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Abstract. We consider Presburger arithmetic (PA) extended with mod-
ulo counting quantifiers. We show that its complexity is essentially the
same as that of PA, i.e., we give a doubly exponential space bound. This
is done by giving and analysing a quantifier elimination procedure sim-
ilar to Reddy and Loveland’s procedure for PA. We also show that the
complexity of the automata-based decision procedure for PA with mod-
ulo counting quantifiers has the same triple-exponential time complexity
as the one for PA when using least significant bit first encoding.

1 Introduction

Presburger arithmetic is the first-order theory of the structure Z, i.e., the in-
tegers with addition and comparision. More precisely, we also allow the binary
relations ≡k (standing for equality modulo k) for k > 2, and all constants c ∈ Z
to appear in formulas. This theory was shown to be decidable by Presburger [17],
upper bounds on the complexity of (fragments of) Presburger arithmetic can,
e.g., be found in [16, 18, 7, 2, 8, 20, 9]. Coding integers in binary, we know since
the 60’s that every definable relation can be accepted by a synchronous multi-
tape automaton. The basic idea is that a synchronous three-tape automaton
can verify the equation k + ` = m (in terms of the codings of the numbers
k, `, and m) and synchronously rational relations are effectively closed under
Boolean operations and projection. At first glance, this translation results in au-
tomata of non-elementary size since complementation of automata comes with
an exponential blow-up. From Klaedtke’s results [13], it follows that automata of
triply-exponential size suffice and that they can be constructed in four-fold expo-
nential time using purely automata-theoretic methods. This result was improved
by Durand-Gasselin and Habermehl who showed that “small” automata can be
constructed efficiently, i.e., in triply-exponential time. Their first proof [6] uses
an ad hoc construction of automata, their second proof [5] is more uniform in the
sense that it applies to the structure Z and to automatic structures [10, 11, 3] of
bounded degree (improving a result from [14]). Thus, Presburger arithmetic can
be decided using automata-theoretic methods in triply exponential time.

More generally, these automata-theoretic methods rely on the fact that Z is
an automatic structure. The motivating result on automatic structures is that
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their first-order theory is decidable [10, 11, 3]. One line of research on automatic
structures concentrated on the extension of this result to more powerful logics.
One can, for instance, extend first-order logic by a modulo-counting quantifier
∃(p′,p) saying “modulo p, there are p′ elements satisfying ...”. The reason is that,
as in the case of Z and first-order logic, one can construct from a formula in
this extended logic a synchronous n-tape automaton that accepts all satisfying
assignments of the formula [12] (see [19] for more quantifiers with this property).3

Since Z is an automatic structure, this also holds here independent of whether we
code integers in base 2 or 3. Consequently, by the Cobham-Semenov theorem [4,
22], any relation in Z definable in this extended logic is effectively semilinear and
therefore definable in first-order logic not using the modulo-counting quantifier
(this claim also follows from [1] that presents a quantifier elimination for Härtig’s
quantifier “the number of witnesses for ϕ equals that for ψ”, see also [21]).

This paper determines the complexity of the set of all formulas in the ex-
tended logic that hold in Z. To this aim, we first present a procedure that
eliminates modulo-counting quantifiers (see the beginning of Section 3.3 for a
comparision with Apelt’s [1] and Schweikardt’s [21] procedures). This procedure
is inspired by the classical one by Reddy and Loveland [18]. As in [18], we do
not analyse the complexity of this procedure, but the resulting quantifier-free
formula. We obtain that every formula in the extended logic has an equivalent
quantifier-free formula that uses coefficients and moduli of doubly exponential
size and constants of triply exponential size. Based on this finding and classical
results on solutions of linear Diophantine equations [23], we show that the theory
of the structure Z in the extended logic can be decided in doubly exponential
space. Based on the quantifier elimination, we can also show that the construc-
tion of automata from formulas using the algorithms known from the theory of
automatic structures can be done in triply exponential time. Thus, the theory of
the structure Z in the extended logic can be decided in triply exponential time
using automata-theoretic methods. In summary, we obtain that adding modulo-
counting quantifiers does not increase the complexity of the theory of integer
addition. Proof details can be found in the full version of the paper.

2 Preliminaries

The structure The universe of the structure Z is the set of integers Z. On this
set, we consider the constants c ∈ Z, the binary function +, the binary relation <
and the binary relations ≡k for k > 2 (with m ≡k n iff k | m− n).

The language We will use a sequence x̄ = (xi)i∈N of variables. A term is an
expression ā x̄ + c where ā = (ai)i∈N is a sequence of integers with ai 6= 0 for
finitely many i ∈ N and c ∈ Z. Let P be an arbitrary but fixed natural number.
Then formulas of LP , Presburger’s logic with modulo-counting quantifiers, are
defined by recursion:

3 In the complete version of this extended abstract, we show that the theory of an
automatic structure using only modulo-counting quantifiers can be non-elementary.
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– If s and t are terms, then s < t (also written t > s) and s ≡k t are (atomic)
formulas (for k > 2).

– If ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ↔ ψ.

– If ϕ is a formula, x is a variable, and 0 6 p′ < p, 2 6 p 6 P are natural
numbers4, then ∃x : ϕ and ∃(p′,p)x : ϕ are formulas.

An evaluation is a function f that assigns integers to variables. For x a
variable and a ∈ Z, we let f [x/a] be the evaluation with f [x/a](x) = a and
f [x/a](y) = f(y) for all variables y 6= x. We can extend in a standard way
an evaluation f to a function (also denoted f) that maps terms into Z and
formulas to the truth values tt and ff. In particular, if s and t are terms, then
f(s ≡k t) = tt iff f(s) − f(t) is a multiple of k. Furthermore, if ϕ and ψ are
formulas, x a variable, and 0 6 p′ < p natural numbers, then f(∃(p′,p)x : ϕ) = tt
iff the set {a ∈ Z | f [x/a](ϕ) = tt} is finite and |{a ∈ Z | f [x/a](ϕ) = tt}| ≡p p′.

A formula ϕ is valid if f(ϕ) = tt for all evaluations f . Presburger arithmetic
with modulo-counting quantifiers is the set of all valid formulas of LP . For two
formulas F and G, we write F ⇔ G for ”f(F ) = f(G) for all evaluations f”.
We define as usual addition of terms as well as multiplication of a term with an
integer.

For a term t = ā x̄+ c and a variable xi, we call ai the coefficient of xi in t.
If the coefficient of xi in t is 0, then we call t an xi-free term.

Let x be a variable. Then an atomic formula ϕ is x-separated if there are
an x-free term t and a non-negative integer a ∈ N such that ϕ is of the form
ax < t, t < ax, or ax ≡k t. If t is an x-free term, then, e.g., the formula 0 ≡k t
is x-separated since we identified the terms 0x and 0.

An atomic formula is constant separated if it is of the form c < s or s ≡k c
where s is a term and c a constant.

A formula ϕ with a vector of k free variables x = (x1, . . . , xk) is also written
as ϕ(x). Then we define Jϕ(x)K = {(f(x1), . . . , f(xk)) | f is an evaluation such
that f(ϕ) = tt}. We also write a.x > c (resp. a.x ≡k c) for constant separated
formulas with free variables x.

Next, let ϕ be a formula. Then Coeff(ϕ) ⊆ Z is the set of integers −1, 0, 1
and ±a such that there is an atomic formula s < t in ϕ such that a is a coefficient
appearing in the term s−t. Similarly, Const(ϕ) ⊆ Z is the set of integers −1, 0, 1
and ±c such that there is an atomic formula s < t in ϕ such that c is the constant
term in s−t. The set Mod(ϕ) ⊆ N contains all integers k > 2 such that an atomic
formula of the form s ≡k t appears in ϕ. Finally, P(ϕ) = Coeff(ϕ) ∪Mod(ϕ).

Note that Coeff(ϕ) and Const(ϕ) depend on subformulas of the form s < t,
but not on subformulas of the form s ≡k t. On the other hand, Mod(ϕ) only
depends on subformulas of the form s ≡k t.

4 this insures that we have only finitely many quantifiers.
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3 Quantifier elimination and a decision procedure

3.1 Elimination of ∃

In this section, we will eliminate the quantifier from a formula of the form ∃x : β
where β is a Boolean combination of atomic formulas. Our main concern is the
“size” of the resulting formula, more precisely, of the coefficients, constants, and
moduli appearing in it. Neither the result (Proposition 3.3) nor the method
presented here is new, but this section is meant to simplify reading and to allow
the reader to grasp the new results concerning the modulo-counting quantifier.

To this aim, we define the following sets (that will turn out to overapproxi-
mate the corresponding sets of the resulting quantifier-free formula):

Coeff′(β) = {a1a2 − a3a4 | a1, a2, a3, a4 ∈ Coeff(β)}

Const′(β) =

{
a1c1 − a2(c2 + c)

∣∣∣∣ a1, a2 ∈ Coeff(β), c1, c2 ∈ Const(β)
|c| 6 maxCoeff(β) · lcmMod(β)

}
Mod′(β) = {a1a2kp | a1a2 ∈ Coeff(β), k ∈Mod(β), 1 6 p 6 P}

Using these sets, we formulate the following condition on the pair of formulas
(β, γ):

Coeff(γ) ⊆ Coeff′(β) , Const(γ) ⊆ Const′(β) ,Mod(γ) ⊆Mod′(β) (1)

Lemma 3.1. Let β be a Boolean combination of x-separated atomic formulas,
ax < t or t < ax some atomic formula from β with a > 0 and −aN 6 c 6 aN
where N = lcmMod(β). There exists a Boolean combination βa,t+c of x-free
atomic formulas such that (β, βa,t+c) satisfies (1) and, for all evaluations f ,

f(ax) = f(t+ c) =⇒ f(β) = f(βa,t+c) .

Proof. The formula βa,t+c is obtained from β by the following replacements
(where s is some x-free term and k > 2):

a′x < s is replaced by a′t+ a′c < as
s < a′x is replaced by as < a′t+ a′c
a′x ≡k s is replaced by a′t+ a′c ≡ak as ut

Lemma 3.2. Let x be a variable and β a Boolean combination of x-separated
atomic formulas. Then there exists a Boolean combination γ of x-free atomic
formulas such that (β, γ) satisfies (1) and (∃x : β)⇔ γ.

Proof. Let T be the set of all pairs (a, t) such that β contains an atomic formula
of the form ax < t or t < ax with a > 0 (or T = {(1, 0)} if no such atomic formula
exists). Let furthermore N = lcm(Mod(β)) such that N is a multiple of every
integer k such that an atomic formula of the form ax ≡k t appears in β. Then

∃x : β is equivalent with the formula γ :=
∨

(a,t)∈T

∨
−aN6c6aN

(βa,t+c ∧ 0 ≡a t+ c).

ut
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Proposition 3.3. Let x be a variable and α a Boolean combination of atomic
formulas. Then there exists a Boolean combination γ of x-free atomic formulas
such that (β, γ) satisfies (1) and (∃x : α)⇔ γ.

Proof. Without changing the sets Coeff etc., we can transform α into an equiv-
alent Boolean combination β of x-separated atomic formulas. Then γ is the for-
mula obtained from Lemma 3.2. ut

3.2 Elimination of ∃(p′,p)

In this section, we want to prove a proposition analogous to Prop. 3.3, where
∃x : α is replaced by ∃(p′,p)x : α. The crucial point is to prove the analogue of
Lemma 3.2.

Lemma 3.4. Let x be a variable, β a Boolean combination of x-separated atomic
formulas, and 0 6 p′ < p 6 P natural numbers. Then there exists a Boolean com-
bination of atomic formulas γ such that (β, γ) satisfies (1) and (∃(p′,p)x : β)⇔ γ.

The proof of this lemma requires several claims and definitions that we
demonstrate first, the actual proof of Lemma 3.4 can be found on page 7.

Let T be the set of all pairs (a, t) such that β contains an atomic formula of
the form ax < t or t < ax with a > 0 (if no such formula exists, set T = {(1, 0)}).

Let S be some non-empty subset of T and let ≺ be a strict linear order on S.
We call an evaluation f consistent with ≺ if the following hold:

– f(s1)
a1

< f(s2)
a2

⇐⇒ (a1, s1) ≺ (a2, s2) for all (a1, s1), (a2, s2) ∈ S
– for all (a1, t1) ∈ T , there exists (a2, s2) ∈ S with f(t1)

a1
= f(s2)

a2
.

In the following, let S = {(a1, s1), (a2, s2), . . . , (an, sn)} with (a1, s1) ≺ (a2, s2) ≺
· · · ≺ (an, sn). Consider the following formulas for 0 6 r < p and 1 6 i < n:

β0,r = ∃(r,p)x : (a1x < s1 ∧ β) βn,r = ∃(r,p)x : (sn < anx ∧ β)

βi,r = ∃(r,p)x : (si < aix ∧ ai+1x < si+1 ∧ β) β′i,r = ∃(r,p)x : (x = si ∧ β)

If f is an evaluation, then β0,r expresses that (modulo p) there are r integers

b with f [x/b](β) = tt and b < f(s1)
a1

. Similarly, βi,r holds under f if and only

if there are (modulo p) r integers b in the open interval
(
f(si)
ai

, f(si+1)
ai+1

)
with

f [x/b](β) = tt etc. Now consider the formula

ϕ≺ =
∨ ∧

06i6n

βri,p ∧
∧

16i6n

β′r′i,p


where the disjunction extends over all tuples (r0, r1, . . . , rn, r

′
1, r
′
2 . . . , r

′
n) of in-

tegers from {0, 1, . . . , p− 1} that, modulo p, sum up to p′. For any evaluation f
consistent with ≺, we therefore get f(∃(p′,p)x : β) = f(ϕ≺) . In order to construct
γ as claimed in Lemma 3.4, it therefore suffices to eliminate the counting quan-
tifiers from the formulas βi,r and β′i,r. In this elimination procedure (detailed in
the following claims), we will assume the evaluation to be consistent with ≺.
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Claim 3.4.1 Let 0 6 r < p. There exist Boolean combinations γ≺0,r and γ≺n,r of

atomic formulas such that (β, γ≺0,r) and (β, γ≺n,r) satisfy (1) and f(β0,r) = f(γ≺0,r)
as well as f(βn,r) = f(γ≺n,r) for all evaluations f that are consistent with ≺.

We next want to eliminate the quantifier from βi,r for 1 6 i < n, i.e., we

consider the integers in the open interval
(
f(si)
ai

, f(si+1)
ai+1

)
. It turns out to be

convenient to split the set of these integers b according to (aib−f(si)) mod aiN .

Claim 3.4.2 For 1 6 i < n, 1 6 c 6 aiN , and 0 6 r < p, set

βi,r,c = ∃(r,p)c : (si < aix ∧ ai+1x < si+1 ∧ aix ≡aiN si + c ∧ β) .

There exists a Boolean combination γ≺i,r,c of atomic formulas such that (β, γ≺i,r,c)

satisfies (1) and f(βi,r,c) = f(γ≺i,r,c) for all evaluations f consistent with ≺.

Proof. Let f be any evaluation that is consistent with ≺. We consider the fol-
lowing two sets X ⊇ Y :

X =

{
b ∈ Z

∣∣∣∣ f(si)

ai
< b <

f(si+1)

ai+1
, aib ≡aiN f(si) + c

}
and

Y = {b ∈ X | f [x/b](β) = tt}

Our aim is to construct a formula γ≺i,r,c that holds under the evaluation f if and
only if |Y | ≡p r. Since the formula we construct is independent from f , this will
prove the claim.

Let b be an integer from the open interval
(
f(si)
ai

, f(si+1)
ai+1

)
. Then b ∈ X iff

aib ≡aiN f(si) + c. But this is the case iff b ≡N f(si)+c
ai

(which, in particular,

means f(si)+c
ai

∈ Z). Hence X is the set of integers of the form f(si)+c
ai

+ N · k
for some k ∈ N from the above open interval.

Next let b1 ∈ Y ⊆ X and b2 ∈ X. Then b1 ≡N b2 and f [x/b1](β) = tt. Since
N is a multiple of all moduli appearing in β, we get f [x/b2](β) = tt and therefore

b2 ∈ Y . Hence Y ∈ {∅, X}. Since f(si)+c
ai

∈ X if and only if X 6= ∅, we have

Y = X if f(si)+c
ai

∈ Y and Y = ∅ otherwise. Note that the first case occurs if
and only if f(θ) = tt where

θ = ∃x(aix = si + c ∧ ai+1x < si+1 ∧ β) .

Now assume f(si)+c
ai

∈ Y which in particular implies that ai divides f(si)+c.

Then the size |X| of the set X is the maximal natural number k with f(si)+c
ai

+

N · k < f(si+1)
ai+1

, i.e., |X| = k if and only if

ai+1(f(si) + c+ aiN · k) < aif(si+1) 6 ai+1(f(si) + c+ aiN · (k + 1)) .

Consequently, we have in this case |Y | ≡p r if and only if |X| ≡p r if and only
if the following formula ν holds under f :

ν = ∃y :

 aiai+1Ny < aisi+1 − ai+1si − ai+1c
∧ aisi+1 − ai+1si − ai+1c− aiai+1N 6 aiai+1Ny
∧ y ≡p r
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So far, we showed that f(βi,r,c) = tt if and only if

f(θ ∧ ν) = tt or (r = 0 and f(ν) = ff) . (2)

Now, we can construct quantifier-free formulas θ̄ and ν̄ that can be shown to
be equivalent to θ and ν, respectively, and to satisfy (1). ut

Claim 3.4.3 Let 1 6 i < n and 0 6 r < p. There exists a Boolean combina-
tion γ≺i,r of atomic formulas such that (β, γ≺i,r) satisfies (1) and f(βi,r) = f(γ≺i,r)
for all evaluations f consistent with ≺.

Proof. Note that the formulas si < aix ∧ ai+1x < si+1 ∧ β and∨
16c6aiN

(si < aix ∧ ai+1x < si+1 ∧ aix ≡aiN si + c ∧ β)

are equivalent and the disjunction in this formula is exclusive (i.e., every x
satisfies at most one conjunct). Therefore, we can set

γ≺i,r =
∨ ∧

16c6aiN

γ≺i,c,rc

where the disjunction extends over all tuples (r1, r2, . . . , raiN ) of integers from
{0, 1, . . . , p−1} with

∑
16c6aiN

rc ≡p r. Now the claim follows from Claim 3.4.2.
ut

Claim 3.4.4 Let 1 6 i 6 n and 0 6 r < p. There exists a Boolean combination
δ≺i,r of atomic formulas such that (β, δ≺i,r) satisfies (1) and, for all evaluations f
(even those that are not consistent with ≺),

f(β′i,r) = f(δ≺i,r) .

Proof. By Lemma 3.1, the formulas aix = si ∧ β and aix = si ∧ βai,si are
equivalent. Hence the formula

δ≺i,r =


¬βai,si if r = 0

βai,si if r = 1

0 < 0 if r > 1

is equivalent with β′i,r. Since δ≺i,r is a Boolean combination of the formulas βai,si
and 0 < 0, the pair (β, δ≺i,r) satisfies (1) by Lemma 3.1. ut

Having shown all these claims, we now use them to finally prove Lemma 3.4.

Proof (of Lemma 3.4). Let S ⊆ T be some non-empty subset of T and let ≺
be a strict linear order on S. As above, we let S = {(a1, s1), . . . , (an, sn)} with
(a1, s1) ≺ (a2, s2) ≺ · · · ≺ (an, sn). Then set

γ≺ =
∨ ∧

06i6n+1

γ≺i,ri ∧
∧

16i6n

δ≺i,r′i
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where the disjunction extends over all tuples (r0, r1, . . . , rn+1, r
′
1, r
′
2 . . . , r

′
n) of

natural numbers from {0, 1, . . . , p−1} with
∑

06i6n+1 ri+
∑

16i6n r
′
i ≡p p′. Then

f(ϕ≺) = f(γ≺) for all evaluations f that are consistent with ≺. Furthermore,
γ≺ is a Boolean combination of atomic formulas and (β, γ≺) satisfies (1).

Next consider the formla

α≺ =
∧

16i<n

ai+1si < aisi+1 ∧
∧

(a,t)∈T

∨
16i6n

ait = asi .

Then, for any evaluation f , we have f(α≺) = tt if and only if f is consistent
with ≺. Since α≺ is a Boolean combination of formulas of the form a′s < at with
(a, s), (a′, t) ∈ T , the pair (β, α≺) satisfies (1).

Finally, let

γ =
∧
(∗)

(α≺ → γ≺)

where the conjunction (∗) extends over all strict linear orders ≺ on some non-
empty subset of T . ut

Proposition 3.5. Let x be a variable and α a Boolean combination of atomic
formulas. Let furthermore E = ∃ or E = ∃(p′,p) for some 0 6 p′ < p and
2 6 p 6 P . Then there exists a Boolean combination γ of atomic formulas such
that (Ex : α)⇔ γ. Furthermore, we have the following:

max P(γ) 6 max P(α)3 · P

maxConst(γ) 6 maxConst(α) · 2maxP(α)3

3.3 An efficient decision procedure

Now, by induction on the quantifier depth we can obtain the following theorem.

Theorem 3.6. Let ϕ ∈ LP be a formula of quantifier-depth d. There exists an
equivalent Boolean combination γ of atomic formulas with

max P(γ) 6 (P ·max P(ϕ))4
d

and

maxConst(γ) 6 2(P ·maxP(ϕ))4
d

·maxConst(ϕ) .

Comparison with Apelt’s and with Schweikardt’s elimination procedure In the
structure Z, the modulo counting quantifier is a special case of Härtig’s quanti-
fier. Apelt [1] and Schweikardt [21] presented quantifier elimination procedures
for Härtig’s quantifier and therefore for its special case, the modulo counting
quantifier. Differently from Schweikardt, we do not transform ϕ into disjunctive
normal form, we do not normalize terms, and we do not replace a counting quan-
tifier by many existential quantifiers. While we are not able to handle Härtig’s
quantifer this way, these differences allow to obtain the elementary bounds de-
scribed in the theorem above. These elementary bounds are the basis for the
following decision procedure.
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Let ϕ(x) be a Boolean combination of atomic formulas (note that x is the only
free variable) and A = max(P(ϕ)∪{6}). If ϕ is satisfiable, then results from [23]

imply that ϕ has a witness of absolute value at most AA
5 ·maxConst(ϕ). Using

Theorem 3.6, we can infer a similar result for arbitrary formulas ϕ(x) with one
free variable. If ϕ has ` additional variables, instantiated by integers of absolute
value 6 N , we can prove the following:

Corollary 3.7. There exists κ > 1 with the following property. Consider a for-
mula ϕ(x, y1, . . . , y`) from LP of quantifier-depth d. Let n1, . . . , n` ∈ Z with
|ni| 6 N . Then the formula ∃x : ϕ(x, n1, . . . , n`) is true if and only if there
exists n ∈ Z such that ϕ(n, n1, . . . , n`) is true with

|n| 6 2(P ·maxP(ϕ))κ
d

·maxConst(ϕ) ·N ·max(1, `).

Next, we want to prove a similar result for the modulo-counting quantifier.
Recall that ∃(p′,p)x : ϕ(x) can only be true if ϕ has only finitely many witnesses,
i.e., if the formula ∃y∀x : (ϕ(x)→ |x| 6 y) is true. Applying the above corollary,
one finds a finite interval such that ϕ has infinitely many witnesses iff it has at
least one witness in this interval. In case ϕ has only finitely many witnesses, then
all of them are of bounded absolute value. More precisely, we get the following

Corollary 3.8. Let κ be the constant from Corollary 3.7 and

C = 2(P ·maxP(ϕ))κ
d+1

·maxConst(ϕ) ·N ·max(1, `) .

Let ϕ = ϕ(x, y1, . . . , y`) ∈ LP be a formula of quantifier-depth d, let n1, . . . , n` ∈
Z with |ni| 6 N . Then ∃(p′,p)x : ϕ(x, n1, . . . , n`) is true if and only if the following
hold:

(1) no integer n with C < |n| 6 C2 makes ϕ(n, n1, . . . , n`) true and
(2) |{n ∈ Z | |n| 6 C and ϕ(n, n1, . . . , n`) is true}| ≡p p′ .

Corollaries 3.7 and 3.8 allow to evaluate the truth value of a sentence ϕ by,
recursively, evaluating the truth value of subformulas ψ of ϕ with arguments of
bounded size. Analysing this size carefully, one obtains

Theorem 3.9. Presburger arithmetic with modulo-counting quantifiers is decid-
able in doubly exponential space.

Note that this complexity matches the best known upper bound for Presburger
arithmetic without modulo-counting quantifiers from [7].

4 Automata based decision procedure

In this section we show that an automaton accepting all solutions of a formula
of LP can be constructed in triply exponential time. We follow the same ideas
as in [6] where the same result was given for Presburger’s logic.
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4.1 Encoding

We represent integer vectors as finite words. We use a vectorial least signifi-
cant bit first coding. For h > 0 we define Σh = {0, 1}h. Moreover we use the
separate sign alphabet Sh = {+,−}h (indicating if the corresponding integer
is positive or negative). Given any letter a in Σh or Sh we write πi(a) with
1 ≤ i ≤ h for its i-th component. Similarly, the i-th component of a h dimen-
sional vector x ∈ Zh is denoted by πi(x). The symbol + corresponds to 0 and
− corresponds to 1. In this way, to each letter a ∈ Σh corresponds a letter
s(a) ∈ Sh. Similarly to each letter s ∈ Sh corresponds a letter a(s) ∈ Σh. Words
of Σ∗hSh represent h-dimensional integer vectors. A word w0 . . . wns ∈ Σ∗hSh rep-
resents the integer vector denoted by 〈w0 . . . wns〉 whose ith component (with
1 ≤ i ≤ h) is computed as: If si = +, then πi(〈w0 . . . wns〉) =

∑n
j=0 2j .πi(wj)

and if si = −, then πi(〈w0 . . . wns〉) = −2n+1 +
∑n
j=0 2j .πi(wj). For example,

〈(0, 1)(1, 1)(1, 0)(+,−)〉 = 〈(0, 1)(1, 1)(1, 0) (0, 1)(+,−)〉 = (6,−5). In partic-
ular, 〈+〉 = 0 and 〈−〉 = −1. We also define the notation 〈.〉+ over Σ∗h as
〈w〉+ = 〈w(+, . . . ,+)〉.

Remark 4.1. Let w′, w ∈ Σ∗h, s ∈ Sh. We have 〈w′ws〉 = 〈w′〉+ + 2|w
′|〈ws〉.

Each vector has an infinite number of representations. Indeed for each word
w0 . . . wns ∈ Σ∗hSh, any word in w0 . . . wn(a(s))∗s represents the same vector.
To get a unique representation for each vector, we can take the shortest word
representing it.

Given a Presburger formula ϕ(x) with h free variables, we say that it defines
the language Lϕ = {w ∈ Σ∗hSh | 〈w〉 ∈ Jϕ(x)K}. Such languages are regular,
called Presburger-definable and meet the following saturation property: If a rep-
resentation of a vector is in the language then any other representation of that
vector is also in the language. Our coding satisfies the following property [15].

Property 4.2. Any residual of a Presburger-definable language is either a Pres-
burger-definable language, or the empty word language.

A deterministic automaton (DFA) is a tuple (Σ,Q, q0, Qf , δ) where Σ is the
finite alphabet, Q the set of states, q0 the initial state, Qf ⊆ Q the set of final
states and δ the transition function from Q × Σ to Q. We suppose DFA to be
complete (containing a sink state, if necessary). In a DFA accepting all solutions
of a Presburger formula ϕ(x) with h free variables, a word w ∈ Σ∗h leads from
the initial state to a state accepting exactly all solutions of ϕ(2|w|x + 〈w〉+).
Therefore, we can consider states (except final ones) of such automata as being
Presburger formulas.

Given any Presburger-definable language L, the corresponding uniformised
Presburger-definable language is defined by taking only one word (the shortest)
representing the given vector. We obtain it by intersecting L (or the correspond-
ing automaton) with a regular language (⊆ Σ∗hSh) which forbids that words end
with a(s)s ∈ ΣhSh for some s ∈ Sh. We call this operation uniformisation.
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4.2 Complexity of the automata based decision procedure

The well-known decision procedure for Presburger arithmetic using automata is
based on recursively constructing an automaton accepting solutions of a Pres-
burger formula by using automata constructions for handling logical connec-
tives and quantifiers. Automata for constant separated formulas can be easily
constructed. The following lemmas are from [6]. Let ‖a‖+ = Σ{i | ai≥0} ai and
‖a‖− = Σ{i | ai≤0} | ai|. Let ⊥ be the formula 0 < 0.

Lemma 4.3. The minimal DFA accepting the Presburger definable language
corresponding to the formula a.x > c has at most 2 ·max(||a||, |c|) + 1 states.
Each non-final state accepts languages corresponding to formulas of the form ⊥
or a.x > c′ with c′ = c or min(c,−‖a‖+) ≤ c′ < max(c, ‖a‖−)

Lemma 4.4. The minimal DFA accepting the Presburger definable language
corresponding to the formula a.x ≡2m(2n+1) c with 0 ≤ c < 2m(2n + 1) and
m,n ≥ 0 has at most 2m(2n + 1) + 1 states. Each non-final state accepts lan-
guages corresponding to formulas of the form a.x ≡2n+1 c′ with c′ ∈ [0, 2n]
(this type of states is reached after m transitions) and a.x ≡2m1 (2n+1) c

′ where
(m1 = m ∧ c′ = c) ∨ (m1 < m ∧ γ ∈ [0, 2m1(2n+ 1)− 1] and m1 < m.

Each logical connective (∧, ∨, ↔, ¬) corresponds then naturally to opera-
tions on automata (For ¬ it is of course crucial to have a deterministic automa-
ton). Furthermore to get an automaton for ∃y : ϕ(y,x) given an automaton for
ϕ(y,x) one projects away 5 the component for y and obtains a non-deterministic
automaton. Then, to be able to continue the recursive construction, the au-
tomaton is determinised, uniformised and minimised. Starting from an automa-
ton of triple-exponential size, determinisation might lead to an automaton of
quadruple-exponential size. However, for Presburger’s logic the size of the au-
tomata during the construction is at most triple-exponential in the size of the
formula [6]. We refine this analysis here to get the same upper bound for for-
mula containing also ∃(p′,p) quantifiers. For that we first detail the corresponding
automata construction before analysing the size of the (intermediate) automata.

Automata construction for the modulo-counting quantifier We adapt
the construction of [12, 19] for our particular encoding. Here it is crucial to have
uniformised automata.

Lemma 4.5. Given a DFA Aϕ accepting the uniformised Presburger language
Lϕ defined by a formula ϕ(y,x) of LP one can construct a DFA Aψ accepting the

uniformised Presburger definable language Lψ defined by ψ = ∃(p′,p)y : ϕ(y,x).

Proof. Without loss of generality we suppose that the value of y is given by
the first component of letters of Aϕ. We need first some definitions. A max-V

5 As the automaton should accept shortest encodings, additional transitions with a
sign letter going to the final state have to be added before uniformisation.
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multiset wrt. a natural number max ≥ 1 and a set V is a multiset of elements
of V such that each element appears at most max times. We denote all of these
multisets byMmax(V ). A max-V multiset can be seen as a multiplicity function
mapping elements from V to {0, 1, 2, . . . ,max}. For positive natural numbers x
and y with y > 1, we define x mod1 y = x mod y if x mod y 6= 0, x mod1 y = 0
if x = 0 and x mod1 y = y else. Given two max-V multisets m1,m2 their union
m1 ∪m2 is defined as (m1 ∪m2)(v) = (m1(v) +m2(v)) mod1 max for all v ∈ V .

Since Aϕ is uniformised, we can suppose that Aϕ has exactly one accepting
state which has outgoing transitions only to the sink state. Let Aϕ = (Σh ∪
Sh, Q∪{F}, q0, {F}, δ) with L(A) ⊆ Σ∗hSh. We construct a DFA Aψ = (Σh−1 ∪
Sh−1, Q

′ ∪ {F ′}, q′0, {F ′}, δ′) with L(Aψ) ⊆ Σ∗h−1Sh−1 as follows: The idea is to
count modulo p how often a state can be reached (0 means unreachable) from the
initial state using transitions where the first component of letters is arbitrary.

Formally, we have Q′ ⊆Mp(Q). Furthermore, we construct Q′ starting from
the multiset q′0 = {q0} with a modified on the fly subset construction. That
means that Q′ only contains reachable p-Q multisets of states. For each letter a ∈
Σh−1 and each state m (a p-Q multiset) of Q′ we define a successor state m′ =
δ(m, a) by setting for all q ∈ Q, m′(q) = (

∑
q1∈Qm(q1)·|{(q1, b) | δ(q1, (b, a)) = q

and b ∈ {0, 1}}|) mod1 p. Now, we describe how to determine the transitions
going to the final state F ′. Here we have to take into account the number of times
(which can be infinite) a vector corresponding to a word from Σ∗h−1 obtained
by projection from a word w of L(Aϕ) can be obtained by projection from
other longer words of L(Aϕ) with same prefix w. Since the automaton Aϕ is
uniformised each such word is only counted once. For each sign letter s ∈ Sh with
s = (s1, . . . , sh) we first define s+ = (+, s2, . . . , sh) and s− = (−, s2, . . . , sh).
For each sign letter s ∈ Sh and each state q ∈ Q, we compute then ms,q, the
(possible infinite) number of paths from q in A to the final state F labeled by
a word from the language (a(s+) + a(s−))∗s. Then, for each sign letter s ∈
Sh−1 there is a transition from a state m ∈ Q′ to the final state F ′ iff (1)
m(+,s),q and m(−,s),q are both not infinite for all q ∈ Q with m(q) 6= 0 and (2)
(
∑
q∈Q∧δ(q,(+,s))=F m(q)m(+,s),q +

∑
q∈Q∧δ(q,(−,s))=F m(q)m(−,s),q) mod p = p′.

The obtained automaton is then uniformised and completed to obtain Aψ. ut

Our analysis relies on building automata for Boolean combinations of con-
stant separated formulas. A Boolean combination of formulas ϕ1, . . . , ϕn is a
formula generated by >,⊥, ϕ1, . . . , ϕn,¬,∨,∧ or↔. We denote by C(ϕ1, . . . , ϕn)
such a Boolean combination. We build (on the fly) a product automaton whose
states are Presburger formulas (not tuples of formulas).

Definition 4.6. Given a Boolean combination of constant separated formulas
C(ϕ1(x), . . . , ϕn(x)) containing h free variables we define the product automa-
ton AC(ϕ1(x),...,ϕn(x)) = (Σh ∪ Sh, Q ∪ {F}, q0, {F}, δ) by: Q is the set of Pres-
burger formulas, F the designated final state, q0 = C(ϕ1(x), . . . , ϕn(x)) and for
all a ∈ Σh, δ(C(ψ1(x), . . . , ψn(x)), a) = C(ψ′1(x), . . . , ψ′n(x)) each ψi(x) being
a state, possibly ⊥ (equivalent to 0 < 0), of Aϕi (the automaton of ϕi), and
ψ′i(x) = δϕi(ψi(x), a). If s ∈ Sh, then δ(C(ψ1(x), . . . , ψn(x)), s) = F , when
〈s〉 ∈ JC(ψ1(x), . . . , ψn(x))K and δ(C(ψ1(x), . . . , ψn(x)), s) = ⊥ otherwise.
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The following theorem gives a bound on the automata size for a formula in
Presburger’s logic with modulo-counting quantifiers. A corresponding theorem
for classical Presburger’s logic was given in [6] (using results from [13] where a
most significant digit first encoding is used). Its proof is basically the same, as we
can also eliminate all quantifiers and construct an automaton from the resulting
atomic formulas. We will need the construction of the automaton later to handle
the ∃(p′,p) quantifier. We use the abbreviations exp2(x) = 22

x

and exp3(x) =

22
2x

. Notice that in [6] the size of the DFA was bounded by exp3(κn log n).

Theorem 4.7. The size of the minimal DFA accepting solutions of a formula
ϕ(x) from LP with h free variables and length n is at most exp3(κn) for some
constant κ.

Proof. Let d < n be the quantifier depth of ϕ. Let γ(x) be the equivalent quan-
tifier free formula obtained from ϕ using Theorem 3.6. We have max P(γ) 6

(P ·max P(ϕ))4
d

and maxConst(γ) 6 2(P ·maxP(ϕ))4
d

·maxConst(ϕ). Clearly,
maxConst(γ) ≤ exp3(κ1n) for some constant κ1. If we build the product au-
tomaton for γ according to Definition 4.6, a naive analysis of its size gives a
quadruple-exponential, as there are possibly a quadruple exponential number
of distinct inequations in γ. We give a slightly different construction of the au-
tomaton Aγ accepting solutions of γ. Let a1, . . . ,atγ be an enumeration of all
different vectors a corresponding to coefficients of variables of x = (x1, . . . , xh)
appearing in constant separated inequations of γ. Let γ1, . . . , γt′γ be an enu-
meration of all atomic formulas of the form ai.x > cj with 1 ≤ i ≤ tγ and
cj such that |cj | ∈ [−‖ai‖+ − 1, ‖ai‖−]. Due to the bound on max P(γ) we
have t′γ 6 exp2(κ2n) for some constant κ2. Let (b1, k1), . . . , (bdγ , kdγ ) be an
enumeration of all different vectors b corresponding to coefficients of variables
of x = (x1, . . . , xh) together with its modulus appearing in constant separated
modulo constraints of γ. Each ki can be written as ki = k′i · k′′i where k′i is the
biggest possible power of 2 and k′′i odd. Let φ1, . . . , φd′γ be an enumeration of all
modulo constraints of the form bix ≡k′′i cj with 1 ≤ i ≤ dγ and cj < k′′i . Again
due to the bound on max P(γ) we have d′γ 6 exp2(κ3n) for some constant κ3.

We define BC to be the set of all Boolean combinations having the form
C(γ1, . . . , γt′γ , φ1, . . . , φd′γ ). For each member of BC an automaton can be built
with the product construction of Definition 4.6. All these automata are the same
except for transitions leading to the final and sink states.

We describe now informally the automaton Aγ which we construct from γ.
It has first the form of a complete tree starting at the initial state. Its branching
factor is the size of the alphabet Σh and its depth is exp2(κ1n). Each of the states
in the tree recognises the solutions of the formula γ(2|w|x+〈w〉+) where w ∈ Σ∗h
with |w| ≤ exp2(κ1n) is the word leading to the state from the initial state. Then,
at level exp2(κ1n) there are separate automata accepting solutions of the corre-
sponding formulas reached after reading the word leading to them. All these au-
tomata correspond to Boolean combinations of BC. Indeed, for any constant sep-
arated formula ζ(x) = a.x > c of γ and any word w ∈ Σ∗h with |w| = exp2(κ1n)
we have ζ(2|w|x+ 〈w〉+)⇔ a.x > c′ for some c′ ∈ [−‖a‖+− 1, ‖a‖−]. Therefore,
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for any atomic inequation ζ(x) of γ, ζ(2|w|x+〈w〉+) is equivalent to some γi. The
same is true for modulo constraints, i.e. each modulo constraint reached after w
is equivalent to some φi. So, γ(2|w|x + 〈w〉+) is equivalent to a formula of BC.
Notice that in any member of BC all atomic formulas of a given form appear.
That is not a restriction, since we can just expand each Boolean combination
to be of this form. Let W = {w ∈ Σ∗h | |w| = exp2(κ1n)}. For any w ∈ W , let
Cw ∈ BC be the Boolean combination equivalent to γ(2|w|x + 〈w〉+). For each
Cw we can construct an automaton ACw = (Σh ∪ Sh, Qw ∪ {F}, qw,0, {F}, δw)
according to Definition 4.6. Notice that the automata ACw only differ in the
transitions going to the final state, since the atomic formulas composing them
are all the same. The final state F is the same in each automaton.

We can now give the definition of the automaton for the formula γ formally,
i.e. Aγ = (Σh ∪Sh, Q, qε, {F}, δ) where Q = Q1 ∪Q2 ∪{F} with Q1 = {qw | w ∈
Σ∗h ∧ |w| < exp2(κ1n)} and Q2 =

⋃
w∈W Qw. Furthermore, δ(qw, b) = {qwb}

for all b ∈ Σh and |w| < exp2(κ1n) − 1, δ(qw, b) = {qwb,0} for all b ∈ Σh and
|w| = exp2(κ1n) − 1 and δ(q, b) = δw(q, b) for all b ∈ Σh and q ∈ Q2. Clearly,
the number of states (and also the size) of the automaton Aγ is smaller than
exp3(κn) for some constant κ. ut

When applying the construction of Lemma 4.5 to eliminate a modulo-counting
quantifier, one could have a potential exponential blow-up which could lead to
a quadruple exponential automaton. We can show that this is not the case by
analysing the structure of the constructed automaton (similarly as in [6] for the
existential quantifier) and obtain the following theorem.

Theorem 4.8. Let ∃y(p′,p) : ϕ(y,x) be a formula from LP of size n, A the min-
imal DFA accepting the uniform Presburger definable language corresponding to
ϕ(y,x) and A′ the automaton obtained for ∃y(p′,p) : ϕ(y,x) using the construc-
tion of Lemma 4.5. Then A′ is of size at most exp3(κn) for some constant κ.

Corollary 4.9. The automata based decision procedure for Presburger arith-
metic with modulo-counting quantifiers takes triple-exponential time in the size
of the formula.

In [5] the complexity of the automata based construction for Presburger’s
logic is analysed using Ehrenfeucht-Fräıssé relations. There a most significant
bit first encoding is used. An open question is to know if this approach can be
also applied for modulo-counting quantifiers.
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