
A New Extraction for Coq

Pierre Letouzey

Université Paris-Sud, Laboratoire de Recherche en Informatique,
Bâtiment 490, F-91405 Orsay Cedex, France

letouzey@lri.fr

Abstract. We present here a new extraction mechanism for the Coq
proof assistant [17]. By extraction, we mean automatic generation of
functional code from Coq proofs, in order to produce certified programs.
In former versions of Coq, the extraction mechanism suffered several lim-
itations and in particular worked only with a subset of the language. We
first discuss difficulties encountered and solutions proposed to remove
these limitations. Then we give a proof of correctness for a theoretical
model of the new extraction. Finally we describe the actual implemen-
tation distributed in Coq version 7.3 and further.

1 Introduction

The extraction mechanism of Coq is a tool for automatic generation of functional
programs from Coq proofs. The main motivation for this mechanism is to produce
certified programs. This concept of extraction is not new: such a tool exists in
Coq since 1989 [12, 13, 14], and also in other theorem provers like PX [7] or
Nuprl [8]. But the previous implementation of the extraction tool in Coq suffers
several limitations, and in particular accepts only a subset of Coq language. In
this paper, we describe why and how this tool has been completely redesigned
since Coq version 7.0.

The ability of extracting programs from proofs can be seen as a consequence
of the Curry-Howard isomorphism, which explains in particular that a construc-
tive proof is isomorphic to a functional program. Furthermore, since the internal
representation of proofs inside Coq are λ-terms, one might say that a Coq proof
term is a functional program. But we must temper this approach: these origi-
nal Coq λ-terms need some transformations in order to get real programs. The
following two sections present the two main kinds of such transformations.

Deletion of Logical Parts in Proofs. In a constructive proof, we can distin-
guish between informative and logical parts. The first ones are effectively used
to construct the output value whereas the second ones are only present in the
proof to ensure properties, for example termination of the algorithm. These log-
ical parts are of no use during computation, and eliminating all this dead code
usually leads to drastic gain in code size and execution speed. Although lot of
work has been done in the domain of automatic dead code analysis [1, 2], our ex-
traction still relies on the universe annotation, which is a declarative distinction

2 Pierre Letouzey

made by the Coq user. When defining an object, the user has indeed to decide
whether he puts it in the Set universe of informative objects, or in the Prop
universe of logical objects. Then the Coq typing system ensures that computa-
tions of informative objects do not depend on computations of logical objects.
And finally, during extraction all objects of sort Prop are eliminated. In fact, our
method and automatic dead code analysis are somehow orthogonal: although
we do not eliminate informative dead code, we can simplify parts that do not
satisfy the dead code criterion (see in particular the logical singleton elimination
in Sect. 3.4).

Translation to a Real Functional Language. Since the beginning, the suc-
cessive versions of Coq extraction are all aimed at producing source code for real
functional languages. Today’s available output languages are Objective Caml [10]
and Haskell [4], and a Scheme [9] version is underway. There are three reasons
for using external languages as output:

– First, certified code obtained this way can be easily integrated in larger de-
velopments. This is made possible by the production of readable interfaces1.
You can for example obtain a stand-alone program by adding hand-written
I/O parts around a certified core, or design a certified library reused in sev-
eral applications. This way, wider communities of programmers can benefit
from extraction.

– A second practical interest in the use of external language is the speed gain.
As said before, a Coq proof can be seen directly as a program. And its
execution inside Coq is possible via the βδιζ-reduction (using for instance
the command Eval Compute). But this way of execution is quite comparable
to interpreting, which is known to be far less efficient than compiling. A
natural idea is then to use external compilers, such as these of Objective Caml
or Haskell. Notice however this internal Coq reduction will be improved soon:
Benjamin Grégoire is currently working on a compiler for Coq terms [5]. But
this compiler cannot perform elimination of logical parts, since it must be
able to deal with open terms and reductions under lambdas (see Sect. 3.4).

– From a theoretical point of view, anyway, an external target language for
extraction seems unavoidable when dealing with today’s whole Coq theory.
Of course, systems where extracted terms are internal objects have been
proposed, like by Paulin [12] or more recently by Severi-Szasz [16]. But the
theories in these studies are different from today’s Coq theory. In particular,
Coq now allows the definition of an informative fixpoint based on a logical
decreasing measure (see for example the accessibility relation Acc and the
associated fixpoint Acc rec). An internal extraction would then lead to a fix-
point without decreasing measure, and potentially non-strongly normalizing
(See Sect. 3.4 for an example). This kind of object is of course forbidden in
Coq.

1 In practice, we even try to produce code as readable as possible.

A New Extraction for Coq 3

Overview. Section 2 presents the difficulties associated with our choices (accep-
tance of any Coq terms, removal of logical parts and translation to real program-
ming languages) and the solutions proposed. Section 3 formalizes our extraction
in the Coq theoretical framework and states a correctness result: the execution
of an original Coq term and the execution of its extracted version lead to the
same value, with some restrictions. Section 4 describes finally our current imple-
mentation of Coq extraction based on the previous theoretical study.

2 Challenges

All implementations of Coq extraction share the two principles given in intro-
duction, that are removal of logical parts and translation to a real language. But
in implementations of extraction before version 7.0, any term using the Type uni-
verse was simply not extractable. That is quite annoying since the use of Type
universe tends to develop, for example in order to produce data types compatible
with both Set and Prop. The Type universe is also frequently used in conjunction
with strong elimination in developments based on the two-level approach (or re-
flection). Those developments were hence out of the scope of extraction. Another
problem was that the strict evaluation (with Objective Caml) of some extracted
terms might raise uncaught exceptions. What characterizes our new implemen-
tation is that we accept any Coq term, and that reduction of extracted terms is
now ensured to be correct both with lazy and strict evaluation. Let’s now see in
detail the origin of those former limitations and the challenges associated with
their removal.

2.1 Problems with Elimination of Logical Parts

A first trouble with deletion of logical parts is the possible modification of the
evaluation order. Let f be a function of type (x : A)(P x) → B, that is a
function expecting an informative argument x and a proof argument ensuring
that x satisfies the precondition (P x). Consider the two Coq terms (f t) and
(f t p). They will evaluate quite differently, in particular the lack of the argument
p will rapidly block the evaluation of (f t). Now, if E is our extraction function,
the expected extraction E(f) for f is a term of type E(A) → E(B), with only
one argument, the informative one. And more generally it seems reasonable to
remove all arguments of logical type, as in previous Coq extractions. But if we
do this, (f t) and (f t p) will have the same extraction (E(f) E(t)), and this
term will evaluate similarly to (f t p), and quite differently from (f t).

Moreover, in addition to efficiency problems, this modification of the evalu-
ation order can be dangerous when combined with False rec. This Coq term of
type (P : Set)False→ P is used to deal with any absurd sub-cases. For example,
when defining a function f of type (x : nat)(x 6= O) → nat, it can be used in
any sub-case where x = O. During extraction this False rec is translated into
an exception, meaning that execution should never come to this point. Now the

4 Pierre Letouzey

Coq partial application (f O) is legal, despite the fact that it will be impossi-
ble to provide a second argument of type O 6= O. The extraction (E(f) O) will
then raise this False rec exception when executed. Our new extraction solves
this problem by leaving some dummy abstractions (fun → . . .) when needed.

Another issue is that Coq distinction between logical and informative parts is
not black and white. We can form hybrid terms like if b then nat else True that
is either informative (since nat : Set) or logical (since True : Prop) depending
on the value of boolean b. This construction is made possible in Coq by the
Type universe, which in particular contains both Set and Prop. In our example,
nat : Set implies nat : Type, and similarly True : Prop implies True : Type. Finally
if b then nat else True is well-typed of type Type. The previous extraction
simply refused to extract such a term, and more generally any term using the
sort Type. This drastic restriction allows a complete elimination of logical parts.
On the opposite, the goal of our new extraction is to be able to deal with any
Coq term. We must then use a dummy constant (noted 2 in this paper) to fill
all logical places that remains, like the True place above. Our approach is here
quite similar to “pruning” methods [1, 2].

2.2 Translation Problems

As said before, the extracted code must be linkable with other parts of a devel-
opment. So at least the types of the extracted terms must be understandable.
We then have two choices: we can either generate source code for a particular
language, or directly byte-code or binary object file associated with a readable
interface. But in addition to the difficulties of this binary object generation, this
would lead to a “black box” solution. We prefer to generate source code and
benefit from compilers optimizations and also allow users to read the produced
code if they want to. The Open Source community has shown that confidence
in programs also comes via the readability of their sources.

This choice raises a new question: which language should we use as target
language? All we need is a λ-calculus with inductive types. This explains the
choice of ML-like languages (Objective Caml and Haskell). But these languages are
typed, and their type systems are quite different from the Coq one. In particular
in these languages there are no dependent types nor universes. As said before,
the pragmatic choice of the old Coq extraction was to refuse Coq terms of sort
Type. But even this restriction was not enough for always obtaining well-typed
ML terms. For example the notion of polymorphism differs between ML and
Coq. So it is clear that a straightforward translation of Coq λ-terms towards ML
λ-terms will lead to potentially non-typable terms. One well-known example is
the distr-pair function:

Definition dp := [f:(C:Set)C->C](f nat O,f bool true).

There is no direct equivalent of the (C:Set)C->C type. The closer would be
’c -> ’c, but the final translation let dp f = (f O, f true) is not typable
in Objective Caml.

A New Extraction for Coq 5

At the same time, we would like to stick as much as possible to this straight-
forward translation. First, a vast majority of usual Coq terms and inductives have
a direct ML-typable counterpart. Secondly, the interface problem also claims for
simplicity of translation. And finally any workaround by convenient encoding
seems to correspond to a pre-compilation we precisely do not want to do. One
particular encoding has been tried by Loïc Pottier [15], but it still produces
ML-untypable terms.

So how do we intend to use typed compilers with potentially some non-
typable extracted terms? Concerning Objective Caml we now use, as Pottier did,
an undocumented feature called Obj.magic. This function gives a generic ’a
type to any term. With this function we can bypass locally the Objective Caml
type-checker. We recently achieve an automatic generator of these Obj.magic.
This part is not included in the 7.3 version, but will be part of the next version
7.4. On the previous dp example, the extraction answer now looks like:

let dp f = (Obj.magic f O, Obj.magic f true).

Concerning Haskell, some implementations propose an undocumented function
unsafeCoerce equivalent to Obj.magic. We plan to use it as we use Obj.magic.

A last approach is to directly use an untyped functional language like Scheme.
But unfortunately Scheme has no first-class inductive types (except the Bigloo
implementation) so we need to encode them. And first speed tests made with an
experimental Scheme extraction are clearly in favor of Haskell/Objective Caml.

3 Theoretical Framework

In this section, after a description of Coq’s logic system, we present a formaliza-
tion of the extraction mechanism core, that is the removal of logical parts. Then
we show that this removal does not affect the answers of informative computa-
tions.

3.1 The Calculus of Inductive Constructions

Due to lack of space, we only give here a partial presentation of the Calculus of
Inductive Constructions (Cic for short), which is the underlying formal system
of Coq. The reader will find a complete description of Cic in Chap. 4 of the
Coq Reference Manual [17]. We use all the notations introduced there except for
environments and contexts. In fact, for simplicity reasons, we unify these two
notions: here we use contexts as generic objects containing either assumptions
(x : T) or definitions (x := t : T) or inductive declarations Indn(ΓI := ΓC). In
such an inductive declaration, n is the number of parameters, ΓI is a context
declaring the inductive types (like nat : Set) and ΓC is a context declaring the
constructors (like (O : nat) :: (S : nat→ nat)).

Let us remind the Cic term syntax:

6 Pierre Letouzey

t ::= s | x | (x : t)t | [x : t]t | [x := t]t | (t t)
| <t>Cases t of t . . . t end
| Fix xi {x1/k1 : t := t . . . xn/kn : t := t}

s is here a sort, either Set, Prop or Type. x is an identifier, bound either locally
(by a lambda, a product, . . .) or somewhere in a context Γ . Then follow syntaxes
for product, lambda, let-in, application, case elimination and fixpoint. The <t>
annotation gives the type of the case elimination. Concerning fixpoints, for each i,
ki is a number expressing that the component xi expects at least ki arguments,
the last one being the “guard” argument, i.e. an inductive argument used to
control the reduction of the fixpoint (see reductions below). In Coq there is also
a co-fixpoint construction, but we will not consider it here2.

We will also use the Cic typing judgment Γ ` t : T meaning that T is a valid
type for t in the context Γ . And t is said to have sort s in the context Γ if there
exists T such as Γ ` t : T and Γ ` T : s. Note that we cannot speak of “the”
type and “the” sort of t, since in Cic uniqueness of type does not hold in general,
and neither is uniqueness of sort. For example, an object of sort Prop is at the
same time of sort Type (see conversion typing rule in the Reference Manual).

The Coq reductions are the following:

(beta) ([x : X]t u)→β t{x/u}
(delta) c→δ t if the current context Γ contains (c := t : T).
(zeta) [x := t]u→ζ u{x/t}
(iota) <P >Cases Ci p1 . . . pk u1 . . . un of f1 . . . fn end→ι fi u1 . . . un

if Ci is the i-th constructor of an inductive type with k parameters.
(iota) Let F be the declarations f1/k1 :A1 := t1 . . . fn/kn :An := tn. Then:

(Fix fi {F} u1 . . . uki)→ι (ti{fj/Fix fj {F}}∀j u1 . . . uki)
if uki (the “guard” argument) begins with a constructor.

The Coq reductions are strong: they can occur at any position internally thanks
to the usual compatibility rules. We will also consider weak reductions later on,
i.e. reductions occurring only at head positions. We will use →r as an abbrevi-
ation for one step of any of Coq reductions →β , →δ, →ι or →ζ .

Before stating some stability properties of the Cic typing system used later
on in the proofs, let us distinguish a particular class of Cic terms:

Definition 1. A type scheme is a well-typed term accepting at least one type of
the form (x1 : X1) . . . (xn : Xn)s with s a sort.

In other words, a type scheme is a term that will become a type (that is
something of type a sort) when applied to enough arguments. For example
[X : Type]X → X is a type scheme: applied to a type, it returns the correspond-
ing arrow type. But [X : Type][x : X]x is not a type scheme: it might become a
type (for instance applied to Set and nat) but might as well not become a type
(for instance applied to nat and O).
2 Extraction of co-inductive type and co-fixpoint has been implemented by using either
the laziness of Haskell or the lazy construct of Objective Caml. But due to the ad-hoc
Coq co-fixpoint reduction rule, the theoretical study of this part of extraction is not
trivial, and is not yet fully developed.

A New Extraction for Coq 7

Lemma 2 (Stability Lemma). We have the following results:

– (Subject Reduction) When a term t reduces to u, where T is a type of t, then
it is also a type of u. And if s is a sort of t, then it is also a sort of u.

– Secondly, when substituting a variable in a term, the type might change. But
there are some critical cases for which we have stability:
• if t has sort Prop, so has t{x/u}
• if t has an inductive type, so has t{x/u}
• if t is a type scheme, so is t{x/u}

– Lastly, concerning applications, if t has sort Prop, so has (t u), and if t is a
type scheme, so is (t u).

Proof. See theoretical studies of Cic, for example [18]. ut

When comparing with previous Coq extraction, notice that we can now have
an application (t u) of sort Prop without t having sort Prop. This comes from
the Type universe: consider for example ([X : Type][x : X]x True).

3.2 The Extraction Function

In this section, we define a new system Cic2 containing extracted terms, and a
extraction function E from Cic to Cic2. Then we study in Sect. 3.3 and 3.4 the
properties of these extracted terms obtained by E .

As explained before, we will eliminate any sub-term of sort Prop because they
correspond to logical parts. In addition to this, we will also eliminate sub-terms
corresponding to types, and more generally sub-terms which are type schemes.
Why do we remove these type schemes? This choice is less natural than the Prop
elimination. We are in particular aware of one Coq development whose main
result is to built the type of some particular lattice [11]. Then the extraction of
such a development only gives a dummy constant for this type. But we think
this situation is exceptional. In usual developments, the computed results belong
to some data type, for example inductive types like bool, nat or Z. And in these
cases, we will see that type scheme sub-terms are dead code. Another justification
for this choice is that unlike Coq, ML languages forbid the use of types as regular
terms, enforcing a clear distinction between terms and types.

Let Cic2 be Cic plus one constant 2. Unlike Cic the new Cic2 is untyped.
But the reductions in Cic2 are exactly the same as in Cic with 2 being non-
reducible. Let us now define an extraction function from Cic to Cic2.

Definition 3. The extraction function E is defined by structural induction over
any term t typable in a context Γ :

(2) If t is a type scheme or has sort Prop in context Γ , then EΓ (t) = 2

Otherwise we proceed structurally:

(id) EΓ (x) = x
(lam) EΓ ([x : T]t) = [x : 2]EΓ ′(t) where Γ ′ = Γ :: (x : T)

8 Pierre Letouzey

(let) EΓ ([x := t]u) = [x := EΓ (t)]EΓ ′(u) where Γ ′ = Γ :: (x := t : T) and
T is a type of t

(app) EΓ (u v) = (EΓ (u) EΓ (v))
(cases) EΓ (<P >Cases e of f1 . . . fn end) =

<2>Cases EΓ (e) of EΓ (f1) . . . EΓ (fn) end
(fix) EΓ (Fix fi {f1/k1 :A1 := t1 . . . fn/kn :An := tn}) =

Fix fi {f1/k1 :2 :=EΓ ′(t1) . . . fn/kn :2 :=EΓ ′(tn)}
where Γ ′ = Γ :: (f1 : A1) :: . . . :: (fn : An)

And the extraction of a context is defined by:

(nil) E([]) = []
(def) E(Γ :: (c := t : T)) = E(Γ) :: (c := EΓ (t) : 2)
(ax) E(Γ :: (x : T)) = E(Γ) :: (x : 2)
(ind) E(Γ :: Indn(ΓI := ΓC)) = E(Γ) :: Indn(E(ΓI) := E(ΓC))

Clearly, E is a “pruning” function: it only replaces some sub-terms by 2. In
particular no modification of the structure can occur. In the actual implemen-
tation, another step of extraction is dedicated to structure modifications, see
Sect. 4 for a brief description. This “pruning” is quite different from previous
Coq extractions that were removing logical abstractions, with a rule like:

(lam’) E([x : P]t) = E(t) when P has type Prop

In terms of realizability, this last rule (lam’) corresponds to modified realizabil-
ity whereas our new rule (lam) corresponds more to recursive realizability. As
explained in introduction, the extraction rule (lam’) is not safe when combined
with Objective Caml strict evaluation.

Note also that there is no rule dealing explicitly with the product construct,
since a product is always a type, and a fortiori a type scheme.

3.3 Strong Reduction in a Restriction of Cic2

We want to establish that evaluating an extracted term leads to a meaningful
result, for example true or false for a boolean original Cic term. And of course,
we also want this result to be compatible with the answer of the corresponding
Cic computation.

We will proceed by simulating Cic derivations inside Cic2 and vice-versa.
The difficulty is that the simulation might end on a term still having redexes
in Cic but whose counterpart in Cic2 is no more reducible. In fact, we have
potentially three cases of Cic redexes corresponding to Cic2 non-redexes:

1. a β-redex ([x : X]t u) corresponding to a non-redex (2 u′)
2. a ι-redex <. . .>Cases e of . . . end corresponding to a non-redex
<. . .>Cases 2 of . . . end

3. a fixpoint redex (Fix fi {. . .} u1 . . . un) corresponding to a non-redex, either
(a) (2 u′1 . . . u′n)
(b) (Fix fi {. . .} u1 . . . 2) (the “guard” argument is now a blocking 2)

A New Extraction for Coq 9

In case 1, we would like to have ([x : X]t u) corresponding to 2 instead of
(2 u), because stability lemma says that Prop-sorted terms and type scheme
(like [x : X]t here) are preserved by application. This “lack of precision” of an
extracted term can appear after some steps of reduction, as in the next example:

Example 4.

t = ([X : Type][f : nat→ X][g : X → nat](g (f O)) Prop [: nat]True)
E(t) = ([X : 2][f : 2][g : 2](g (f O)) 2 2) →∗β [g : 2](g (2 O))

If we need to, we will bypass this problem (and case 3a) via an ad-hoc reduction:

Definition 5. The 2-reduction is defined by the following rule: (2 u)→2 2

Situation of case 2 is quite different. Unlike Ex. 4 where a lambda becomes
logical after reduction, a Cases cannot change the inductive type upon which
it is performed. And E eliminates all Cases sub-terms of sort Prop. So how can
case 2 occur afterwards? Because the Cic typing system allows for instance the
following derivations:

p : False : Prop
Cases p of end : T : Set

p : x = y : Prop q : P x : Set
Cases p of q end : P y : Set

The first derivation corresponds to the Coq constant False rec, whereas the sec-
ond one corresponds to eq rec.

More generally, a logical Cases elimination can produce something informa-
tive when the elimination is performed upon a term whose logical inductive type
has either:

1. zero constructor (empty inductive, like Coq inductive False)
2. one constructor whose arguments are all logical, parameters put aside (sin-

gleton inductive, like Coq inductive eq)

This is in fact a first exception to our introduction statement “logical objects
do not interfere during computations of informative objects”. The second excep-
tion is case 3b: the “guard” argument of a fixpoint can be of a logical inductive
type whereas the whole fixpoint term is informative.

Just suppose for a while that we forbid these particular typing features. Let
us consider until the end of this section two systems Cic− and Cic−2 that are
Cic and Cic2 with the following restrictions:

(i) Logical empty elimination should not produce informative terms.
(ii) Logical singleton elimination should not produce informative terms.
(iii) For every component fi of a fixpoint, its “guard” argument should not be

logical when the type of fi is not.

Let us also work on a subset of the Cic types:

Definition 6. A type T is said to be logic-free if for all closed normal terms t
of type T we have E(t) = t.

10 Pierre Letouzey

Then we have the following result for strong reductions of extracted terms:

Theorem 7. Let t be a well-typed closed Cic− term whose type T is logic-free.
Then all reductions of E(t) terminate on the Cic− normal form of t.

We will not prove this result here, since it is somehow less important than
Theorem 15 of the next section, whereas the proofs of these two theorems are
similar. Note that the use of 2-reductions is not needed here, thanks to the logic-
free hypothesis combined with Restrictions (i), (ii) and (iii). This will change
afterwards.

3.4 Weak Reductions in the Complete Cic2

Since our goal is an extraction mechanism accepting any Coq term, we now need
to remove these Restrictions (i), (ii) and (iii). Restriction (i) concerning empty
inductive is in fact easy to remove, since ι-reduction upon an empty inductive
will never happen. We can just ignore these Cases, and translate them later on to
exceptions (see the False rec discussion in Sect. 2.1). Now, removing restrictions
(ii) and (iii) will oblige us to adapt reduction of extracted terms, leaving strong
reduction (i.e. reduction allowed under lambdas) for weak reduction. Anyway,
this has to be done at some point, since our functional target languages do not
allow strong reduction.

Singleton Elimination. If H is a logical equality, <nat>Cases H of O end
can be reduced to give O without knowing the exact value of H, hidden be-
hind a 2. We can similarly reduce any logical singleton elimination, but this is
dangerous when combined with strong reduction, and may lead to type errors.
Consider for example the following cast function that transforms an integer into
a boolean if we can prove that integers and booleans are equal:

cast = [H : nat == bool][n : nat]< [t : Set]t>Cases H of n end

Then from previous remarks, in

[H : nat == bool][b : bool := (cast H O)]<. . .>Cases b of . . . end

the (cast H O) would reduce to the integer O, whereas the Cases expects a
boolean. Clearly, if we forbid reduction under lambdas, the problem disappears,
because a closed inductive term will always reduce to a constructor.

Fixpoints with Logical “Guards”. The problem is now to reduce an infor-
mative fixpoint whose “guard” argument is logical. Of course, the first idea is to
remove the “guard” condition on this kind of fixpoint reduction. But combined
with strong reduction, this may lead to looping evaluation. The following loop3

expects an hypothetic proof of accessibility of O via gt (greater than) and then
does infinitely many recursive calls: (F n) calls (F (S n)).
3 built on the Acc rec model, see Coq standard library

A New Extraction for Coq 11

loop = [Ax : (Acc nat gt O)]
Fix F {F/2 : (a : nat)(Acc nat gt a)→ nat :=
[a : nat][b : (Acc nat gt a)](F (S a) H)}

O Ax

where H = (Acc inv a b (S a) (gt Sn n a)) is a proof4 of accessibility for (S a).
Extraction gives:

E(loop) = [Ax : 2]
Fix F {F/2 : 2 :=
[a : nat][b : 2](F (S a) 2)}

O 2

If we remove the “guard” condition here, then this term is strongly reducible
even without being applied, and gives [Ax : 2]Fix F {. . .} (S O) 2 and so on ...

Modification of the Reduction. We first need some extra annotations on
Cic well-typed terms: If the type of t is a singleton inductive type whose sole
constructor expects n logical arguments, then <. . .>Cases t of f end will now
be noted <. . .>Casesn t of f end. These new annotations should be kept by
the E function. We can now modify the reductions of Cic2 to deal with 2

blocking ι-reduction.

Definition 8 (New ι-reduction). The ι-reduction upon Cic2 terms is now:

(iota) <P >Cases Ci p1 . . . pk u1 . . . un of f1 . . . fn end→ι fi u1 . . . un

(iota) <P >Casesn 2 of f end→ι f 2 . . . 2︸ ︷︷ ︸
n

(iota) Let F be the declarations f1/k1 :A1 := t1 . . . fn/kn :An := tn. Then:
(Fix fi {F} u1 . . . uki)→ι (ti{fj/Fix fj {F}}∀j u1 . . . uki)
if uki is equal to 2 or begins with a constructor.

Let us now restrain the reductions to forbid strong reduction. For every
possible reduction, we define an associated weak reduction.

Definition 9 (Weak Reductions). The reductions→βw
,→ιw ,→δw ,→ζw and

→2 are defined from the same base cases as →β, →ι, →δ, →ζ , →2 respectively,
and from the following restricted compatibility rules:

u→? v

(u t)→? (v t)

u→? v

(t u)→? (t v)

u→? v

<P >Cases u of . . . end→? <P >Cases v of . . . end

And as for →r, the full weak reduction →rw is →βw
∪ →ιw ∪ →δw ∪ →ζw .

4 see the Coq standard library for definitions of Acc inv and gt Sn n

12 Pierre Letouzey

In fact, this →rw can be seen as a generalization of both Objective Caml
CBV strategy and Haskell CBN strategy. The last main step toward the actual
reduction strategy of these languages is to fix an evaluation order: should we
reduce first the head or the arguments?

An important point to mention: from now to the end of this paper we will
only consider contexts with no assumptions. This restriction is needed because
reduction with axioms in current context is analog to strong reduction under a
lambda. In particular we may loose the fundamental fact that a closed inductive
term will necessarily reduce to a term beginning with a constructor. Of course
not every axiom breaks this property, but for simplicity sake we will forbid all
of them.

To study evaluation of extracted terms, we need an invariant J preserved by
reduction. Studying E directly is not a good choice, since E does not behave well
with respect to reduction: if t →r u, we might not have E(t) →r E(u), see for
example term t of Ex. 4.

Definition 10. Let Γ0 and t0 be a context and a term of Cic. Let Γ and t be a
context and a term in Cic2. We say that (Γ, t) J (Γ0, t0) iff:

(J1) t0 is well-typed in context Γ0

(J2) t and t0 differ only at positions where t contains 2, and Γ and Γ0

differ only at positions where Γ contains 2

(J3) any sub-term in t0 and Γ0 corresponding to a 2 in t or Γ has sort
Prop or is a type scheme

(J4) all Cases (or Casesn) in t and Γ are upon inductive types that are
either informative or logical singleton or empty.

Lemma 11. If t is a Cic term typable in context Γ , then (E(Γ), EΓ (t)) J (Γ, t).

Theorem 12. If (Γ, t) J (Γ0, t0) and t →rw u, then there exists u0 such as
t0 →rw+ u0 and (Γ, u) J (Γ0, u0).

t0
rw+- u0

t

H

rw
- u

H

Proof. See Appendix A. ut

Theorem 13. Suppose that (Γ, t) J (Γ0, t0) and t0 →rw u0. Then there exists
u such as (Γ, u) J (Γ0, u0) and either t→rw u or t→∗2w

u.

A New Extraction for Coq 13

t0
rw - u0

t

H

rw|2w∗
- u

H

Proof. See Appendix B. ut

To state the next result, we need to work on terms that can always been
weakly reduced to their normal form. So we need to prevent the appearance of
lambdas that could block the weak reductions. A particular class satisfying that
condition is the data-types:

Definition 14. A data-type is an inductive type D whose constructors expect
only arguments of type D or of type another data-type.

For example, a inductive type I with a constructor of type (I → I)→ I (i.e.
encapsulating a function) is not a data-type.

Theorem 15. Let t be a well-typed closed Cic term whose type T is a logic-free
data-type. Then all derivations of E(t) via →∗rw2w

terminate on the Cic normal
form of t.

Proof. See Appendix C. ut

In practice, the logic-free data-type condition is not so restrictive. The usual
data types like bool, nat, or Z verify it. And anyway we can state a generalized
result for any type using an ad-hoc observational equivalence: plunged into a
boolean context, t and E(t) will compute to the same value.

4 Implementation Considerations

After this theoretical proof of correctness, we now need to translate our Cic2

system to real languages like Objective Caml or Haskell.

Removing Singleton Eliminations. Our theoretical study used a particu-
lar reduction rule for singleton eliminations. Of course this ad-hoc rule does
neither exist in Objective Caml nor in Haskell. But in fact we can eliminate all
singleton Casesn during extraction, via a more general singleton elimination
rule <. . .>Casesn e of f end → (f 2 . . . 2), used even under lambdas. We
can prove that type error possibilities showed in Sect. 3.4 are avoided because
all other reductions are still used in a weak way.

14 Pierre Letouzey

Implementing 2. After this removal of singleton eliminations, 2 now never
comes in head position during a lazy evaluation of an informative term. We
can then implement 2 by an error in Haskell. Objective Caml situation is not so
simple: we have seen previously that we may need 2-reduction like (2 u)→2 2.
So the usual implementation of a dummy constant like 2 by a “unit” value is
inappropriate. We rather need something like

let rec 2 x = Obj.magic 2

with a Obj.magic needed because this term is not well-typed. The type ’a ->
’b of this object is rather unclear, so in fact we use another Obj.magic to cast
it into the generic type of objects in Objective Caml, that is Obj.t.

Implementing Fixpoints. The Objective Caml/Haskell fixpoint reduction we
use is different from our theoretical weak fixpoint ι-reduction. First the real
reduction has no control of the argument number. We emulate this control by
translating a fixpoint component f/n to a function with at least n arguments.
This is done via η-expansion if necessary, for example Fix f {f/1:A := t} will give
let rec f x = (E(t) x) if t does not begin with a lambda. This way, the reduction
of a fixpoint without enough arguments will be blocked. The second difference
between real and theoretical reduction is the control on the “guard” argument.
But in fact the Objective Caml evaluation strategy always satisfies this condition:
the guard argument will be reduced to a value before evaluating the fixpoint.
And the only values possible for inductive terms begin with a constructor. Haskell
seems different at first look: the “guard” argument is not evaluated first. But in
fact this does not change anything, since this “guard” argument will evaluate
necessarily to a constructor as soon as it is used.

Code Optimizations. Several optimizations are done in order to produce more
efficient and more readable code:

– After extraction, the existential inductive type sig has only one constructor
exist, with exactly one informative argument. We can then say that (exist x)
is isomorphic to x, and remove completely this inductive type, as well as all
similar inductive types.

– In a strict language like Objective Caml, it is generally a good idea to inline
functions that might not need some of their arguments. This way, we skip the
evaluation of these useless arguments. This situation typically occurs with
the recursive function associated to an inductive type, like nat rec for nat.

– There are also some small simplifications that can be done after extraction,
like <bool>Cases e of true true end→ true. Of course no programmer will
ever write such a Cases. But this kind of terms may appear in proofs, when
the logical part of the proof has needed such an elimination of e.

Removing Some Dummy Arguments. Our limited E function just does
some pruning, and leaves unchanged the number of arguments expected by a

A New Extraction for Coq 15

function. If we consider again as in Sect. 2.1 the example of a function f of type
(x : A)(P x) → B, then if E(f) is typable it will have a type like E(A) → 2 →
E(B) if we also note 2 the type of our implementation of 2(in fact Obj.t as
said before). Even if they are needed for ensuring safety, those 2 tends to make
the extracted programs and their types more obscure than needed.

Our implementation now contains a workaround designed to safely remove
most of the external dummy lambdas when extracting the body of Coq constants.
For example, if our function f is of the form [x :A][p : (P x)]t, then we produce
let f x = E(t) instead of let f x = E(t). And the blocking role of the
argument is now translated to each call to f :

– If f is used totally applied, that is with two arguments u and 2, we do not
need to block the reduction, and this f call becomes naturally (f u).

– If f is partially applied, for example to u only, we need to block the evalua-
tion, so we produce fun → (f u).

Since most of functions calls are total, we then have a way to remove safely
most of 2 constants and 2 lambdas. So our new extraction looks very much like
the previous ones, except that 2 sometimes appears, but only when needed to
ensure safety. See for example the pred example below.

The Current Implementation. All features described in this paper have been
implemented and are part of the Coq distribution5 version 7.3, except automatic
generation of Obj.magic that will be part of Coq version 7.4. Usage of this
extraction tool is explained in chapter 17 of the Reference Manual [17]. The
extraction source code can be found in sub-directory contrib/extraction of
the Coq sources, and is made of about 3,000 lines of Objective Caml including
900 lines for the theoretical core and 700 lines for the optimizations.

One Example. Let us try our implementation on a toy definition of a predeces-
sor function with pre- and post-conditions. We first define our pred via tactics,
then we print the internal Cic term generated and finally show the extraction
of pred in Objective Caml syntax.

> Definition pred : (n:nat)~O=n -> {p:nat|n=(S p)}.
> Destruct n; Intros.
> Elim H; Trivial.
> Exists n0; Trivial.
> Defined.

> Print pred.
pred =
[n:nat]
<[n0:nat]~O=n0->{p:nat | n0=(S p)}>

5 available at http://coq.inria.fr

16 Pierre Letouzey

Cases n of
O =>
[H:(~O=O)](False_rec {p:nat | O=(S p)} (H (refl_equal nat O)))

| (S n0) =>
[_:(~O=(S n0))]
(exist nat [p:nat](S n0)=(S p) n0 (refl_equal nat (S n0)))

end
: (n:nat)~O=n->{p:nat | n=(S p)}

> Extraction pred.
let pred = function

| O -> assert false (* absurd case *)
| S n0 -> n0

We can see in particular that the extraction has removed the logical argument
of type O 6= n, that the False rec has been translated to an error, and that there
is no trace left of the existential construction, seen as the identity. Let’s now
apply this toy function:

> Lemma zero_not_one : ~O=(S O). Auto. Qed.
> Defintion total := (pred (S O) zero_not_one).
> Definition partial := (pred O).

> Extraction total.
let total = pred (S O)

> Extraction partial.
let partial _ = pred O

In the total application of pred, the proof part has been completely removed,
while the partial application is still protected by a remaining to avoid an undue
exception during execution.

A Benchmark Suite. Several contributions submitted by Coq users have been
equipped with an automatic extraction test (see extraction documentation in
[17]). This result in stand-alone certified programs in various domains, including:

– Boolean tautology checkers
– A Calculus of Constructions type-checker
– First-Order Unification
– Higman’s Lemma (with some automatically generated Obj.magic)

for a total of more than 6,000 lines of extracted code. For example, one of the
tests computes (Fibonacci 10000) in less than one minute on a modern computer,
using Z datatype and the matrix algorithm.

We are currently aware of only one Coq development too huge to be tractable
by our implementation. It was an early version of the Fundamental Theorem of

A New Extraction for Coq 17

Algebra, by the Nijmegen Foundations Group [6, 3], where every object was in
the Set or Type universes. The current version of this development makes a more
adequate use of the Prop versus Set and Type annotation, and the extraction is
now able to deal with it.

5 Conclusion

To sum up, let’s compare situation of extraction in Coq version 6 and Coq version
7. Using Coq 6, obtaining a certified result via the computation of an extracted
code was possible only under the following conditions:

1. The Coq term does not use sort Type nor strong elimination, otherwise the
extraction rejects it.

2. The extracted term is accepted by the Objective Caml or Haskell type-checker.
3. The execution does not raise an exception due to the False rec problem.
4. The execution terminates without shortage of resources (stack or memory).

That was quite restrictive. Since our new implementation in Coq version
7, points 1 and 3 are obsolete: the extraction accept any Coq term, and the
execution is now guaranteed to be correct. We have also removed limitation 2
in Objective Caml via the ad hoc insertions of Obj.magic, which force the type-
checker to accept all extracted programs.

The readability of the extracted code has been greatly improved in our new
extraction. And concerning efficiency, the old extraction and the new one are
comparable. The new one is sometimes slightly better because of extra opti-
mizations, and sometimes slightly worse because of residual occurrences of the
dummy 2. We still work on transformations aimed at removing useless 2, and
on other optimizations.

There are two extensions of this work that are worth mentioning. First, in
order to generate Obj.magic, we have to be able to extract Coq types to ML
types. In fact, Obj.magic are inserted whenever the extracted terms do not
accept as ML types the extractions of their Coq types. This extraction of types
seems promising and requires more studies. The second point is that the Coq
extraction will have to adapt to the new module system of Coq version 7.4.
Implementation of an module-aware extraction is underway.

Acknowledgment:
Many thanks to Christine Paulin and Jean-Christophe Filliâtre, two great

wizards of Coq, respectively for their help in the theoretical study and the imple-
mentation.

References

[1] S. Berardi. Pruning simply typed λ-calculi. Journal of Logic and Computation,
6(2), 1996.

18 Pierre Letouzey

[2] L. Boerio. Extending pruning techniques to polymorphic second order λ-calculus.
In Proceedings ESOP’94, volume 788. Lecture Notes in Computer Science, 1994.

[3] L. Cruz-Filipe. A constructive formalization of the fundamental theorem of cal-
culus. In Proceedings TYPES’2002.

[4] S. Peyton Jones et al. Haskell 98, A Non-strict, Purely Functional Language,
1999. Available at http://haskell.org/.

[5] B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In
Proceedings ICFP’2002. To appear.

[6] F. Wiedijk H. Geuvers, R. Pollack and J. Zwanenburg. The algebraic hierarchy of
the fta project. Journal of Symbolic Computation, Special Issue on the Integration
of Automated Reasoning and Computer Algebra Systems, pages 271–286, 2002.

[7] S. Hayashi and H. Nakano. Px, a computational logic. Technical report, Research
Institute for Mathematical Sciences, Kyoto University, 1987.

[8] P. Jackson. The Nuprl Proof Development System, Version 4.1 Reference Manual
and User’s Guide. Cornell University, Ithaca, NY, 1994.

[9] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 Report on the Algorithmic
Language Scheme, 1998. Available at http://www.scheme.org/.

[10] X. Leroy, J. Vouillon, and D. Doliguez. The Objective Caml system – release 3.04,
2002. Available at http://caml.inria.fr/.

[11] D. Monniaux. Réalisation mécanisée d’interpréteurs abstraits. Rapport de DEA,
Université Paris VII, 1998.

[12] C. Paulin-Mohring. Extracting Fω’s programs from proofs in the Calculus of Con-
structions. In Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, January 1989. ACM.

[13] C. Paulin-Mohring. Extraction de programmes dans le Calcul des Constructions.
Thèse d’université, Paris 7, January 1989.

[14] C. Paulin-Mohring and B. Werner. Synthesis of ml programs in the system coq.
Journal of Symbolic Computation, 15:607–640, 1993.

[15] L. Pottier. Extraction dans le calcul des constructions inductives. In Journées
Francophones des Langages Applicatifs, 2001.

[16] P. Severi and N. Szasz. Studies of a theory of specifications with built-in program
extraction. Journal of Automated Reasoning, 27(1), 2001.

[17] The Coq Development Team. The Coq Proof Assistant Reference Manual – Ver-
sion 7.3, May 2002. Available at http://coq.inria.fr/doc-eng.html.

[18] B. Werner. Méta-théorie du Calcul des Constructions Inductives. PhD thesis,
Univ. Paris VII, 1994.

A New Extraction for Coq 19

A Proof of Theorem 12

We proceed by case on the reduction used:

– The reduction done is a singleton ιw-reduction like
<. . .>Casesn 2 of f end→ι (f 2 . . . 2).

Then the definition of the compatibility rules for the ιw-reduction combined
with the no-axiom hypothesis implies that the counterpart a0 in t0 of the
eliminated 2 is well-typed in an assumption-free context. Since a0 has an
inductive type, it can then been reduced to a term (C p1 . . . pk v1 . . . vn)
with C a constructor. And this reduction can even been done with a weak
strategy. In fact C is the unique constructor of this singleton inductive type,
and in addition to the parameters, C has exactly n arguments. So in t0 the
sub-term <. . .>Casesn a0 of f0 end reduces to (f0 v1 . . . vn) in at least
one step of rw-reduction. Let u0 be t0 after those reductions. To check that
u J u0 we only have to check that (f 2 . . . 2) J (f0 v1 . . . vn). And this
is trivial, since in particular all vi are logical as arguments of a singleton
inductive constructor.

– The reduction is a fixpoint ιw-reduction when the “guard” argument in t is
2. Then the corresponding “guard” argument g0 in t0 has a logical inductive
type and can be reduced as in the previous case to a term h0 beginning by a
constructor. Then the fixpoint can be reduced in t0. And finally the obtained
terms in Cic2 and in Cic are still linked by J.

– The reduction is a βw-reduction. Given the definition of J, the β-redex in t
has necessarily a β-redex counterpart in t0. Reducing this redex of t0 leads
to a term u0. And we have u J u0, because of the following property of J:

Lemma 16. If a J a0 and b J b0 then a{x/b} J a0{x/b0}

Proof.
• Points (J1) and (J2) are clear.
• Concerning (J3), let c0 be the counterpart in a0{x/b0} of a 2 in a{x/b}.

This 2 comes from a previous 2 either in a or in b. Let d0 be the
counterpart in a0 or b0 of this previous 2. We have that either c0 = d0
or c0 = d0{x/b0}. Hypothesis (J3) concerning a and b shows that d0 is
a type scheme or a Prop-sorted term. Using the stability Lemma 2, we
have that c0 is also a type scheme or a Prop-sorted term.

• Concerning (J4), any Cases of a{x/b} comes from a previous Cases in
a or in b. And the inductive sub-term eliminated by this Cases cannot
change its sort under substitution.

ut

– All remaining cases (→δw , →ζw and end of →ιw) are similar to the →βw

case.

20 Pierre Letouzey

B Proof of Theorem 13

– If the redex r reduced in t0 corresponds to a similar redex in t, then we can
reduce this redex in t and get a convenient u.

– If r is completely inside a sub-term of t0 corresponding to a 2 of t, then we
can just take u = t.

– We now come to all other intermediate positions of r with respect to 2

(studied as cases 1, 2, 3a and 3b in Sect. 3.3):
• If r is a β-redex, the only such situation is r = ([x : X]a b) in t0 corre-

sponding to (2 b′) in t. We can then simulate the β-reduction in t0 by a
2-reduction in t.

• If r is a δ- or ζ-redex, there is no intermediate situation.
• If r is a Cases ι-redex, the remaining situation is

<P >Cases e of . . . end
in t0 corresponding in t to

<P ′>Cases 2 of . . . end.
But we know via (J4) that this Cases in t is either an informative or
empty or singleton elimination. Informative elimination is impossible,
otherwise e would have an informative inductive type, in contradiction
with (J2). An empty elimination cannot be reduced (no constructor). So
the only possibility is the one of a singleton elimination we can precisely
reduce now via the new ι-reduction.

• If r is a Fix ι-redex, there is two sub-cases. If the Fix has disappeared
from t but not all arguments composing the redex (case 3a), then we
can simulate the ι-reduction in t0 via some 2-reductions. And if the Fix
appears in t but not the “guard argument” (case 3b), then we reduce via
the new fixpoint ι-reduction rule.

C Proof of Theorem 15

First, we clearly have that if a J b and a→2 c, then c J b.
Consider now a derivation of E(t) via →∗rw2w

. We obtain an associated rw-
derivation of t by using alternatively the Theorem 12 or the previous remark at
each step of →rw2w . And for each step of rw-reduction of E(t) there is at least
one step of rw-reduction done on t. Since in Cic rw-reductions are always finite,
then there is only a finite number of rw-reductions during the derivation of E(t).
And finally we cannot have infinitely many consecutive steps of 2w-reductions,
since they decrease the size of the term. So our derivation of E(t) via →∗rw2w

necessarily ends on a normal term.
Let u be such a normal term derived from E(t) and let u0 be the corresponding

Cic term derived from t via the previous method. Because of the definition of
a data-type, u0 can still be reduced via →rw zero or more times toward the
Cic normal form t0 of t. By Theorem 13, u can also be reduced accordingly via
rw|2w∗, except that u is already normal, so nothing is done, and we have u J t0.
By the logic-free hypothesis, we have also E(t0) = t0, which means that t0 has
no Prop-sorted or type scheme sub-terms. So there cannot exist any 2 in u, and
finally u = t0.

