
ar
X

iv
:2

00
2.

04
01

1v
6 

 [
cs

.L
O

] 
 5

 M
ay

 2
02

3

The Bang Calculus Revisited

Antonio Bucciarellia, Delia Kesnera,b,∗, Alejandro Rı́osc, Andrés Visod,∗
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Abstract

Call-by-Push-Value (CBPV) is a programming paradigm subsuming both Call-
by-Name (CBN) and Call-by-Value (CBV) semantics. The essence of this
paradigm is captured by the Bang Calculus, a (concise) term language con-
necting CBPV and Linear Logic.

This paper presents a revisited version of the Bang Calculus, called λ!, en-
joying some important properties missing in the original formulation. Indeed,
the new calculus integrates permutative conversions to unblock value redexes
while being confluent at the same time. A second contribution is related to non-
idempotent types. We provide a quantitative type system for our λ!-calculus,
and we show that the length of the (weak) reduction of a typed term to its
normal form plus the size of this normal form is bounded by the size of its type
derivation. We also explore the properties of this type system with respect to
CBN/CBV translations. We keep the original CBN translation from λ-calculus
to the Bang Calculus, which preserves normal forms and is sound and complete
with respect to the (quantitative) type system for CBN. However, in the case of
CBV, we reformulate both the translation and the type system to restore two
main properties: preservation of normal forms and completeness. Last but not
least, the quantitative system is refined to a tight one, which transforms the
previous upper bound on the length of reduction to normal form plus its size
into two independent exact measures for them.
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1. Introduction

Call-by-Push-Value. The Call-by-Push-Value (CBPV) paradigm, intro-
duced by P.B. Levy [41, 42], distinguishes between values and computations
under the slogan “a value is, a computation does”. It subsumes the λ-calculus
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by adding some primitives that allow to capture both the Call-by-Name (CBN)
and Call-by-Value (CBV) semantics. CBN is a lazy strategy that consumes ar-
guments without any preliminary evaluation, potentially duplicating work, while
CBV is greedy, always computing arguments disregarding whether they are used
or not, which may prevent a normalising term from terminating, e.g. (λx.I) Ω,
where I = λx.x and Ω = (λx.x x) (λx.x x).

Essentially, CBPV introduces unary primitives thunk and force. The for-
mer freezes the execution of a term (i.e. it is not allowed to compute under a
thunk) while the latter fires again a frozen term. Informally, force (thunk t)
is semantically equivalent to t. Resorting to the paradigm slogan, thunk turns
a computation into a value, while force does the opposite. Thus, CBN and
CBV are captured by conveniently labelling a λ-term using force and thunk

to pause/resume the evaluation of a subterm depending on whether it is an
argument (CBN) or a function (CBV). In doing so, CBPV provides a unique
formalism capturing two distinct λ-calculi strategies, thus allowing to study op-
erational and denotational semantics of CBN and CBV in a unified framework.

Bang calculus. T. Ehrhard [26] introduced a typed calculus, that can be
seen as a variation of CBPV, to establish a relation between this paradigm and
Linear Logic (LL). A simplified version of this formalism is later dubbed Bang
calculus [27], showing in particular how CBPV captures the CBN and CBV
semantics of λ-calculus via Girard’s translations of intuitionistic logic into LL. A
further step in this direction [16] uses Taylor expansion [28] in the Bang Calculus
to approximate terms in CBPV. The Bang calculus is essentially an extension
of λ-calculus with two new constructors, namely bang (!) and dereliction (der),
together with the reduction rule der (! t) 7→ t. There are two notions of reduction
for the Bang calculus, depending on whether it is allowed to reduce under a bang
constructor or not. They are called strong and weak reduction respectively.
Indeed, it is weak reduction that makes bang/dereliction play the role of the
primitives thunk/force. Hence, these modalities are essential to capture the
essence behind the CBN–CBV duality. A similar approach appears in [46],
studying (simply typed) CBN and CBV translations into a fragment of IS4,
recast as a very simple λ-calculus equipped with an indeterminate lax monoidal
comonad.

Non-Idempotent Types. Intersection types, pioneered by [17, 18], can
be seen as a syntactical tool to denote programs. They are invariant under
the equality generated by the evaluation rules, and type all and only all nor-
malising terms. They were originally defined as idempotent types, so that the
equation σ ∩ σ = σ holds, thus preventing any use of the intersection construc-
tor to count resources. On the other hand, non-idempotent types, pioneered
by [29], are inspired by LL and can be seen as a syntactical formulation of
its relational model [31, 12]. This connection suggests a quantitative typing
tool, being able to specify properties related to the consumption of resources,
a remarkable investigation pioneered by de Carvalho’s seminal PhD thesis [20]
(see also [22]). Non-idempotent types have also been used to provide charac-
terisations of complexity classes [10]. Several papers explore the qualitative
and quantitative aspects of non-idempotent types for different higher order lan-
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guages, as for example Call-by-Name, Call-by-Need and Call-by-Value λ-calculi,
as well as extensions to Classical Logic. Some references are [14, 25, 4, 3, 38].
Other relational models were directly defined in the more general context of LL,
rather than in the λ-calculus [21, 34, 24, 23].

An interesting recent research topic concerns the use of non-idempotent types
to provide bounds of reduction lengths. More precisely, the size of type deriva-
tions has often been used as an upper bound to the length of different evaluation
strategies [44, 25, 36, 14, 37, 38]. A key notion behind these works is that when
t evaluates to t′, then the size of the type derivation of t′ is smaller than the one
of t, thus the size of type derivations provides an upper bound for the length of
the reduction to a normal form as well as for the size of this normal form.

A crucial point to obtain exact bounds, instead of upper bounds, is to consider
onlyminimal type derivations, as the ones in [20, 11, 24]. Another approach was
taken in [1], which uses an appropriate notion of tightness to implement mini-
mality, a technical tool adapted to Call-by-Value [32, 3, 40], Call-by-Need [4],
pattern-matching languages [7], and control operators [39].

1.1. Contributions and Related Works

This article presents a reformulation of the untyped Bang calculus, and
proposes a quantitative study of it by means of non-idempotent types.

The Untyped Reduction. The Bang calculus in [26] suffers from the
absence of permutative conversions [45, 15], making some redexes syntactically
blocked when open terms are considered. A consequence of this approach is that
there are some normal forms that are semantically equivalent to non-terminating
programs, a situation which is clearly unsound. This is repaired in [27] by
adding permutative conversions specified by means of σ-reduction rules, which
are crucial to unveil hidden (value) redexes. However, this approach presents a
major drawback since the resulting combined reduction relation is not confluent
(Page 6 in [27] or Example 2.3 below).

Our revisited Bang calculus, called λ!, fixes these two problems at the
same time. Indeed, the syntax is enriched with explicit substitutions, and σ-
equivalence is integrated in the primary reduction system by using the distance
paradigm [5], without any need to unveil hidden redexes by means of an inde-
pendent relation. This approach restores confluence.

The Untyped CBN and CBV Encodings. CBN and CBV (untyped)
translations are extensively studied in [33, 19, 43], where the authors establish
two encodings cbn and cbv, from untyped λ-terms into untyped terms of the
Bang calculus, such that when t reduces to u in CBN (resp. CBV), cbn(t)
reduces to cbn(u) (resp. cbv(t) reduces to cbv(u)) in the Bang calculus. However,
CBV normal forms in λ-calculus are not necessarily translated to normal forms
in the Bang calculus.

We extend to explicit substitutions the original CBN translation from λ-
calculus to the Bang calculus, which preserves normal forms, and we reformulate
the CBV one in such a way that, in contrast to [33], our CBV translation does
preserve normal forms. In order to achieve the preservation of normal forms,
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we use a non-compositional CBV translation based on superdevelopments [35,
48], which performs reduction of created redexes during the translation. Our
revisited notion of reduction inside the Bang calculus naturally encodes head
CBN, i.e. reduction does not take place in arguments of applications, as well
as open CBV, i.e. reduction does not take place inside abstractions. More
precisely, the λ!-calculus encodes head CBN and open CBV specified by means
of explicit substitutions (see for example [6]). These two notions are dual: head
CBN forbids reduction inside arguments, which are translated to bang terms,
while open CBV forbids reduction under λ-abstractions, also translated to bang
terms.

The Typed System. Starting from the relational model for the Bang cal-
culus proposed in [33], we propose a type system for the λ!-calculus, called U ,
based on non-idempotent intersection types. System U is able to fully charac-
terise normalisation, in the sense that a term t is U-typable if and only if t is
normalising. More interestingly, we show that system U has also a quantitative
flavour, in the sense that the length of any reduction sequence from t to normal
form plus the size of this normal form is bounded by the size of the type deriva-
tion of t. We show that system U also captures the standard non-idempotent
intersection type system N for CBN, in the sense that a λ-term t is typable in
N if and only if its translation cbn(t) is typable in U with the same type and
context. Concerning CBV, we define a new type system V and we show that our
CBV translation enjoys the same property. System V characterises termination
of open CBV, in the sense that t is typable in V if and only if t is terminating in
open CBV. This can be seen as another (collateral) contribution of this article.
Moreover, the CBV embedding in [33] is not complete with respect to their
type system for CBV. System V recovers completeness (left as an open ques-
tion in [33]). Finally, an alternative CBV encoding of typed terms is proposed.
This encoding is not only sound and complete, but now enjoys preservation of
normal-forms.

A Refinement of the Type System Based on Tightness. A major
observation concerning β-reduction in λ-calculus (and therefore in the Bang
calculus) is that the size of normal forms can be exponentially bigger than the
number of steps to these normal forms. This means that bounding the sum of
these two integers at the same time is too rough, not very relevant from a quan-
titative point of view. Following ideas in [20, 11, 1], we go beyond upper bounds.
Indeed, another major contribution of this article is the refinement of the non-
idempotent type system U to another type system E , equipped with constants
and counters, together with an appropriate notion of tightness (i.e. minimal-
ity). This new formulation fully exploits the quantitative aspect of the system,
in such a way that upper bounds provided by system U are refined now into
independent exact bounds for time and space. More precisely, we show that a
term t admits a tight type derivation with counters (b, e, s) if and only if t is
normalisable in (b + e)-steps and its normal form has size s . Therefore, exact
measures concerning the dynamic behaviour of t, are extracted from a static
(tight) typing property of t.

This is a revised and extended version of the authors’ article [13].
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Road-map. Sec. 2 introduces the λ!-calculus. Sec. 3 presents the sound
and complete type system U . Sec. 4 discusses (untyped and typed) CBN/CBV
translations. In Sec. 5 we refine system U into system E , and we prove soundness
and completeness. Conclusions and future work are discussed in Sec. 6.

2. The Bang Calculus Revisited

This section presents a revisited (conservative) extension of the original Bang
calculi [26, 27], called λ!. From a syntactical point of view, we just add explicit
substitution operators. From an operational point of view, we use reduction
at a distance [5], thus integrating permutative conversions without jeopardising
confluence (see the discussion below).

Given a countably infinite set X of variables x, y, z, . . . we consider the fol-
lowing grammar for terms, denoted by T , and contexts:

(Terms) t, u ::= x ∈ X | t u | λx.t | ! t | der t | t[x\u]
(List Contexts) L ::= � | L[x\t]

(Contexts) C ::= � | C t | t C | λx.C | ! C | der C | C[x\u] | t[x\C]
(Weak Contexts) W ::= � | W t | t W | λx.W | der W | W[x\u] | t[x\W]

Terms of the form t[x\u] are closures, and [x\u] is called an explicit sub-
stitution (ES). Special terms are I = λz.z, K = λx.λy.x, ∆ = λx.x ! x, and
Ω = ∆ !∆. Weak contexts do not allow the symbol � to occur inside the bang
construct. This is similar to weak contexts in λ-calculus, where � cannot oc-
cur inside λ-abstractions. We will see in Sec. 4 that weak reduction in the
λ!-calculus perfectly captures head reduction in CBN, disallowing reduction in-
side arguments, as well as open CBV, disallowing reduction inside abstractions.
We use C〈t〉 (resp. W〈t〉 and L〈t〉) for the term obtained by replacing the hole
� of C (resp. W and L) by t. In order to increase readability we use the fol-
lowing notational conventions: the application is left associative and has higher
priority than the λ-abstraction, so that for instance we may write λx.t u r for
λx.((t u) r). The unary operators have higher priority than the binary ones,
so that for instance ! t u reads (! t) u. Also, the explicit substitution operator
has higher priority than the other binary operators. Nevertheless, we use these
notations with parcimony and we add parenthesis only whenever they could
be misleading. The notions of free and bound variables are defined as ex-
pected, in particular, fv(t[x\u]) def

= fv(t) \ {x} ∪ fv(u), fv(λx.t) def

= fv(t) \ {x},
bv(t[x\u]) def

= bv(t) ∪ {x} ∪ bv(u) and bv(λx.t) def

= bv(t) ∪ {x}. We extend the
standard notion of α-conversion [9] to ES, as expected, so that bound vari-
ables can always be renamed. Thus e.g. λx.x =α λy.y and x[x\z] =α y[y\z].
We use t {x\u} to denote the meta-level substitution operation, i.e. all the
free occurrences of the variable x in the term t are replaced by u. This oper-
ation is defined, as usual, modulo α-conversion. We use two special predicates
to distinguish abstractions and bang terms possibly affected by a list of explicit
substitutions. Indeed, abs(t) holds iff t = L〈λx.t′〉 for some L and bang(t) holds
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iff t = L〈! t′〉 for some L. Finally, we define the following notion of size for terms
of the λ!-calculus:

Definition 2.1. The w-size of t ∈ T is inductively defined as follows:

|x|w
def

= 0 |! t|w
def

= 0

|t u|w
def
= 1 + |t|w + |u|w |der t|w

def
= 1 + |t|w

|λx.t|w
def

= 1 + |t|w |t[x\u]|w
def

= 1 + |t|w + |u|w

The λ!-calculus is given by the set of terms T and the (weak) reduc-
tion relation →w, which is defined as the union of →dB (distant Beta), →s!

(substitute bang) and →d! (distant bang), defined respectively as the closure by
weak contexts W of the following rewriting rules:

L〈λx.t〉 u 7→dB L〈t[x\u]〉
t[x\L〈!u〉] 7→s! L〈t {x\u}〉
der (L〈! t〉) 7→d! L〈t〉

We assume that all these rules avoid capture of free variables.

Example 2.2. Let t0 = der (! K) (! I) (! Ω). Then,

t0 →d! K (! I) (! Ω) →dB (λy.x)[x\! I] (! Ω) →dB x[y\! Ω][x\! I] →s! x[x\! I] →s! I

Observe that the second dB-step uses action at a distance, where L is �[x\! I].

Given the translation of the Bang Calculus into LL proof-nets [26], we refer
to dB-steps as m-steps (multiplicative) and {s!, d!}-steps as e-steps (exponential).

Observe that reduction is at a distance, in the sense that the list context
L in the rewriting rules allows the main constructors involved in these rules to
be separated by an arbitrary finite list of substitutions. This new formulation
integrates permutative conversions inside the main (logical) reduction rules of
the calculus, in contrast to [27] which treats these conversions by means of a
set of independent σ-rewriting rules, thus inheriting many drawbacks. More
precisely, in the first formulation of the Bang calculus [26], there are hidden
(value) redexes that block reduction, thus creating a mismatch between normal
terms that are semantically non-terminating. The second formulation in [27]
recovers soundness, by integrating a notion of σ-equivalence which is crucial to
unveil hidden redexes and ill-formed terms (called clashes)1. However, adding
σ-reduction to the logical reduction rules does not preserve confluence. Our
notion of reduction addresses these two issues at the same time2: it integrates
permutative conversions and is confluent (Theorem 2.8).

1Indeed, there exist clash-free terms in normal form that are σ-reducible to normal
terms with clashes, see the definition of clash term at the end of Section 2, e.g. R =
der ((λy.λx.z) (der (y) y)) ≡σ der (λx.(λy.z) (der (y) y)).

2In particular, the term R is not in normal form in our framework, and it reduces to a
clash term in normal form which is filtered by the type system, see Lemma 3.7.
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Example 2.3. The following example is a simplified version of the one in [27]
showing that their calculus is not confluent. There are two permutative conver-
sions involved in this example:

((λx.s) r)u 7→σ1
(λx.s u) r x 6∈ fv(u)

(λy.λx.s) r 7→σ2
λx.(λy.s) r x 6∈ fv(r) ∪ {y}

The term t = (λx.λy.z) (der x′) (der y′) contains both a σ1 and a σ2 redex:

t →σ1
(λx.(λy.z) (der y′)) (derx′) = t1

t →σ2
(λy.(λx.z) (derx′)) (der y′) = t2

where →σi
is the closure by weak contexts of 7→σi

for i = 1, 2. The terms t1
and t2, which are different, are normal forms in [27], so that confluence is lost.
In the λ!-calculus, however, we have:

t →dB (λy.z)[x\der x
′] (der y′) →dB z[y\der y

′][x\der x′] = t0

where t0 is the (unique) normal form of t.

We write ։w (resp. →+
w ) for the reflexive-transitive (resp. transitive) closure

of →w. We write t ։
(b,e)
w u if t ։w u using b dB steps and e {s!, d!}-steps.

The reduction relation→w enjoys a kind of (weak) diamond property, i.e. one-
step divergence can be closed in one step if the diverging terms are different,
since →w is not reflexive. Otherwise stated, the reflexive closure of →w enjoys
the strong diamond property.

Lemma 2.4. If t →p1
t1 and t →p2

t2 where t1 6= t2 and p1, p2 ∈ {dB, s!, d!},
then there exists t3 such that t1 →p2

t3 and t2 →p1
t3.

Proof. The proof is by induction on t. To make the notations easier to read, we
write uL instead of L〈u〉, where L is the list of substitutions of the context L.

We only show the two interesting cases (root reduction with superposition
of redexes), all the other ones being straightforward:

• t = ((λx′.t′)L1[x\(!u)L2]L3)u
′ →dB t′[x′\u′]L1[x\(!u)L2]L3 = t1 and

t →s! (((λx′.t′)L1){x\u}L2L3)u
′ = ((λx′.t′{x\u})(L1{x\u})L2L3)u

′ =
t2. By α-conversion we can assume x /∈ fv(u′) so that by defining

t3 = t{x\u}[x′\u′](L1{x\u})L2L3 = t[x′\u′]{x\u}(L1{x\u})L2L3

we can close the diagram as follows: t1 →s! t3 and t2 →dB t3.

• t = der ((!u′)L1[x\(!u)L2]L3) →d! u
′
L1[x\(!u)L2]L3 = t1 and also t →s!

der ((!u′)L1{x\u}L2L3) = t2. We close the diagram with t1 →s! t3 and
t2 →d! t3, where t3 = (u′

L1){x\u}L2L3 = u′{x\u}L1{x\u}L2L3.

7



The result above does not hold if reductions are allowed inside arbitrary
contexts. Consider for instance the term t = (x ! x)[x\! (I !I)]. We have t →s!

(I !I) ! (I ! I) and, if we allow the reduction in t of the dB-redex I ! I appearing
banged inside the explicit substitution, we get t →dB (x ! x)[x\! z[z\!I]]. Now,
the term (x ! x)[x\! z[z\!I]] s!-reduces to z[z\!I] ! (z[z\!I]), whereas two dB-
reductions are needed in order to close the diamond, i.e. to rewrite (I ! I) ! (I !I)
into z[z\!I] ! (z[z\!I]).

It is possible to w-reduce two different redexes of a term in such a way
that the same reduct (modulo α-conversion) is obtained. For instance, if t =
x[y\!u][z\!u] then t →w x[y\!u] for the W-context �, and t →w x[z\!u] for the
W-context �[z\!u]. Nevertheless, in such a case the reduction rules must be the
same, as we shall establish in Lemma 2.6. As a preliminary result, we prove
that no term can w-reduce to itself in one w-step.

Lemma 2.5. For all t ∈ T , t 6→w t.

Proof. We prove by induction on t that if t →w t
′ then t 6= t′.

• If t = x then the statement holds vacuously.

• If t = λx.r or t = ! r, then the reduction t →w t′ takes place inside r and
we conclude by the i.h.

• If t = der r and the reduction t →w t
′ takes place inside r then we conclude

by the i.h. If the reduction t →w t
′ takes place at the root then it must be

the case that r = L〈! s〉 and t′ = L〈s〉, so that t 6= t′.

• If t = r s then we reason as in the previous case.

• If t = u[x\s], then let us write t = r[x1\s1] . . .[xn\sn] in such a way that:

– n ≥ 1

– r is not an explicit substitution.

– for all 1 ≤ i ≤ n, xi /∈ fv(si) ∪ bv(si).

As in the previous cases, the i.h. settles the cases in which the reduction
t →w t

′ takes place inside r or inside si, for 1 ≤ i ≤ n. The only remaining
cases to consider are the s!-steps of the form

t →s! L〈r[x1\s1] . . .[xj−1\sj−1] {xj\s′}〉[xj+1\sj+1] . . .[xn\sn]
= r′[y1\u1] . . .[ym\um] = t′

where sj = L〈! s′〉, for some L, s′ and 1 ≤ j ≤ n, and where r′ is not an
explicit substitution. Let l be the length of the list of explicit substitutions
L. If l > 1 then m > n, so that t′ 6= t.

– If l = 0 and r {xj\s
′} is not an explicit substitution, then m = n− 1,

so that t′ 6= t. If l = 0 and r {xj\s′} is an explicit substitution, then
it must be the case that r = xj . In this case, t starts with a free
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occurrence of xj whereas t′ starts with s′, and by hypothesis s′ does
not contain free occurrences of xj , being s′ a subterm of sj . Hence
t′ 6= t.

– If l = 1, then sj = (! s′)[z\u] for some z, u. If m 6= n then t′ 6= t and
we are done, otherwise uj = u, and, in order to have t = t′ it should
be the case that u = sj . But u is a proper subterm of sj , so that
t 6= t′.

As a matter of fact, a weaker version of Lemma 2.5 stating that one-step
cycles are impossible using dB or d! only, is sufficient to prove Lemma 2.6.
However, the stronger version presented here provides more insight on the λ!-
calculus.

Lemma 2.6. If t →p1
t′ and t →p2

t′, then p1 = p2, where p1, p2 ∈ {dB, s!, d!}.

Proof. We prove by induction on t that if t →p1
t1, t →p2

t2 and p1 6= p2 then
t1 6= t2.

• If t = x then the statement holds vacuously.

• If t = λx.r or t = ! r then both reductions must take place inside r, and
the i.h. allows us to conclude.

• If t = der r and both reductions take place in r, then the i.h. allows
us to conclude. Otherwise it must be the case that r = L〈! r′〉, so that
t →p1

t1 is, say, t →d! L〈r′〉. If L〈! r′〉 is not an explicit substitution,
then no reduction t →p2

t2 with p1 6= p2 is possible since w-reductions
do not take place inside a bang. Otherwise t1 is an explicit substitution
whereas t2 = der L′〈! r′〉, for some L〈! r′〉 →p2 L′〈! r′〉, is a dereliction so
that t1 6= t2.

• If t = r s and the reductions take place either both in r or both in s,
then the i.h. allows us to conclude. If r s →p1

r′ s and r s →p2
r s′, then

Lemma 2.5 allows us to conclude. Otherwise it must be the case that
r = L〈λx.r′〉, so that t →p1

t1 is, say, t →dB L〈r′[x\s]〉, and t1 is an
explicit substitution. Now, the p2-step must take place either in r or in s,
hence t2 is an application, so that t1 6= t2.

• If t = r[x\s] and the reductions take place either both in r or both in s,
then the i.h. allows us to conclude. If r[x\s] →p1

r[x\s′] and r[x\s] →p2

r′[x\s], then Lemma 2.5 allows us to conclude. Otherwise it must be the
case that s = L〈! s′〉, so that t →p1

t1 is, say, t →s! L〈r {x\s′}〉. Let us
write t = r′[x1\s1] . . .[xn\sn][x\s] in such a way that:

– n ≥ 0

– r′ is not an explicit substitution.
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– for all 1 ≤ i ≤ n, xi /∈ fv(si) ∪ bv(si).

Thus, t1 = L〈r′[x1\s1] . . .[xn\sn] {x\s′}〉. In the rest of the proof, we note
t →p2

t2 the second w-reduction of t. Since p1 = s! and p1 6= p2, t →p2
t2

is a dB-step or a d!-step taking place either in r′, or in one of the si,
1 ≤ i ≤ n, or in s. We observe first that if r′ = x then t2 starts with
a free occurrence of x and t1 starts with s′, where x cannot occur free,
so that t1 6= t2. It remains to consider the case r′ 6= x. As a matter of
terminology, let us say that a term u has exactly n explicit substitutions if
u = u′[z1\u1] . . .[zn\un] and u′ is not an explicit substitution. In the case
r′ 6= x the term t1 has exactly n+m explicit substitutions, where m is the
length of L, and the term t2 has at least n+1 explicit substitutions. Hence,
if L is empty, then t1 6= t2. It remains to consider the case L = L′[w\u] for
some list of explicit substitutions L′, variable w and term u. In this case
the outermost explicit substitution of t1 is [w\u]. We conclude the proof
by showing that in this case the outermost explicit substitution [w′\u′] of
t2 is such that ||u|| < ||u′||, where ||t|| is the size of the syntactic tree of t
(all nodes count one3). If the reduction t →p2

t2 takes place outside the
leftmost occurrence of u then u′ is of the form L1〈! s′〉 with L1 = L2[w\u],
hence ||u|| < ||u′||. If the reduction t →p2

t2 takes place in the leftmost
occurrence of u, then u′ is of the form L1〈! s′〉 and L1 = L′[w\u′′], with
u →dB u

′′ or u →d! u
′′. By remarking that ||u′′||+2 ≥ ||u|| (simple inspection

of the rules), and that ||u′|| ≥ ||u′′||+ 3 we get ||u|| < ||u′||, in this case too,
and we are done.

In the proof of the following lemma, pairs of natural numbers are used to

decorate reduction sequences. More precisely, by writing t ։
(b,e)
w u we mean

that t w-reduces to u using b multiplicative steps and e exponential steps. We
use the following order on pairs: (a, b) ≺ (a′, b′) iff a < a′ and b ≤ b′, or a ≤ a′

and b < b′. Moreover, we use the operation + on pairs to denote the pairwise
addition.

Lemma 2.7. If t ։c1
w u1 and t ։c2

w u2, then there exists a term t′ and pairs
c1, c2 such that u1 ։c2

w t′, and u2 ։c1
w t′, where ci � ci with i = 1, 2 and

c1 + c2 = c2 + c1.

Proof. In this proof we use the notation qi for pairs of the form (1, 0) or (0, 1).
The proof of the lemma is by induction on c1 + c2. The cases c1 = (0, 0) or

c2 = (0, 0) (including the base case) are all trivial. So let us suppose c1 ≻ (0, 0)

and c2 ≻ (0, 0). Then t →q1
w t1 ։

c′
1

w u1 and t →q2
w t2 ։

c′
2

w u2, where c′i + qi = ci
with i = 1, 2.

3Here is the definition: ||x|| = 1, ||! t|| = ||der t|| = ||λx.t|| = ||t|| + 1, ||t [u]|| = ||t[x\u]|| =
||t||+ ||u||+ 1.
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If t1 = t2, then q1 = q2 by Lemma 2.6. We have t1 ։
c′
1

w u1 and t1 ։
c′
2

w u2.

Since c′1 + c′2 ≺ c1 + c2, then by the i.h. there exists t′ such that u1 ։
c′
2

w t′,

u2 ։
c′
1

w t′ where c′1 + c′2 = c′2 + c′1, and c′i � c′i with i = 1, 2. Let us set ci = c′i
with i = 1, 2. We conclude since c1 + c2 = c′1 + q1 + c′2 = q1 + c′2 + c′1 = c2 + c1
and ci = c′i � c′i ≺ ci with i = 1, 2.

If t1 6= t2, then by Lemma 2.4 there exists t3 such that t1 →q2
w t3 and

t2 →q1
w t3. We now have t2 →q1

w t3 and t2 ։
c′
2

w u2. Since c′2 + q1 ≺ c1 + c2, then

the i.h. gives t4 such that u2 ։q1
w t4, t3 ։

c′
2

w t4, c
′
2 + q1 = q1 + c′2, q1 � q1 and

c′2 � c′2. We now have t1 ։
c′
1

w u1 and t1 ։
q2+c′

2

w t4. In order to apply the i.h. we
need c′1 + q2 + c′2 ≺ c1 + c2. Indeed, c′1 + q2 + c′2 ≺ c1 + c2 = q1 + c′1 + q2 + c′2

iff c′2 ≺ q1 + c′2 iff c′2 � c′2. Then the i.h. gives t′ such that u1 ։
c′
2
+q2

w t′ and

t4 ։
c′
1

w t′, where c′1 + c′2 + q2 = q2 + c′2 + c′1, c
′
1 � c′1 and c′2 + q2 � c′2 + q2. We

can then conclude since u2 ։
q1+c′

1

w t′. We have

• c′2 + q2 � c′2 + q2 � c′2 + q2.

• q1 + c′1 � q1 + c′1.

• q1 + c′1 + c′2 + q2 = q1 + q2 + c′2 + c′1 = q2 + c′1 + c′2 + q1.

This gives the following two major results.

Theorem 2.8.

• The reduction relation →w is confluent.

• Any two different reduction paths to w-normal form have the same length.

Proof. The two statements follow from Lemma 2.7.

Example 2.9. Let us illustrate the previous result with t = (x ! x)[x\I′ (I′ ! I)],
where I′ = λx.! x. For that, let us first consider the following reduction

I′ ! I →dB (!x)[x\! I] →s! ! I

Observe that the second step is a weak step, since the reduction takes place at
the root of the term. On the contrary, notice that the step ! (x[x\! I]) →s! ! I is
not a weak step since the reduction takes place under a bang.

Similarly,
I !I →dB x[x\! I] →s! I

Thus, I′ ! I ։
(1,1)
w ! I and I !I ։

(1,1)
w I.
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Coming back now to the original term t, the following essentially different
weak reductions from t to its normal form I have both length 7:

t ։
(1,1)
w (x !x)[x\I′ ! I] ։

(1,1)
w (x ! x)[x\! I] →s! I ! I ։

(1,1)
w I

t →dB (x !x)[x\(! z)[z\I′ ! I]] →s! (z ! z)[z\I′ ! I]

։
(1,1)
w (z ! z)[z\!I] →s! I !I ։

(1,1)
w I

As explained above, the strong property expressed in the second item of
Theorem 2.8 and illustrated in Example 2.9 relies essentially on the fact that
reductions are disallowed under bangs. Observe the important role of the L-
context �[z\I′ ! I] in the second step of the last reduction sequence.

Normal forms and neutral terms. A term is said to be w-normal if there
is no t′ such that t →w t′, in which case we write t 6→w. This notion can be
characterised by means of the following inductive grammars:

(Neutral) new ::= x ∈ X | naw now | der (nbw) | new[x\nbw]
(Neutral-Abs) naw ::= ! t | new | naw[x\nbw]

(Neutral-Bang) nbw ::= new | λx.now | nbw[x\nbw]
(Normal) now ::= naw | nbw

As we shall see (cf. Proposition 2.11), all these terms are w-normal. Moreover,
neutral terms do not produce any kind of redexes when inserted into a context,
while neutral-abs terms (resp. neutral-bang) may only produce s! or d!
redexes (resp. dB redexes) when inserted into a context.

Remark 2.10. Some immediate properties of the sets of terms defined above
are:

• new = naw ∩ nbw

• now = naw ∪ nbw

• for all terms t, t ∈ naw implies t ∈ new or bang(t).

• for all terms t, t ∈ nbw implies t ∈ new or abs(t).

• for all terms t, t ∈ naw and t /∈ nbw implies bang(t).

• for all terms t, t ∈ nbw and t /∈ naw implies abs(t).

Proposition 2.11 (Normal Forms). For all t ∈ T , t 6→w iff t ∈ now.

Proof. We prove simultaneously the following statements:

(a) t ∈ new ⇔ t 6→w and ¬abs(t) and ¬bang(t).

(b) t ∈ naw ⇔ t 6→w and ¬abs(t).

(c) t ∈ nbw ⇔ t 6→w and ¬bang(t).
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(d) t ∈ now ⇔ t 6→w.

The implication ⇒ is proved by induction on the predicate t ∈ now. In all cases,
it is sufficient to reason by a simple case analysis of the grammars defining the
sets new, naw, nbw and now, using the suitable induction hypothesis.

The implication ⇐ is proved by induction on t. As for ⇐ (a): w-normal
terms neither of the form L〈! t′〉 nor L〈λx.t′〉 have necessarily one of the following
shapes:

• x

• der t, where t is normal and ¬bang(t).

• t u, where t, u are normal and ¬abs(t).

• t[x\u], where t, u are normal, ¬abs(t), ¬bang(t) and ¬bang(u).

Each case is settled by using the corresponding case in the definition of new and
the suitable induction hypothesis. The same holds for ⇐ (b), ⇐ (c) and ⇐
(d).

Clashes. Some ill-formed terms are not redexes but they don’t represent a
desired result for a computation either. They are called clashes (meta-variable
c), and defined as follows:

L〈! t〉u t[y\L〈λx.u〉] der (L〈λx.u〉) t (L〈λx.u〉)

Observe that in the three first kind of clashes, replacing λx.by !, and inversely,
creates a (root) redex, namely (L〈λx.t〉)u, t[x\L〈! t〉] and der (L〈! t〉), respec-
tively. In the fourth kind of clash, however, this is not the case since t (L〈!u〉)
is not a redex in general.

A term is clash-free if it does not reduce to a term containing a clash, it
is weakly clash-free, written wcf, if it does not reduce to a term containing a
clash outside the scope of any constructor !. In other words, t is not wcf if and
only if there exist a weak context W and a clash c such that t ։w W〈c〉.

Weakly clash-free normal terms can be characterised as follows:

(Neutral wcf) newcf ::= x ∈ X | newcf nawcf | der (newcf) | newcf[x\newcf]
(Neutral-Abs wcf) nawcf ::= ! t | newcf | nawcf[x\newcf]

(Neutral-Bang wcf) nbwcf ::= newcf | λx.nowcf | nbwcf[x\newcf]
(Normal wcf) nowcf ::= nawcf | nbwcf

Intuitively, nowcf denotes now ∩ wcf (respectively for newcf, nawcf and nbwcf).

Proposition 2.12 (Clash-free normal forms). Let t ∈ T . Then t is a weakly
clash-free normal form iff t ∈ nowcf.

Proof. Similar to Proposition 2.11.
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3. The Type System U

This section introduces a first type system U for our revisited version of the
Bang calculus, which extends the one in [33] to explicit substitutions. We show
in this paper that U does not only qualitatively characterise normalisation, but
is also quantitative, in the sense that the length of the (weak) reduction of a
typed term to its normal form plus the size of this normal form is bounded by
the size of its type derivation. We also explore in Sec. 4 the properties of this
type system with respect to the CBN and CBV translations.

Given a countable infinite set T V of base types α, β, γ, . . ., we define the
following sets of types:

(Types) σ, τ ::= α ∈ T V | M | M → σ
(Multiset Types) M ::= [σi]i∈I where I is a finite set

Multiset types will be indistinctly written as M or [σi]i∈I , in both cases they
denote a finite multiset of types. The empty multiset type is denoted by [ ].
Also, |M| denotes the size of the multiset, thus if M = [σi]i∈I then |M| = #(I).

Two multiset types are identified if they are related by the relation≡, defined
by induction on types as follows:

• α ≡ α,

• M1 → σ1 ≡ M2 → σ2 if M1 ≡ M2 and σ1 ≡ σ2,

• [σi]i∈I ≡ [τj ]j∈J if |I| = |J | and there is a bijection function f between I
and J such that σi ≡ τf(i) for all i ∈ I.

Typing contexts (or just contexts), written Γ,∆, are functions from vari-
ables to multiset types, assigning the empty multiset to all but a finite set of vari-
ables. The support of Γ is given by supp(Γ) def

= {x | Γ(x) 6= []}. The empty con-
text is the context with an empty support. The union of contexts, written
Γ + ∆, is defined by (Γ + ∆)(x) def

= Γ(x)⊔∆(x), where ⊔ denotes multiset union.
An example is (x : [σ], y : [τ ]) + (x : [σ], z : [τ ]) = (x : [σ, σ], y : [τ ], z : [τ ]).
This notion is extended to several contexts as expected, so that +i∈I Γi de-
notes a finite union of contexts (when I = ∅ the notation is to be understood
as the empty context). We write Γ \\ x for the context (Γ \\ x)(x) = [ ] and
(Γ \\ x)(y) = Γ(y) if y 6= x. Contexts can be compared as follows Γ ⊆ ∆ iff
Γ(x) ⊑ ∆(x) for every variable x, where ⊑ is multiset inclusion.

Type judgements have the form Γ ⊢ t : σ, where Γ is a typing context, t
is a term and σ is a type. The type system U for the λ!-calculus is given in
Figure 1.

The axiom (ax) is relevant (there is no weakening) and the rules (app) and
(es) are multiplicative. Note that the argument of a bang is typed #(I) times
by the premises of rule (bg). A particular case is when I = ∅: the subterm t
occurring in the typed term ! t turns out not to be typed (we often say that t is
untyped in this case).

A (type) derivation is a tree obtained by applying the (inductive) typing
rules of system U . The notation ⊲U Γ ⊢ t : σ means there is a derivation of
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(ax)
x : [σ] ⊢ x : σ

Γ ⊢ t : σ ∆ ⊢ u : Γ(x)
(es)

(Γ \\ x) + ∆ ⊢ t[x\u] : σ

Γ ⊢ t : τ
(abs)

Γ \\ x ⊢ λx.t : Γ(x) → τ

Γ ⊢ t : M → τ ∆ ⊢ u : M
(app)

Γ + ∆ ⊢ t u : τ

(Γi ⊢ t : σi)i∈I
(bg)

+i∈I Γi ⊢ ! t : [σi]i∈I

Γ ⊢ t : [σ]
(dr)

Γ ⊢ der t : σ

Figure 1: System U for the λ!-calculus.

the judgement Γ ⊢ t : σ in system U . The term t is typable in system U , or
U-typable, iff there are Γ and σ such that ⊲UΓ ⊢ t : σ. We use the capital Greek
letters Φ,Ψ, . . . to name type derivations, by writing for example Φ⊲U Γ ⊢ t : σ.
The size of the derivation Φ, denoted by sz (Φ), is defined as the number of
rules in the type derivation Φ except rule (bg), which does not count. Note in
particular that, given a derivation Φt for a term t, we always have sz (Φt) ≥ |t|w,
as | |w does not count in turn subterms prefixed by a bang constructor.

Example 3.1. The following tree Φ0 is a type derivation for term t0 of Exam-
ple 2.2.

(ax)
x : [[τ ] → τ ] ⊢ x : [τ ] → τ

(abs)
x : [[τ ] → τ ] ⊢ λy.x : [ ] → [τ ] → τ

(abs)
⊢ λx.λy.x : [[τ ] → τ ] → [ ] → [τ ] → τ

(bg)
⊢ ! K : [[[τ ] → τ ] → [ ] → [τ ] → τ ]

(dr)
⊢ der (! K) : [[τ ] → τ ] → [ ] → [τ ] → τ

(ax)
x : [τ ] ⊢ x : τ

(abs)
⊢ λx.x : [τ ] → τ

(bg)
⊢ ! I : [[τ ] → τ ]

(app)
⊢ der (! K) (! I) : [ ] → [τ ] → τ

(bg)
⊢ ! Ω : [ ]

(app)
⊢ der (! K) (! I) (! Ω) : [τ ] → τ

Note that sz (Φ0) = 8 ≥ 3 = |t0|w, the normal form of t0 is I with size 1, and t0
reduces to I in 5 steps. We will see in Theorem 3.9 that the size of a derivation
Φ⊲U Γ ⊢ t : σ is always an upper bound of the w-size of the w-normal form of t
plus the length of the reduction of t to its w-normal form.

The typability of a term may provide additional information about the neu-
trality/normality of its subterms:

Lemma 3.2. Let u ∈ T :

1. If t ∈ naw and t u is U-typable, then t ∈ new.

2. If t ∈ nbw and u[x\t] is U-typable, then t ∈ new.

3. If t ∈ nbw and der t is U-typable, then t ∈ new.

4. If t ∈ nbw and u t is U-typable, then t ∈ new.
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5. If t ∈ now and u t is U-typable, then t ∈ naw.

Proof. Straightforward case analysis using the characterisation of w-normal forms
in Proposition 2.11.

The quantitative aspect of system U is materialised in the following weighted
subject reduction (WSR) and expansion (WSE) properties. As usual, a substi-
tution lemma must be proved.

Lemma 3.3 (Substitution). If Φt⊲UΓ;x : [σi]i∈I ⊢ t : τ and
(

Φi
u ⊲U ∆i ⊢ u : σi

)

i∈I
,

then there exists Φt{x\u} ⊲U Γ +i∈I ∆i ⊢ t {x\u} : τ such that sz
(

Φt{x\u}

)

=

sz (Φt) +i∈I sz
(

Φi
u

)

− |I|.

Proof. By induction on Φt. If Φt is (ax) and t = x, then t {x\u} = u and Φt

is of the form x : [σ] ⊢ x : σ, so that Γ = ∅ and I = {i0} and τ = σ. We let
Φt{x\u} = Φi0

u . We conclude since sz (Φt) = 1 and |I| = 1. If Φt is (ax) and
t = y 6= x, then t {x\u} = y, Γ = y : [τ ], and I = ∅. We let Φt{x\u} = Φy. We
conclude since |I| = 0.

If Φt ends with (app), then t = t1t2, Γ = Γ1+Γ2 and there exist a type M and
two derivations Φt1⊲UΓ1;x : [σi]i∈I1 ⊢ t1 : M → τ and Φt2⊲UΓ2;x : [σi]i∈I2 ⊢ t2 : M
such that I = I1 ⊎ I2. Using the i.h. on Φti and (Φj

u)j∈Ii , for i = 1, 2, we
get two derivations Φt1{x\u}⊲U Γ1 +i∈I1 ∆i ⊢ t1 {x\u} : M → τ and Φt2{x\u}⊲U

Γ2 +i∈I2 ∆i ⊢ t2 {x\u} : M such that sz
(

Φti{x\u}

)

= sz (Φti)+j∈Iisz
(

Φj
u

)

−|Ii|,
for i = 1, 2. By observing that t {x\u} = t1 {x\u} t2 {x\u} and by using (app),
we get a derivation Φt{x\u}⊲U Γ +i∈I ∆i ⊢ t {x\u} : τ such that sz

(

Φt{x\u}

)

=

(sz (Φt1)+j∈I1 sz
(

Φj
u

)

−|I1|)+ (sz (Φt2)+j∈I2 sz
(

Φj
u

)

−|I2|)+1 = (sz (Φt1)+

sz (Φt2) + 1) +i∈I sz
(

Φi
u

)

− (|I1|) + |I2|) = sz (Φt) +i∈I sz
(

Φi
u

)

− |I|.
All the other cases proceed similarly by the i.h.

Lemma 3.4 (Weighted Subject Reduction). Let Φ⊲U Γ ⊢ t : τ . If t →w t
′, then

there is Φ′ ⊲U Γ ⊢ t′ : τ such that sz (Φ) > sz (Φ′).

Proof. By induction on t →w t
′.

• For the base cases we have to consider three rules:

– Rule dB. Then t = L〈λx.s〉u and t′ = L〈s[x\u]〉. We proceed by
induction on L.

∗ L = �. Then Γ = (Γ′ \\ x) + ∆ s.t. Γ′(x) = M and

Φs ⊲U Γ′ ⊢ s : τ
(abs)

Γ′ \\ x ⊢ λx.s : M → τ Φu ⊲U ∆ ⊢ u : M
(app)

Φ⊲U Γ ⊢ (λx.s) u : τ

and we conclude with

Φs ⊲U Γ′ ⊢ s : τ Φu ⊲U ∆ ⊢ u : M
(es)

Φ′
⊲U Γ ⊢ s[x\u] : τ

Note that sz (Φ) = sz (Φ′) + 1.
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∗ L = L′[y\r]. Then Γ = ((Γ′ \\ y) + ∆′) + ∆ s.t. ((Γ′ \\ y) +
∆′)(x) = M and Γ′(y) = M′ and

ΦL′ ⊲U Γ′ ⊢ L′〈λx.s〉 : M → τ Φr ⊲U ∆′ ⊢ r : M′

(es)
(Γ′ \\ y) + ∆′ ⊢ L〈λx.s〉 : M → τ Φu ⊲U ∆ ⊢ u : M

(app)
Φ⊲U Γ ⊢ L〈λx.s〉u : τ

Thus, we build

ΦL′ ⊲U Γ′ ⊢ L′〈λx.s〉 : M → τ Φu ⊲U ∆ ⊢ u : M
(app)

Ψ⊲U Γ′ + ∆ ⊢ L′〈λx.s〉u : τ

and by i.h. there exists Ψ′ ⊲U Γ′ + ∆ ⊢ L′〈s[x\u]〉 : τ such that
sz (Ψ) > sz (Ψ′). Then, we conclude with

Ψ′
⊲U Γ′ + ∆ ⊢ L′〈s[x\u]〉 : τ Φr ⊲U ∆′ ⊢ r : M′

(es)
Φ′

⊲U ((Γ′ \\ y) + ∆′) + ∆ ⊢ L〈s[x\u]〉 : τ

since we may assume that y /∈ supp(∆). Notice that sz (Φ) =
sz (Ψ) + sz (Φr) + 1 > sz (Ψ′) + sz (Φr) + 1 = sz (Φ′).

– Rule s!. Then t = s[x\L〈!u〉] and t′ = L〈s {x\u}〉. We proceed by
induction on L.

∗ L = �. Then Γ = (Γ′ \\ x) +i∈I ∆i s.t. Γ
′(x) = [σ]i∈I and

Φs ⊲U Γ′ ⊢ s : τ

(

Φi
u ⊲U ∆i ⊢ u : σi

)

i∈I (bg)
+i∈I ∆i ⊢ !u : [σ]i∈I

(es)
Φ⊲U Γ ⊢ s[x\!u] : τ

Thus, we conclude directly by Lemma 3.3 with Φs and
(

Φi
u

)

i∈I
.

Notice that sz (Φ) = 1 + sz (Φs) +i∈I sz
(

Φi
u

)

, while sz (Φ′) =

sz (Φs) +i∈I sz
(

Φi
u

)

− |I|.

∗ L = L′[y\r]. Then Γ = (Γ′ \\ x) + (∆ \\ y) + ∆′ with Γ′(x) = M,
∆(y) = M′ and

Φs ⊲U Γ′ ⊢ s : τ

ΦL′ ⊲U ∆ ⊢ L′〈!u〉 : M Φr ⊲U ∆′ ⊢ r : M′

(es)
(∆ \\ y) + ∆′ ⊢ L′[y\r]〈!u〉 : M

(es)
Φ⊲U Γ ⊢ s[x\L〈!u〉] : τ

Thus, we build

Φs ⊲U Γ′ ⊢ s : τ ΦL′ ⊲U ∆ ⊢ L′〈!u〉 : M
(es)

Ψ⊲U (Γ′ \\ x) + ∆ ⊢ s[x\L′〈! u〉] : τ

and by the i.h. there exists Ψ′ ⊲U (Γ′ \\ x) + ∆ ⊢ L′〈s {x\u}〉 : τ
such that sz (Ψ) > sz (Ψ′). Then, we conclude with

Ψ′
⊲U (Γ′ \\ x) + ∆ ⊢ L′〈s {x\u}〉 : τ Φr ⊲U ∆′ ⊢ r : M′

(es)
Φ′

⊲U (Γ′ \\ x) + (∆ \\ y) + ∆′ ⊢ L〈s {x\u}〉 : τ
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since we may assume that y /∈ supp(Γ′). Notice that sz (Φ) =
sz (Ψ) + sz (Φr) + 1 > sz (Ψ′) + sz (Φr) + 1 = sz (Φ′).

– Rule d!. Then t = der L〈! s〉 and t′ = L〈s〉. We proceed by induction
on L.

∗ L = �. This case is immediate since

Φ′
⊲U Γ ⊢ s : τ

(bg)
Γ ⊢ ! s : [τ ]

(dr)
Φ⊲U Γ ⊢ der ! s : τ

∗ L = L′[y\r]. Then Γ = (Γ′ \\ x) + ∆ with Γ′(x) = M and

ΦL′ ⊲U Γ′ ⊢ L′〈! s〉 : [τ ] Φr ⊲U ∆ ⊢ r : M
(es)

Γ ⊢ L〈! s〉 : [τ ]
(dr)

Φ⊲U Γ ⊢ der L〈! s〉 : τ

Thus, we build

ΦL′ ⊲U Γ′ ⊢ L′〈! s〉 : [τ ]
(dr)

Ψ⊲U Γ′ ⊢ der L′〈! s〉 : τ

and by the i.h. there exists Ψ′ ⊲U Γ′ ⊢ L′〈s〉 : τ . Hence we con-
clude

Ψ′
⊲U Γ′ ⊢ L′〈s〉 : τ Φr ⊲U ∆ ⊢ r : M

(es)
Φ′

⊲U Γ ⊢ L〈s〉 : τ

Notice that sz (Φ) = sz (Ψ)+sz (Φr)+1 > sz (Ψ′)+sz (Φr)+1 =
sz (Φ′).

• All the inductive cases for t →w t
′ are straightforward by the i.h.

In order to prove subject expansion, an anti-substitution lemma is needed:

Lemma 3.5 (Anti-Substitution). If Φt{x\u} ⊲U Γ′ ⊢ t {x\u} : τ , then there ex-

ists Φt⊲U Γ;x : [σi]i∈I ⊢ t : τ and
(

Φi
u ⊲U ∆i ⊢ u : σi

)

i∈I
such that Γ′ = Γ +i∈I

∆i and sz
(

Φt{x\u}

)

= sz (Φt) +i∈I sz
(

Φi
u

)

− |I|.

Proof. By induction on t.

Lemma 3.6 (Weighted Subject Expansion). Let Φ′ ⊲U Γ ⊢ t′ : τ . If t →w t′,
then there is Φ⊲U Γ ⊢ t : τ such that sz (Φ) > sz (Φ′).

Proof. By induction on t →w t
′.

• For the base cases we have to consider three rules:
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– Rule dB. Then, t = L〈λx.s〉 u and t′ = L〈s[x\u]〉. We proceed by
induction on L.

∗ L = �. Then, Γ = (Γ′ \\ x) + ∆ such that

Φ′
s ⊲U Γ′ ⊢ s : τ Φ′

u ⊲U ∆ ⊢ u : Γ′(x)
(es)

Φ′
⊲U (Γ′ \\ x) + ∆ ⊢ s[x\u] : τ

then, we construct

Φ′
s ⊲U Γ′ ⊢ s : τ

(abs)
Γ′ \\ x ⊢ λx.s : Γ′(x) → τ Φ′

u ⊲U ∆ ⊢ u : Γ′(x)
(app)

Φ⊲U (Γ′ \\ x) + ∆ ⊢ (λx.s) u : τ

Note that sz (Φ) = sz (Φ′) + 1.

∗ L = L′[y\r]. Then, Γ = (Γ′ \\ y) + ∆ such that

Ψ′
⊲U Γ′ ⊢ L′〈s[x\u]〉 : τ Φ′

r ⊲U ∆ ⊢ r : Γ′(y)
(es)

Φ′
⊲U (Γ′ \\ y) + ∆ ⊢ L′〈s[x\u]〉[y\r] : τ

By i.h. on Ψ′ we have a derivation Ψ⊲U Γ′ ⊢ L′〈λx.s〉u : τ with
sz (Ψ) > sz (Ψ′). Moreover, by rule (app), Γ′ = Γ′

1 + Γ′
2 and

ΦL′ ⊲U Γ′
1 ⊢ L′〈λx.s〉 : M → τ Φu ⊲U Γ′

2 ⊢ u : M
(app)

Ψ⊲U Γ′ ⊢ L′〈λx.s〉u : τ

Moreover, by hypothesis of rule dB, y /∈ fv(u). Thus, in partic-
ular, y /∈ supp(Γ′

2) and Γ′(y) = Γ′
1(y). Then, we construct

ΦL′ ⊲U Γ′
1 ⊢ L′〈λx.s〉 : M → τ Φ′

r ⊲U ∆ ⊢ r : Γ′
1(y)

(es)
(Γ′

1 \\ y) + ∆ ⊢ L〈λx.s〉 : M → τ Φu ⊲U Γ′
2 ⊢ u : M

(app)
Φ⊲U (Γ′ \\ y) + ∆ ⊢ L〈λx.s〉u : τ

and conclude with

sz (Φ) = sz (ΦL′) + sz (Φ′
r) + sz (Φu) + 2

= sz (Ψ) + sz (Φ′
r) + 2

> sz (Ψ′) + sz (Φ′
r) + 1

= sz (Φ′)

– Rule s!. Then, t = s[x\L〈!u〉] and t′ = L〈s {x\u}〉. We proceed by
induction on L.

∗ L = �. By Lemma 3.5 with Φ′, there exist Φs⊲UΓ
′;x : [σi]i∈I ⊢ s : τ

and
(

Φi
u ⊲U ∆i ⊢ u : σi

)

i∈I
such that Γ = Γ′ +i∈I ∆i and sz (Φ

′) =

sz (Φs) +i∈I sz
(

Φi
u

)

− |I|. Then, we construct

Φs ⊲U Γ′;x : [σi]i∈I ⊢ s : τ

(

Φi
u ⊲U ∆i ⊢ u : σi

)

i∈I (bg)
+i∈I ∆i ⊢ !u : [σi]i∈I

(es)
Φ⊲U Γ ⊢ t : τ

and conclude since sz (Φ) = sz (Φs) +i∈I sz
(

Φi
u

)

+ 1 > sz (Φ′).
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∗ L = L′[y\r]. Then, Γ = (Γ′ \\ y) + ∆ such that

Ψ′
⊲U Γ′ ⊢ L′〈s {x\u}〉 : τ Φ′

r ⊲U ∆ ⊢ r : Γ′(y)
(es)

Φ′
⊲U (Γ′ \\ y) + ∆ ⊢ L′〈s {x\u}〉[y\r] : τ

By i.h. on Ψ′ we have a derivation Ψ⊲U Γ′ ⊢ s[x\L′〈!u〉] : τ with
sz (Ψ) > sz (Ψ′). Moreover, by rule (es), Γ′ = Γ′

1 + Γ′
2 and

Φs ⊲U Γ′
1 ⊢ s : τ ΦL′ ⊲U Γ′

2 ⊢ L′〈!u〉 : Γ′
1(x)

(es)
Ψ⊲U Γ′ ⊢ s[x\L′〈!u〉] : τ

Moreover, by hypothesis of rule s!, y /∈ fv(s). Thus, in particu-
lar, y /∈ supp(Γ′

1) and Γ′(y) = Γ′
2(y). Then, we construct

Φs ⊲U Γ′
1 ⊢ s : τ

ΦL′ ⊲U Γ′
2 ⊢ L′〈!u〉 : Γ′

1(x) Φ′
r ⊲U ∆ ⊢ r : Γ′

2(y)
(es)

(Γ′
2 \\ y) + ∆ ⊢ L〈!u〉 : Γ′

1(x)
(es)

Φ⊲U Γ ⊢ t : τ

and conclude with

sz (Φ) = sz (Φs) + sz (ΦL′) + sz (Φ′
r) + 2

= sz (Ψ) + sz (Φ′
r) + 2

> sz (Ψ′) + sz (Φ′
r) + 1

= sz (Φ′)

– Rule d!. Then, t = der (L〈! s〉) and t′ = L〈s〉. We proceed by induc-
tion on L.

∗ L = �. We have a derivation Φ′ ⊲U Γ ⊢ s : τ and we construct

Φ′
⊲U Γ ⊢ s : τ

(bg)
Γ ⊢ ! s : [τ ]

(dr)
Φ⊲U Γ ⊢ der (! s) : τ

to conclude since sz (Φ) = sz (Φ′) + 1.

∗ L = L′[y\r]. Then, Γ = (Γ′ \\ y) + ∆ such that

Ψ′
⊲U Γ′ ⊢ L′〈s〉 : τ Φ′

r ⊲U ∆ ⊢ r : Γ′(y)
(es)

Φ′
⊲U (Γ′ \\ y) + ∆ ⊢ L′〈s〉[y\r] : τ

By i.h. on Ψ′ we have a derivation Ψ⊲U Γ′ ⊢ der (L′〈! s〉) : τ with
sz (Ψ) > sz (Ψ′). Moreover, by rule (dr),

ΦL′ ⊲U Γ′ ⊢ L′〈! s〉 : [τ ]
(dr)

Ψ⊲U Γ′ ⊢ der (L′〈! s〉) : τ

20



Then, we construct

ΦL′ ⊲U Γ′ ⊢ L′〈! s〉 : [τ ] Φ′
r ⊲U ∆ ⊢ r : Γ′(y)

(es)
(Γ′ \\ y) + ∆ ⊢ L〈! s〉 : [τ ]

(dr)
Φ⊲U Γ ⊢ t : τ

and conclude with

sz (Φ) = sz (ΦL′) + sz (Φ′
r) + 2

= sz (Ψ) + sz (Φ′
r) + 2

> sz (Ψ′) + sz (Φ′
r) + 1

= sz (Φ′)

• All the inductive cases for t →w t
′ are straightforward by the i.h.

Erasing steps like y[x\! z] →s! y may seem problematic for subject reduction
and expansion, but they are not: the variable x is necessarily assigned a type [ ]
in the corresponding typing context, and the term ! z is then necessarily typed
with [ ], so there is no loss of information since the contexts allowing to type the
redex and the reduced term are the same.

Typable terms are necessarily weak clash-free:

Lemma 3.7. If Φ⊲U Γ ⊢ t : σ, then t is wcf.

Proof. Assume towards a contradiction that t is not wcf, i.e. there exists a
weak context W and a clash c such that t ։w W〈c〉. Then, Lemma 3.4 gives
Φ′ ⊲U Γ ⊢ W〈c〉 : σ. If we show that a term of the form W〈c〉 cannot be typed in
system U , we are done. This follows by straightforward induction on W. The
base case is when W = �. For every possible c, it is immediate to see that there
is a mismatch between its syntactical form and the typing rules of system U .
For instance, if c = L〈! t〉 u, then L〈! t〉 should have a functional type by rule
(app) but it can only be assigned a multiset type by rules (es) and (bg). As for
the inductive case, an easy inspection of the typing rules shows for all terms t
and weak contexts W, t must be typed in order to type W〈t〉.

However, normal terms are not necessarily clash-free, but the type system
captures weak clash-freeness of normal terms. Said differently, when restricted
to now, typability exactly corresponds to weak clash-freeness.

Theorem 3.8. Let t ∈ T . Then, t ∈ nowcf iff t ∈ now and t is U-typable.

Proof. By simultaneous induction on the following claims:

1. t ∈ newcf iff t ∈ new and for every τ there exists Γ such that ⊲U Γ ⊢ t : τ .

2. t ∈ nawcf iff t ∈ naw and there exist Γ and M such that ⊲U Γ ⊢ t : M.

3. t ∈ nbwcf iff t ∈ nbw and there exist Γ and τ such that ⊲U Γ ⊢ t : τ .
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4. t ∈ nowcf iff t ∈ now and there exist Γ and τ such that ⊲U Γ ⊢ t : τ .

We first show the left-to-right implications by only analysing the key cases.
If t = x ∈ newcf, then t ∈ new and for every type τ we conclude by (ax).
If t = s u ∈ newcf, by definition s ∈ newcf and u ∈ nawcf. Let τ be any type.

By i.h. (2) u ∈ naw and ⊲U ∆ ⊢ u : M. Then, by i.h. (1) we get s ∈ new and
⊲U Γ ⊢ s : M → τ . Moreover, s ∈ new and u ∈ naw imply s ∈ naw and u ∈ now
resp., hence t ∈ new. Thus, we conclude by (app), ⊲U Γ + ∆ ⊢ s u : τ .

If t = λx.s ∈ nbwcf, then s ∈ nowcf by definition. By i.h. (4) s ∈ now
and ⊲U Γ ⊢ s : τ for some type τ . Then, t ∈ nbw and we conclude by (abs),
⊲U Γ \\ x ⊢ λx.s : Γ(x) → τ .

If t = ! s ∈ nawcf, then t ∈ naw by definition and we conclude by (bg),
⊲U ⊢ ! s : [ ].

If t = der s ∈ newcf, then s ∈ newcf by definition. Let τ be any type, by
i.h. (1) we get s ∈ new and ⊲U Γ ⊢ s : [τ ]. Moreover, s ∈ new implies s ∈ nbw
and hence t ∈ new. Thus, we conclude by (dr), ⊲U Γ ⊢ der s : τ .

If t = s[x\u], then u ∈ newcf and there are three possible cases: s ∈ newcf,
s ∈ nawcf or s ∈ nbwcf. In either case, by the proper i.h. we get ⊲U Γ ⊢ s : τ
(resp. M) and conclude by (es), given that i.h. (1) on u implies u ∈ new and
⊲U ∆ ⊢ u : Γ(x). Note that u ∈ new in turn implies u ∈ nbw, thus t remains in
the same set as s (new, naw or nbw resp.).

The right-to-left implications uses Lemma 3.2.

Typability can be shown to (qualitatively and quantitatively) characterise
normalisation. The type system U is sound (all the typable terms are normal-
ising) and complete (all the normalising terms are typable).

Theorem 3.9 (Soundness and Completeness for System U). The term t is U-
typable iff t w-normalises to a term p ∈ nowcf. Moreover, if Φ⊲U Γ ⊢ t : τ , then

t ։
(b,e)
w p and sz (Φ) ≥ b + e + |p|w.

Proof. The soundness proof is straightforward by Lemma 3.4 and Theorem 3.8.
Observe that the argument is simply combinatorial, no reducibility argument is
needed. For the completeness proof, we reason by induction on the length of
the w-normalising sequence. For the base case, we use Theorem 3.8 which states
that p ∈ nowcf implies p is U-typable. For the inductive case we use Lemma 3.6.
The moreover statement holds by Lemma 3.4 and 3.6, and the fact that the size
of the type derivation of p is greater than or equal to |p|w.

The previous theorem can be illustrated by the term t0 = der (! K) (! I) (! Ω)
defined in Example 2.2, which normalises in 5 steps to a normal form of w-size
1, the sum of the two being bounded by the size 11 of its type derivation Φ0

given in Example 3.1.

4. Capturing Call-by-Name and Call-by-Value

This section explores the CBN/CBV embeddings into the λ!-calculus. For
CBN, we slightly adapt Girard’s translation into LL [30], which preserves normal
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forms and is sound and complete with respect to the standard (quantitative)
type system [29]. For CBV, however, we reformulate both the translation and
the type system, so that preservation of normal forms and completeness are
restored. In both cases, we specify the operational semantics of CBN and CBV
by means of a very simple notion of explicit substitution, see for example [6].

Terms (Tλ), values and contexts are defined as follows:

(Terms) t, u ::= v | t u | t[x\u]
(Values) v ::= x ∈ X | λx.t

(List Contexts) L ::= � | L[x\t]
(Call-by-Name Contexts) N ::= � | N t | λx.N | N[x\u]
(Call-by-Value Contexts) V ::= � | V t | t V | V[x\u] | t[x\V]

As in Sec. 2 we use the predicate abs(t) iff t = L〈λx.t′〉. We also use the
predicates app(t) iff t = L〈t′ t′′〉 and var(t) iff t = L〈x〉.

The Call-by-Name reduction relation →n is defined as the closure of the
rules dB and s presented below under contexts N, while the Call-by-Value
reduction relation →v is defined as the closure of the rules dB and sv below
under contexts V. Equivalently, →n

def
= N(7→dB ∪ 7→s) and →v

def
= V(7→dB ∪ 7→sv)

and
L〈λx.t〉u 7→dB L〈t[x\u]〉

t[x\u] 7→s t {x\u}
t[x\L〈v〉] 7→sv L〈t {x\v}〉

We write t 6→n (resp. t 6→v), and call t an n-normal form (resp. v-normal
form), if t cannot be reduced by means of →n (resp. →v).

Observe that we use CBN and CBV formulations based on distinguished
multiplicative (cf. dB) and exponential (cf. s and sv) rules, inheriting the na-
ture of cut elimination rules in LL. Moreover, CBN is to be understood as head
CBN reduction [9], i.e. reduction does not take place in arguments of applica-
tions (and in the present case in arguments of substitutions as well) while CBV
corresponds to open CBV reduction [6, 2], i.e. reduction does not take place
inside abstractions.

Theorem 4.1. The reduction relations →n and →v are both confluent.

Proof. The proofs of these properties are folklore. They use an abstract result
in rewriting theory stating that the union of two reduction relations is confluent
if both are confluent and commute with each other [47]. More precisely, two
arbitrary reduction relations →1 and →2 commute iff for all t0, t1, t2 such that
t0 ։1 t1 and t0 ։2 t2, there exists t3 such that t1 ։2 t3 and t2 ։1 t3. The
reasoning in our case is as follows:

• Each rule a ∈ {dB, s, sv} induces a complete reduction relation →a,
i.e. confluent and terminating.

• The relation →dB commutes with →a, for a ∈ {s, sv}.

The two previous points are straightforward.
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Embeddings. The CBN and CBV embeddings into the λ!-calculus, written
cbn and cbv resp., are inductively defined as:

xcbn def
= x

(λx.t)
cbn def

= λx.tcbn

(t u)
cbn def

= tcbn !ucbn

(t[x\u])cbn def
= tcbn[x\!ucbn]

xcbv def

= !x

(λx.t)
cbv def

= !λx.tcbv

(t u)
cbv def

=

{

L〈s〉ucbv if tcbv = L〈! s〉
der (tcbv)ucbv otherwise

(t[x\u])cbv def

= tcbv[x\ucbv]

Both translations extend to list contexts L as expected. Observe that the
terms of the λ!-calculus that are in the image of the embeddings never con-
tain two consecutive ! constructors. The CBN embedding extends Girard’s
translation to explicit substitutions, while the CBV one is different. Indeed, the
translation of an application t u is usually defined as der (tcbv) ucbv (see for exam-
ple [27]). This definition does not preserve normal forms, i.e. x y is a v-normal
form but its translated version der (!x) ! y is not a w-normal form. We restore
this fundamental property by using the notion of superdevelopment [35, 48], so
that d!-reductions created by the translation are executed on the fly.

Example 4.2. Special λ-terms are Iλ = λz.z, Kλ = λx.λy.x, ∆λ = λx.x x,
and Ωλ = ∆λ ∆λ. Observe that Iλ

cbn = Iλ = I and Kλ
cbn = Kλ = K. In this

example, we compute tcbn and tcbv, where t = KλIλΩλ.

tcbn = (KλIλ)
cbn

! Ωλ
cbn

= Kλ
cbn ! Iλ

cbn ! Ωλ
cbn

= K !I ! (∆λ
cbn !∆λ

cbn)
= K !I ! ((λx.x ! x) ! (λx.x ! x))
= K !I ! (∆ !∆)
= K !I ! Ω

The λ!-term tcbn is the same as the one obtained by performing a d!-step starting
from the term t0 of Example 2.2. The CBV embedding is a bit more involved,
due to the superdevelopments.

tcbv = der (Kλ Iλ)
cbv Ωλ

cbv

= der ((λx.! λy.! x) (!λx. ! x))Ωλ
cbv

= der ((λx.! λy.! x) (!λx. ! x)) ((λx.x ! x) ! (λx.x ! x))
= der ((λx.! λy.! x) (!λx. ! x))Ω

Notice that in this particular case we have Ωλ
cbn = Ωλ

cbv = Ω.

The example above will be continued after the proof of the fact that the
embeddings preserve the CBN and CBV reductions.

We first show (Lemma 4.3) that the set of n-normal forms and v-normal
forms can be respectively characterised by the following grammars:
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(CBN Neutral) nen ::= x ∈ X | nen t
(CBN Normal) non ::= λx.non | nen

(Variable) vrv ::= x ∈ X | vrv[x\nev]
(CBV Neutral) nev ::= vrv nov | nev nov | nev[x\nev]
(CBV Normal) nov ::= λx.t | vrv | nev | nov[x\nev]

Note that the grammar for neutral and normal forms for CBN does not use
the ES operator. The reason is that the s-rule executing ES can always be fired
in a CBN context, so that ES only appear in the right-hand sides of applications
of neutral terms. Note that variables are left out of the definition of neutral
terms for the CBV case, since they are now considered values. Moreover, in
this way both CBN and CBV neutral terms translate to neutral terms of the
λ!-calculus.

Lemma 4.3. Let t ∈ Tλ.

1. t ∈ non iff t 6→n.

2. t ∈ nov iff t 6→v.

Proof. 1. We prove simultaneously the following statements:

(a) t ∈ nen iff t 6→n and ¬abs(t).

(b) t ∈ non iff t 6→n.

(a) The left-to-right implication is straightforward. For the right-to-left
implication we reason by induction on t. Suppose t 6→n and ¬abs(t).
If t is a variable, then t ∈ nen. If t is a substitution, then rule s

is applicable, so this case does not apply. If t = u u′, then ¬abs(u)
(otherwise dB would be applicable) and u 6→n (otherwise t would
be n-reducible). The i.h. (1a) gives u ∈ nen and thus we conclude
t = uu′ ∈ nen.

(b) The left-to-right implication is straightforward. For the right-to-left
implication we reason by induction on t. If t = λx.u, then u 6→n,
and the i.h. (1b) gives u ∈ non, which implies in turn λx.u ∈ non.
Otherwise, we apply the previous case.

2. We prove simultaneously the following statements:

(a) t ∈ vrv iff t 6→v and ¬abs(t) and ¬app(t).

(b) t ∈ nev iff t 6→v and ¬abs(t) and ¬var(t).

(c) t ∈ nov iff t 6→v.

(a) The left-to-right implication is straightforward. For the right-to-left
implication we reason by induction on t. Suppose t 6→v and ¬abs(t)
and ¬app(t). Then necessarily var(t). If t = u[x\u′], then u, u′ 6→v

(otherwise t would be v-reducible), ¬abs(u′) and ¬var(u′) (otherwise
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t would be sv-reducible), ¬abs(u) and ¬app(u). The i.h. (2a) gives
u ∈ vrv and the i.h. (2b) gives u′ ∈ nev, so that we conclude t ∈ vrv.
If t = x we trivially conclude t ∈ vrv.

(b) The left-to-right implication is straightforward. For the right-to-left
implication we reason by induction on t. Suppose t 6→v and ¬abs(t)
and ¬var(t). Then necessarily app(t). If t = u[x\u′], then u, u′ 6→v

(otherwise t would be v-reducible), ¬abs(u′) and ¬var(u′) (otherwise
t would be sv-reducible), ¬abs(u) and ¬var(u). The i.h. (2b) gives
u ∈ nev and u′ ∈ nev, so that we conclude t ∈ nev. If t = uu′,
then u, u′ 6→v (otherwise t would be v-reducible), ¬abs(u) (otherwise
t would be dB-reducible). The i.h. (2c) gives u′ ∈ nov. Moreover, if
¬app(u) (resp. ¬var(u)), then the i.h. (2a) gives u ∈ vrv (resp. the
i.h. (2b) gives u ∈ nev) In both cases we conclude t = uu′ ∈ nev.
Since ¬app(u) or ¬var(u)) holds, we are done.

(c) The left-to-right implication is straightforward. For the right-to-left
implication we reason by induction on t. Suppose t 6→v. If t =
λx.u, then t ∈ nov is straightforward. If t = u[x\u′], then u, u′ 6→v

(otherwise t would be v-reducible), ¬abs(u′) and ¬var(u′) (otherwise
t would be sv-reducible). The i.h. (2c) and (2b) give u ∈ nov and
u′ ∈ nev, so that we conclude t ∈ nov. If t = u u′, then u 6→v

and u′ 6→v. The i.h. (2c) on u′ gives u′ ∈ nov. Moreover, ¬abs(u),
otherwise t would be v-reducible. Since either ¬var(u) or ¬app(u)
must hold, then the i.h. (2a) or (2b) gives u ∈ vrv or u ∈ nev. Thus
u u′ ∈ nev ⊆ nov as required.

The following lemma shows that the CBN and CBV embeddings into the
λ!-calculus preserve the property of being in normal form.

Lemma 4.4. Let t ∈ Tλ.

1. If t 6→n, then tcbn 6→w.

2. If t 6→v, then tcbv 6→w.

Proof.

1. By Lemma 4.3 and Proposition 2.11 it is sufficient to prove that t ∈ non
implies tcbn ∈ now. This is done by simultaneously showing the following
points:

(a) If t ∈ nen, then tcbn ∈ new.

(b) If t ∈ non, then tcbn ∈ now.

• If t = x ∈ nen, then xcbn = x and thus x ∈ new holds.
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• If t = s u ∈ nen comes from s ∈ nen, then the i.h. (1a) gives scbn ∈ new
and hence scbn ∈ naw. Moreover !ucbn ∈ naw also holds, which implies
!ucbn ∈ now. We can then conclude scbn !ucbn ∈ new, i.e. (s u)

cbn ∈ new.

• If t ∈ non comes from t ∈ nen, then tcbn ∈ new holds by the previous
point, which gives tcbn ∈ now.

• If t = λx.u ∈ non comes from u ∈ non, then the i.h. (1b) gives
ucbn ∈ now, which implies λx.ucbn ∈ nbw, thus giving λx.ucbn ∈ now.
We conclude since (λx.u)

cbn
= λx.ucbn.

2. By Lemma 4.3 and Proposition 2.11 it is sufficient to prove that t ∈ nov
implies tcbv ∈ now. This is done by simultaneously showing the following
points:

(a) If t ∈ vrv, then tcbv ∈ naw.

(b) If t ∈ nev, then tcbv ∈ new.

(c) If t ∈ nov, then tcbv ∈ now.

• If t = x ∈ vrv, then xcbv = !x and !x ∈ naw.

• If t = s[x\u] ∈ vrv comes from s ∈ vrv and u ∈ nev, then the i.h. (2a)
gives scbv ∈ naw and ucbv ∈ new, which in turn implies ucbv ∈ nbw.
Hence, it allows us to conclude scbv[x\ucbv] ∈ naw.

• If t = s u ∈ nev comes from s ∈ vrv and u ∈ nov. It is immediate
to see that scbv = L〈!x〉 for some variable x. Thus, tcbv = L〈x〉 ucbv.
Moreover, by i.h. (2a) scbv ∈ naw holds, which implies r ∈ nbw for
all [y\r] in L. Thus, L〈x〉 ∈ new holds. This implies L〈x〉 ∈ naw, by
definition. Also, the i.h. (2c) on u ∈ nov gives ucbv ∈ now. Hence, we
conclude tcbv ∈ new.

• If t = s u ∈ nev comes from s ∈ nev and u ∈ nov. By i.h. (2b)
scbv ∈ new holds. In particular, it implies scbv ∈ nbw (i.e. ¬bang(scbv)).
Hence, tcbv = der (scbv)ucbv and der (scbv) ∈ new. Moreover, the latter
implies der (scbv) ∈ naw, by definition. Also, the i.h. (2c) on u ∈ nov
gives ucbv ∈ now. Thus, we conclude tcbv ∈ new.

• If t = s[x\u] ∈ nev comes from s ∈ nev and u ∈ nev, then the i.h. (2b)
gives scbv ∈ new and ucbv ∈ new, which in turn implies ucbv ∈ nbw.
Hence, it allows us to conclude scbv[x\ucbv] ∈ new.

• If t = λx.s ∈ nov, then tcbv = !λx.scbv. Thus, tcbv ∈ naw holds and
we conclude tcbv ∈ now.

• If t ∈ nov comes from t ∈ vrv. Then, item (2a) gives tcbv ∈ naw which
implies tcbv ∈ now by definition.

• If t ∈ nov comes from t ∈ nev. Then, item (2b) gives tcbv ∈ new which
implies tcbv ∈ now.

• If t = s[x\u] ∈ nov comes from s ∈ nov and u ∈ nev, then the
i.h. (2c) and (2b) gives scbv ∈ now and ucbv ∈ new, which in turn
implies ucbv ∈ nbw. Hence, it allows us to conclude scbv[x\ucbv] ∈ now.
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Simulation of CBN and CBV reductions in the λ!-calculus can be shown by
induction on the reduction relations. We start with a technical lemma showing
that the substitution is compatible with the CBN translation, whereas in the
case of the CBV translation the argument of the substitution must be adjusted.

Lemma 4.5. Let t, u, v ∈ Tλ with v a value.

1. t {x\u}cbn = tcbn
{

x\ucbn
}

.

2. t {x\v}cbv = tcbv {x\u}, where vcbv = !u.

Proof.

1. By induction on t.

• t = x. Then, x {x\u}cbn = ucbn = x
{

x\ucbn
}

= xcbn
{

x\ucbn
}

.

• t = y. Then, y {x\u}cbn = y = y
{

x\ucbn
}

= ycbn
{

x\ucbn
}

.

• t = t0 t1. Then,

(t0t1) {x\u}
cbn

= (t0 {x\u} t1 {x\u})
cbn

= t0 {x\u}
cbn

! (t1 {x\u}
cbn

)
=i.h. t0

cbn
{

x\ucbn
}

! t1
cbn
{

x\ucbn
}

= (t0
cbn ! t1

cbn)
{

x\ucbn
}

= (t0 t1)
cbn
{

x\ucbn
}

• t = λy.t0. Straightforward by the i.h.

• t = t0[y\t1]. Similar to the previous case.

2. By induction on t.

• t = x. Then, x {x\v}cbv = vcbv = !u = (!x) {x\u} = xcbv {x\u}.

• t = y. Then, y {x\v}cbv = ycbv = ycbv {x\u}.

• t = t0 t1. There are two cases:

– If t0
cbv = L〈! s〉, then the i.h. gives t0 {x\v}

cbv
= t0

cbv {x\u} =
L〈! s〉 {x\u} = L {x\u}〈! s {x\u}〉. Then,

(t0 t1) {x\v}
cbv

= (t0 {x\v} t1 {x\v})
cbv

= L {x\u}〈s {x\u}〉 (t1 {x\v})
cbv

=i.h. L {x\u}〈s {x\u}〉 (t1cbv {x\u})
= L〈s〉 t1cbv {x\u}

= (t0 t1)
cbv {x\u}
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– Otherwise, (t0 t1) {x\v}
cbv

= (t0 {x\v} t1 {x\v})
cbv

. The i.h. gives

t0 {x\v}
cbv

= t0
cbv {x\u} and t1 {x\v}

cbv
= t1

cbv {x\u}. More-
over, t0

cbv 6= L〈! s〉 implies the same for t0
cbv {x\u}, simply be-

cause u is a variable or an abstraction. Then,

(t0 {x\v} t1 {x\v})
cbv

= der (t0
cbv {x\u}) t1cbv {x\u}

= (der (t0
cbv) t1

cbv) {x\u}

= (t0 t1)
cbv {x\u}

• t = λy.t0. Then,

(λy.t0) {x\v}
cbv = (λy.t0 {x\v})

cbv

= !λy.(t0 {x\v})
cbv

=i.h. !λy.(t0
cbv {x\u})

= ! (λy.t0
cbv) {x\u}

= (λy.t0)
cbv {x\u}

• t = t0[y\t1]. This case is straightforward by the i.h.

The following lemma shows that CBN and CBV reductions are simulated
via the embeddings. One CBN reduction step is simulated by exactly one step
of weak reduction, whereas a single CBV reduction step may give rise to several
steps of weak reduction An example is given after the proof of the lemma.

Lemma 4.6. Let t, s ∈ Tλ.

1. If t →n s, then tcbn →w s
cbn.

2. If t →v s, then tcbv →+
w scbv.

Moreover, exponential steps in CBN/CBV are always simulated by exponential
steps in λ!, while multiplicative steps in CBN/CBV are simulated by at least
one multiplicative step in λ!.

Proof. Both proofs are by induction on the reduction relations.

1. Case t →n s.

• t = L〈λx.r〉u 7→dB L〈r[x\u]〉 = s. Then,

tcbn = Lcbn〈λx.rcbn〉 !ucbn →dB L
cbn〈rcbn[x\!ucbn]〉 = scbn

• t = r[x\u] 7→s r {x\u} = s. Then,

tcbn = rcbn[x\!ucbn] →s! r
cbn
{

x\ucbn
}

=L.4.5 scbn

• t = r u →n r′ u = s, or t = λx.r →n λx.r′ = s, or t = r[x\u] →n

r′[x\u] = s, where r →n r
′. Then, we easily conclude by the i.h.
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2. Case t →v s.

• t = L〈λx.r〉u 7→dB L〈r[x\u]〉 = s. Then,

tcbv = Lcbv〈λx.rcbv〉 ucbv →dB L
cbv〈rcbv[x\ucbv]〉 = scbv

• t = r[x\L〈v〉] 7→sv L〈r {x\v}〉 = s. Then,

tcbv = rcbv[x\Lcbv〈vcbv〉] →s! L
cbv〈rcbv {x\u}〉 =L.4.5 scbv

where vcbv = !u.

• t = r0 u →v r1 u = s comes from r0 →v r1. The i.h. gives r0
cbv →+

w

r1
cbv. There are two cases:

– If r0
cbv = L〈! r〉, then tcbv = L〈r〉 ucbv. The i.h. implies in partic-

ular that r1
cbv = L′〈! r′〉, which implies in turn L〈r〉 →+

w L′〈r′〉.
We then have tcbv = L〈r〉 ucbv →+

w L′〈r′〉ucbv = scbv.

– Otherwise, tcbv = der (r0
cbv)ucbv. We have again two cases.

∗ If r1
cbv = L〈! r〉, then

tcbv = der (r0
cbv)ucbv →+

w der (r1
cbv)ucbv = der (L〈! r〉)ucbv →d! L〈r〉 u

cbv = scbv

∗ Otherwise, the i.h. allows us to conclude

tcbv = der (r0
cbv)ucbv →+

w der (r1
cbv)ucbv = scbv

• t = r u →v r u′ = s comes from u →v u′. Then, there are two cases
according to rcbv but the proof is easy using the i.h.

• t = r[x\u] →v r′[x\u] = s or t = u[x\r] →v u[x\r′] = s, where
r →v r

′. Then, we easily conclude by the i.h.

As mentioned above, the CBV case may require several reduction steps
between tcbv and scbv. For instance, if t = I y z →v w[w\y] z = s, then
tcbv = der ((λw.!w) ! y) ! z →w der (!w[w\! y]) ! z →w w[w\! y] ! z = scbv.

One may as well wonder if the converse of Lemma 4.6 also holds. Indeed,
the property holds for the CBN case, i.e. tcbn →w s

cbn implies t →n s. However,
the following example [8] shows that the property does not hold for CBV. Let
t = (λx.(λy.y) z) z and s = (λx.y[y\z]) z. Then tcbv = (λx.(λy.! y) ! z) ! z →w

(λx.(! y)[y\! z]) ! z = scbv, but t does not reduce to s in CBV.

Example 4.7. Let us consider again the term t = KλIλΩλ of the Example 4.2.
We have seen that tcbn = K ! I ! Ω and tcbv = der ((λx.! λy.!x) (!λx.! x))Ω. The
CBN reduction of t is the following:

KλIλΩλ →dB (λy.x[x\Iλ]) Ωλ →s (λy.Iλ)Ωλ →dB Iλ[y\Ωλ] →s Iλ
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System N for Call-by-Name

(axn)
x : [σ] ⊢ x : σ

Γ;x : [σi]i∈I ⊢ t : τ (∆i ⊢ u : σi)i∈I
(esn)

Γ +i∈I ∆i ⊢ t[x\u] : τ

Γ ⊢ t : τ
(absn)

Γ \\ x ⊢ λx.t : Γ(x) → τ

Γ ⊢ t : [σi]i∈I → τ (∆i ⊢ u : σi)i∈I
(appn)

Γ +i∈I ∆i ⊢ t u : τ

System V for Call-by-Value

(axv)
x : M ⊢ x : M

Γ ⊢ t : σ ∆ ⊢ u : Γ(x)
(esv)

(Γ \\ x) + ∆ ⊢ t[x\u] : σ

(Γi ⊢ t : τi)i∈I
(absv)

+i∈I Γi \\ x ⊢ λx.t : [Γi(x) → τi]i∈I

Γ ⊢ t : [M → τ ] ∆ ⊢ u : M
(appv)

Γ + ∆ ⊢ t u : τ

Figure 2: Typing schemes for CBN/CBV.

The corresponding reduction of tcbn in the λ!-calculus is:

K !I ! Ω →dB (λy.x[x\! I]) ! Ω →s! (λy.I) ! Ω →dB I[y\Ω] →s! I

The CBV reduction of t is the following:

KλIλΩλ →dB (λy.x[x\Iλ]) Ωλ →sv (λy.Iλ)Ωλ →dB

→dB Iλ[y\Ωλ] →dB Iλ[y\(xx)[x\∆λ]]

Since Iλ[y\(xx)[x\∆λ]] →sv Iλ[y\Ωλ], the reduction enters a loop. Accordingly,
the reduction of tcbv is:

der ((λx.! λy.!x) (!λx.! x)) Ω →dB der ((!λy.!x)[x\!λx.! x]) Ω →d!

→d! (λy.! x)[x\!λx.!x] Ω →dB (!x)[x\!λx.!x][y\Ω] →s! (!λx.! x)[y\Ω] →dB

→dB (!λx.! x)[y\(x !x)[x\! ∆]]

Since (!λx.! x)[y\(x !x)[x\! ∆]] →s! (!λx.! x)[y\Ω], the reduction enters a loop.

Non-Idempotent Types for Call-by-Name and Call-by-Value. For CBN
we use the non-idempotent type system defined in [37] for explicit substitutions,
that we present in Figure 2 (top), and which is an extension of that in [29]. For
CBV, we slightly reformulate the non-idempotent system in [33], tha we present
in Figure 2 (bottom), in order to recover completeness of the (typed) CBV
translation. In both cases, the types of our systems are the same as the ones in
system U .

We write ⊲N Γ ⊢ t : σ (resp. ⊲V Γ ⊢ t : σ) if there exists a type derivation in
system N (resp. V). We use names for type derivations as in Sec. 3. A key point
in rule (appv) is that left hand sides of applications are typed with multisets
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of the form [M → τ ], where τ is any type, potentially a base one, while [33]
necessarily requires a multiset of the form [M → M′], a subtle difference which
breaks completeness. System N (resp. V) can be understood as a relational
model of the Call-by-Name (resp. Call-by-Value) calculus, in the sense that
typing is stable by reduction and expansion (see Sec. 4.1 and 4.2).

The CBV translation is not complete for the system in [33], i.e. there exists
a λ-term t such that Γ ⊢ tcbv : σ is derivable in U but Γ ⊢ t : σ is not derivable
in their system (see [33] Proposition 15). In this article, we recover the com-
pleteness of the translations. More precisely, our two embeddings are sound and
complete w.r.t. system U :

Theorem 4.8 (Soundness/Completeness of the Embeddings). Let t ∈ Tλ.

1. ⊲N Γ ⊢ t : σ iff ⊲U Γ ⊢ tcbn : σ.

2. ⊲V Γ ⊢ t : σ iff ⊲U Γ ⊢ tcbv : σ.

Proof. 1. ⇒) By induction on t.

• t = x. Then, Γ = x : [σ] and we conclude by rule (ax), since tcbn = x.

• t = s u. Then, Γ = Γ′ +i∈I ∆i, Γ
′ ⊢ s : [τi]i∈I → σ and (∆i ⊢ u : τi)i∈I .

By i.h. Γ′ ⊢ scbn : [τi]i∈I → σ and
(

∆i ⊢ ucbn : τi
)

i∈I
. Moreover, by

definition tcbn = scbn !ucbn. Thus, we conclude by rules (bg) and
(app)

Γ′ ⊢ scbn : [τi]i∈I → σ

(

∆i ⊢ ucbn : τi
)

i∈I

+i∈I ∆i ⊢ !ucbn : [τi]i∈I

Γ′ +i∈I ∆i ⊢ scbn !ucbn : σ

• t = λx.s. Then, σ = Γ′(x) → τ , Γ = Γ′ \\ x and Γ′ ⊢ s : τ . By
i.h. Γ′ ⊢ scbn : τ . Moreover, by definition tcbn = λx.scbn, hence we
conclude by rule (abs).

• t = s[x\u]. Then, Γ = (Γ′ \\ x) +i∈I ∆i, Γ
′ ⊢ s : σ and (∆i ⊢ u : τi)i∈I

with Γ′(x) = [τi]i∈I . By i.h. Γ′ ⊢ scbn : σ and
(

∆i ⊢ ucbn : τi
)

i∈I
hold.

Finally, since tcbn = scbn[x\!ucbn], we conclude by rules (bg) and (es).

⇐) By induction on t.

• t = x. Then, xcbn = x, Γ = x : [σ] and the result is immediate using
rule (axn).

• t = s u. Then, tcbn = scbn !ucbn, Γ = Γ′ + ∆, Γ′ ⊢ scbn : M → σ
and ∆ ⊢ !ucbn : M. Moreover, by rule (bg), ∆ = +i∈I ∆i, M =
[τi]i∈I and

(

∆i ⊢ ucbn : τi
)

i∈I
. The i.h. gives Γ′ ⊢ s : [τi]i∈I → σ and

(∆i ⊢ u : τi)i∈I . Finally, we conclude by rule (appn).
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• t = λx.s. Then tcbn = λx.scbn, σ = Γ′(x) → τ , Γ = Γ′ \\ x and
Γ′ ⊢ scbn : τ . The result follow immediately from the i.h. using rule
(absn).

• t = s[x\u]. Then, tcbn = scbn[x\!ucbn], Γ = (Γ′ \\ x) + ∆, Γ′ ⊢
scbn : σ and ∆ ⊢ !ucbn : Γ′(x). Moreover, by rule (bg), ∆ = +i∈I ∆i,
Γ′(x) = [τi]i∈I and

(

∆i ⊢ ucbn : τi
)

i∈I
. The i.h. gives Γ′ ⊢ s : σ and

(∆i ⊢ u : τi)i∈I . Finally, we conclude by rule (esn).

2. ⇒) By induction on t.

• t = x. Then, σ = M and Γ = x : M where, by definition, M =
[τi]i∈I . Moreover, by definition of the embedding, tcbv = !x. Thus,
we conclude by rules (ax) and (bg)

(

x : [τi] ⊢ x : τi

)

i∈I

x : [τi]i∈I ⊢ !x : [τi]i∈I

• t = s u. Then, Γ = Γ′ + ∆, Γ′ ⊢ s : [M → σ] and ∆ ⊢ u : M. By
i.h. Γ′ ⊢ scbv : [M → σ] and ∆ ⊢ ucbv : M. There are two cases:

– If scbv = L〈! r〉, then tcbv = L〈r〉ucbv. From Γ′ ⊢ L〈! r〉 : [M → σ]
it is immediate to see, by induction on L using (es), that there
exists Γ′′ s.t. Γ′′ ⊢ ! r : [M → σ]. Then, Γ′′ ⊢ r : M → σ holds
from rule (bg). Moreover, by straighforward induction on L once
again, we get Γ′ ⊢ L〈r〉 : M → σ. Finally, we conclude using (app)
by using also ∆ ⊢ ucbv : M.

– Otherwise, tcbv = der (scbv)ucbv. Then, we resort to rules (dr)
and (app) to conclude

Γ′ ⊢ scbv : [M → σ]

Γ′ ⊢ der scbv : M → σ ∆ ⊢ ucbv : M

Γ′ + ∆ ⊢ der (scbv)ucbv : σ

• t = λx.s. Then σ = [Γi(x) → τi]i∈I , Γ = +i∈I Γi \\ x and
(Γi ⊢ s : τi)i∈I . By i.h.

(

Γi ⊢ scbv : τi
)

i∈I
. Thus, we conclude with

rules (abs) and (bg) since, by definition, tcbv = !λx.scbv

(

Γi ⊢ scbv : τi

Γi \\ x ⊢ λx.scbv : Γi(x) → τi

)

i∈I

+i∈I Γi \\ x ⊢ !λx.scbv : [Γi(x) → τi]i∈I

• t = s[x\u]. Then, Γ = (Γ′ \\ x) + ∆, Γ′ ⊢ s : σ and ∆ ⊢ u : Γ′(x).
By i.h. Γ′ ⊢ scbv : σ and ∆ ⊢ ucbv : Γ′(x) hold. Hence, since tcbv =
scbv[x\ucbv], we conclude by rule (es).
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⇐) By induction on t.

• t = x. Then xcbv = !x, σ = [τi]i∈I and Γ = x : [τi]i∈I . The result is
immediate using rule (axv).

• t = s u. There are two cases to consider:

– If scbv = L〈! r〉, then tcbv = L〈r〉 ucbv. Then, Γ = Γ′ + ∆,
Γ′ ⊢ L〈r〉 : M → σ and ∆ ⊢ ucbv : M. Moreover, by induction on
L using (es), it is immediate to see that there exists Γ′′ s.t.
Γ′′ ⊢ r : M → σ. By rule (bg) we get Γ′′ ⊢ ! r : [M → σ] and, by
straightforward induction on L once again, Γ′ ⊢ L〈! r〉 : [M → σ].
Recall that the induction is on t = s u and scbv = L〈! r〉, hence
by the i.h. Γ′ ⊢ s : [M → σ] and ∆ ⊢ u : M. Thus, we conclude by
rule (appv).

– Otherwise, tcbv = der (scbv)ucbv. We then have Γ = Γ′ + ∆,
Γ′ ⊢ der (scbv) : M → σ and ∆ ⊢ ucbv : M. Moreover, from rule
(dr), we have Γ′ ⊢ scbv : [M → σ]. Then, by i.h. Γ′ ⊢ s : [M → σ]
and ∆ ⊢ u : M. Finally, we conclude by rule (appv).

• t = λx.s. Then, tcbv = !λx.scbv, σ = [σi]i∈I , Γ = +i∈I Γi

and
(

Γi ⊢ λx.scbv : σi

)

i∈I
. Moreover, by rule (abs), for every i ∈ I

we have σi = Γ′
i(x) → τi, Γi = Γ′

i \\ x and Γ′
i ⊢ scbv : τi. By

i.h. (Γ′
i ⊢ s : τi)i∈I and we conclude by rule (absv).

• t = s[x\u]. Then, tcbv = scbv[x\ucbv], Γ = (Γ′ \\ x) + ∆, Γ′ ⊢
scbv : σ and ∆ ⊢ ucbv : Γ′(x). The result follow immediately from the
i.h. using rule (esv).

To illustrate our previous theorem, we take the term which is the counter-
example to completeness in [33] Proposition 15. Indeed, we show how t = λx.x x,
and tcbv = !λx.x ! x can now be typed with the same type context and type in
the systems V and U respectively. Let σ = [ ] → [ ].

(axv)
x : [[σ] → σ] ⊢ x : [[σ] → σ]

(axv)
x : [σ] ⊢ x : [σ]

(appv)
x : [[σ] → σ, σ] ⊢ xx : σ

(absv)
⊢ λx.x x : [[[σ] → σ, σ] → σ]

(ax)
x : [[σ] → σ] ⊢ x : [σ] → σ

(ax)
x : [σ] ⊢ x : σ

(bg)
x : [σ] ⊢ !x : [σ]

(app)
x : [[σ] → σ, σ] ⊢ x ! x : σ

(abs)
⊢ λx.x ! x : [[σ] → σ, σ] → σ

(bg)
⊢ !λx.x ! x : [[[σ] → σ, σ] → σ]

The type systemN (resp. V) characterises n-normalisation (resp. v-normalisation).
More precisely:
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Theorem 4.9 (Characterisation of CBN/CBV Normalisation). Let t ∈ Tλ.

• t is N -typable iff t is n-normalising.

• t is V-typable iff t is v-normalising.

Proof. Sec. 4.1 and 4.2 below show the two statements separately as Thm. 4.15
and Thm. 4.24 respectively.

4.1. Call-by-Name

The following lemmas aim to prove that N is indeed a model for the Call-by-
Name reduction strategy presented at the beginning of Sec. 4. Similar results
have been already presented in the literature for different formulations of call-by-
name languages, with or without explicit substitutions, some examples are [14,
37]. In this subsection we measure N -derivations by using a function szn ( )
which counts 1 for all typing rules. We follow here the same pattern used in
Sec. 3 for system U : a substitution (resp. anti-substitution) lemma is established
and used in the proof of subject reduction (resp. expansion). In the following
subsection the same methodology is used for V .

Lemma 4.10 (Substitution). Let Φt⊲NΓ;x : [σi]i∈I ⊢ t : τ and
(

Φi
u ⊲N ∆i ⊢ u : σi

)

i∈I
.

Then, there exists Φt{x\u}⊲N Γ +i∈I ∆i ⊢ t {x\u} : τ such that szn
(

Φt{x\u}

)

=

szn (Φt) +i∈I szn
(

Φi
u

)

− |I|.

Proof. By induction on Φt, reasoning exactly as in Lemma 3.3.

Lemma 4.11 (Weighted Subject Reduction). Let Φ ⊲N Γ ⊢ t : τ and t →n t′.
Then, there exists Φ′ ⊲N Γ ⊢ t′ : τ such that szn (Φ) > szn (Φ

′).

Proof. By induction on t →n t
′, where, in particular, Lemma 4.10 is used in the

base case t[x\u] 7→s t {x\u}.

Lemma 4.12 (Anti-Substitution). If Φt{x\u}⊲N Γ′ ⊢ t {x\u} : τ , then there ex-

ist Φt⊲N Γ;x : [σi]i∈I ⊢ t : τ and
(

Φi
u ⊲N ∆i ⊢ u : σi

)

i∈I
such that Γ′ = Γ +i∈I

∆i and szn
(

Φt{x\u}

)

= szn (Φt) +i∈I szn
(

Φi
u

)

− |I|.

Proof. By induction on t, reasoning exactly as in Lemma 3.5.

Lemma 4.13 (Weighted Subject Expansion). Let Φ′ ⊲N Γ ⊢ t′ : τ and t →n t
′.

Then, there exists Φ⊲N Γ ⊢ t : τ such that szn (Φ) > szn (Φ
′).

Proof. By induction on t →n t
′, where, in particular, Lemma 4.12 is used in the

base case t[x\u] 7→s t {x\u}.

The following lemma, showing that n-normal forms are typable, is used in
the proof of Theorem 4.15 as the base case for establishing that a n-normalising
term is typable.

Lemma 4.14. Let t 6→n. Then, t is N -typable.
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Proof. By straightforward induction on n-normal forms, using Lemma 4.3.

We now relate N -typability with n-normalisation. We also put in evidence
the quantitative aspect of system N , so that we introduce the n-size of terms
as: |x|n

def

= 0, |λx.t|n
def

= 1 + |t|n, |t u|n
def

= 1 + |t|n, and |t[x\u]|n
def

= 1 + |t|n. Note in
particular that given a derivation Φt for a term t we always have szn (Φt) ≥ |t|n.

Theorem 4.15 (Soundness and Completeness for System N ). Let t ∈ Tλ.
Then, t is N -typable iff t is n-normalising. Moreover, if Φ ⊲N Γ ⊢ t : τ , then

there exists p ∈ non such that t ։
(b,e)
n p and szn (Φ) ≥ b + e + |p|n.

Proof. The ⇒ direction holds by WSR (Lemma 4.11), while the ⇐ direction
follows from Lemma 4.14 and WSE (Lemma 4.13). The moreover statement
holds by Lemma 4.11 and the fact that the size of the type derivation of p is
greater than or equal to |p|n.

4.2. Call-by-Value

The following lemmas aim to prove that V is indeed a model for the Call-by-
Value reduction strategy. In this subsection we measure V-derivations by using
a function szv ( ). Formally,

Definition 4.16. Size of derivations is defined by induction as follows:

• szv

(

(axv)
x : M ⊢ x : M

)

= |M|,

• szv

(

Π1 Π2
(esv)

Γ ⊢ t[x\u] : σ

)

= 1 + szv (Π1) + szv (Π2),

• szv

(

Π1 Π2
(appv)

Γ ⊢ t u : τ

)

= 1 + szv (Π1) + szv (Π2),

• szv

(

(Πi)i∈I
(absv)

+i∈I Γi \\ x ⊢ λx.t : [Γi(x) → τi]i∈I

)

= |I|+i∈I szv (Πi).

Thus, szv (Π) counts 1 for rule (appv), while rule (esv) does not count, the
axiom (axv) x : M ⊢ x : M counts |M|, and (absv) contributes with its number of
premises.

In order to prove a substitution lemma for CBV, we need an additional
lemma allowing the decomposition of the multiset types of values.

Lemma 4.17 (Split type for value). Let Φv⊲V Γ ⊢ v : M such that M = +i∈I Mi.
Then, there exist

(

Φi
v ⊲V Γi ⊢ v : Mi

)

i∈I
such that Γ = +i∈I Γi and szv (Φv) =

+i∈Iszv
(

Φi
v

)

.

Proof. By case analysis on the shape of v.
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• v = x. By (axv), Φv ⊲V x : M ⊢ x : M. From M = +i∈I Mi we get
(

Φi
v ⊲V x : Mi ⊢ x : Mi

)

i∈I
by (axv) several times. We then conclude, since

szv (Φv) = |M| = +i∈I |Mi| = +i∈Iszv
(

Φi
v

)

.

• v = λx.s. By (absv), we have Γ = +j∈J Γj \\ x, M = [Γj(x) → τj ]j∈J

and
(

Φj
s ⊲V Γj ⊢ s : τj

)

j∈J
for some J . Since M = +i∈I Mi, we have

also J = +i∈I Ji, with Mi = [Γj(x) → τj ]j∈Ji
for each i ∈ I. We

construct the type derivations
(

Φi
v ⊲V +j∈Ji

Γj \\ x ⊢ λx.s : Mi
)

i∈I
, using

for each i ∈ I the rule (absv) with premises
(

Φj
s ⊲V Γj ⊢ s : τj

)

j∈Ji
. We

have that Γ = +j∈J Γj \\ x = +i∈I (+j∈Ji
Γj \\ x). We conclude since

szv (Φv) = |J |+j∈J szv
(

Φj
s

)

= +i∈I(|Ji|+j∈Ji
szv

(

Φj
v

)

) = +i∈Iszv
(

Φi
v

)

.

Lemma 4.18 (Substitution). Let Φt⊲VΓ ⊢ t : τ and Φv⊲V∆ ⊢ v : Γ(x). Then,
there exists Φt{x\v}⊲VΓ \\ x + ∆ ⊢ t {x\v} : τ such that szv

(

Φt{x\v}

)

= szv (Φt)+
szv (Φv)− |Γ(x)|.

Proof. By induction on Φt. If Φt is (axv) and t = x, then t {x\v} = v and
Φt is of the form x : Γ(x) ⊢ x : Γ(x). We let Φt{x\v} = Φv. We conclude
since szv (Φt) = |Γ(x)|. If Φt is (axv) and t = y 6= x, then t {x\v} = y,
Γ(x) = [ ] (so that |Γ(x)| = 0) and Φy is of the form y : M ⊢ y : M. We let
Φt{x\v} = Φy. Moreover, Φv ⊲V ∆ ⊢ v : [ ] implies szv (Φv) = 0. Then, we
immediately conclude.

If Φt ends with (appv), then t = t1t2, Γ = Γ1 + Γ2 and there exist a type
M and two derivations Φt1 ⊲V Γ1 ⊢ t1 : [M → τ ] and Φt2 ⊲V Γ2 ⊢ t2 : M. Since
Φv ⊲V ∆ ⊢ v : Γ(x) and Γ(x) = Γ1(x) + Γ2(x), Lemma 4.17 ensures that there
exist two derivations Φ1

v ⊲V ∆1 ⊢ v : Γ1(x) and Φ2
v ⊲V ∆2 ⊢ v : Γ2(x) such that

∆ = ∆1 + ∆2 and sz (Φv) = sz
(

Φ1
v

)

+ sz
(

Φ2
v

)

. Using the i.h. on Φti ,Φ
i
v,

i = 1, 2, we get two derivations Φt1{x\v} ⊲V Γ1 \\ x + ∆1 ⊢ t1 {x\v} : [M → τ ]

and Φt2{x\v}⊲VΓ2 \\ x + ∆2 ⊢ t2 {x\v} : M such that sz
(

Φti{x\v}

)

= szv (Φti)+

szv
(

Φi
v

)

− |Γi(x)|, for i = 1, 2. By observing that t {x\v} = t1 {x\v} t2 {x\v}
and by using (appv), we get a derivation Φt{x\v}⊲VΓ \\ x + ∆ ⊢ t {x\v} : τ such

that szv
(

Φt{x\v}

)

= (szv (Φt1) + szv
(

Φ1
v

)

− |Γ1(x)|) + (szv (Φt2) + szv
(

Φ2
v

)

−

|Γ2(x)|) + 1 = (szv (Φt1) + szv (Φt2) + 1) + (szv
(

Φ1
v

)

+ szv
(

Φ2
v

)

)− (|Γ1(x)|) +
|Γ2(x)|) = szv (Φt) + szv (Φv)− |Γ(x)|.

All the other cases are similar to the previous one, and follow easily from
the i.h. and Lemma 4.17.

Lemma 4.19 (Weighted Subject Reduction). Let Φ ⊲V Γ ⊢ t : τ and t →v t′.
Then, there exists Φ′ ⊲V Γ ⊢ t′ : τ such that szv (Φ) > szv (Φ

′).

Proof. By induction on t →v t′. We only show the base case t →sv t′ as the
case t →dB t′ is very similar to the one in Lemma 3.4. The inductive cases are
straightforward.

Let t = s[x\L〈v〉] and t′ = L〈s {x\v}〉. We proceed by induction on L.
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• L = �. Then Γ = (Γ′ \\ x) + ∆ s.t. Γ′(x) = M and Φ has the following
form

Φs ⊲V Γ′ ⊢ s : τ Φv ⊲V ∆ ⊢ v : M
(esv)

Γ ⊢ s[x\v] : τ

Thus, we conclude directly by Lemma 4.18 with Φs and Φv. Notice that
szv (Φ) = 1+szv (Φs)+szv (Φv), while szv (Φ

′) = szv (Φs)+szv (Φv)−|M|.

• L = L′[y\r]. Then Γ = (Γ′ \\ x) + (∆ \\ y) + ∆′ with Γ′(x) = M, ∆(y) = M′

and

Φs ⊲V Γ′ ⊢ s : τ

ΦL′ ⊲V ∆ ⊢ L′〈v〉 : M Φr ⊲V ∆′ ⊢ r : M′

(esv)
(∆ \\ y) + ∆′ ⊢ L′[y\r]〈v〉 : M

(esv)
Γ ⊢ s[x\L〈v〉] : τ

Thus, we build

Φs ⊲V Γ′ ⊢ s : τ ΦL′ ⊲V ∆ ⊢ L′〈v〉 : M
(esv)

Ψ⊲V (Γ′ \\ x) + ∆ ⊢ s[x\L′〈v〉] : τ

and by the i.h. there exists Ψ′⊲V (Γ′ \\ x) + ∆ ⊢ L′〈s {x\v}〉 : τ such that
szv (Ψ) > szv (Ψ

′). Then, we conclude with

Ψ′
⊲V (Γ′ \\ x) + ∆ ⊢ L′〈s {x\v}〉 : τ Φr ⊲V ∆′ ⊢ r : M′

(esv)
Φ′

⊲V (Γ′ \\ x) + (∆ \\ y) + ∆′ ⊢ L〈s {x\v}〉 : τ

since we may assume that y /∈ supp(Γ′). Notice that szv (Φ) = szv (Ψ) +
szv (Φr) + 1 > szv (Ψ

′) + szv (Φr) + 1 = szv (Φ
′).

The ability of merging different type derivations of a given value is necessary
for proving an anti-substitution lemma for CBV.

Lemma 4.20 (Merge type for value). Let
(

Φi
v ⊲V Γi ⊢ v : Mi

)

i∈I
. Then, there

exists Φv ⊲V Γ ⊢ v : M such that Γ = +i∈I Γi, M = +i∈I Mi and szv (Φv) =
+i∈Iszv

(

Φi
v

)

.

Proof. The proof is straightforward by case analysis on v.

Lemma 4.21 (Anti-Substitution). Let Φt{x\v} ⊲V Γ ⊢ t {x\v} : τ . Then, there
exist Φt ⊲V Γ′ ⊢ t : τ and Φv ⊲V ∆ ⊢ v : Γ′(x) such that Γ = Γ′ \\ x + ∆ and
szv

(

Φt{x\v}

)

= szv (Φt) + szv (Φv)− |Γ′(x)|.

Proof. By induction on t. If t = x, then t {x\v} = v and it is necessarily the
case τ = M. We let Φv = Φt{x\v} and Φt ⊲V x : M ⊢ x : M by (axv). We conclude
since Γ′(x) = M and szv (Φt) = |M| by definition. If t = y 6= x, then t {x\v} = y
and we let Φt = Φt{x\v}. Therefore, by (axv), Γ

′(x) = [ ]. Moreover, by rules
(axv) and (absv), Φv⊲V ⊢ v : [ ]. Thus, szv (Φv) = 0 = |Γ′(x)| and we conclude.
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If t = t1 t2, then t {x\v} = t1 {x\v} t2 {x\v} and there exist a type M and
two derivations Φt1{x\v} ⊲V Γ1 \\ x + ∆1 ⊢ t1 {x\v} : [M → τ ] and Φt2{x\v} ⊲V

Γ2 \\ x + ∆2 ⊢ t2 {x\v} : M such that Γ = Γ1+Γ2 and sz
(

Φt{x\v}

)

= sz
(

Φt1{x\v}

)

+

sz
(

Φt2{x\v}

)

+ 1. Using the i.h. on t1 and t2 we get four derivations:

1. Φt1 ⊲V Γ′
1 ⊢ t1 : [M → τ ]

2. Φ1
v ⊲V ∆1 ⊢ v : Γ′

1(x)

3. Φt2 ⊲V Γ′
2 ⊢ t2 : M

4. Φ2
v ⊲V ∆2 ⊢ v : Γ′

2(x)

such that Γi = Γ′
i \\ x + ∆i and sz

(

Φti{x\v}

)

= sz (Φti) + sz
(

Φi
v

)

− |Γ′
i(x)|

for i = 1, 2. Lemma 4.20 applied to (2) and (4) above provides a derivation
Φv ⊲V ∆ ⊢ v : Γ′(x) where ∆ = ∆1 + ∆2 and Γ′(x) = Γ′

1(x) + Γ′
2(x) . Using

(1) and (3) above we get Φt ⊲V Γ′ ⊢ t : τ where Γ′ = Γ′
1 + Γ′

2 and sz (Φt) =
sz (Φt1) + sz (Φt2) + 1. We have that Γ = Γ′ \\ x + ∆ and szv

(

Φt{x\v}

)

=
szv (Φt) + szv (Φv)− |Γ′(x)|, and we conclude.

All the other cases are similar to the previous one, and follow easily from
the i.h. and Lemma 4.20.

Lemma 4.22 (Weighted Subject Expansion). Let Φ′ ⊲V Γ ⊢ t′ : τ and t →v t
′.

Then, there exists Φ⊲V Γ ⊢ t : τ such that szv (Φ) > szv (Φ
′).

Proof. By induction on t →v t
′ where, in particular, Lemma 4.21 is used in the

base case t[x\v] 7→sv t {x\v}.

As in the case of CBN, a lemma establishing that normal forms are typable
is needed.

Lemma 4.23. Let t 6→v. Then, t is V-typable.

Proof. By induction on t, we prove simultaneously the following statements:

1. If t ∈ vrv, then for every multiset type M there exists Γ such that ⊲V

Γ ⊢ t : M.

2. If t ∈ nev, then for every type τ there exists Γ such that ⊲V Γ ⊢ t : τ .

3. If t ∈ nov, then there exist Γ and M such that ⊲V Γ ⊢ t : M.

We only analyse the key cases. If t = x ∈ vrv we conclude by (axv). If t = s u ∈
nev, then u ∈ nov and there are two possible cases: s ∈ vrv or s ∈ nev. Let τ by
any type. By i.h. (3), ⊲V ∆ ⊢ u : M. Moreover, by i.h. (1) or (2) resp., we have
⊲V Γ ⊢ s : [M → τ ] and we conclude by (appv). If t = λx.s ∈ nov we conclude by
(absv) with ⊲V Γ ⊢ t : [ ]. If t = s[x\u], there are three possible cases: s ∈ vrv,
s ∈ nev or s ∈ nov. In either case, by the proper i.h. we get ⊲VΓ ⊢ s : M (resp. τ)
and conclude by (esv), given that u ∈ nev and ⊲V ∆ ⊢ u : Γ(x) by i.h. (2).
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We now relate V-typability with v-normalisation. We also put in evidence
the quantitative aspect of system V , so that we introduce the v-size of terms as:
|x|v

def

= 0, |λx.t|v
def

= 0, |t u|v
def

= 1+ |t|v+ |u|v, and |t[x\u]|v
def

= 1+ |t|v+ |u|v. Note in
particular that given a derivation Φt for a term t we always have szv (Φt) ≥ |t|v.

Theorem 4.24 (Soundness and Completeness for System V). Let t ∈ Tλ. Then,
t is V-typable iff t is v-normalising. Moreover, if Φ⊲V Γ ⊢ t : τ , then there exists

p ∈ nov such that t ։
(b,e)
v p and szv (Φ) ≥ b + e + |p|v.

Proof. The ⇒ direction holds by WSR (Lemma 4.19), while the ⇐ direction
follows from Lemma 4.23 and WSE (Lemma 4.22). The moreover statement
holds by Lemma 4.19 and the fact that the size of the type derivation of p is
greater than or equal to |p|v.

5. A Tight Type System Giving Exact Bounds

In order to count exactly the length of w-reduction sequences to normal
forms, we first fix a deterministic strategy for the λ!-calculus, called dw, which
computes the same w-normal forms. We then define the tight type system E ,
being able to count exactly the length of dw-reduction sequences. Theorem 2.8,
stating that any two different reduction paths to normal form have the same
length, guarantees that system E is able to count exactly the length of any
w-reduction sequence to w-normal form.

A Deterministic Strategy for the λ!-Calculus. The reduction relation→dw

defined below is a deterministic version of →w and is used, as explained, as a
technical tool of our development.

L〈λx.t〉u →dw L〈t[x\u]〉 t[x\L〈!u〉] →dw L〈t {x\u}〉 der (L〈! t〉) →dw L〈t〉

t →dw u

λx.t →dw λx.u

t →dw u ¬bang(t)

r[x\t] →dw r[x\u]

t →dw u ¬bang(t)

der t →dw der u

t →dw u ¬abs(t)

t r →dw u r

t →dw u r ∈ naw

r t →dw r u

t →dw u r ∈ nbw

t[x\r] →dw u[x\r]

The rules in the first line correspond to the base cases. The first of these
rules is the multiplicative case, while the other two are the exponential cases.
The six remaining rules specify the closure by weak contexts.

Normal forms of →w and →dw are the same, both characterised by the set
now.

Proposition 5.1. Let t ∈ T . Then, (1) t 6→w iff (2) t 6→dw iff (3) t ∈ now.

Proof. Notice that (1) =⇒ (2) follows from →dw ⊂ →w. Moreover, (1) iff (3)
holds by Proposition 2.11. The proof of (2) =⇒ (3) follows from a straightfor-
ward adaptation of the proof of Proposition 2.11.
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The Type System E. We now extend the type system U to a tight one, called
E , being able to provide exact bounds for dw-normalising sequences and size of
normal forms. The technique is based on [1], which defines type systems to count
reduction lengths for different strategies in the λ-calculus. The notion of tight
derivation turns out to be a particular implementation of minimal derivation,
pioneered by de Carvalho in [20], where exact bounds for CBN abstract machines
are inferred from minimal type derivations.

We define the following sets of types:

(Tight Constants) tt ::= a | b | n
(Types) σ, τ ::= tt | M | M → σ

(Multiset Types) M ::= [σi]i∈I where I is a finite set

In contrast with U where an infinite countable set of variable is used, follow-
ing the standard presentations in the literature, system E relies only in the use
of a few type constants with a specific semantics. Inspired by [1], which only
uses two constant types a and n for abstractions and neutral terms respectively,
we now use three tight constants. Indeed, the constant a (resp. b) types terms
whose normal form has the shape L〈λx.t〉 (resp. L〈! t〉), and the constant n types
terms whose normal form is in newcf. As a matter of notation, given an arbitrary
tight constant tt0 we write tt0 to denote a tight constant different from tt0.
Thus for instance, a ∈ {b, n}.

Typing contexts are functions from variables to multiset types, assigning the
empty multiset to all but a finite number of variables. Sequents are of the form
Γ ⊢(b,e,s) t : σ, where the natural numbers b, e and s provide information on the
reduction of t to normal form, and on the size of its normal form. More precisely,
b (resp. e) indicates the number of multiplicative (resp. exponential) steps to
normal form, while s indicates the w-size of this normal form. Observe that we
do not count s! and d! steps separately, because both of them are exponential
steps of the same nature. It is also worth noticing that only two counters suffice
in the case of the λ-calculus [1], one to count β-reduction steps, and another to
count the w-size of normal forms. The difficulty in the case of the λ!-calculus is
to statically discriminate between multiplicative and exponential steps.

A multiset type [σi]i∈I is tight , written tight([σi]i∈I), if σi ∈ tt for all i ∈ I.
A context Γ is said to be tight if it assigns tight multisets to all variables. A
type derivation Φ⊲E Γ ⊢(b,e,s) t : σ is tight if Γ is tight and σ ∈ tt.

Typing rules (Figure 3) are split in two groups: the persistent and the con-
suming ones. A constructor is consuming (resp. persistent) if it is consumed
(resp. not consumed) during w-reduction to w-normal form. For instance, in
der (! K) (! I) (! Ω) the two abstractions of K are consuming, while the abstrac-
tion of I is persistent, and all the other constructors are also consuming, except
those of Ω that turns out to be an untyped subterm. This dichotomy between
consuming/persistent constructors has been used in [1] for the λ-calculus, and
adapted here for the λ!-calculus.

Observe that in every typing rule the counters of the conclusion are at least
the sums of the corresponding counters of the premises. In some cases, one
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Persistent Typing Rules

Γ ⊢(b,e,s) t : n ∆ ⊢(b′,e′,s′) u : a
(aep)

Γ + ∆ ⊢(b+b′,e+e′,s+s′+1) t u : n

Γ ⊢(b,e,s) t : tt tight(Γ(x))
(aip)

Γ \\ x ⊢(b,e,s+1) λx.t : a

(bgp)
⊢(0,0,0) ! t : b

Γ ⊢(b,e,s) t : n
(drp)

Γ ⊢(b,e,s+1) der t : n

Γ ⊢(b,e,s) t : τ ∆ ⊢(b′,e′,s′) u : n tight(Γ(x))
(esp)

(Γ \\ x) + ∆ ⊢(b+b′,e+e′,s+s′) t[x\u] : τ

Consuming Typing Rules

(axc)
x : [σ] ⊢(0,0,0) x : σ

Γ ⊢(b,e,s) t : M → τ ∆ ⊢(b′,e′,s′) u : M
(aec1)

Γ + ∆ ⊢(b+b′+1,e+e′,s+s′) t u : τ

Γ ⊢(b,e,s) t : M → τ ∆ ⊢(b′,e′,s′) u : n tight(M)
(aec2)

Γ + ∆ ⊢(b+b′+1,e+e′,s+s′) t u : τ

Γ ⊢(b,e,s) t : τ
(aic)

Γ \\ x ⊢(b,e,s) λx.t : Γ(x) → τ

(Γi ⊢
(bi,ei,si) t : σi)i∈I

(bgc)
+i∈I Γi ⊢

(+i∈Ibi,1+i∈Iei,+i∈Isi) ! t : [σi]i∈I

Γ ⊢(b,e,s) t : [σ]
(drc)

Γ ⊢(b,e,s) der t : σ

Γ ⊢(b,e,s) t : σ ∆ ⊢(b′,e′,s′) u : Γ(x)
(esc)

(Γ \\ x) + ∆ ⊢(b+b′,e+e′,s+s′) t[x\u] : σ

Figure 3: System E for the λ!-Calculus.
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counter may undergo an additional increment, as explained below. The persis-
tent rules are those typing persistent constructors, so that none of them increases
the first two counters, but only possibly the third one, which contributes to the
size of the normal form. The consuming rules type consuming constructors, so
that they may increase one of the first two counters, contributing to the length
of the normalisation sequence. More precisely, rules (aec1) and (aec2) increment
the first counter because the (consuming) application will be used to perform a
dB-step, while rule (bgc) increments the second counter because the (consuming)
bang will be used to perform either a s! or a d!-step. Rule (aec2) is particularly
useful to type dB-redexes whose reduction does not create an exponential redex,
because the argument of the substitution created by the dB-step does not reduce
to a bang.

Example 5.2. The following tight typing can be derived for term t0 of Exam-
ple 2.2:

(axc)
x : [a] ⊢(0,0,0)

x : a
(aic)

x : [a] ⊢(0,0,0)
λy.x : [ ] → a

(aic)
⊢
(0,0,0)

λx.λy.x : [a] → [ ] → a
(bgc)

⊢
(0,1,0) ! K : [[a] → [ ] → a]

(drc)
⊢
(0,1,0) der (! K) : [a] → [ ] → a

(axc)
x : [n] ⊢(0,0,0)

x : n
(aip)

⊢
(0,0,1)

λx.x : a
(bgc)

⊢
(0,1,1) ! I : [a]

(aec1)
⊢
(1,2,1) der (! K) (! I) : [ ] → a

(bgc)
⊢
(0,1,0) ! Ω : [ ]

(aec1)
⊢
(2,3,1) der (! K) (! I) (! Ω) : a

Note that the only persistent rule used is (aip) when typing I, thus contributing
to count the w-size of the w-normal form of t0. Indeed, I is the w-normal form
of t0.

Soundness. We now study soundness of the type system E , which does not
only guarantee that typable terms are normalising –a qualitative property– but
also provides quantitative (exact) information for normalising sequences. More
precisely, given a tight type derivation Φ with counters (b, e, s) for a term t, t
is w-normalisable in (b+ e)-steps and its w-normal form has w-size s . Therefore,
information about a dynamic behaviour of t, is extracted from a static typing
property of t. The soundness proof is mainly based on a subject reduction
property (Lemma 5.12), as well as on some auxiliary results.

We start by the following remark, which is proved by inspecting the typing
rules:

Remark 5.3. If Φ⊲E Γ ⊢(b,e,s) t : σ then:

• abs(t) implies σ = a or σ = M → τ .

• bang(t) implies σ = b or σ = M.
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As in system U , typable terms are weakly clash-free, as stated in the following
lemma. This lemma is needed for proving Lemma 5.5, which is one of the two
tight spreading lemmas established here. By tight spreading we mean that in a
type derivation the tightness of the final context implies (under some additional
hypotheses) the tightness of the final type, and hence of the derivation itself.

Lemma 5.4. If Φ⊲E Γ ⊢(b,e,s) t : σ, then t is wcf.

Proof. By straightforward induction in t.

The following tight spreading lemmas will be used in Lemma 5.6 and Lemma 5.7,
which in turn ensure that in tight derivations the counters work as expected for
normal forms.

Lemma 5.5 (Tight Spreading for Neutral Terms). Let Φ⊲E Γ ⊢(b,e,s) t : σ such
that t ∈ new. If Γ is tight, then σ ∈ tt.

Proof. We reason by induction on t. Notice that by i.h. for every subterm u
of t verifying u ∈ new, every derivation of u having a tight typing context must
also have a tight type subject.

• t = x. Then, Φ ends with rule (axc) and Γ = x : [σ] tight implies σ ∈ tt.

• t = r u. By definition of t ∈ new, r ∈ naw and u ∈ now hold. Moreover,
¬bang(r) by Lemma 5.4. Then, by Remark 2.10, it is necessarily the case
that r ∈ nbw holds, and hence r ∈ new as well. There are three cases for
Φ:

1. if Φ ends with rule (aep), then σ = n and the statement trivially
holds.

2. if Φ ends with rule (aec1), then Γ = Γ′ + ∆, b = b′ + b′′ + 1,
e = e ′+e ′′, s = s ′+s ′′ and, in particular, Φr⊲EΓ

′ ⊢(b′,e′,s′) r : M → τ
with Γ′ tight (since Γ is tight). Then, r ∈ new gives M → τ ∈ tt by
i.h. This is clearly a contradiction. Hence, this case does not apply.

3. if Φ ends with rule (aec2), then we reason exactly as in the previous
case, so that this case does not apply neither.

• t = deru. By definition of t ∈ new, u ∈ nbw holds. Moreover, ¬abs(u) by
Lemma 5.4. Then, by Remark 2.10, it is necessarily the case that u ∈ naw
holds, and hence u ∈ new as well. Then, there are two cases for Φ:

1. if Φ ends with rule (drp), then σ = n and the statement trivially
holds.

2. if Φ ends with rule (drc), then Φu ⊲E Γ ⊢(b,e,s) u : [σ]. Therefore,
u ∈ new gives [σ] ∈ tt by i.h. This is clearly a contradiction. Hence,
this case does not apply.
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• t = r[x\u]. By definition of t ∈ new, r ∈ new and u ∈ nbw hold. Moreover,
¬abs(u) by Lemma 5.4. Then, by Remark 2.10, it is necessarily the case
that u ∈ naw holds, and hence u ∈ new as well. Then, there are two cases
for Φ:

1. if Φ ends with rule (esc), Γ = Γ′ \\ x + ∆, b = b′ + b′′, e = e ′ + e ′′,
s = s ′ + s ′′ and, in particular, Φu ⊲E ∆ ⊢(b′′,e′′,s′′) u : Γ′(x) with ∆
tight (since Γ is tight). Then, u ∈ new gives Γ′(x) ∈ tt by i.h. This
leads to a contradiction, since Γ′(x) is a multiset type by definition.
Hence, this case does not apply.

2. if Φ ends with rule (esp), then Γ = Γ′ \\ x + ∆, tight(Γ′(x)), b = b′+

b′′, e = e ′+e ′′, s = s ′+s ′′ and, in particular, Φr⊲EΓ
′ ⊢(b′,e′,s′) r : σ.

Moreover, Γ tight and tight(Γ′(x)) give Γ′ tight as well. We conclude
by i.h. with r ∈ new that σ ∈ tt.

Lemma 5.6 (Tight Spreading for Zero Counters). Let Φ⊲E Γ ⊢(b,e,s) t : σ such
that b = e = 0 and σ is not an arrow type. If Γ is tight, then σ ∈ tt.

Proof. By induction on Φ. Note that the statement trivially holds for the rules
(aep), (aip), (bgp), (drp) in Figure 3 since all of them conclude with σ ∈ tt.
We proceed by analysing the other rules in Figure 3.

• (esp). Then Γ = Γ′ \\ x + ∆, tight(Γ′(x)), s = s ′ + s ′′ and, in particular,

Φr ⊲E Γ′ ⊢(0,0,s′) r : σ. Moreover, Γ tight and tight(Γ′(x)) give Γ′ tight as
well. We then conclude directly by i.h. with Φr that σ ∈ tt.

• (axc). Then t = x and Γ = x : [σ] tight which implies σ ∈ tt.

• (aec2). This case does not apply since it concludes with b > 0.

• (aec1). This case does not apply since it concludes with b > 0.

• (aic). This case does not apply since it concludes with an arrow type.

• (bgc). This case does not apply since it concludes with e > 0.

• (drc). Then t = deru and Γ ⊢(0,0,s) u : [σ] is derivable. Then, the
i.h. gives [σ] ∈ tt which is clearly a contradiction. Thus, this case does
not apply either.

• (esc). Then t = r[x\u], s = s ′+ s ′′ and Γ = (Γ′ \\ x) + ∆ tight such that,
in particular ∆ ⊢(0,0,s′′) u : Γ(x) with ∆ tight. The i.h. gives Γ(x) ∈ tt

which leads to a contradiction since it is a multiset type. Hence, this case
does not apply.

The following two lemmas are needed to establish the base case of the in-
duction proving soundness.
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Lemma 5.7. If Φ⊲E Γ ⊢(b,e,s) t : σ is tight, then b = e = 0 iff t ∈ now.

Proof. ⇒) By induction on Φ.

• (axc). Then t = x, Γ = [σ] with σ ∈ tt. By definition t ∈ new holds,
which implies t ∈ now as well.

• (aep). Then t = r u, σ = n, Γ = Γ′ + ∆, s = s ′ + s ′′ + 1, Γ′ ⊢(0,0,s′) r : n,

∆ ⊢(0,0,s′′) u : a. Then, Γ′ and ∆ are both tight, hence the i.h. gives
r ∈ now and u ∈ now. There are two cases to consider based on r ∈ now:

1. if r ∈ naw the result is immediate.

2. if r ∈ nbw then we can assume r /∈ naw too (since r ∈ naw is already
considered). Then, by Remark 2.10, abs(r) holds. This leads to a
contradiction with r having type n (cf. Remark 5.3). Hence, this case
does not apply.

• (aec2). This case does not apply since it concludes with b > 0.

• (aec1). This case does not apply since it concludes with b > 0.

• (aip). Then t = λx.u, σ = a, Γ = Γ′ \\ x, s = s ′ +1, Γ′ ⊢(0,0,s′) u : tt and
tight(Γ′(x)). Since Γ is tight and tight(Γ′(x)), Γ′ is tight as well. Then,
by i.h. u ∈ now holds, which implies t ∈ now too.

• (aic). Then σ = M → τ which contradicts the hypothesis of Φ being tight.
Hence, this case does not apply.

• (bgp). Then t = !u which implies t ∈ naw and hence t ∈ now.

• (bgc). This case does not apply since it concludes with e > 0.

• (drp). Then t = deru, σ = n, s = s ′ + 1 and Γ ⊢(0,0,s′) u : n. By
i.h. u ∈ now holds. There are two cases to consider:

1. if u ∈ nbw the result is immediate.

2. if u ∈ naw and u /∈ nbw, then bang(u) holds by Remark 2.10. This
leads to a contradiction with u having type n (cf. Remark 5.3).
Hence, this case does not apply.

• (drc). Then t = deru and Φu ⊲E Γ ⊢(0,0,s) u : [σ]. Then, Lemma 5.6 on
Φu give [σ] ∈ tt which is clearly a contradiction. Thus, this case does not
apply.

• (esp). Then t = r[x\u], Γ = (Γ′ \\ x) + ∆, s = s ′ + s ′′, Γ′ ⊢(0,0,s′) r : σ,

∆ ⊢(0,0,s′′) u : n and tight(Γ′(x)). Since Γ is tight and tight(Γ′(x)), then
Γ′ and ∆ are both tight as well. Thus, i.h. gives r ∈ now and u ∈ now.
Moreover, by definition r ∈ now means r ∈ naw or r ∈ nbw. Same for
u ∈ now, hence there are two different cases to analyse:
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1. if u ∈ nbw the result is immediate.

2. if u ∈ naw and u /∈ nbw, then bang(u) holds by Remark 2.10. This
leads to a contradiction with u having type n (cf. Remark 5.3).
Hence, this case does not apply.

• (esc). Then t = r[x\u], s = s ′+ s ′′ and Γ = (Γ′ \\ x) + ∆ tight such that,
in particular, Φu ⊲E ∆ ⊢(0,0,s′′) u : Γ′(x) with ∆ tight. By Lemma 5.6 on
Φu, Γ

′(x) ∈ tt which leads to a contradiction, since Γ′(x) is a multiset
type by definition. Hence, this case does not apply.

⇐) By induction on t.

• t = x. Then, Φ ends with rule (axc) and the statement holds trivially.

• t = r u. By definition t ∈ now gives r ∈ naw and u ∈ now. Thus, r ∈ now
holds too. There are three cases to consider:

1. if Φ ends with rule (aep), then σ = n, Γ = Γ′ + ∆, b = b′ + b′′,

e = e ′ + e ′′, s = s ′ + s ′′ + 1, Γ′ ⊢(b′,e′,s′) r : n, ∆ ⊢(b′′,e′′,s′′) u : a.
Moreover, Γ′ and ∆ are both tight. Then, the i.h. with r ∈ now and
u ∈ now gives b′ = e ′ = 0 and b′′ = e ′′ = 0. Hence, b = e = 0.

2. if Φ ends with rule (aec1), then Γ = Γ′ + ∆, b = b′ + b′′ + 1,
e = e ′+e ′′, s = s ′+s ′′ and, in particular, Φr⊲EΓ

′ ⊢(b′,e′,s′) r : M → τ .
Moreover, by contra-positive of Remark 5.3 with Φr, it is necessarily
the case that ¬bang(r). Thus, together with r ∈ naw it gives r ∈ new
(cf. Remark 2.10). Also, Γ tight implies Γ′ tight as well. Then, by
Lemma 5.5, Φr is a tight typing, which leads to a contradiction with
r having a functional type. Hence, this case does not apply.

3. if Φ ends with rule (aec2), then Γ = Γ′ + ∆, b = b′ + b′′ + 1,
e = e ′+e ′′, s = s ′+s ′′ and, in particular, Φr⊲EΓ

′ ⊢(b′,e′,s′) r : M → τ .
This case is identical to the previous one.

• t = λx.u. By definition t ∈ now gives u ∈ now. There are two cases to
consider for Φ:

1. if Φ ends with rule (aip), then σ = a, Γ = Γ′ \\ x, s = s ′ + 1, Φu ⊲E

Γ′ ⊢(b,e,s′) u : tt and tight(Γ′(x)). Since Γ is tight and tight(Γ′(x)),
Γ′ is tight as well. Then, the i.h. gives b = e = 0.

2. if Φ ends with rule (aic), then σ = M → τ which contradicts the
hypothesis of Φ being tight. Hence, this case does not apply.

• t = !u. There are two cases to consider for Φ:

1. if Φ ends with rule (bgp), then b = e = 0 and the statement holds
immediately.

2. if Φ ends with rule (bgc), then σ is a multiset type which contradicts
the hypothesis of Φ being tight. Hence, this case does not apply.
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• t = der u. By definition t ∈ now gives u ∈ nbw which implies u ∈ now as
well. There are two cases to consider:

1. if Φ ends with rule (drp), then σ = n, s = s ′ +1 and Γ ⊢(b,e,s′) u : n.
Then, the statement follows immediately from the i.h.

2. if Φ ends with rule (drc), then Φu ⊲E Γ ⊢(b,e,s) u : [σ]. Moreover,
by contra-positive of Remark 5.3 with Φu, it is necessarily the case
¬abs(u). Thus, together with u ∈ nbw it gives u ∈ new (cf. Re-
mark 2.10). Then, by Lemma 5.5, Φu is a tight typing, which leads
to a contradiction with u having a multiset type. Hence, this case
does not apply.

• t = r[x\u]. By definition t ∈ now implies r ∈ now and u ∈ nbw, which in
turn implies u ∈ now as well. Then, there are two cases to consider for Φ:

1. if Φ ends with rule (esp), then Γ = (Γ′ \\ x) + ∆, b = b′ + b′′,

e = e ′ + e ′′, s = s ′ + s ′′, Γ′ ⊢(b′,e′,s′) r : σ, ∆ ⊢(b′′,e′′,s′′) u : n and
tight(Γ′(x)). Since Γ is tight and tight(Γ′(x)), then Γ′ and ∆ are
both tight as well. Then, the i.h. with r ∈ now and u ∈ now gives
b′ = e ′ = 0 and b′′ = e ′′ = 0. Hence, b = e = 0.

2. if Φ ends with rule (esc), then b = b′ + b′′, e = e ′ + e ′′, s = s ′ +
s ′′ and Γ = (Γ′ \\ x) + ∆ tight such that, in particular, Φu ⊲E

∆ ⊢(b′′,e′′,s′′) u : Γ′(x) with ∆ tight. Moreover, by contra-positive
of Remark 5.3 with Φu, it is necessarily the case ¬abs(u). Thus,
together with u ∈ nbw it gives u ∈ new (cf. Remark 2.10). Then, by
Lemma 5.5, Φu is a tight typing, which leads to a contradiction with
u having a multiset type. Hence, this case does not apply.

Lemma 5.8. If Φ⊲E Γ ⊢(0,0,s) t : σ is tight, then s = |t|w.

Proof. By induction on Φ.

• (axc). Then t = x and s = 0 = |t|w.

• (aep). Then t = r u, σ = n, Γ = Γ′ + ∆, s = s ′ + s ′′ + 1, Φr ⊲E

Γ′ ⊢(0,0,s′) r : n, Φu ⊲E ∆ ⊢(0,0,s′′) u : a. Then, Γ′ and ∆ are both tight,
hence the i.h. gives s ′ = |r|w and s ′′ = |u|w. Hence, s = |r|w+|u|w+1 = |t|w.

• (aec2). This case does not apply since it concludes with b > 0.

• (aec1). This case does not apply since it concludes with b > 0.

• (aip). Then t = λx.u, σ = a, Γ = Γ′ \\ x, s = s ′+1, Φu⊲EΓ
′ ⊢(0,0,s′) u : tt

and tight(Γ′(x)). Since Γ is tight and tight(Γ′(x)), Γ′ is tight as well. Then,
by i.h. s ′ = |u|w, which implies s = |u|w + 1 = |t|w.

• (aic). Then σ = M → τ which contradicts the hypothesis of Φ being tight.
Hence, this case does not apply.
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• (bgp). Then t = !u and s = 0 = |t|w.

• (bgc). This case does not apply since it concludes with e > 0.

• (drp). Then t = deru, σ = n, s = s ′ + 1 and Φu ⊲E Γ ⊢(0,0,s′) u : n. By
i.h. s ′ = |u|w, which implies s = |u|w + 1 = |t|w.

• (drc). Then t = deru and Φu ⊲E Γ ⊢(0,0,s) u : [σ]. Then, Lemma 5.6 on
Φu gives [σ] ∈ tt which is clearly a contradiction. Thus, this case does
not apply.

• (esp). Then t = r[x\u], Γ = (Γ′ \\ x) + ∆, s = s ′+s ′′, Φr⊲EΓ
′ ⊢(0,0,s′) r : σ,

Φu ⊲E ∆ ⊢(0,0,s′′) u : n and tight(Γ′(x)). Since Γ is tight and tight(Γ′(x)),
then Γ′ and ∆ are both tight as well. Thus, i.h. gives s ′ = |r|w and
s ′′ = |u|w. Then, s = |r|w + |u|w = |t|w.

• (esc). Then t = r[x\u], s = s ′+ s ′′ and Γ = (Γ′ \\ x) + ∆ tight such that,
in particular, Φu ⊲E ∆ ⊢(0,0,s′′) u : Γ′(x) with ∆ tight. By Lemma 5.6 on
Φu, Γ

′(x) ∈ tt which leads to a contradiction, since Γ′(x) is a multiset
type by definition. Hence, this case does not apply.

As well as U-typability, E-typability of a term may provide additional infor-
mation about the neutrality/normality of its subterms:

Lemma 5.9. Let u ∈ T :

1. If t ∈ naw and t u is E-typable, then t ∈ new.

2. If t ∈ nbw and u[x\t] is E-typable, then t ∈ new.

3. If t ∈ nbw and der t is E-typable, then t ∈ new.

4. If t ∈ nbw and u t is E-typable, then t ∈ new.

5. If t ∈ now and u t is E-typable, then t ∈ naw.

Proof. Straightforward case analysis using the characterisation in the proof of
Proposition 2.11 and resorting to Remark 5.3. Notice that a similar property
was shown for U-typability (Lemma 3.2).

As well as the type system U , the type system E captures clash-freeness of
normal terms:

Theorem 5.10. Let t ∈ T . Then, t ∈ nowcf iff t ∈ now and t is E-typable.

Proof. A similar property was shown for U-typability (Theorem 3.8). This proof
is analogous to that one, but now using Lemma 5.9. Notice that the consuming
rules of system E are essentially the typing rules of system U .
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As usual, in order to prove soundness, the key property is subject reduction,
stating that every reduction step decreases one of the first two counters of tight
derivations by exactly one. We first prove a substitution lemma.

Lemma 5.11 (Substitution). Let us consider Φt ⊲E Γ;x : [σi]i∈I ⊢(b,e,s) t : τ
and derivations

(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I
, then there exists a derivation of

the form Φt{x\u} ⊲E Γ +i∈I ∆i ⊢
(b+i∈Ibi,e+i∈Iei,s+i∈Isi) t {x\u} : τ .

Proof. Straightforward induction on Φt. The detailed proof of few chosen cases
follow. Suppose that the last rule of Φt is:

• (axc). Then t = y and Γ = y : [τ ]. If x 6= y then I = ∅, and the required
typing is Φt. If x = y then I is a singleton {∗} and the required typing is
Φ∗

u. The counters are as expected since b = e = s = 0.

• (aec2). Then t = t1 t2 with Φt1 ⊲E Γ1;x : [σi]i∈I1 ⊢(b1,e1,s1) t1 : M → τ and
Φt2 ⊲E Γ2;x : [σi]i∈I2 ⊢(b2,e2,s2) t2 : n such that Γ = Γ1 + Γ2, I = I1 ⊎ I2,
b = b1+b2+1, e = e1+e2, s = s1+s2, and M is tight. The i.h. provides the
typings Φt1{x\u}⊲EΓ1 +i∈I1 ∆i ⊢(b1+i∈I1

bi,e1+i∈I1
ei,s1+i∈I1

si) t1 {x\u} : M → τ

and Φt2{x\u}⊲EΓ2 +i∈I2 ∆i ⊢(b2+i∈I2
bi,e2+i∈I2

ei,s2+i∈I2
si) t2 {x\u} : n. The

required typing is obtained by applying the rule (aec2) to these, using the
fact that M is tight. The counters are as expected.

• (esc). Then t = t1[y\t2], and we have Φt1⊲EΓ1;x : [σi]i∈I1 ⊢(b1,e1,s1) t1 : τ
and Φt2⊲EΓ2;x : [σi]i∈I2 ⊢(b2,e2,s2) t2 : Γ1(y) such that Γ = (Γ1 \\ y) + Γ2,
I = I1 ⊎ I2, b = b1 + b2, e = e1 + e2, s = s1 + s2. The i.h. provides the
typings Φt1{x\u} ⊲E Γ1 +i∈I1 ∆i ⊢(b1+i∈I1

bi,e1+i∈I1
ei,s1+i∈I1

si) t1 {x\u} : τ

and Φt2{x\u}⊲E Γ2 +i∈I2 ∆i ⊢(b2+i∈I2
bi,e2+i∈I2

ei,s2+i∈I2
si) t2 {x\u} : Γ1(y)

The required typing is obtained by applying the rule (esc) to these. The
counters are as expected.

The goal of exact subject reduction is to show that tight derivations are
preserved by reduction. To apply the i.h. on a sub-derivation of the original tight
type derivation, one would need this sub-derivation to be also tight. However,
tightness is a global property not necessarily true for all sub-derivations. A
subtle property is then needed, whose precise formulation uses an idea in [1]: the
original typed term t is required not to be an abstraction-like term, or tightly
typable. This is sufficient to show the desired property. Moreover, subject
reduction for the system E proceeds by induction on the definition of t →dw t′,
and in the three base cases of the recursive definition of t →dw t′ the list L has
arbitrary length. Therefore, for each base case there is a further induction on
the length of L. Formally,

Lemma 5.12 (Exact Subject Reduction). Let Φ ⊲E Γ ⊢(b,e,s) t : σ such that
Γ is tight, and either σ ∈ tt or ¬abs(t). If t →dw t′, then there exists Φ′ ⊲E

Γ ⊢(b′,e′,s) t′ : σ such that
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• b′ = b − 1 and e ′ = e if t →dw t
′ is an m-step.

• e ′ = e − 1 and b′ = b if t →dw t
′ is an e-step.

Proof. By induction on t →dw t
′.

• t = L〈λx.u〉 r →dw L〈u[x\r]〉 = t′. We reason by induction on L.

– L = �. We first note that Φ cannot end with rule (aep) since λx.u
cannot be typed with n, then there are two cases depending on the
last rule of Φ.

1. If Φ has the following form:

Γu;x : M ⊢(bu,eu,su) u : σ
(aic)

Γu ⊢(bu,eu,su) λx.u : M → σ Γr ⊢
(br,er,sr) r : M

(aec1)
Γu + Γr ⊢

(bu+br+1,eu+er,su+sr) (λx.u) r : σ

We can then construct the following derivation Φ′.

Γu;x : M ⊢(bu,eu,su) u : σ Γr ⊢(br,er,sr) r : M
(esc)

Γu + Γr ⊢(bu+br,eu+er,su+sr) u[x\r] : σ

The counters verify the expected property.

2. If Φ has the following form:

Γu;x : M ⊢(bu,eu,su) u : σ
(aic)

Γu ⊢(bu,eu,su) λx.u : M → σ Γr ⊢(br,er,sr) r : n tight(M)
(aec2)

Γu + Γr ⊢(bu+br+1,eu+er,su+sr) (λx.u) r : σ

We can then construct the following derivation Φ′.

Γu;x : M ⊢(bu,eu,su) u : σ Γr ⊢(br,er,sr) r : n tight(M)
(esp)

Γu + Γr ⊢(bu+br,eu+er,su+sr) u[x\r] : σ

The counters verify the expected property.

– L = L′[y\s]. Immediate from the i.h.

• t = u[x\L〈! r〉] →dw L〈u {x\r}〉 = t′. We reason by induction on L.

– L = �. We first note that Φ cannot end with rule (esp) since ! r
cannot be typed with n, then Φ has the following form:

Γu;x : [σi]i∈I ⊢(bu,eu,su) u : σ

(Γi ⊢
(bi,ei,si) r : σi)i∈I

(bgc)
+i∈I Γi ⊢

(+i∈Ibi,1+i∈Iei,+i∈Isi) ! r : [σi]i∈I
(esc)

Γu +i∈I Γi ⊢
(bu+i∈Ibi,eu+1+i∈Iei,su+i∈Isi) u[x\! r] : σ

By applying Lemma 5.11 to the premises we obtain a derivation

Φ′
⊲ Γu +i∈I Γi ⊢

(bu+i∈Ibi,eu+i∈Iei,su+i∈Isi) u {x\r} : σ

The counters verify the expected property.
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– L = L′[y\s]. Immediate from the i.h.

• t = der (L〈!u〉) →dw L〈u〉 = t′. We reason by induction on L.

– L = �. Then Φ has necessarily the following form:

Γu ⊢(bu,eu,su) u : σ
(bgc)

Γu ⊢(bu,1+eu,su) !u : [σ]
(drc)

Γu ⊢(bu,1+eu,su) der !u : σ

We conclude with the derivation Φ′ given by the premise. The coun-
ters verify the expected property.

– L = L′[y\s]. Immediate from the i.h.

• All the inductive cases for internal reductions are straightforward by i.h.

Theorem 5.13 (Soundness for System E). If Φ⊲E Γ ⊢(b,e,s) t : σ is tight, then

there exists p such that p ∈ nowcf and t ։
(b,e)
w p with b m-steps, e e-steps, and

|p|w = s .

Proof. We prove the statement by showing that t ։
(b,e)
dw p holds for the deter-

ministic strategy, then we conclude since →dw ⊆ →w. Let Φ ⊲E Γ ⊢(b,e,s) t : σ.
We reason by induction on b + e.

If b + e = 0, then b = e = 0 and Lemma 5.7 gives t ∈ now. Moreover, by
Lemma 5.8 and Theorem 5.10, we get both |t|w = s and t ∈ nowcf. Thus, we
conclude with p = t.

If b + e > 0, then t /∈ now holds by Lemma 5.7 and thus there exists t′

such that t ։
(1,0)
dw t′ or t ։

(0,1)
dw t′ by Proposition 5.1. By Lemma 5.12 there is

Φ′ ⊲E Γ ⊢(b′,e′,s) t′ : σ such that 1 + b′ + e ′ = b + e. By the i.h. there is p such

that p ∈ nowcf and t′ ։
(b′,e′)
dw p with s = |p|w. Then t ։

(1,0)
dw t′ ։

(b′,e′)
dw p (resp.

t ։
(0,1)
dw t′ . . .) which means t ։

(b,e)
dw p, as expected.

Completeness. We now study completeness of the type system E , which does
not only guarantee that normalising terms are typable –a qualitative property–
but also provides a tight type derivation having appropriate counters. More
precisely, given a term t which is w-normalisable by means of b dB-steps and e
{s!, d!}-steps, and having a w-normal form of w-size s , there is a tight derivation
Φ for t with counters (b, e, s). The completeness proof is mainly based on a
subject expansion property (Lemma 5.16), as well as on an auxiliary lemma
providing tight derivations with appropriate counters for w-normal weak clash-
free terms.

Lemma 5.14. If t ∈ nowcf, then there is a tight derivation Φ⊲EΓ ⊢(0,0,|t|w) t : σ.

Proof. We proceed by induction on the derivation of t ∈ nowcf (resp. t ∈ newcf,
t ∈ nbwcf and t ∈ nawcf). Moreover, we generalise the statement and simultane-
ously show the following:
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1. If t ∈ newcf, then σ = n;

2. If t ∈ nbwcf, then σ ∈ b;

3. If t ∈ nawcf, then σ ∈ a.

We analyse the possible cases for t.

• Let x ∈ newcf, so that |x|w = 0. Then, take ⊲E x : [n] ⊢(0,0,0) x : n to
conclude.

• Let der t ∈ newcf with t ∈ newcf. Then, apply the i.h. (1) to obtain
⊲E Γ ⊢(0,0,|t|w) t : n and conclude ⊲E Γ ⊢(0,0,|t|w+1) der t : n with rule (drp).
The size is as expected since |der t|w = |t|w + 1.

• Let t u ∈ newcf with t ∈ newcf and u ∈ nawcf. Then, apply the i.h. (1)
and (3) to obtain ⊲E Γ ⊢(0,0,|t|w) t : n and ⊲E ∆ ⊢(0,0,|u|w) u : a resp., and
conclude ⊲E Γ + ∆ ⊢(0,0,|t|w+|u|w+1) t u : n with rule (aep). The size is as
expected since |t u|w = |t|w + |u|w + 1.

• Let t[x\u] ∈ newcf with t ∈ newcf and u ∈ newcf, or t[x\u] ∈ nawcf with
t ∈ nawcf and u ∈ newcf, or t[x\u] ∈ nbwcf with t ∈ nbwcf and u ∈ newcf.
Then, apply the appropriate i.h. to obtain ⊲E Γ ⊢(0,0,|t|w) t : tt and ⊲E

∆ ⊢(0,0,|u|w) u : n, and conclude ⊲E (Γ \\ x) + ∆ ⊢(0,0,|t|w+|u|w) t[x\u] : tt
by rule (esp) since Γ(x) is tight. The size is as expected since |t[x\u]|w =
|t|w + |u|w.

• Let ! t ∈ nawcf. Then, conclude ⊲E ⊢(0,0,0) ! t : b by (bgp). The size is as
expected.

• Let λx.t ∈ nbwcf with t ∈ nowcf. Then, apply the appropriate i.h. to obtain
⊲E Γ ⊢(0,0,|t|w) t : tt and conclude ⊲E Γ \\ x ⊢(0,0,|t|w+1) λx.t : a by (aip)
since Γ(x) is tight.

Lemma 5.15 (Anti-Substitution). If Φt{x\u} ⊲E Γ′ ⊢(b′,e′,s′) t {x\u} : τ , then

there exists Φt ⊲E Γ;x : [σi]i∈I ⊢(b,e,s) t : τ and
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I

such that Γ′ = Γ +i∈I ∆i, b
′ = b +i∈I bi, e

′ = e +i∈I ei and s ′ = s +i∈I si.

Proof. By induction on t.

• t = x. Then, t {x\u} = u and we set I = {∗}, σ∗ = τ , Γ = ∅, ∆∗ = Γ′,
Φ∗

u = Φt{x\u}, and Φt ⊲E x : [τ ] ⊢(0,0,0) x : τ by rule (axc).

• t = y 6= x. Then, t {x\u} = y and we conclude with I = ∅ (hence,
[σi]i∈I = [ ]), Γ = Γ′ and Φt = Φt{x\u}.

• t = t1 t2. Then, t {x\u} = t1 {x\u} t2 {x\u} and there are three possible
cases.
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1. (aep). Then, τ = n, Γ′ = Γ′
1 + Γ′

2, b
′ = b′1 + b′2, e

′ = e ′1 + e ′2 and

s ′ = s ′1 + s ′2 + 1 with premises Φt1{x\u} ⊲E Γ′
1 ⊢(b′

1
,e′

1
,s′

1
) t1 {x\u} : n

and Φt2{x\u}⊲EΓ
′
2 ⊢(b′

2
,e′

2
,s′

2
) t2 {x\u} : a. By i.h. on both, there exist

type derivations Φt1⊲EΓ1;x : [σi]i∈I1 ⊢(b1,e1,s1) t1 : n,
(

Φi
u ⊲E ∆i ⊢

(bi,ei,si) u : σi

)

i∈I1
,

Φt2⊲EΓ2;x : [σi]i∈I2 ⊢(b2,e2,s2) t2 : a and
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I2

(note that I1 and I2 can be assumed disjoint) such that Γ′
1 = Γ1 +i∈I1

∆i, Γ
′
2 = Γ2 +i∈I2 ∆i, b

′
1 = b1+i∈I1 bi, b

′
2 = b2+i∈I2 bi, e

′
1 = e1+i∈I1

ei, e
′
2 = e2+i∈I2ei, s

′
1 = s1+i∈I1 si and s ′2 = s2+i∈I2si. Then, by (aep)

we have Φt ⊲E Γ1 + Γ2;x : [σi]i∈I1∪I2 ⊢(b1+b2,e1+e2,s1+s2+1) t1 t2 : n
and we conclude with Γ = Γ1 + Γ2, I = I1 ∪ I2, b = b1 + b2,
e = e1 + e2 and s = s1 + s2 + 1 since:

– Γ′ = Γ′
1 + Γ′

2 = Γ1 +i∈I1 ∆i + Γ2 +i∈I2 ∆i = Γ +i∈I ∆i.

– b′ = b′1 + b′2 = b1 +i∈I1 bi + b2 +i∈I2 bi = b +i∈I bi.

– e ′ = e ′1 + e ′2 = e1 +i∈I1 ei + e2 +i∈I2 ei = e +i∈I ei.

– s ′ = s ′1 + s ′2 + 1 = s1 +i∈I1 si + s2 +i∈I2 si + 1 = s +i∈I si.

2. (aec2). Then, Γ′ = Γ′
1 + Γ′

2, b
′ = b′1 + b′2 + 1, e ′ = e ′1 + e ′2 and s ′ =

s ′1 + s ′2 with premises Φt1{x\u} ⊲E Γ′
1 ⊢(b′

1
,e′

1
,s′

1
) t1 {x\u} : M → τ and

Φt2{x\u} ⊲E Γ′
2 ⊢(b′

2
,e′

2
,s′

2
) t2 {x\u} : n for some multiset type M such

that tight(M). By i.h. there exist Φt1⊲EΓ1;x : [σi]i∈I1 ⊢(b1,e1,s1) t1 : M → τ ,
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I1
, Φt2 ⊲E Γ2;x : [σi]i∈I2 ⊢(b2,e2,s2) t2 : n

and
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I2
(note that I1 and I2 can be as-

sumed disjoint) such that Γ′
1 = Γ1 +i∈I1 ∆i, Γ′

2 = Γ2 +i∈I2 ∆i,
b′1 = b1 +i∈I1 bi, b

′
2 = b2 +i∈I2 bi, e

′
1 = e1 +i∈I1 ei, e

′
2 = e2 +i∈I2 ei,

s ′1 = s1+i∈I1 si and s ′2 = s2+i∈I2 si. Then, by (aec2) we have the type
derivation Φt⊲EΓ1 + Γ2;x : [σi]i∈I1∪I2 ⊢(b1+b2+1,e1+e2,s1+s2) t1 t2 : τ
and we conclude with Γ = Γ1 + Γ2, I = I1 ∪ I2, b = b1 + b2 + 1,
e = e1 + e2 and s = s1 + s2 since:

– Γ′ = Γ′
1 + Γ′

2 = Γ1 +i∈I1 ∆i + Γ2 +i∈I2 ∆i = Γ +i∈I ∆i.

– b′ = b′1 + b′2 + 1 = b1 +i∈I1 bi + b2 +i∈I2 bi + 1 = b +i∈I bi.

– e ′ = e ′1 + e ′2 = e1 +i∈I1 ei + e2 +i∈I2 ei = e +i∈I ei.

– s ′ = s ′1 + s ′2 = s1 +i∈I1 si + s2 +i∈I2 si = s +i∈I si.

3. (aec1). Then, Γ′ = Γ′
1 + Γ′

2, b
′ = b′1 + b′2 + 1, e ′ = e ′1 + e ′2 and

s ′ = s ′1 + s ′2 with premises Φt1{x\u} ⊲E Γ′
1 ⊢(b′

1
,e′

1
,s′

1
) t1 {x\u} : M → τ

and Φt2{x\u}⊲EΓ
′
2 ⊢(b′

2
,e′

2
,s′

2
) t2 {x\u} : M for some multiset type M. By

i.h. there exist derivations Φt1 ⊲E Γ1;x : [σi]i∈I1 ⊢(b1,e1,s1) t1 : M → τ ,
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I1
, Φt2⊲EΓ2;x : [σi]i∈I2 ⊢(b2,e2,s2) t2 : M

and
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I2
(note that I1 and I2 can be as-

sumed disjoint) such that Γ′
1 = Γ1 +i∈I1 ∆i, Γ′

2 = Γ2 +i∈I2 ∆i,
b′1 = b1+i∈I1 bi, b

′
2 = b2+i∈I2 bi, e

′
1 = e1+i∈I1 ei, e

′
2 = e2+i∈I2 ei, s

′
1 =

s1 +i∈I1 si and s ′2 = s2 +i∈I2 si. Then, by (aec1) we obtain the type
derivation Φt⊲EΓ1 + Γ2;x : [σi]i∈I1∪I2 ⊢(b1+b2+1,e1+e2,s1+s2) t1 t2 : τ
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and we conclude with Γ = Γ1 + Γ2, I = I1 ∪ I2, b = b1 + b2 + 1,
e = e1 + e2 and s = s1 + s2 since:

– Γ′ = Γ′
1 + Γ′

2 = Γ1 +i∈I1 ∆i + Γ2 +i∈I2 ∆i = Γ +i∈I ∆i.

– b′ = b′1 + b′2 + 1 = b1 +i∈I1 bi + b2 +i∈I2 bi + 1 = b +i∈I bi.

– e ′ = e ′1 + e ′2 = e1 +i∈I1 ei + e2 +i∈I2 ei = e +i∈I ei.

– s ′ = s ′1 + s ′2 = s1 +i∈I1 si + s2 +i∈I2 si = s +i∈I si.

• t = λy.t′. By α-conversion we assume y 6= x and y /∈ fv(u). Then,
t {x\u} = λy.t′ {x\u} and there are two possible cases.

1. (aip). Then, τ = a, Γ′ = Γ′
1 \\ y and s ′ = s ′1 + 1 with premise

Φt′{x\u} ⊲E Γ′
1 ⊢(b′,e′,s′

1
) t′ {x\u} : tt where tight(Γ′

1(y)) holds. By

i.h. there exist Φt′⊲EΓ1;x : [σi]i∈I ⊢(b,e,s1) t′ : tt and
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I

such that Γ′
1 = Γ1 +i∈I ∆i, b

′ = b +i∈I bi, e
′ = e +i∈I ei and s ′1 =

s1+i∈I si. Moreover, y /∈ fv(u) implies y /∈ supp(∆i) for all i ∈ I and,
hence, Γ′

1(y) = Γ1(y). Then, tight(Γ1(y)) holds as well. Finally, by
(aep) with y 6= x we have Φt ⊲E Γ1 \\ y;x : [σi]i∈I ⊢(b,e,s1+1) λy.t′ : a
and we conclude with Γ = Γ1 \\ y and s = s1 + 1 since:

– Γ′ = Γ′
1 \\ y = (Γ1 +i∈I ∆i) \\ y = Γ +i∈I ∆i.

– b′ = b +i∈I bi.

– e ′ = e +i∈I ei.

– s ′ = s ′1 + 1 = s1 +i∈I si + 1 = s +i∈I si.

2. (aic). Then, τ = Γ′
1(y) → τ ′, Γ′ = Γ′

1 \\ y with premise Φt′{x\u} ⊲E

Γ′
1 ⊢(b′,e′,s′) t′ {x\u} : τ ′. Then, by i.h. there exist type derivations

Φt′ ⊲E Γ1;x : [σi]i∈I ⊢(b,e,s) t′ : τ ′ and
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I

such that Γ′
1 = Γ1 +i∈I ∆i, b′ = b +i∈I bi, e ′ = e +i∈I ei and

s ′ = s+i∈I si. Moreover, y /∈ fv(u) implies y /∈ supp(∆i) for all i ∈ I
and, hence, Γ′

1(y) = Γ1(y). Finally, by (aec1) with y 6= x we construct
the type derivation Φt⊲E Γ1 \\ y;x : [σi]i∈I ⊢(b,e,s) λy.t′ : Γ′

1(y) → τ ′

and we conclude with Γ = Γ1 \\ y since:

– Γ′ = Γ′
1 \\ y = (Γ1 +i∈I ∆i) \\ y = Γ +i∈I ∆i.

– b′ = b +i∈I bi.

– e ′ = e +i∈I ei.

– s ′ = s +i∈I si.

• t = ! t′. Then, t {x\u} = ! t′ {x\u} and there are two possible cases.

1. (bgp). Then, τ = b, Γ′ = ∅ and b′ = e ′ = s ′ = 0. We set I = ∅ (hence,
[σi]i∈I = [ ]), Γ = ∅ and conclude by (bgp) with Φt ⊲E ⊢(0,0,0) t : b.

2. (bgc). Then, τ = [τj ]j∈J , Γ
′ = +j∈J Γ′

j, b
′ = +j∈Jb

′
j , e

′ = 1+j∈J e
′
j ,

s ′ = +j∈Js
′
j with premise

(

Φj

t′{x\u} ⊲E Γ′
j ⊢

(b′

j,e
′

j,s
′

j) t′ {x\u} : τj

)

j∈J
.

By i.h. there exist type derivations Φj
t′⊲EΓj;x : [σi]i∈Ij ⊢(bj,ej ,sj) t′ : τj

and
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈Ij
(note that all Ij can be assumed
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pairwise disjoint) such that Γ′
j = Γj +i∈Ij ∆i, b′j = bj +i∈Ij bi,

e ′j = ej+i∈Ij ei and s ′j = sj+i∈Ij si for each j ∈ J . Then, by (bgc) we

have Φt ⊲E +j∈J Γj ;x : [σi]i∈Ij ⊢(+j∈Jbj,1+j∈Jej ,+j∈J sj) ! t′ : [τj ]j∈J

and we conclude with Γ = +j∈J Γj , I =
⋃

j∈J Ij , b = +j∈Jbj ,
e = 1 +j∈J ej , s = +j∈J sj since:

– Γ′ = +j∈J Γ′
j = +j∈J (Γj +i∈Ij ∆i) = Γ +i∈I ∆i.

– b′ = +j∈Jb
′
j = +j∈J(bj +i∈Ij bi) = b +i∈I bi.

– e ′ = 1 +j∈J e ′j = 1 +j∈J (ej +i∈Ij ei) = e +i∈I ei.

– s ′ = +j∈Js
′
j = +j∈J (sj +i∈Ij si) = s +i∈I si.

• t = der t′. Then, t {x\u} = der (t′ {x\u}) and there are two possible cases.

1. (drp). Then, τ = n and s ′ = s ′1 + 1 with a type derivation for the

premise Φt′{x\u} ⊲E Γ
′ ⊢(b′,e′,s′

1
) t′ {x\u} : n. By i.h. there exist type

derivations Φt′⊲EΓ;x : [σi]i∈I ⊢(b,e,s1) t′ : n and
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I

such that Γ′ = Γ +i∈I ∆i, b
′ = b +i∈I bi, e

′ = e +i∈I ei and s ′1 =
s1+i∈Isi. Finally, we conclude by (drp) with Φt⊲EΓ;x : [σi]i∈I ⊢(b,e,s1+1) der t′ : n
and s = s1 + 1.

2. (drc). Then, we have the premise Φt′{x\u}⊲EΓ
′ ⊢(b′,e′,s′) t′ {x\u} : [τ ].

By i.h. there exist type derivations Φt′ ⊲E Γ;x : [σi]i∈I ⊢(b,e,s) t′ : [τ ]
and

(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I
such that Γ′ = Γ +i∈I ∆i, b

′ =

b +i∈I bi, e
′ = e +i∈I ei and s ′ = s +i∈I si. Finally, we conclude by

(drc) with Φt ⊲E Γ;x : [σi]i∈I ⊢(b,e,s) der t′ : τ .

• t = t1[y\t2]. By α-conversion we assume y 6= x, y /∈ fv(t2) and y /∈ fv(u).
Then, t {x\u} = t1 {x\u}[y\t2 {x\u}] and there are two possible cases.

1. (esp). Then, Γ′ = Γ′
1 \\ y + Γ′

2, b′ = b′1 + b′2, e ′ = e ′1 + e ′2 and

s ′ = s ′1 + s ′2 with premises Φt1{x\u} ⊲E Γ′
1 ⊢(b′

1
,e′

1
,s′

1
) t1 {x\u} : τ and

Φt2{x\u} ⊲E Γ′
2 ⊢(b′

2
,e′

2
,s′

2
) t2 {x\u} : n where tight(Γ′

1(y)) holds. By

i.h. there exist Φt1⊲EΓ1;x : [σi]i∈I1 ⊢(b1,e1,s1) t1 : τ ,
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I1
,

Φt2⊲EΓ2;x : [σi]i∈I2 ⊢(b2,e2,s2) t2 : n and
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I2

(note that I1 and I2 can be assumed disjoint) such that Γ′
1 = Γ1 +i∈I1

∆i, Γ
′
2 = Γ2 +i∈I2 ∆i, b

′
1 = b1+i∈I1 bi, b

′
2 = b2+i∈I2 bi, e

′
1 = e1+i∈I1

ei, e
′
2 = e2 +i∈I2 ei, s

′
1 = s1 +i∈I1 si and s ′2 = s2 +i∈I2 si. Moreover,

y /∈ fv(u) implies y /∈ supp(∆i) for all i ∈ I1 ∪ I2 while y /∈ fv(t2)
implies y /∈ supp(Γ2). Hence, Γ′

1(y) = Γ1(y) and tight(Γ1(y)) holds
as well. Finally, by (esp) with y 6= x we construct the type deriva-
tion Φt ⊲E Γ1 \\ y + Γ2;x : [σi]i∈I1∪I2 ⊢(b1+b2,e1+e2,s1+s2) t1[y\t2] : τ
and we conclude with Γ = Γ1 \\ y + Γ2, I = I1 ∪ I2, b = b1 + b2,
e = e1 + e2 and s = s1 + s2 since:

– Γ′ = Γ′
1 \\ y + Γ′

2 = (Γ1 +i∈I1 ∆i) \\ y + Γ2 +i∈I2 ∆i, and this
last context is equal to Γ1 \\ y + Γ2 +i∈I ∆i = Γ +i∈I ∆i.

– b′ = b′1 + b′2 = b1 +i∈I1 bi + b2 +i∈I2 bi = b +i∈I bi.
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– e ′ = e ′1 + e ′2 = e1 +i∈I1 ei + e2 +i∈I2 ei = e +i∈I ei.

– s ′ = s ′1 + s ′2 = s1 +i∈I1 si + s2 +i∈I2 si = s +i∈I si.

2. (esc). Then, Γ′ = Γ′
1 \\ y + Γ′

2, b′ = b′1 + b′2, e ′ = e ′1 + e ′2 and
s ′ = s ′1 + s ′2 with premises Φt1{x\u} ⊲E Γ′

1 ⊢(b′

1
,e′

1
,s′

1
) t1 {x\u} : τ and

Φt2{x\u} ⊲E Γ′
2 ⊢(b′

2
,e′

2
,s′

2
) t2 {x\u} : Γ′

1(y). Thus, by i.h. there exist

type derivations Φt1⊲EΓ1;x : [σi]i∈I1 ⊢(b1,e1,s1) t1 : τ ,
(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I1
,

Φt2⊲EΓ2;x : [σi]i∈I2 ⊢(b2,e2,s2) t2 : Γ′
1(y) and

(

Φi
u ⊲E ∆i ⊢(bi,ei,si) u : σi

)

i∈I2

(note that I1 and I2 can be assumed disjoint) such that Γ′
1 = Γ1 +i∈I1

∆i, Γ
′
2 = Γ2 +i∈I2 ∆i, b

′
1 = b1+i∈I1 bi, b

′
2 = b2+i∈I2 bi, e

′
1 = e1+i∈I1

ei, e
′
2 = e2+i∈I2 ei, s

′
1 = s1+i∈I1 si and s ′2 = s2+i∈I2 si. Moreover, y /∈

fv(u) implies y /∈ supp(∆i) for all i ∈ I1∪I2 while y /∈ fv(t2) implies
y /∈ supp(Γ2). Hence, Γ

′
1(y) = Γ1(y). Finally, by (esc) with y 6= x we

have Φt⊲E Γ1 \\ y + Γ2;x : [σi]i∈I1∪I2 ⊢(b1+b2,e1+e2,s1+s2) t1[y\t2] : τ
and we conclude with Γ = Γ1 \\ y + Γ2, I = I1 ∪ I2, b = b1 + b2,
e = e1 + e2 and s = s1 + s2 since:

– Γ′ = Γ′
1 \\ y + Γ′

2 = (Γ1 +i∈I1 ∆i) \\ y + Γ2 +i∈I2 ∆i and this
last context is equal to Γ1 \\ y + Γ2 +i∈I ∆i = Γ +i∈I ∆i.

– b′ = b′1 + b′2 = b1 +i∈I1 bi + b2 +i∈I2 bi = b +i∈I bi.

– e ′ = e ′1 + e ′2 = e1 +i∈I1 ei + e2 +i∈I2 ei = e +i∈I ei.

– s ′ = s ′1 + s ′2 = s1 +i∈I1 si + s2 +i∈I2 si = s +i∈I si.

Lemma 5.16 (Exact Subject Expansion). Let Φ′⊲E Γ ⊢(b′,e′,s) t′ : σ be a tight
derivation. If t →dw t

′, then there exists Φ⊲E Γ ⊢(b,e,s) t : σ such that

• b′ = b − 1 and e ′ = e if t →dw t
′ is an m-step.

• e ′ = e − 1 and b′ = b if t →dw t
′ is an e-step.

Proof. By induction on t →dw t
′.

• t = L〈λx.s〉u →dw L〈s[x\u]〉 = t′. We reason by induction on L.

– L = �. There are two cases depending on the last rule of Φ′.

1. (esp). Then, Φ
′ has the following form:

Γ′ ⊢(bs,es,ss) s : σ ∆ ⊢(bu,eu,su) u : n tight(Γ′(x))
(esp)

Γ′ \\ x + ∆ ⊢(bs+bu,es+eu,ss+su) s[x\u] : σ

We can then construct the following derivation Φ:

Γ′ ⊢(bs,es,ss) s : σ
(aic)

Γ′ \\ x ⊢(bs,es,ss) λx.s : Γ′(x) → σ ∆ ⊢(bu,eu,su) u : n tight(Γ′(x))
(aec2)

Γ′ \\ x + ∆ ⊢(bs+bu+1,es+eu,ss+su) (λx.s) u : σ

The counters verify the expected property.
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2. (esc). Then, Φ
′ has the following form:

Γ′ ⊢(bs,es,ss) s : σ ∆ ⊢(bu,eu,su) u : Γ′(x)
(esc)

Γ′ \\ x + ∆ ⊢(bs+bu,es+eu,ss+su) s[x\u] : σ

We can then construct the following derivation Φ:

Γ′ ⊢(bs,es,ss) s : σ
(aic)

Γ′ \\ x ⊢(bs,es,ss) λx.s : Γ′(x) → σ ∆ ⊢(bu,eu,su) u : Γ′(x)
(aec1)

Γ′ \\ x + ∆ ⊢(bs+bu+1,es+eu,ss+su) (λx.s) u : σ

The counters verify the expected property.

– L = L′[y\r]. Immediate from the i.h.

• t = s[x\L〈!u〉] →dw L〈s {x\u}〉 = t′. We reason by induction on L.

– L = �. Then Φ has the form Γ ⊢(b′,e′,s) s {x\u} : σ. By Lemma 5.15
there exist Γ′;x : [σi]i∈I ⊢(bs,es,ss) s : σ and

(

∆i ⊢(bi,ei,si) u : σi

)

i∈I

such that Γ = Γ′ +i∈I ∆i, b′ = bs +i∈I bi, e ′ = es +i∈I ei and
s = ss +i∈I si. We can then construct the following derivation Φ:

Γ′;x : [σi]i∈I ⊢(bs,es,ss) s : σ

(∆i ⊢
(bi,ei,si) u : σi)i∈I

(bgc)
+i∈I ∆i ⊢

(+i∈Ibi,1+i∈Iei,+i∈Isi) !u : [σi]i∈I
(esc)

Γ′ +i∈I ∆i ⊢
(bs+i∈Ibi,1+es+i∈Iei,ss+i∈Isi) s[x\!u] : σ

The counters verify the expected property.

– L = L′[y\r]. Immediate from the i.h.

• t = der (L〈! s〉) →dw L〈s〉 = t′. We reason by induction on L.

– L = �. Then, t′ = s and from Φ′ we construct the following deriva-
tion:

Γ ⊢(b′,e′,s) s : σ
(bgc)

Γ ⊢(b′,1+e′,s) ! s : [σ]
(drc)

Γ ⊢(b′,1+e′,s) der ! s : σ

We conclude since the counters verify the expected property.

– L = L′[y\r]. Immediate from the i.h.

• All the inductive cases for internal reductions are straightforward by i.h.

Theorem 5.17 (Completeness for System E). If t ։
(b,e)
w p with p ∈ nowcf, then

there exists a tight type derivation Φ⊲E Γ ⊢(b,e,|p|w) t : σ.
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Proof. We prove the statement for ։dw and then conclude for the general notion

of reduction →w by Theorem 2.8. Let t ։
(b,e)
dw p. We proceed by induction on

b + e.
If b + e = 0, then b = e = 0 and thus t = p, which implies t ∈ nowcf.

Lemma 5.14 allows us to conclude.
If b + e > 0, then there exists t′ such that t ։

(1,0)
dw t′ ։

(b−1,e)
dw p or t ։

(0,1)
dw

t′ ։
(b,e−1)
dw p. By i.h. there exists a tight derivation Φ′ ⊲E Γ ⊢(b′,e′,|p|w) t′ : σ

such that b′ + e ′ = b + e − 1. Lemma 5.16 gives a tight derivation Φ ⊲E

Γ ⊢(b′′,e′′,|p|w) t : σ such that b′′+e ′′ = b′+e ′+1. We then have b′′+e ′′ = b+e.
The fact that b′′ = b and e ′′ = e holds by a simple case analysis.

The main results can be illustrated by the term t0 = der (! K) (! I) (! Ω) in
Sec. 2, which normalises in 2 multiplicative steps and 3 exponential steps to a
w-normal form of w-size 1. A tight derivation for t0 with appropriate counters
(2, 3, 1) is given in Example 5.2.

6. Conclusion

This paper gives a fresh view of the Bang Calculus, a formalism introduced
by T. Ehrhard to study the relation between CBPV and Linear Logic.

Our reduction relation integrates permutative conversions inside the logical
original formulation of [26], thus recovering soundness, i.e. avoiding mismatches
between terms in normal form that are semantically non-terminating. In con-
trast to [27], which models permutative conversions as σ-reduction rules by pay-
ing the cost of losing confluence, our at a distance formulation yields a confluent
reduction system.

We then define two non-idempotent intersection type systems for our cal-
culus. On the one hand, system U provides upper bounds for the length of
normalising sequences plus the size of normal forms. Moreover, it captures
typed CBN and CBV. On the other hand, the quantitative system U is further
refined into system E , being able to provide exact bounds for normalising se-
quences and size of normal forms, independently. Moreover, our tight system E
is able to discriminate between different kind of steps performed to normalise
terms.

Concerning related works, several points should be noticed respect to the
closest [33]. First of all, our CBV translation recovers the expected property of
preserving the normal forms, as stated in Lemma 4.4, whereas normal forms in
CBV do not necessarily translate to normal forms in the Bang calculus in [33].
Moreover the CBV embedding in [33] is not complete w.r.t. their CBV type
system, i.e. there exists a λ-term t such that Γ ⊢ tcbv : σ is derivable in U
but Γ ⊢ t : σ is not derivable in their CBV system (see [33], Proposition 16).
The completeness property in our framework is stated as Theorem 4.8. As a
matter of fact in [33] the authors remark that the incompleteness of the CBV
embedding is due in particular to the fact that the CBV type system they use,
which is the canonical one stemming from the relational model of the CBV
λ-calculus defined in [27], assigns multiset types to all the λ-terms, and in
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particular to all the applications, whereas an application in the target of the
CBV translation may well get a non-multiset type in their Bang calculus type
system. They propose at the end of the paper an alternative type system,
targeting the range of their CBV translation, which is essentialy the one we
have adopted here. Nevertheless, they leave (the model theoretic version of)
this question of incompleteness for future work.

Several topics deserve future attention. One of them is the study of strong
reduction for the λ!-calculus, which allows us to reduce terms under all the
constructors, including ! . Another challenging problem is to relate tight typ-
ing in CBN/CBV with tight typing in our calculus, thus providing an exact
correspondence between (CBN/CBV) reduction steps and λ!-reduction steps.
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[20] Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul.
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