-free systems

In this section, we show that for restricted word rewriting systems (called CFSDL),
the reachability problem of sets described by data-independent formulas is de-
cidable. We consider a class of context-free prefix rewriting rules with integer
data and constraints in the difference logic. To show decidability, we use a slight
generalization of Z-input 1-counter machines introduced in [17] to represent set
of finite data words (subsets of (Σ × Z)∗). Then, we show that given CFSDL ∆,
and given a set of data words described by a Z-input 1-counter machine M , it
is possible to compute a machine M ′ representing the set of all reachable words
(by the iterative application of rules in ∆). This allows then to prove decidability
of the reachability problem for CFSDL.

In the sequel, we consider the logic DWL based on difference logic (DL)
given as DWL(Z, {0}, {≤k : k ∈ Z}) where for every u, v, k ∈ Z, (u, v) ∈≤k iff



u − v ≤ k. Then, context-free systems with difference constraints (CFSDL) are
sets ∆ of data word rewriting rules with one symbol on the left-hand side and
zero, one or two symbols on the right-hand side. The formulas ϕ appearing in
the rules are from DWL(Z, {0},≤k : k ∈ Z).

A Z-input 1-counter machine3 M is described by a finite set of states Q, an
initial state q0 ∈ Q, a final state qf ∈ Q, a non-accepting state fail ∈ Q, and a
counter c that contains initially 0. The initial configuration is given by the tuple
(q0, 0). It reads pieces of input of the form S(i) where S is a symbol out of Σ
and i ∈ Z is an integer number. The instructions have the following form (q is
different from qf and fail):

1. (q : c := c+ 1; goto q′)
2. (q : c := c− 1; goto q′)
3. (q : If c ≥ 0 then goto q′ else goto q′′).
4. (q : If c = 0 then goto q′ else goto q′′).
5. (q : Read input S(i). If S = X and i = K then goto q′ else goto q′′).
6. (q : Read input S(i). If S = X and i#c+K then goto q′ else goto q′′),
7. (q : If P (c) then goto q′ else goto q′′), where P is a unary Presburger

predicate.

where # ∈ {≤,≥,=}, X ∈ Σ and K ∈ Z is an integer constant.
The language L(M) ⊆ (Σ ×Z)∗ is defined in a straightforward manner. It is

easy to see that for a data independent formula ϕ one can construct a machine
Mϕ whose language is [[ϕ]].

For any M we have the following theorem.

Theorem 4. Let ∆ be a CFSDL and M a Z-input 1-counter machine. Then a
Z-input 1-counter machine M ′ with L(M ′) = post∗∆,p(L(M)) can be effectively
constructed.

The proof is done in several steps and follows the line of the proof given in
in [17] for less general classes of rewriting systems and of counter machines M .

– The set {d | X(d)⇒∗p ε} can be characterized by a Presburger formula with
one free variable (difference + modulo constraints). This is done by using a
translation to alternating one-counter automata.

– The decreasing rules (with ε on the right-hand side) of ∆ can be eliminated
from ∆. To do this, modulo constraints have to be added to the difference
logic. Modulo constraints can be eliminated by coding the information in the
control states.

– The set post∗∆,p(L(M)) is then computed by (1) putting M into a special
form and (2) applying saturation rules adding a finite number of new tran-
sitions to it.

Now we can state the main result of this section.
3 this definition generalizes the one in [17] by allowing difference constraints in the

read instructions



Theorem 5. The problem post∗∆,p([[ϕ1]]) ∩ [[ϕ2]] = ∅ is decidable for a CFSDL ∆
and two data independent formulas ϕ1 and ϕ2.

We give a sketch of the proof. We (1) construct a machine M for [[ϕ1]], (2)
obtain the machine M ′ for post∗∆,p([[ϕ1]]) using theorem 4, (3) observe that inter-
section with [[ϕ2]] can be done by computing the regular set over Σ corresponding
to [[ϕ2]] and restricting M ′ to words in this set and (4) observe that emptiness of
a Z-input 1-counter machine is decidable since emptiness of 1-counter machines
is decidable.

CFSDL allow to model recursive programs with one integer parameter. How-
ever, having only one symbol in the left-hand side of rules does not allow to
model return values. Let us therefore consider extensions of CFSDL with more
than one symbol in the left-hand side of rules. If we allow rewrite rules with two
symbols in the left-hand side where only the data attached to the first appears in
constraints, the reachability problem is already undecidable4. This model corre-
sponds to having integer return values. On the other hand, we can model return
values from a finite domain by adding to the rules of CFSDL a symbol to the be-
ginning of the left and the right hand sides, provided the constraints do not use
the data attached to these symbols. For this extension the reachability problem
can be shown to be still decidable.

8 Conclusion

We have presented a generic framework for reasoning about infinite-state systems
with unbounded control structures manipulating data over infinite domains. This
framework extend and unify several of our previous works [11, 17, 16].

The framework we propose is based on constrained rewriting systems on
words over infinite alphabets. The constraints are expressed in a logic which is
parametrized by a theory on the considered data domain. We provide generic
results for the decidability of the satisfiability problem of the fragment Σ2 of
this logic, and for proving inductive invariance and for carrying out Hoare style
reasoning within this fragment.

We have shown that our framework can be used for handling a wide class
of systems: recursive sequential programs, multithreaded programs, distributed
algorithms, etc. Actually, it is not difficult to consider other rewriting semantics
than those considered in the paper. For instance, all our results extend quite
straightforwardly to cyclic rewriting allowing to deal with fifo queues. Therefore,
our framework can also be used to reason about communicating systems through
fifo channels which may contain data over infinite domains. This is particularly
useful for handling in a parametric way communication protocols where message
have sequence numbers (such as the sliding window protocol). Another potential
application of our framework concern programs manipulating dynamic linked
lists.
4 A two-counter machine can be simulated : one counter is coded as the data value,

the other one is coded by the number of symbols



Ongoing and future work include the extension of our framework to rewriting
systems on more general structures like trees and some classes of graphs.
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