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Université Paris Cité
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Organisation

Webpage of this part of the course:
http://www.irif.fr/~haberm/cours/mpri

Warning : The slides do not contain everything (far from that)

Schedule: Mondays 8h45 - 11h45

Grades: Written exam

Required knowledge: Basic formal language and automata theory
(DFA, NFA)

Peter Habermehl (IRIF) Automates 16 octobre 2023 2 / 68

http://www.irif.fr/~haberm/cours/mpri


General references

Colin de la Higuera. Grammatical Inference. Learning Automata and
Grammars. Cambridge University Press. 2010
www.cambridge.org/core/books/grammatical-
inference/CEEB229AC5A80DFC6436D860AC79434F
pagesperso.lina.univ-nantes.fr/∼cdlh/book/
Sicco Verwer. Efficient Identification of Timed Automata - Theory
and Practice. PhD Thesis. TU Delft (Netherlands). 2010.
repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be-a6ed-
04498113a212/?collection=research

Peter Habermehl (IRIF) Automates 16 octobre 2023 3 / 68

https://www.cambridge.org/core/books/grammatical-inference/CEEB229AC5A80DFC6436D860AC79434F
https://www.cambridge.org/core/books/grammatical-inference/CEEB229AC5A80DFC6436D860AC79434F
http://pagesperso.lina.univ-nantes.fr/~cdlh//book/
https://repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be-a6ed-04498113a212/?collection=research
https://repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be-a6ed-04498113a212/?collection=research


Introduction

on the board

Peter Habermehl (IRIF) Automates 16 octobre 2023 4 / 68



Learning (Identifying) languages

The setting:

L: a language class

G: a class of representations of objects in a language class

L : G 7→ L: a naming function (L(G ) is the language denoted,
accepted, recognised, represented by G , a “grammar”).

For example, regular (rational) languages over a finite alphabet Σ
form a language class REG(Σ) and can be represented by DFA(Σ)
or NFA(Σ) or UFA(Σ) or AFA(Σ) or REGEXP(Σ) or etc.
Important decision problems:

▶ Membership: Given w ∈ Σ∗ and G ∈ G is w ∈ L(G ) ?
▶ Equivalence: Given G1 and G2 in G is L(G1) = L(G2) ?
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Learning (Identifying) languages

What class of languages to learn ?

How languages are represented ?

Which information is made available ?

How the information is made available ?
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Which information is made available and how ?

Passive learning
▶ A presentation for a language is given

⋆ (Infinite) sequence of information about the language

▶ The learning algorithm uses the information to infer a representation
▶ The learner has no control over the information

Active learning (Query learning)
▶ The learner can query an oracle
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Identification in the limit (Gold 67)

Let L be a language class

A presentation is a function φ : N 7→ X where X is a set. Pres(L) is
the set of all allowed presentations.

There exists a function YIELDS : Pres(L) 7→ L
Pres(L) := {φ ∈ Pres(L) : YIELDS(φ) = L}
Examples of presentations of a language L:

▶ TEXT (L) = {φ : N 7→ Σ∗ | φ(N) = L}
▶ INFORMANT (L) = {φ : N 7→ Σ∗×{0, 1} | φ(N) = L×{1} ∪ L×{0}}

The setting is said to be valid when given two presentations φ and ψ,
whenever their range is equal (i.e. if φ(N) = ψ(N)) then
YIELDS(φ) = YIELDS(ψ).

One learns a representation of a language and not the language itself.

Can be generalised to other concepts to be learnt (for example logical
formulas)
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Identification in the limit

Given a presentation φ we denote φn = {φ(i) | i ≤ n}
G is called consistent with φn if G does not contradict φn

A learning algorithm Alg is a program which takes
φn = {φ(i) | i ≤ n} as input and produces a grammar G

Definition: G is identifiable in the limit from Pres(G) if there exists a
learning algorithm Alg such that for all G ∈ G and any presentation
φ ∈ Pres(G) of L(G ) there exists n such that for all m ≥ n:
L(Alg(φm)) = L(G ) and Alg(φm) = Alg(φn).

for behaviourally correct identification, the last point is not needed.

A learning algorithm is called consistent, if it changes its mind as soon
as the current hypothesis is erroneous with the presented element.
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Two general results

Gold. Language identification in the limit. Information and Control 1967
www.sciencedirect.com/science/article/pii/S0019995867911655

A super-finite class of languages is a class which contains all finite
languages and at least an infinite one.

No super-finite class of languages is identifiable in the limit from text

Any recursively enumerable class of recursive languages is identifiable
in the limit from an informant (by which learning algorithm ?)
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Complexity aspects

Counting time

Counting the number of examples

Counting the number of mind changes
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Counting time

An algorithm Alg is said to have overall polynomial time if there
exists a polynomial p() such that
∀G ∈ G ∀n ≥ p(||G ||) ∀φ ∈ Pres(L(G )).L(Alg(φn)) = L(G ).

An algorithm Alg is said to have polynomial update time if there is a
polynomial p() such that, for every presentation φ and every integer
n, constructing Alg(φn) requires O(p(||φn||)) time.
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Counting the number of examples

Counting the number of examples needed to identify

Counting the number of good examples to identify

A grammar class G admits polynomial characteristic samples, if there
exist an algorithm Alg and a polynomial p() such that ∀G ∈ G,
∃CS ⊆ X such that

1 ||CS || ≤ p(||G ||) and
2 ∀φ ∈ Pres(L(G )) ∀n ∈ N : CS ⊆ φn implies L(Alg(φn)) = L(G ).

Such a set CS is called a characteristic sample of G for Alg . If such
an algorithm Alg exists, we say that Alg identifies G in the limit in
CS-polynomial time.

Note: the sample is specific for an algorithm and the size ||CS || takes
into account also the size of strings
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Counting the number of mind changes

Given a learning algorithm Alg and a presentation φ, we say that Alg
changes its mind at time n, if Alg(φn) ̸= Alg(φn−1).

An algorithm that never changes its mind when the current
hypothesis is consistent with the new presented element is said to be
conservative.

Algorithm Alg makes a polynomial number of mind changes (MC) if
there is a polynomial p() such that, for each grammar G and each
presentation φ of L = L(G ),
|{k ∈ N | Alg(φk) ̸= Alg(φk+1)}| ≤ p(||G ||).
An algorithm Alg identifies a class G in the limit in MC-polynomial
time if

1 Alg identifies G in the limit,
2 Alg has polynomial update time,
3 Alg makes a polynomial number of mind changes.
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Learning from text

In this context, φn is typically denoted as a sample S , a finite set of words
included in the language to be learnt.
Some examples of languages classes identifiable in the limit from text

The class SINGLE(Σ) of all singleton languages of the form
L = {w} where w ∈ Σ∗

▶ Exercise: Give a learning algorithm. What are its properties ?

The class FINIT E(Σ) of all finite languages over some alphabet Σ
▶ Exercise: Give a learning algorithm. What are its properties ?

The class ABO(Σ) of all “all-but-one”-languages L of the form
L = Σ∗ \ {w} where w ∈ Σ∗

▶ Exercise: Give a learning algorithm. What are its properties ?
Characteristic sample ?
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Some other examples of learning algorithms from text

Regular languages can not be identified in the limit from text
▶ follows from Gold’s general result

Subclasses of regular languages
▶ k-testable languages
▶ reversible languages

Pattern languages
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(strictly) k-testable languages (aka window languages)

A k-testable language is given by four sets I ,F ,T ,C ⊆ Σ∗ with
▶ I ,F ⊆ Σk−1 (prefixes and suffixes of length k − 1)
▶ C ⊆ Σ<k (short strings) such that I ∩ F = C ∩ Σk−1

▶ T ⊆ Σk (allowed segments)

Given such a representation the language is
C ∪ (IΣ∗ ∪ Σ∗F ) \ (Σ∗(Σk \ T )Σ∗)

Example: k = 2, I = {a, b}, F = {b}, C = {b} and T = {ab, bb}
represents the language: bb∗ + abb∗

Exercice: Give an algorithm to build an automaton directly from
I ,F ,C ,T

Exercice: Propose a learning algorithm from text for k-testable
languages and apply it on the sample S = {λ, a, abba, abbbba} for
k = 1, k = 2 and k = 3. What are the properties of your algorithm ?
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Reversible languages

Dana Angluin. Inference of reversible languages. Journal of the ACM,
1982. dl.acm.org/doi/pdf/10.1145/322326.322334

Given a DFA A, AT is the automaton obtained by reversing the
transition relation (and the initial and final states).

A DFA A is reversible if AT is deterministic.

A regular language L is reversible if there exists a DFA A with
L(A) = L which is reversible.

Sketch of a learning algorithm given a sample S :
▶ Build prefix-tree acceptor (see below) for S
▶ Merge all final states
▶ Merge states q, q′ as long as there is a transition with the same letter

to q and q′ or from q and q′

▶ There is a polynomial-size CS (Which one ?)
▶ It can be made incremental (How ?)
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Pattern languages

Let Σ be an alphabet and X = {x1, x2, . . .} a set of variables. A
pattern is a string over Σ ∪ X .

A matching is a function σ : X 7→ Σ∗. σ is extended to a pattern
π = π1π2 . . . πn by σ(π) = σ(π1)σ(π2) . . . σ(πn) For a letter a ∈ Σ,
σ(a) = a.

A string w ∈ Σ∗ fits a pattern π if there is a matching σ such that
σ(π) = w .

The language defined by a pattern π (noted L(π)) is the set of all
words w ∈ Σ∗ which fit π

The pattern is called non-erasing if only σ : X 7→ Σ+ is allowed

Let PAT T ERNS(Σ) be the class of non-erasing pattern languages
over Σ.

Exercice: Show that PAT T ERNS(Σ) is identifiable in the limit
from text.

Example sample: S = {abcbb, aabba, aacbbac, aaaba, acbbbac}.
Peter Habermehl (IRIF) Automates 16 octobre 2023 19 / 68



Learning from an informant

Recall: Any recursively enumerable class of recursive languages is
identifiable in the limit from an informant.

A partial presentation is a sample S = (S+, S−) with S+, S− ⊆ Σ∗

such that S+ ∩ S− = ∅.
A DFA A = (Σ,Q, qλ,Fa,Fr , δ) is a finite-state automaton defined as
usual.

▶ Fa is the set of accepting states and
▶ Fr the set of rejecting states (not always used)

A is consistent with S = (S+,S−) if δ(qλ,w) ∈ Fa for all w ∈ S+

and δ(qλ,w) ̸∈ Fa for all w ∈ S−

A is strongly consistent with S = (S+, S−) if δ(qλ,w) ∈ Fa for all
w ∈ S+ and δ(qλ,w) ∈ Fr for all w ∈ S−

A learning algorithm typically constructs an automaton (strongly)
consistent with S at each stage.
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A fundamental complexity result

Problem: Given a sample S = (S+, S−) of strings over some alphabet
Σ and n ∈ N, is there a DFA with n states consistent with S ?

This problem is NP-complete for binary alphabets.

There a several proofs in the literature which are wrong. see
Lingg at al. Learning from Positive and Negative Examples: New
Proof for Binary Alphabets. LearnAut 2022.
arxiv.org/abs/2206.10025

Proof on the board.

Exercice: What about unary alphabets ?

This means that learning a minimal DFA from a sample can
(probably) not be done in polynomial time.

However, we can still hope for CS-polynomial time.
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Main ingredients of algorithms

Given a sample S = (S+,S−) the prefix-tree acceptor (PTA) for S is
the smallest DFA with a tree-like structure where states are prefixes
of the strings of S+ and which is (strongly) consistent with S .

▶ BUILDPTA(S) constructs the PTA for a sample S

RED states: have been analysed, are part of the result

BLUE states: not yet analysed, but are considered

Myhill-Nerode congruence: u ∼L v : for all w ∈ Σ∗.uw ∈ L iff
vw ∈ L. Two strings which are not equivalent must lead to different
states in any DFA for L. In a minimal DFA all states are pairwise
distinguishable by a word w which is accepted from one and rejected
from the other.
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Gold’s algorithm

E Mark Gold. Complexity of Automaton identification from given data.
Information and Computation 37, 1978.
www.sciencedirect.com/science/article/pii/S0019995878905624

From S = (S+, S−) find a set of prefixes which must lead to different
states

Try to fold in the rest of the states of the PTA.

Example: S+ = {bb, abb, bba, bbb}, S− = {a, b, aa, bab}
Main data structure: Observation table (STA,EXP,OT ) where

▶ STA ⊆ Σ∗ is a prefix closed disjoint union of BLUE (no extension of a
BLUE state is BLUE ) and RED (the others)

▶ EXP ⊆ Σ∗ is a suffix closed set
▶ A function OT : STA× EXP 7→ {0, 1, ∗} defined as OT [u][e] = 1, if

ue ∈ S+, OT [u][e] = 0, if ue ∈ S−, else ∗.
▶ The table should be non-contradictory: OT [u][vw ] = OT [uv ][w ]

(when defined) for all u, v ,w ∈ Σ∗
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Main concepts

An observation table is complete if it has no holes (OT [u][v ] = ∗)
Two rows of an observation table are compatible (u ∼OT v) if there
is no e such that (OT [u][e] = 0 and OT [v ][e] = 1 ) or (OT [u][e] = 1
and OT [v ][e] = 0)

Two rows are obviously different (OD) if they are not compatible.

A complete observation table is closed if for all rows v in BLUE there
is a row u in RED with OT [u] = OT [v ]

One can build an automaton from a closed and complete observation
table: BUILDAUTO(STA,EXP,OT )

This automaton is consistent with the data in the table.

How to get a complete and closed observation table from S ?

One can construct a table from S with holes and try to fill the holes,
but that’s difficult as it should not lead to a contradictory table.
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BUILDAUTO(STA,EXP ,OT )

input : A closed and complete observation table (STA,EXP,OT )
output: A DFA A = (Σ,Q, qλ,Fa,Fr , δ)
Q ← {qu | u ∈ RED};
Fa ← {que | OT [u][e] = 1};
Fr ← {que | OT [u][e] = 0};
for qu ∈ Q do

for a ∈ Σ do
δ(qu, a)← qv if v ∈ RED and OT [ua] = OT [v ]

end

end
return A

Lemma: The automaton A is consistent with the information in
STA,EXP,OT (i.e. OT [u][v ] = 1 implies that A accepts uv and
OT [u][v ] = 0 implies that A rejects uv)
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BUILDTABLE (S ,RED)

input : A Sample S = (S+,S−), A set of strings RED prefix-closed
output: An observation table (STA,EXP,OT )
EXP ← SUFFIXES(S);
BLUE ← RED.Σ \ RED;
for u ∈ RED ∪ BLUE do

for e ∈ EXP do
if ue ∈ S+ then OT [u][e]← 1;
else

if ue ∈ S− then OT [u][e]← 0 else OT [u][e]← ∗;
end

end

end
return (RED ∪ BLUE ,EXP,OT )
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Gold’s algorithm

input : A Sample S
output: A DFA consistent with S
RED ← {λ};BLUE ← Σ;
(STA,EXP,OT )← BUILDTABLE (S ,RED);
while there exist v ∈ BLUE such that v is OD from all RED do

RED ← RED ∪ {v};
BLUE ← (BLUE \ {v}) ∪ {va : a ∈ Σ};
UPDATETABLE (STA,EXP,OT );

end
A← BUILDAUTOGOLD(STA,EXP,OT );
if CONSISTENT (A, S) then return A else return BUILDPTA(S);

UPDATETABLE (STA,EXP,OT ): fill the new rows with information from S

CONSISTENT (A,S): checks that all strings in S are correctly classified by A
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BUILDAUTOGOLD(STA,EXP ,OT )
input : An observation table (STA,EXP,OT )
output: A DFA A = (Σ,Q, qλ,Fa,Fr , δ)
Q ← {qu | u ∈ RED};
for qu ∈ Q do

if OT [u][λ] = 1 then Add qu to Fa else if OT [u][λ] = 0
then Add qu to Fr else Add qu to either Fa or Fr

end
for qu ∈ Q do

for a ∈ Σ do
if ua ∈ RED then

δ(qu, a)← qua
else

Choose v ∈ RED such that v ∼OT ua;
δ(qu, a)← qv

end

end

end
return A
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Properties of Gold’s algorithm

non-deterministic choices

does not generalise at all sometimes (returns just the PTA)

Given any sample (S+, S−) the algorithm
▶ outputs a DFA consistent with S
▶ admits a polynomial characteristic sample
▶ runs in time and space polynomial in ||S ||

Gold’s algorithm identifies DFA(Σ) in CS-polynomial time

What is a characteristic sample ?
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RPNI (Regular Positive and Negative Inference)

Gold’s algorithm might just output the PTA

RPNI starts from the PTA and greedily chooses states to merge while
guaranteeing consistency with the sample

Example: S+{aaa, aaba, bba, bbaba} et S− = {a, bb, aab, aba}
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RPNI basic ingredients

CHOOSE chooses a blue state for possible merging

RPNIMERGE (A, qr , qb) merge a red state qr with a blue state qb and
recursively merges any states reached by the same letter from qr and
qb. A merge fails if an accepting and a rejecting state is merged.

RPNIPROMOTE (qb,A) promotes a blue state qb to red and adds all
successors of qb (which lead to a state which can reach an
accepting state) to blue states

Remark: In the original version the constructed DFA only contains
accepting states and S− is used to reject merges
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RPNIMERGE (A, q, q′)

input : A DFA A and two states q,q′ from A
output: a boolean and A modified
if q ∈ Fa and q′ ∈ Fr or q′ ∈ Fa and q ∈ Fr then return false;
Add a new state q′′ to A;
if q ∈ Fa or q′ ∈ Fa then set q′′ ∈ Fa;
if q ∈ Fr or q′ ∈ Fr then set q′′ ∈ Fr ;
for each occurrence of q (resp. q′) as source or target of transition do

replace q (resp. q′) by q′′

end
while A contains non-det. choice with target states qn and q′n do

b ← RPNIMERGE (A, qn, q
′
n);

if not b then undo merge of q with q′; return false;

end
return true
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RPNI algorithm

input : A Sample S
output: A DFA consistent with S
A← BUILDPTA(S);RED ← {qλ};BLUE ← {qa|a ∈ Σ ∩ PREF (S)};
while BLUE ̸= ∅ do

CHOOSE (qb ∈ BLUE ); BLUE ← BLUE \ {qb};
for qr ∈ RED do

b ← RPNIMERGE (A, qr , qb);
if b then break ;

end
if not b then A← RPNIPROMOTE (qb,A);

end
return A
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Remarks

In this formulation branches of the PTA containing only rejecting
states are not folded into the automaton A. One could do it by
adding these states to BLUE but this does not correspond to the
original RPNI algorithm.

There are two non-deterministic choices: CHOOSE (qb ∈ BLUE ) and
qr ∈ RED.

▶ One can choose for example the lexlength-order of prefixes leading to
states.

▶ The order should be fixed from the beginning !

How to get a characteristic sample ?
▶ depends on the order states are choosen
▶ for each pair of states qu and qv in the automaton to be learnt, where

u and v are the shortest strings reaching the states and each letter
a ∈ Σ identify the shortest distinguishing string w = DS(qu, qv ) and
add strings uw and vaw to S+ or S−.

RPNI identifies DFA(Σ) in CS-polynomial time.
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Other algorithms

Evidence driven state merging
▶ The order of merges is not fixed
▶ Choose two states to merge and perform cascade of forced merges
▶ if inconsistent, undo and choose two other states
▶ Compute for each pair of red and blue states a score and choose the

best one
▶ A score could be the number of strings of S which would end up in the

same state

Other AI techniques: genetic programming, etc.
▶ typically learn NFA
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Active learning

Also called query learning.

The learner makes queries answered by an oracle (teacher)

Membership queries
▶ Query: w ∈ L ?
▶ Answer: Yes/No

Weak equivalence queries
▶ Query: L(H) = L ?
▶ Answer: Yes/No

(Strong) equivalence queries
▶ Query: L(H) = L ?
▶ Answer: Yes/No plus a counterexample w ∈ L \ H ∪ H \ L

Subset queries

etc.
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Query learning

G is identifiable in the limit with queries if there exists a learning
algorithm A such that given any G ∈ G, A returns a grammar G ′

equivalent to G and halts.

Query complexity: How many queries are needed ?

Complexity: if “everything” is polynomially bounded, then we say
polynomially identifiable. Remark: The complexity depends on the
size of counterexamples.

If a class L contains a non empty set L∩ and n sets L1, . . . , Ln such
that ∀i , j ∈ {1, . . . , n}.Li ∩ Lj = L∩, any algorithm using membership,
weak equivalence and subset queries needs in the worst case to make
n − 1 queries.

DFA(Σ) can not be identified by a polynomial number of strong
equivalence queries alone.
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L∗ algorithm

Dana Angluin. Learning regular sets from queries and counter examples.
Information and Computation. 1987
people.eecs.berkeley.edu/∼dawnsong/teaching/s10/papers/angluin87.pdf

“started” the field of query learning

first query learning algorithm for regular languages

introduces the MAT (minimally adequate teacher) model
▶ answers membership and equivalence queries

stochastic setting (PAC-learning) where equivalence queries are
replaced by calls to a random sampling oracle
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L∗ algorithm

Learn a regular language L (given by the minimal DFA A)

Basic data structure: Observation table (similar to Gold’s algorithm)

Overview
▶ find a closed and consistent observation table allowing to construct a

DFA
▶ submit an equivalence query with that DFA
▶ use counterexample to update the table
▶ use membership queries to make table closed and consistent
▶ iterate

Example
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L∗ algorithm

Main data structure: Observation table (STA,EXP,OT ) where

STA ⊆ Σ∗ a disjoint union of BLUE and RED states

BLUE = RED.Σ \ RED
EXP ⊆ Σ∗ is the experiment set

A function OT : STA× EXP 7→ {0, 1, ∗} defined as OT [u][e] = 1, if
ue ∈ L, OT [u][e] = 0, if ue ̸∈ L, else ∗.
Additional properties:

▶ STA is prefix-closed
▶ EXP is suffix-closed
▶ the table is complete if OT [u][e] is always different from ∗ (it can be

completed with membership queries). We suppose that it is always
complete. In an implementation redundant entries are checked only
once.
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Key definitions

Two rows u and v are equivalent (noted u ≡EXP v) if
OT [u] = OT [v ].

the table is closed if given any row u ∈ BLUE there is a row v ∈ RED
such that u ≡EXP v

▶ close table: promote u ∈ BLUE to RED and add all ua to BLUE ,
iterate

the table is consistent if for all u, v ∈ RED, u ≡EXP v implies
ua ≡EXP va for all a ∈ Σ

▶ Make table consistent: add ae to EXP if e separates ua and va
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Key definitions

if the table is closed and consistent, one can construct an automaton
H = AOT = (Σ,Q, qλ,Fa,Fr , δ) from the table:

▶ Q = {qu | u ∈ RED and ∀v < u.u ̸≡EXP v}
▶ Fa = {qu | OT [u][λ] = 1}, Fr = {qu | OT [u][λ] = 0}
▶ For all qu ∈ Q and a ∈ Σ, δ(qu, a) = qv for v ≡EXP ua

Lemma: if STA is prefix-closed and EXP is suffix-closed, then the
automaton AOT is consistent with the data (i.e. ue ∈ L(AOT ) iff
OT [u][e] = 1).

Notation: ⌊qu⌋H = u and ⌊v⌋H = ⌊qu⌋H if u = δ∗H(qλ, v)
σA(u) = 1 if u ∈ L(A) and σA(u) = 0 else.
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L∗ algorithm
input : A regular language L (represented by min. DFA A)
output: A DFA H such that L(H) = L
(STA,EXP,OT )← LSTARINITIALISE ();
repeat

while (STA,EXP,OT ) is not closed or not consistent do
if (STA,EXP,OT ) is not closed then
(STA,EXP,OT )← LSTARCLOSE (STA,EXP,OT );

if (STA,EXP,OT ) is not consistent then
(STA,EXP,OT )← LSTARCONSISTENT (STA,EXP,OT );

end
H ← LSTARBUILDAUTO(STA,EXP,OT );
ANSWER ← EQ(H);
if ANSWER ̸= YES then
(STA,EXP,OT )← LSTARUSEEQ(STA,EXP,OT ,ANSWER);

until ANSWER = YES ;
return H;
s
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L∗ algorithm

LSTARINITIALISE (): RED = {λ}, BLUE = Σ, EXP = {λ},
complete the table and make it closed if necessary

LSTARUSEEQ(STA,EXP,OT ,ANSWER) :
▶ ANSWER is a string w
▶ add w and all its prefixes to RED
▶ add all extensions with all a ∈ Σ of new red w ′ to BLUE if not in RED

already
▶ complete the table with membership queries
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Properties of L∗

Let H be the automaton constructed by
LSTARBUILDAUTO(STA,EXP,OT ) with n states. Any automaton
consistent with OT with n or less states is isomorphic to H.

L∗ terminates

Any automaton consistent with an observation table (STA,EXP,OT )
with n distinct rows must have at least n states.

Let k be the size of the alphabet. Let n be the number of states of
the minimal complete automaton of the language to be learnt, m the
size of the biggest counter example returned.

▶ |RED| ≤ n +m(n − 1)
▶ |STA| ≤ (k + 1)(n +m(n − 1))
▶ Therefore, there are at most (k +1)(n+m(n− 1))n entries in the table
▶ Strings are of size at most m + 2n − 1
▶ Furthermore, there are at most n − 1 equivalence queries and at most

O(k ∗ n2 ∗m) membership queries.
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Variations of L∗

[Maler/Pnueli 95] Handling of a counterexample w : add all suffixes of
it to E . This insures that RED contains always distinct rows and
consistency is not needed anymore (the table is always consistent by
construction).

[Rivest/Shapire 93] Handling of the counterexample
▶ find a point in the counterexample w = uav where the state (string)

reached in H by ua is different from the one reached in H by u followed
by a.

▶ Formally: We have σA(⌊λ⌋Hw) ̸= σA(⌊w⌋H). Therefore, there must be
a ∈ Σ, u, v ∈ Σ∗ with uav = w such that σA(⌊u⌋Hav) ̸= σA(⌊ua⌋Hv)

▶ search this breaking point in a binary way using membership queries
▶ reduces the complexity from m to log(m)
▶ but EXP is not suffix-closed anymore

⋆ the constructed automaton is not necessarily consistent with the data
in the table ! Is this a problem ?

[Kearns/Vazirani 94] Use of discrimination trees instead of
observation table. See TTT algorithm.
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TTT

Howar et al. The TTT Algorithm: A Redundancy-Free Approach to Active
Automata Learning. RV 2014.
learnlib.de/wp-content/uploads/2017/10/ttt.pdf

Experiments are organised in a discrimination tree (DT) instead of an
observation table:

▶ rooted binary tree, inner nodes are labelled by strings v ∈ EXP, the
two children labelled by 0 (left) and 1 (right).

▶ leaves are labeled by strings corresponding to states of the hypothesis
automaton

▶ SIFT (u) into a tree: if leaf then return the label (state), else if node
labelled by v check if uv ∈ L then branch right else branch left

Key steps:
▶ Initialising the DT
▶ Hypothesis construction
▶ Hypothesis refinement
▶ Hypothesis stabilisation
▶ Discriminator finalisation
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Key steps

Initialising the DT: start with root labeled by λ and two children, the
left or right leaf is labeled by λ depending on if λ ∈ L or not.

Hypothesis construction:
▶ States of the automaton are the leaves
▶ Transitions are determined by sifting: From u, there is a transition with

a to the state given by SIFT (ua)
▶ Accepting states are the ones in the left subtree of the root, rejecting

states the others

Hypothesis refinement:
▶ given counterexample w use Rivest/Shapire’s method to find uav = w

such that σA(⌊u⌋Hav) ̸= σA(⌊ua⌋Hv)
▶ ⌊ua⌋H and ⌊u⌋Ha need to be split. Add new state ⌊u⌋Ha by adding v

in EXP.

Hypothesis stabilisation:
▶ Check if hypothesis does not contradict information in the

discrimination tree.

Discriminator finalisation:
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Learning symbolic automata

Drews and D’Antoni. Learning symbolic automata. TACAS 2017.
https://pages.cs.wisc.edu/∼loris/papers/tacas17learning.pdf
Argyros and D’Antoni. The learnability of symbolic automata. CAV 2018.
pages.cs.wisc.edu/ loris/papers/cav18-learning.pdf
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Symbolic Finite Automata

Instead of letters from a finite alphabet, transitions are labeled by a
formula from an effective boolean algebra B
Boolean algebra: B = (D,Ψ, J K,⊥,⊤,∨,∧,¬)

▶ D: a set of domain elements
▶ Ψ: a set of predicates closed under boolean connectives with ⊥,⊤ ∈ Ψ
▶ J K : Ψ→ 2D a denotation function such that

⋆ J⊥K = ∅
⋆ J⊤K = D
⋆ for all ψ, ϕ ∈ Ψ.Jψ ∨ ϕK = JψK ∪ JϕK and Jψ ∩ ϕK = JψK ∩ JϕK and

J¬ψK = D \ JψK

Example: The equality algebra over some domain D. Basic predicates
are all formulas of the form x = a where a ∈ D. The set of all
predicates is obtained by boolean combinations of these basic
predicates. (Exercice: Show that predicates can be transformed into a
simple normal form)
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Symbolic Automata

A s-FA A is a tuple (B,Q, qλ,F , δ) with
B a boolean algebra (called the alphabet)

Q a finite set of states with qλ ∈ Q the initial state

F ⊆ Q the set of final states

δ ⊆ Q ×ΨB × Q the transition relation containing a finite set of
transitions
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Symbolic automata

A = (B,Q, qλ,F , δ)
characters are elements of DB

words (strings) are elements of D∗
B

A move ρ = (q1, ϕ, q2) ∈ δ (written also q1
ϕ−→ q2) is a transition from

source state q1 to target state q2 where ϕ is the guard (or predicate)
of the move. For a character a ∈ DB, an a-move of A is a move

q1
ϕ−→ q2 such that a ∈ JϕK

A is deterministic if for all transitions (q, ϕ, q1) and (q, ϕ, q2) ∈ δ,
q1 ̸= q2 implies Jϕ ∧ ψK = ∅
A is complete if for each character a there is an a-move out of each q.

Exercice: Define the language of an s-FA.

Theorem: Symbolic automata can be determinised, completed,
minimized.
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(Active) learning of symbolic automata

Obviously, to learn a s-FA, one must be able to learn a formula of the
boolean algebra

Exercice: Give a (polynomial) active learning algorithm for the
equality algebra. Hint: use only equivalence queries. What is its query
complexity ?

The automata learning algorithm uses as a blackbox an active
learning algorithm Λ for the underlying boolean algebra
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The MAT ∗ algorithm

input : O: Membership oracle, E : Equivalence oracle: Λ: algebra
learning algorithm

output: A s-FA H
T ← InitialiseDiscriminationTree(O);
SΛ ← InitialiseGuardLearners(T ,Λ);
H ← GetSFAModel(T ,SΛ,O);
while E(H) does not succeed do

w ← GetCounterexample(H);
T , SΛ ← ProcessCounterexample(T , SΛ,w ,O);
H ← GetSFAModel(T , SΛ,O);

end
return H;
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Discrimination Tree (Recall)

Experiments are organised in a discrimination tree (DT) instead of an
observation table.

rooted binary tree, inner nodes are labelled by strings w ′ ∈ D∗
B, the

two children labelled by 0 (left) and 1 (right).

leaves are labeled by strings s ∈ D∗
B corresponding to states of the

hypothesis automaton

Main operation: SIFT (w) into a tree starting from root: if at leaf
then return the label (state), else if at a node labelled by w ′ then
according to O(ww ′) branch right or branch left

Initially, we have a root labelled by λ and a leaf labelled by λ
according to O(λ). The other leaf is left unknown.

When the other leaf is requested by the membership oracle (a string
is sifted going to the corresponding branch) we add this string as leaf.
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GetSFAModel(T , SΛ,O): Building a s-FA Hypothesis

We start with an automaton with as many states as leaves of the
discrimination tree.

To obtain the guards of each transition, for each pair of states qu and
qv we start a learner Λqu ,qv

If the learner Λqu ,qv asks a membership query a, it is answered by
sifting ua into the tree (if the result is v then yes else no).
Special case (once typically at the beginning of the algorithm): if the
discrimination tree is extended with a leaf, then we restart building an
hypothesis with one more state.

if the learner Λqu ,qv asks an equivalence query it is suspended

When all Λ learners are suspended we have to check that the resulting
automaton is

▶ deterministic
▶ complete
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Checking the hypothesis automaton

Determinism: For each state qu in the hypothesis automaton and
each pair of moves (qu, ϕ1, qv ), (qu, ϕ2, qv ′) we verify Jϕ1 ∧ ϕ2K = ∅.
If there is a character a such that a ∈ Jϕ1 ∧ ϕ2K, then let
m = SIFT (ua). Then, a must satisfy the guard of u → m. Therefore,
if m = v (resp. m = v ′) then we provide a as counterexample to the
learner Λqu ,qv (resp. Λqu ,qv′ )

Completeness: For each state qu in the hypothesis automaton let
S = {ϕ | (qu, ϕ, q′) ∈ δH}. We check that J

∨
ϕ∈S ϕK = D. If a

character a /∈ J
∨

ϕ∈S ϕK is found, let v = sift(ua). a is provided as
counterexample to Λqu ,qv

These two check are iterated until a deterministic and complete
automaton is found.

This automaton can then be submitted to the equivalence oracle.
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Processing the counterexample
Like Rivest/Shapire: Find a breaking point in the counterexample
w = uaw ′ where the state (string) reached in H by ua can be
distinguished from the one reached in H by u followed by a, i.e.
O(⌊u⌋Haw ′) ̸= O(⌊ua⌋Hw ′).

Contrary to the DFA case, here a counterexample does not always
lead to a new state. It could be also that a guard is wrong.

Let u′ = ⌊u⌋H . Let qv be the result of sift(u′a). Consider transition
(qu′ , ϕ, qv ).

a ̸∈ JϕK: That means that the guard is incorrect. We give a as a
counterexample to the learner Λqu′ ,qv .

a ∈ JϕK: We replace the leaf labelled by v in the discrimination tree
by a subtree with a node w ′ and two leaves labeled by the states v
and u′a based on the results of O(v) and O(u′a) which are different.

In the last case, all transitions directed to v might be wrong. We
start fresh instances of the algebra learning algorithm for all these
transitions as well as the new ones from and to qu′a.
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Properties of the MAT ∗ algorithm, Remarks

If a state has several outgoing transitions, it might be that the learner
learns first just one transition with the disjunction of all guards

Let (B,Q, qλ,F , δ) and s-FA, Λ a learning algorithm for B and k be
the maximum size that a predicate guard may take in any
intermediate hypothesis.

MAT ∗ learns A using O(|Q|2|δ|CΛ
m(k) + |Q|2|δ|CΛ

e (k)log(m))
membership and O(|Q||δ|CΛ

e (k)) equivalence queries where m is the
length of the longest counterexample and CΛ

m(k) (resp. C
Λ
e (k)) are

the number of membership (resp. equivalence) queries needed by the
Λ learner to learn concepts of size k .
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Learning Alternating Automata

Angluin et al. Learning Regular Languages via Alternating Automata.
IJCAI 2015 www.cs.bgu.ac.il/∼dana/documents/AEF IJCAI15.pdf
generalises
Bollig, Habermehl, Kern, Leucker. Angluin-style learning of NFA. IJCAI
2009. www.ijcai.org/Proceedings/09/Papers/170.pdf
revisited by
Berndt et al. Learning residual alternating automata. Information and
Computation 289 (2022)
www.sciencedirect.com/science/article/abs/pii/S0890540122001365
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Alternating automata

For a set S , F(S) denotes the set of all formulas over S with binary
operators ∨, ∧ and ⊤, ⊥.
Restrictions: F∨ (only ∨ and ⊤) and F∧ (only ∧ and ⊥).
An alternating automata AFA is a tuple (Σ,Q,Q0,F , δ):

▶ Σ: finite alphabet
▶ Q: finite set of states
▶ Q0 ∈ F(Q): initial condition
▶ F ⊂ Q: final states
▶ δ : Q × Σ→ F(Q): transition function

Special cases:
▶ DFA: Q0 = qλ and δ restricted to Q
▶ NFA: Q0 and δ restricted to F∨
▶ UFA (universal): Q0 and δ restricted to F∧

A transition δ(q, a) can be a nested formula. One can consider just
formulas in DNF.
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Alternating automata

δ is extended to words w ∈ Σ∗ and formulas φ ∈ F(Q) in DNF
(φ =

∨
i Mi and Mi =

∧
j qi ,j) by

▶ δ(φ, λ) = φ
▶ δ(φ, a) =

∨
i

∧
j δ(qi,j , a) for a ∈ Σ

▶ δ(φ,wa) = δ(δ(φ,w), a) for a ∈ Σ and w ∈ Σ∗

The evaluation of a formula is defined by
▶ J⊤K = ⊤, J⊥K = ⊥
▶ JqK =

{
⊤ if q ∈ F
⊥ else

▶ Jφ ∨ ψK = JφK ∨ JψK and Jφ ∧ ψK = JφK ∧ JψK

w ∈ Σ∗ is accepted by an AFA if Jδ(Q0,w)K = ⊤.
The language L(A) is {w ∈ Σ∗ | Jδ(Q0,w)K = ⊤}
Given an AFA A = (Σ,Q,Q0,F , δ), we write Aq for
A = (Σ,Q, q,F , δ),
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Residuality

Denis et al. Residual finite-state automata. STACS 2001.
link.springer.com/chapter/10.1007/3-540-44693-1 13

Given a language L ∈ Σ∗ a residual language is a language w−1.L for
some w ∈ Σ∗.

An automaton A = (Σ,Q,Q0,F , δ) is called residual, if for all q ∈ Q,
L(Aq) is a residual language of L(A).

RNFA, RUFA, RAFA are the residual restrictions of NFA, UFA, AFA.

All DFA are trivially residual.

RNFA and RUFA admit canonical minimal representatives.
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Exercises and remarks

Let Ln = (a+ b)∗a(a+ b)n

Exercise: Give an NFA with n + 2 states for Ln.

Exercise: How many states a DFA for Ln has at least ?

Exercise: Give an UFA with O(n) states for Ln.

Let L′n = {uwv$w | u, v ∈ {a, b}∗ and w ∈ {a, b}n}.
Exercise: How many states an NFA for L′n has at least ?

Exercise: How many states a DFA for L′n has at least ?

Exercise: Give an AFA with O(n) states recognizing L′n

NFA and UFA can be exponentially more succinct than DFA

AFA can be double-exponentially more succinct than DFA

AFA can be exponentially more succinct than NFA and UFA
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Learning Alternating automata: AL∗

generalizes L∗. Specialised versions NL∗ and UL∗.

Main idea: Rows in the observation table can be composed by
boolean operations to obtain other rows.

Remember: in L∗, a table is closed, if for all BLUE rows there exists
an equivalent (i.e.having the same entries) RED row.

Generalisation of closedness: It is enough that each BLUE row can be
obtained by boolean operations on RED rows.

A row r of an observation table can be seen as vector over the binary
alphabet {0, 1} with the size of the experiment set as dimension

We define ⊔ and ⊓ operations on rows as the extension of ∧ and ∨
on vectors.

Let R be a set of rows. For a formula φ ∈ F(R) we define its
evaluation JφK in the usual way using ⊔ and ⊓
The set P ⊆ R is a (⊔,⊓)-basis for R if R ⊆ JF(P)K
A basis P is minimal if no set P \ {p} is a basis. A minimal basis is
not necessarily unique !
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Learning Alternating automata

An observation table (STA,EXP,OT ) (with STA a disjoint union of
RED an BLUE ) is P-closed for a P ⊆ RED, if P is a basis for STA.

Given v ∈ EXP. MP(v) :=
∧

p∈P,p[v ]=1 p

Given a row r ∈ STA. bP(r) :=
∨

v∈EXP,r [v ]=1M
P(v)

Notice, JbP(r)K = r for r ∈ P.

Given a P-closed observation table, one can construct an alternating
automaton (Σ,Q,Q0,F , δ)

▶ Q = P
▶ Q0 = bP(rλ)
▶ F = {r ∈ P | r [λ] = 1}
▶ For all a ∈ Σ et r ∈ Q, δ(r , a) = bP(ra)
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Learning algorithm AL∗

input : O: Membership oracle, E : Equivalence oracle, a language L
output: An AFA H such that L(H) = L
(STA,EXP,OT )← INITIALISE ();
while true do

P ← RED;
while (STA,EXP,OT ) is not P-closed do

find a row r ∈ BLUE with r ̸∈ JF(P)K;
add ua to RED and P; complete table using O; P ← RED

end
construct a minimal basis P and AFA H for P; check with E ;
if ok then return H;
else

get a counterexample w ; add all suffixes of w to EXP;
complete table using O;

end

end
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Remarks

The way the counterexample is analysed guarantees that the algorithm
stops. Each counterexample will add at least one different column.

The status of rows might switch during the algorithm between being
in the basis or not, as more information becomes available.

A minimal basis is not necessarily of minimal size. However, it can be
obtained easily greedily.

Computing a basis of minimal size is NP-complete

One can use approximation algorithms to obtain a basis of almost
minimal size in polynomial time

One obtains variants UL∗, NL∗ by restricting the formulas to
conjunctions (resp. disjonctions)

▶ in this case, it is easy to obtain basis of minimal size.

The resulting automaton is not necessarily a RAFA. The algorithm
can be changed for that.
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