
Noname manuscript No.
(will be inserted by the editor)

Testing Membership for Timed Automata

Richard Lassaigne · Michel de
Rougemont

Received: date / Accepted: date

Abstract Given a timed automaton which admits thick components and a
timed word w, we present a tester which decides if w is in the language of
the automaton or if w is ε-far from the language, using finitely many sam-
ples taken from the weighted time distribution µ associated with the input w.
We introduce a distance between timed words, the timed edit distance, which
generalizes the classical edit distance. A timed word w is ε-far from a timed
language if its relative distance to the language is greater than ε.

Keywords Property testing, Approximation algorithms, Timed automata

1 Introduction

We study the Membership problem of timed words for timed automata: given
a non deterministic timed automaton and a timed word w, decide if w is ac-
cepted. We introduce a timed edit distance between timed words and study
how to distinguish an accepted timed word from a timed word which is ε-far
from the language of accepted words. We follow the property testing approach
with this new distance between timed words. Samples are taken following the
weighted time distribution µ where the probability to choose a letter is pro-
portional to its relative time delay or duration which we call its weight. The
tester takes samples which are factors of weight at least k, taken from the
distribution µ. Such samples can also be taken from a stream of timed words,

R. Lassaigne
University of Paris Cité, CNRS, IMJ-PRG
E-mail: lassaigne@math.univ-paris-diderot.fr

M. de Rougemont
University Paris II, CNRS, IRIF
E-mail: mdr@irif.fr

2 Richard Lassaigne, Michel de Rougemont

without storing the entire input.

The Membership problem has been studied in [3,5] and in [8] when the
input is both the automaton and the word w. In this case, the problem is
shown to be NP-complete. In our situation, the automaton is fixed and the
timed word w is of arbitrary weight.

We consider timed automata [2] and construct the associated region au-
tomata with m states. Let G be the graph whose nodes are the stronly con-
nected components and the transient nodes of the region automaton. In the
rest of the article, a component is a stronly connected components of G. We
assume the components are thick or of non-vanishing entropy [7]. Let B be
the maximum constant appearing in a time constraint of an automaton, let l
be the number of components and transient nodes with an outgoing transition
having an unbounded guard, of a maximal path in G and κ be a function of
the number of clocks. We require l independent samples (u1, ...ul) of µ, each
ui is a factor of w of weight k ≥ 24l.κ.m.B/ε. It guarantees that if a timed
word of total weight T is ε-far from the language of the timed automaton, it
will be rejected with constant probability, i.e. independent of T .

Given a path Π in G and samples (u1, ...ul) from µ, definition 5 specifies
when these samples are compatible with Π. The tester checks if there is a
maximal Π such that the l samples are compatible for this Π. It rejects if no
Π is compatible with the samples.

The main result, theorem 2, shows that Membership of timed words for
automata with thick components is testable. First, lemma 2 guarantees that
a word of the language of the timed automaton is accepted by the tester.
To prove that an ε-far timed word is rejected with constant probability, we
construct a corrector for a single component C (lemmas 3 to 7) of the region
automaton and prove the result, i.e. theorem 1, in this case. We extend it to
a sequence Π (lemmas 8 to 13) to prove the main result.

In the second section, we fix our notations of timed automata and recall
the definitions of thick and thin components. In the third section, we define
the timed edit distance in the property testing context. In the fourth section,
we define our membership tester. In the fifth section we give its analysis and
prove the main results.

2 Timed automata

Let X be a finite set of variables, called clocks. A clock valuation over X is
a mapping v : X −→ R+ that assigns to each clock a time value. For each
t ∈ R+, the valuation v + t is defined by ∀x ∈ X (v + t)(x) = v(x) + t.
A clock constraint over X, also called a guard, is a conjunction g of atomic

Testing Membership for Timed Automata 3

constraints of the form: x ./ c where x ∈ X, c ∈ N and ./∈ {<,≤,=,≥, >}.
Let C(X) be the set of all clock constraints. We write v |= g when the clock
valuation v satisfies the clock constraint g and we note [g] the set of clock
valuations satisfying g. For a subset Y of X, we denote by [Y ← 0]v the reset
valuation such that for each x ∈ Y , ([Y ← 0]v)(x) = 0 and for each x ∈ X\Y ,
([Y ← 0]v)(x) = v(x).

A timed automaton is a tuple A = (Σ,Q,X,E, I, F) where Σ is a finite
set of events, Q is a finite set of locations, I ⊆ Q is the set of initial locations,
F ⊆ Q is a set of final locations and E ⊆ Q× (C(X)×Σ × 2X)×Q is a finite
set of transitions. A transition is a triple (q, e, q′) where e = (g, a, Y), i.e. g is
the clock constraint, a ∈ Σ and Y is the set of clocks which are reset in the

transition. Let κ = 22
|X|

an important parameter used in section 5.

A state is a tuple (q, v), a location q and a valuation of the clocks v.
Let B be the maximum value of the constant c in the atomic constraints. In
this paper, s0 is always the initial state, all the states are accepting and the
transitions are given by figures such as Figure 1.

s1	s0	

	a,		x	≤1,		
x:=0	

a,		x<2,		
x:=0	

s2	 s3	

s4	 s5	

	b,		x	<1,		

	b,		x	<1		

	b,		x	<1,		
	x:=0	

	c,		x	<1		

a,		x<1		

	c,		x	<2	,	
	x:=0	

Fig. 1: Timed automaton A0

4 Richard Lassaigne, Michel de Rougemont

2.1 Timed words

A timed word w is a sequence (ai, ti)1≤i≤n where ai ∈ Σ and ti is a strictly
monotonic sequence of values in R+. A path π in A is a finite sequence of
consecutive transitions: (qi−1, ei, qi)1≤i≤n where (qi−1, ei, qi) ∈ E and ei =
(gi, ai, Yi) where gi ⊆ C(X), ai ∈ Σ and Yi ⊆ X, for each i ≥ 0. The path
π is accepting if it starts in an initial location q0 ∈ I and ends in a final
location qn ∈ F . For a timed word w, let untime(w) be the sequence of letters
(ai)1≤i≤n. A run of the automaton along the path π is a sequence:

(q0, v0)
g1,a1,Y1−−−−−→

t1
(q1, v1)

g2,a2,Y2−−−−−→
t2

(q2, v2) . . .
gn,an,Yn−−−−−−→

tn
(qn, vn)

where (ai, ti)1≤i≤n is a timed word and (vi)1≤i≤n a sequence of clock valuations
such that:

(∗) ∀x ∈ X v0(x) = 0 vi−1 + (ti − ti−1) |= gi

vi = [Yi ← 0](vi−1 + (ti − ti−1))

We read ai for a period of time t such that vi−1 + t |= gi and vi(x) = 0
if x ∈ Yi, vi(x) = vi−1(x) + t if x /∈ Yi. The Yi define the resets on each
transition. A local run is a run where (q0, v0) can be arbitrary. The label of
the run is the timed word w = (ai, ti)1≤i≤n, also written w = (ai, τi)1≤i≤n to
use the relative time delays τi = ti − ti−1 for i > 1 and τ1 = t1. Such a run

will be denoted by (q0, v0)
w−→ (qn, vn).

A timed word w is accepted by the timed automaton if it labels an accept-
ing path π. The set of all finite timed words accepted byA is denoted by Lf (A).

Given a timed word w, a factor is a subsequence (aj , τj)j=i,i+1,....i+l start-
ing in position i. Its weight is

∑
j=i,....i+l τj and its relative weight is:∑
j=i,....i+l τj∑
j=1,....n τj

2.2 Region automata

Let X be a set of clocks and C be a finite subset of C(X). A finite partitioning
R of the set of valuations is a set of regions for the constraints C if the following
compatibility conditions are satisfied:

1. R is compatible with the constraints C: for every constraint g ∈ C, and every
R ∈ R, either R ⊆ [g] or [g] ∩R = ∅,

2. R is compatible with elapsing of time: for all R,R′ ∈ R, if there exists some
v ∈ R and t ∈ R+ such that v + t ∈ R′, then for every v′ ∈ R, there exists
some t′ ∈ R+ such that v′ + t′ ∈ R′,

3. R is compatible with resets: for all R,R′ ∈ R, for every subset Y ⊆ X, if
[Y ← 0]R ∩R′ 6= ∅, then [Y ← 0]R ⊆ R′.

Testing Membership for Timed Automata 5

R defines an equivalence relation ≡R over valuations: v ≡R v′ if for each
region R of R, v ∈ R ⇐⇒ v′ ∈ R. From a set of regions R one can define
the time-successor relation: a region R′ is a time-successor of a region R if for
each valuation v ∈ R, there exists a t ∈ R+ such that v + t ∈ R′.

Let A be a timed automaton with a set of constraints C and R be a finite
set of regions for C. The region automaton AR is the finite automaton defined
by:

– the set of states is Q×R,
– the initial states are I ×{R0}, where R0 is the region containing the valu-

ation assigning 0 to each clock,
– the final states are F ×R,

– there is a transition (q,R)
g,a,Y−−−→ (q′, R′) whenever there exists a transition

q
g,a,Y−−−→ q′ in A and a region R′′ which is a a time-successor of R, satisfies

g and R′ = [Y ← 0]R′′.

Alur and Dill have shown [2] how to construct a set of regions, and the size
of the region automaton is exponential in the number of clocks. As AR is a
finite automaton, for every timed automaton A for which we can construct a
set of regions, we can decide reachability properties using the region automaton
construction. For a run of the automaton A of the form:

(q0, v0)
a1,t1−−−→ (q1, v1)

a2,t2−−−→ (q2, v2) . . .
an,tn−−−→ (qn, vn)

let its projection be the sequence

(q0, R0)
a1−→ (q1, R1)

a2−→ (q2, R2) . . .
an−−→ (qn, Rn)

where (Ri)1≤i≤n is the sequence of regions such that vi ∈ Ri for each 1 ≤ i ≤ n.
From the definition of the transition relation for AR, it follows that the pro-
jection is a run of AR over (ai)1≤i≤n.

Given some component C of the region automaton, a timed word w is C-
compatible if there exists a local run (q, v)

w−→ (q′, v′) such that its projection
is in C. Let Lf (C) be the set of timed words w which are C-compatible.

The region automaton of the timed automaton A0 of Figure 1 is in Figure
2: the regions are R0 : x = 0 and R1 : 0 < x < 1. There are three components
C0, C1, C2.

2.3 Robustness for timed systems

Timed automata assume perfect clocks and perfect precision. The relaxation
to a robust acceptance was introduced in [17] where the reachability is unde-
cidable. Imperfect clocks with a drift are considered in [21,4], and uncertainty

6 Richard Lassaigne, Michel de Rougemont

S1,
R1	

S0,
R0	

a	

S2,
R1	

S3,
R0	

S4,
R0	

S5,
R1	

	b	

	b		

	b	

	c	

a		

	c	

	a	
C0	

C2	

C1	

Fig. 2: Region automaton of A0.

in the guards is introduced in [13].

A survey of the robustness in timed automata is presented in [11]. We
introduce a different approach, with a natural distance between timed words
which extends to a distance between a timed word and a language L of timed
words. We then show that the approximate membership problem becomes easy,
in this setting. Precisely, we provide an O(1) algorithm using an approximate
decision.

2.4 Thin and thick components

For a component C, a progress cycle is a cycle where every clock is reset on
some edge of the cycle. A forgetful cycle πf is a subcase where for all state
(q,R) on the cycle, for all v, v′ ∈ R we can find a word w such that:

(q, v)
w−→ (q, v′)

By extension, given two states (q,R) and (q′, R′) of the region automaton, we
can use the forgetful cycle to link two states (q, v), v ∈ R and (q′, v′), v′ ∈ R′.
Connect first (q,R) to the forgetful cycle πf , follow πf and then connect to
(q′, R′). We can then connect (q, v), v ∈ R and (q′, v′), v′ ∈ R′.

In [7], components with a forgetful cycle are called thick. Components
which are not thick are thin . We assume that all the components are thick,

Testing Membership for Timed Automata 7

i.e. admit forgetful cycles, and we use this hypothesis in a fundamental way.
The automaton A0 of Figure 1 has thick components. In contrast the automata
A1 and A2 of Figure 3 have distinct thin components. Their thick components
are identical. The thin component of A2 has 2 clocks x, y, and is called the
twin thin component in [7].

s1	s0	

	a,		x	<1	 a,		x<2,	x:=0	

s2	 s3	

s4	 s5	

	b,		x	<1		

	b,		x	<1		

	b,		x	<1,		
	x:=0	

	c,		x	<1		

a,		x<1		

	c,		x	<2	,	x:=0	

s0	

s6	

	b,	1	≤y≤2,	
	y:=0	

	a,	x	≤	1,	
	x:=0	

s1	

a,		x<2,	x:=0	

s2	 s3	

s4	 s5	

	b,		x	<1		

	b,		x	<1		

	b,		x	<1,		
	x:=0	

	c,		x	<1		

a,		x<1		

	c,		x	<2	,	x:=0	

	A1	

	A2	

Twin	thin	component	

Fig. 3: Timed automata A1 and A2 with a thin component

3 Property Testing

For approximate decision problems, the approximation is applied to the input
and suppose a distance between input structures. An ε-tester for a property
P accepts all inputs which satisfy the property and rejects with high prob-
ability all inputs which are ε-far from inputs that satisfy the property. The
approximation on the input was implicit in Program Checking [9,10,22], in
Probabilistically Checkable Proofs (PCP) [6], and explicitly studied for graph
properties under the context of property testing [16].

These restrictions allow for sublinear algorithms and even O(1) time al-
gorithms, whose complexity only depends on ε. Let K be a class of finite
structures with a normalized distance dist between structures, i.e. dist lies in
[0, 1]. For any ε > 0, we say that U,U ′ ∈ K are ε-close if their distance is
at most ε. They are ε-far if they are not ε-close. In the classical setting, the

8 Richard Lassaigne, Michel de Rougemont

satisfiability of a property P is the decision problem whether U satisfies P for
a structure U ∈ K and a property P ⊆ K. A structure U ∈ K ε-satisfies P ,
or U is ε-close to K if U is ε-close to some U ′ ∈ K such that U ′ satisfies P .
We say that U is ε-far from K if U is not ε-close to K.

Definition 1 (Property Tester [16]) Let ε > 0. An ε-tester for a property
P ⊆ K is a randomized algorithm A(ε) such that, for any structure U ∈ K as
input:
(1) If U satisfies P , then A(ε) accepts;
(2) If U is ε-far from P , then A(ε) rejects with probability at least 2/3.1

A query to an input structure U depends on the model for accessing the
structure. For a word w, a query asks for the value of w[i], for some i. For
a tree T , a query asks for the value of the label of a node i, and potentially
for the label of its j-th successors, for some j. For a dense graph a query asks
if there exists an edge between nodes i and j. The query complexity is the
number of queries made to the structure. The time complexity is the usual
definition, where we assume that the following operations are performed in
constant time: arithmetic operations, a uniform random choice of an integer
from any finite range not larger than the input size, and a query to the input.

Definition 2 A property P ⊆ K is testable, if there exists a randomized
algorithm A such that, for every real ε > 0 as input, A(ε) is an ε-tester of P
whose query and time complexities depend only on ε (and not on the input
size).

Property testing of regular languages was first considered in [1] for the
Hamming distance, where the Hamming distance between two words is the
minimal number of character substitutions required to transform one word
into the other. The (normalized) edit distance between two words (resp. trees)
of size n is the minimal number of insertions, deletions and substitutions of a
letter (resp. node) required to transform one word (resp. tree) into the other,
divided by n.

The testability of regular languages on words and trees was studied in
[18] for the edit distance with moves, that considers one additional operation:
moving one arbitrary substring (resp. subtree) to another position in one step.
This distance seems to be more adapted in the context of property testing,
since their tester is more efficient and simpler than the one of [1], and can be
generalized to tree regular languages. A statistical embedding of words which
has similarities with the Parikh mapping [20] was developped in [15]. This em-
bedding associates to every word a sketch of constant size (for fixed ε) which
allows to decide any property given by some regular grammar or even some

1 The constant 2/3 can be replaced by any other constant 0 < γ < 1 by iterating
O(log(1/γ)) the ε-tester and accepting iff all the executions accept.

Testing Membership for Timed Automata 9

context-free grammar.

We introduce a new distance on timed words and apply the property testing
framework with this distance to the membership problem of timed automata.
The size of the input is O(n. log T) if T = tn is the absolute total time and
numeric time values are written in binary. Parameters of the timed automa-
ton, the number of states m and the maximum value B in the constraints,
are considered as constants. We assume that n→∞ and take n and T as the
main parameters of the input. We select a fixed number of random factors of
w, i.e. samples of size independent of n and T as witnesses.

w2=(a,0.3),	(a,0.3),…..... ,(a,0.6),(c,1.2),	(a,0.6),(c,1.2)	…….(a,0.6),(c,1.2)	

w3=w1.w2	

time	 T	

T/3	 2T/3	

w1=(a,0.3),	(a,0.3),…..... ,(a,1.2),(c,0.6),	(a,1.2),(c,0.6)………(a,1.2),(c,0.6)	

u1	 u2	Samples:	

Fig. 4: Close and ε-far words for A0: w1, w2, w3

The Figure 4 shows 3 words: w1 of weight T where we repeat first the
pattern (a, 0.3) for a total weight of T/3 and later the pattern (a, 1.2), (c, 0.6)
for an approximate total weight of 2T/3. For example:

w1 = (a, 0.3)100, (b, 0.1), (b, 0.1), ((a, 1.2), (c, 0.6))33

The weight of w1 is T ' 90. The word w2 of weight T is similar except that
the second iterared pattern is modified to (a, 0.6), (c, 1.2).

w2 = (a, 0.3)100, (b, 0.1), (b, 0.1), ((a, 0.6), (c, 1.2))33

10 Richard Lassaigne, Michel de Rougemont

The word w3 of weight 2T is the concatenation of w1 followed by w2. The
Region automaton of A0 in Figure 2 has 3 components C0, C1, C2, transient
states and two maximal sequences Π1 = C0.s0.s1.C1 and Π2 = C0.s0.s1.C2,
introduced in section 4. The word w1 is in Lf (Π1) but far from Lf (Π2): the
pattern (a, 1.2), (c, 0.6) has to be modified to (a, 0.8), (c, 0.6) for example. Sy-
metrically the word w2 is in Lf (Π2) but far from Lf (Π1). Finally, w3 is far
from Lf (Π1) and from Lf (Π2) and therefore far from Lf (A0). We can de-
tect these three situations with 2 samples (u1, u2) of finite weight with high
probability, and in particular decide the potential right choice of the non de-
terministic node s1. In Figure 4, u1 is in the first part (a, 0.3)100 of w1 and w2

with probability 1/3 and u2 in the second part with probability 2/3.

It is not possible to reach the same conclusion for the Automaton A1 of
Figure 3. A finite sample on the thin component C0 is not enough to witness
whether or not the word is far from Lf (A0), as we may have to analyse much
longer factors and dependencies between the weights of different samples. A
more complex example, A2 in Figure 3 has the first component C0 thin. It
can be of arbitrary high weight and therefore 2 distinct samples may fall in
this component. They become dependent, as the weights follow a long range
dependency.

3.1 Timed edit distance

The classical edit distance on words is a standard measure between two words
w and w′. An edit operation is a deletion, an insertion or a modification of a
letter. The absolute edit distance is the minimum number of edit operations
to transform w into w′ and the relative edit distance is the absolute edit dis-
tance divided, by Max(|w|, |w′|). We mainly use the relative distance, a value
between 0 and 1.

Consider the timed edit operations:

– Deletion of (a, τ) has cost τ ,
– Insertion of (a, τ) has cost τ ,
– Modification of (a, τ) into (a, τ ′) has cost |τ − τ ′|.

A transformation is a sequence of operations which transform w into w′,
and the total cost D is the sum of the elementary costs. The absolute timed
edit distance Dist(w,w′) between two timed words w and w′ is the minimal
total cost over all possible transformations from w into w′.

Definition 3 The relative timed edit distance between two timed words w =
(ai, τi)1≤i≤n and w′ = (a′i, τ

′
i)1≤i≤n′ , is :

dist(w,w′) =
1

2
· Dist(w,w′)

Max(
∑
i=1,...n τi,

∑
i=1,...n′ τ

′
i)

Testing Membership for Timed Automata 11

If T is the maximum time of w and w′, dist(w,w′) is also D
2·T . Two words

w,w′ are ε-close if dist(w,w′) ≤ ε. The distance between a word w and a lan-
guage L of timed words is defined as dist(w,L) = Infw′∈Ldist(w,w

′).

Examples. The absolute distance between (a, 10) and (a, 13) is 3. The
absolute distance between (a, 10) and (b, 10) is 20. The absolute distance be-
tween (a, 1), (a, 100) and (a, 100), (a, 1) is 2, as shown below in section 3.2.

To the best of our knowledge, the relative timed edit distance is a new
distance, although other distances have been considered in the context of words
with weights.

3.2 Other distances

The edit distance has been generalized to a weighted edit distance where a
fixed weight is associated to each letter and to each pair of letters. The cost of
an insertion or deletion of a letter is the weight of the letter and the cost of a
modification of a by b is the cost of the pair (a, b). For the timed edit distance,
the costs are not fixed and depend on the positions of the letters.

In the context of timed words, [5] introduces a metric on timed words:
for two words w,w′ of length n such that untime(w) = untime(w′), let
dist(w,w′) = Max{|ti − t′i|, 0 ≤ i ≤ n} where ti is the absolute time. In
[12], this distance is generalized to a vector whose first component captures
the classical edit distance and the second component measures the maximum
difference of the time intervals. It emphasizes the classical edit distance be-
tween the words. As an example, the distance of [12] between the timed words
w = (a, 1), (a, 100) and w′ = (a, 100), (a, 1) is the vector (0, 99) as the edit
distance is 0 and the maximum time difference is 99. In our framework, the
absolute timed edit distance is 2: we remove (a, 1) of the first timed word at
the cost 1 and add it after (a, 100) for the same cost. An Hausdorff distance
was introduced in [8], to study similar Membership problems.

Another distance based on time intervals was introduced in [14]. A gener-
alization of the classical edit distance to weighted automata was introduced
in [19]. Other generalizations include the use of a permutation or of a move,
the classical cut and paste. In this case a tester for the timed edit distance
generalizes to these weaker distances.

3.3 Algorithm for the timed edit distance

The absolute timed edit distance between two words w1, w2 is computable in
polynomial time by just generalizing the classical algorithm [25] for the edit
distance. Let A(i, j) be the array where w1 appears on the top row (i = 1)

12 Richard Lassaigne, Michel de Rougemont

starting with the empty character ε, w2 appears on the first column starting
with the empty character ε as in Figure 5. For each letter w, let w(i) be the rel-
ative time τi. The value A(i, j) for i, j > 1 is the absolute timed edit distance
between the prefix of w1 of length j − 2 and the prefix of w2 of length i − 2.
Let ∆(i, j) =| τ(i) − τ(j) | be the time difference between w1(i) and w2(j)
if the letter symbols are identical, ∞ otherwise. It is the timed edit distance
between two letters.

For i, j > 1, there is a simple recurrence relation between A(i, j), A(i −
1, j), A(i, j − 1) and A(i− 1, j − 1), which reflects 3 possible transformations:
deletion of w1(i− 2), deletion of w2(j− 2) or edition of the last letters. Hence:

A(i, j) = Min{A(i, j−1)+w1(i−2), A(i−1, j)+w2(j−2), A(i−1, j−1)+∆(i, j)}

In the example of Figure 5, the absolute timed edit distance is 10, and we
can trace the correct transformations by tracing the minimum for each A(i, j):
in this case, we erase (a, 5) and reinsert it at the right place.

ε	 (a,2)	 (b,4)	 (a,5)	

ε	 0	 2	 6	 11	

(a,5)	 5	 3	 7	 6	

(a,2)	 7	 5	 9	 8	

(b,4)	 11	 9	 5	 10	

w1	

w2	

Fig. 5: Classical array A(i, j) for timed edit distance between w1 = (a, 2), (b, 4), (a, 5) and
w2 = (a, 5), (a, 2), (b, 4)

4 Testing membership of timed words

Given a timed word w = (ai, ti)1≤i≤n, we want to approximately decide if w is
in language L, i.e. decide if w is accepted or if w is ε-far from a language L, for

Testing Membership for Timed Automata 13

the timed edit distance, i.e. if dist(w,L) ≥ ε. A query is specified by a weight k
and returns a factor of the word w of weight at least k taken according to the
distribution µ, introduced in section 4.1. This is the classical approximation
taken in Property Testing.

Assume the region automaton AR has some components Ci for i = 1, ..., p
and some transient states sj . If v ∈ C and there is a transition from v outside
of C, we call v a limit node. Let G be the graph of the components G = (V,E)
where the nodes V are the components, the limit nodes and the transient
nodes. Edges of E are:
• transitions between a component C and a limit node of C,
• transitions in AR between limit nodes and transient nodes,
• transitions in AR between two transient nodes,
• transitions in AR between a transient or limit node and another compo-

nent C ′.

Definition 4 A sequence Π is a sequence of nodes of G corresponding to a
simple path in G.

We can order the sequence Π with the natural order on the paths and speak of
maximal sequences. For the Region automaton of Figure 2, Π1 = C0.s0.s1.C1

and Π2 = C0.s0.s1.C2 are the two maximal sequences.

An extended component C̄i is a component Ci, possibly with a prefix of
transient states. In Figure 2, C̄1 = s0.s1.C1, and C̄0 = C0. Then Π̄ = C̄0.C̄1 =
C0.s0.s1.C1.

4.1 Samples and Compatibility

The weighted time distribution µ selects a position 1 ≤ j ≤ n in a word
w = (ai, ti)1≤i≤n = (ai, τi)1≤i≤n, i.e. a letter (aj , τj), proportionally to its
weight τj :

Probµ[j] = τj/tn

We access the timed word with such a query which takes 1 unit of time
for the query complexity analysis. A sample of weight at least k of w =
(ai, ti)1≤i≤n = (ai, τi)1≤i≤n is a factor u starting in position j of weight

|u| =
∑i=j+p
i=j τi ≥ k for the smallest possible p, if it exists. If we reach the

end of w, we just have a sample of weight less than k. In practical situations,
the exact time required for a query may vary. Consider two models: the model
where we store the entire word w and the streaming model where we read
letters (ai, τi) one by one and only store samples.

If we store the entire word, we choose a position j by first choosing a uni-
form real value i ∈r [0, tn] and find j such that tj−1 ≤ i < tj by dichotomy.

14 Richard Lassaigne, Michel de Rougemont

We first compare i and tn/2 and find the exact j after at most log n steps.
There is a O(log n) overhead in this procedure.

In the streaming model, we can directly select l distinct samples with a
weighted Reservoir sampling [24] with no overhead. We take the first l letters
of the stream and for j > l we keep the j-th letter with probability l.τj/tj . If
this value is greater than 1, we assume it is 1. If we keep the letter, we remove
a random letter of the Reservoir with probability 1/l and replace it by the
j-th letter.

We recall the classical argument which shows by induction on n, that the
probability that a letter l < j ≤ n is in the Reservoir is l.τj/tn. It is true for
n = l + 1. If it is true for n, let us show that it is also true for n + 1. The
probability that the j-th letter is in the Reservoir at stage n+ 1 is:

l.τj
tn

[(1− l.τn+1

tn+1
) +

l.τn+1

tn+1
.
(l − 1)

l
] =

l.τj
tn

[
tn+1 − τn+1

tn+1
] =

l.τj
tn+1

Let us justify this equality. The j-th letter is in the Reservoir at stage
n with probability

l.τj
tn

by the induction hypothesis. It stays unchanged with

probability (1− l.τn+1

tn+1
), when the letter n+1 is not kept, and with probability

l.τn+1

tn+1
. (l−1)l when the letter n+ 1 is kept and the letter j is not removed from

the Reservoir. We extend the basic strategy of the Reservoir sampling which
keeps l independent samples to keep l independent factors of weight k. At each
stage n, the n-th letter may be concatenated to the factors whose weight has
not yet reached k.

Given a word w, we select l independent samples of weight at least k ac-
cording to µ, which we order as (u1,ul). Notice that two samples ui and
uj of weight greater than k, where i < j, may overlap. In this case, we merge
the samples into a larger sample ui. In the sequel, we assume all samples are
disjoint which is possible if T is large enough. We now introduce the central
notion of compatibility for an arbitrary sequence Π and a sequence of disjoint
ordered factors (u1,ul) of a word w.

For each factor ui we extend the definition of compatibility introduced in
section 2.2 for a component C to a sequence Π. We examine if it could start
from some transient state sj or from some component Cj of Π and end on a
transient state or on a component.

In section 2.2, we defined the notion of a C-compatible timed word w.
There is a run such that its projection is in C. Similarly, we can say that there
is a run such that its projection is in Π. It starts in some transient state of Π
or in some state of a connected component C of Π and ends later in Π. We
say that the projection of the run follows Π.

Testing Membership for Timed Automata 15

Definition 5 A sample ui is Π-compatible from state s = (q,R) to state

s′ = (q′, R′) if ∃ v, v′ (q, v)
ui→ (q′, v′) with v ∈ R and v′ ∈ R′ where s and s′

are transient states of Π or states of components of Π. The projection of the
run must follow Π.

A sequence of disjoint ordered factors (u1,ul) of a word w is Π-compatible
if each ui is compatible for Π from some state si to some state s′i and for
i = 1, ...l − 1 s′i and si+1 are either in the same component of Π or si+1 is
posterior to s′i in Π.

Let Lf (Π) be the set of timed words w which are Π-compatible, the lan-
guage of Π, and similarly for Lf (Π̄).

Definition 6 A sequence of disjoint ordered factors (u1,ul) of a word w is
compatible with a timed automaton A if there exists a sequence Π such that
(u1,ul) is Π-compatible.

The tester takes l disjoint samples (u1,ul), each ui is of weight at least
2k, where k = 24.l.κ.m.B/ε, which we order according to their position in w.

4.2 Compatibility properties

Let w be a timed word accepted by a timed automaton A. What can be said
about the compatibility of samples (u1,ul)?

Lemma 1 If w ∈ Lf (A), then for all l and for all disjoint ordered l-samples
(u1,ul) there is a sequence Π such that (u1,ul) is Π-compatible.

Proof If w ∈ Lf (A), there is a run for w, i.e. a sequence Π defined by the
run from the origin state to some final state q. The independent samples are
Π-compatible. �

Consider the following decision procedure, AlgorithmA2, to decide if (u1,ul)
is Π-compatible. Let ui be a factor and Π a sequence:

Algorithm A1(ui, Π). Enumerate all pairs (si, s
′
i) where si and s′i are ei-

ther a transient state of Π or a state of a component of Π. If there exists a
pair (sj , s

′
j) such that ui is compatible for Π from sj to s′j, then Accept else

Reject.

A1 solves a system of linear constraints for each (si, s
′
i) where the variables

are the valuations on the states from si to s′i. We accept if there is a solution
to the system and reject otherwise. We extend A1 to A2 which takes (u1,ul)
the ordered samples as input, instead of a single ui.

Compatibility Algorithm A2((u1,ul), Π). If for each ui there exists
some pair (si, s

′
i) such that Algorithm A1(ui, Π) Accepts and if for i = 1, ...l−1

s′i and si+1 are either in the same component of Π or si+1 is posterior to s′i
in Π, then Accept else Reject.

16 Richard Lassaigne, Michel de Rougemont

4.3 Tester

Given a timed automaton A let Lf (A) be the language accepted. Let AR be
the region automaton with m states, and let B be the maximal value used
in the time constraints. The automaton is fixed and the timed word w is the
input of weight T . The tester has a query and time complexity independent of
T . We first generate all the maximal Π, for the inclusion, which include com-
ponents and transient states. We consider transient states with unbounded
transitions as specific extended components. Let Π̄ = C̄i1 .C̄i2C̄il the cor-
responding sequences of extended components obtained in this way. We first
define a Tester along a Π̄ and the final Tester considers all possible maximal Π̄.

Tester along a path Π̄ = C̄i1 .C̄i2C̄il
Input: timed word w, ε,
Output: Accept or Reject

1. Sample l independent disjoint factors (u1 < u2.... < ul) of weight k ≥
24l.κ.m.B/ε of w for the weighted time distribution µ.

2. Accept if A2((u1,ul), Π) accepts else Reject.

We then obtain the general tester for a regular timed language Lf (A).

Tester for Lf (A)
Input: timed word w, ε
Output: Accept or Reject

1. Construct all the Π̄ corresponding to maximal Π, of the region automa-
ton AR, starting in the initial state,

2. For each Π̄, apply the Word Tester along Π̄,
3. If there is a Π̄ such that Word Tester along Π̄ accepts, then Accept else

Reject.

5 Analysis of the Tester

We have to verify the two properties of a Tester, given in definition 1.

Lemma 2 If w ∈ Lf (A) then the Word Tester for Lf (A) always accepts.

Proof Consider a run of the automaton A, labeled by w. There exists a Π̄
with at most l extended components such that all the factors u of weigth k
of w are compatible for Π. Any sequence of ordered factors (u1, ...ul) is also
Π-compatible. Hence the Tester accepts. �

The more difficult task is to show that if w is ε-far from L(A) then the
Tester will reject with constant probability. Equivalently, we could show the

Testing Membership for Timed Automata 17

contrapositive, i.e. if the Tester accepts with constant probability, then w is
ε-close to L(A).

We construct a corrector for w in order to prove this property. A corrector
transforms an incorrect w into a correct w′ with timed edit operations. We
first describe a corrector for a given component C in section 5.1, for an ex-
tended component C̄ in section 5.2 and for a path Π̄ = C̄1, ...C̄l of extended
components in section 5.3. In the last case, we decompose a word w into l
factors which we will correct for each C̄i. In each case, the corrector shows
that if a timed word is ε-far from the corresponding language, then samples of
a certain weight 2k will be incompatible with constant probability.

5.1 Correction and Tester for a component C

C is a thick component, i.e. admits a forgetful cycle [7]. In this case, from a
state (q,R) and v ∈ R, we can reach any (q′, R′) and v′ ∈ R′ with a small
timed word, called a link in Lemma 3. We then introduce a decomposition of a
word w into compatible fragments separated by cuts with a cost. In Lemma 4,
we show that if the total relative weight of the cuts is small, then the word is
ε-close to Lf (C). In Theorem 1 we show that if w is ε-far, samples of weight at
least 2k, a function of ε, are incompatible for Lf (C) with constant probability.

Lemma 3 For all pairs of states (q,R), (q′, R′) of a thick component C and

for all valuations v ∈ R, v′ ∈ R′, there exists a timed word σ such that (q, v)
σ−→

(q′, v′) and the weight of σ is less than 3.κ.m.B.

Proof As C is a thick component, there is a forgetful cycle π and a path from
(q,R) to a state (q0, R0) on the cycle π and a path from (q0, R0) to (q′, R′).
There is a direct forgetful path σ from (q,R) to (q′, R′), such that for all

valuations v ∈ R there is a v′ ∈ R′ such that (q, v)
σ−→ (q′, v′). The length of

σ is less than 3.κ.m and its weight is less than 3.κ.m.B. These bounds follow
the analysis of the monoidM of the orbit graphs [7] whose size is exponential
in the number of clocks. The use of Simon’s factorization [23] adds another
exponential factor in the number of clocks. �

We decompose any word into compatible factors for the component C and
introduce the notion of a cut with a cost. The sum V of the costs of the dif-
ferent cuts is the key parameter of the decomposition.

Definition 7 A cut for C in a timed word w = (ai, τi)1≤i≤n is a decom-
position of w into the longest possible compatible prefix w1, a letter (ai, τi)
and a suffix w′1, i.e. w = w1.(ai, τi).w

′
1, such that w1 is compatible for C but

w1.(ai, τi) is not compatible for C. If (ai, τi) as a single letter is compatible
for C, the cut is weak otherwise the cut is strong.

18 Richard Lassaigne, Michel de Rougemont

The correction strategy depends on the two types of cuts.

– In a weak cut, let (ai, τi).w
′
2 be the longest compatible timed word from

some state (q,R) of C of the timed word (ai, τi).w
′
1. Lemma 3 provides a

link σ before the letter (ai, τi). The edit cost is then c ≤ 3κmB, because
the weight of σ is less than 3κmB.

– In a strong cut, (ai, τi) is not compatible. If there exists τ ′i 6= τi, such that
(ai, τ

′
i) is compatible, we use a link σ and modify τi: the correction cost is

at most c =| τi − τ ′i | +3κmB. If it is not the case, we erase the letter and
the cost is c = τi.

S1,
R1	

S0,
R0	

a	

S2,
R1	

S3,
R0	

S4,
R0	

S5,
R1	

	b	

	b		

	b	

	c	

a		

	c	

	a	

											w		=(a,1.2),(c,0.6),	(a,1.2),(c,0.6),(a,1.2),(c,0.6),	(a,1.2),(c,0.6),	(a,1.2),(c,0.6)	

C0	

C1	

C2	

Π=	C1	

											w’=(a,1.2),(c,0.6),	(a,1.2),(c,0.6)	(d,1),(a,1.2),(c,0.6),	(a,1.2),(c,0.6)			 ,(a,1.2),(c,0.6)	

Strong	cut													

								w’’= (a,1.2),(c,0.6),	(a,1.2),(c,0.6)		(a,1.2),(c,0.6),	(a,1.2),(c,0.6)		(a,0.1),	 ,(a,1.2),(c,0.6)	

Fig. 6: The word w ∈ Lf (Π) for the region automaton of A0 and Π = C1, whereas
w′ /∈ Lf (Π): it has a strong cut and a weak cut. The word w′′ is a possible correction of w′.

We then write: w = w1 |c w2 where c is the cost of the correction and w2 is
the corrected suffix: for the strong cut, we removed a letter and for the weak
cut we added a link. Figure 6 first shows a strong cut and then a weak cut for
the word w′. The corrected subwords determine w′′.

We iterate this process on w2 starting in an arbitrary state (q,R) and
v ∈ R. If we decompose w2 = w2,1 | w2,2, we write w = w1 |c1 w2 |c2 w3

instead of w = w1 |c1 w2,1 |c2 w2,2.

We now define the algorithmic decomposition, written as:

w = w1 |c1 w2 |c2 w3 c3 | ... |ch wh+1

Testing Membership for Timed Automata 19

5.1.1 A decomposition for a component C of a timed word and its associated
cost V

A C decomposition of a timed word w = (ai, τi)1≤i≤n is the recursive process
which given:

w = w1 |c1 w2 |c2 w3 c3 | ...wi |ci wi+1

at stage i of cost V (i) constructs

w = w1 |c1 w2 |c2 w3 c3 | ... wi+1 |ci+1
wi+2

at stage i+ 1 of cost V (i+ 1) as follows:
If i = 1, it is the cut construction and V (1) = c. If i > 1, we assume that

wi+1 was corrected at stage i, with a deletion or an insertion of a link and a
modification in the case of a strong cut at stage i, or with the insertion of a
link σ in the case of a weak cut at stage i.

– wi+1 starts with an incompatible letter which needs to be erased. At stage
i+ 1 the decomposition is:

w = w1 |c1 w2 |c2 w3 c3 | ...wi |ci |ci+1
wi+2

and (ai, τi)wi+2 = wi+1. The new wi+1 is empty. The cost V (i+ 1) is the
cost V (i) plus the deletion cost ci+1.

– in all other cases, the new wi+1 contains at least the link. It is the longest
C compatible segment of the old wi+1. The new decomposition is:

w = w1 |c1 w2 |c2 w3 c3 | ...wi |ci wi+1 |ci+1 wi+2

The cost V (i+ 1) is the cost V (i) plus the insertion cost and the possible
modification cost in the case of a strong cut, written ci+1.

If there are h cuts of total value V =
∑
j=1...h cj , for the C decomposition

of w, let

cs =
∑

strong cut j

cj

the total cost of the strong cuts and

cw =
∑

weak cut j

cj

the total cost of the weak cuts.

Lemma 4 If w has cuts of total cost V for C, then w is V
T -close to the lan-

guage Lf (C).

Proof Lemma 3 indicates that we can always correct a cut and start from an
arbitrary new state. For each cut i of cost ci, we have a correction of weight at
most ci. Hence a total relative distance of at most V

T to the language of C.�

20 Richard Lassaigne, Michel de Rougemont

By the contraposition of lemma 4, if w of weight T is ε-far from Lf (C),
then V ≥ ε.T . We take some sample u of weight at least 2k with the weighted
time distribution µ, for some constant k we define later. We want to show that
the probability that u is incompatible is a constant independent of T , which
only depends on ε and on the automaton. We need to examine 2 cases: either
the strong cuts are dominant, i.e. cs ≥ ε.T/2 or the weak cuts are dominant,
i.e. cw ≥ ε.T/2.

5.1.2 Dominant strong cuts.

In a strong cut, the cost of the correction can be high, of the order of τi.
A sample u of one letter which contains a strong cut is incompatible for C
whereas a sample which contains a weak cut may be compatible, as we show
in section 5.1.3.

Lemma 5 If w is ε-far from the language Lf (C) and cs ≥ ε.T/2, a sample
from the weighted time distribution µ, has a probability greater than ε/2 to be
incompatible.

Proof A sample u of one letter taken from µ has a probability proportional to
its weight. The weight of the cut is less than the weight of the letter witnessing
the strong cut. If the sum of the weights of all the strong cuts is greater than
ε.T/2, the probability to select one is at least ε/2.�

5.1.3 Dominant weak cuts.

We now take samples as factors of weight at least 2k, where k depends on the
automaton constants (m and B) and the approximation factor ε, determined
in Lemma 7. We select a starting position according to µ and the following
letters until the total weight is at least 2k. A sample which contains one weak
cut may be compatible, whereas a sample which contains two consecutive weak
cuts is incompatible. A sample u starting before the cut may be compatible
for C because we consider all possible states of C as a starting state of u.

At the first cut we again consider all possible states of C and choose the
state for which the longest possible factor is compatible. All the runs block
before the second cut or precisely at the second cut. Hence the sample is in-
compatible. We will prove that for factors u of w of weight greater than 2k, a
large proportion will contain two weak cuts and hence will be incompatible.

Let αi for i ≥ 1 be the number of wj in the decomposition of w along the
cuts, whose weight is larger than 2i−1 and less than 2i:

αi = |{wj : 2i−1 ≤ |wj | < 2i}|

Testing Membership for Timed Automata 21

where |wj | is the weight of wj . Let α0 = |{wj : 0 ≤ |wj | < 1}|. By definition
h =

∑
i≥0 αi is the total number of cuts.

A small block is a wj whose weight is smaller than 24κmB/ε, which will
later be the value of k. Otherwise it is a large block. We need to estimate∑

0≤i≤il αi when we choose il as the smallest integer such that 2il ≥ 24κmB/ε,

in order to bound the number of wi of weight smaller than k. Let

β =
∑
i≥il

αi γ =
∑
i<il

αi

First let us relate β, the number of large blocks with γ, the number of small
blocks when the weak cuts dominate, i.e. cw ≥ ε.T/2.

Lemma 6 (Counting cuts) If w is ε-far from C and cw ≥ ε.T/2, there is an
il such that γ ≥ 3.β.

Proof There are at most T/2il feasible wj of weight larger than 2il , i.e.

β ≤ T/2il

Hence h =
∑
i αi = γ + β ≥ ε.T/6κmB because cw ≥ ε.T/2 and each weak

cut has a correction of cost at most 3κmB, as shown in Lemma 3.

γ ≥ ε.T/6κmB − β
Let il be the smallest integer such that 24κmB/ε ≤ 2il . Then

β ≤ T/2il ≤ ε.T/24κmB (∗)

γ ≥ ε.T/6κmB − β ≥ ε.T/6κmB − ε.T/24κmB = ε.T/8κmB

γ ≥ 3.β

�

If we take samples of weight 2k, we now prove that the probability to obtain
a sample with two weak cuts, hence an incompatible sample, is greater than
some constant.

Lemma 7 If w is ε-far from the language Lf (C) and cw ≥ ε.T/2 and k =
24κmB/ε, then a sample u of weight 2k from the weighted time distribution µ
has a probability greater than δ = 3.ε2/5 to be incompatible.

Proof We estimate the probability that u contains two consecutive cuts, hence
u is incompatible. Because cw ≥ ε.T/2, as in Lemma 6:

h =
∑
i

αi ≥ ε.T/6κmB

We say that u is in wj if the first letter of u is one of the letters of wj . Le us
show that if we take a one letter sample u with the weighted time distribution,
then:

Prob[u is in wj ∧ |wj | ≤ k] ≥ 4ε/5 (1)

22 Richard Lassaigne, Michel de Rougemont

Prob[|wj+1| ≤ k | u is in wj ∧ |wj | ≤ k] ≥ 3ε/4 (2)

For the first inequality (1), consider the correction where we erase all the
small blocks, at a cost of Prob[u is in wj ∧ |wj | ≤ k].T and then correct at
most β large blocks, at a cost of β.3κmB. As the word is ε-far, then:

Prob[u is in wj ∧ |wj | ≤ k].T + β.3κmB ≥ ε.T

Prob[u is in wj ∧ |wj | ≤ k].T ≥ ε.T − β.3κmB

We use the bound (∗) on β in lemma 6.

Prob[u is in wj ∧ |wj | ≤ k].T ≥ ε.T − ε.T.3κmB/24κmB ≥ 4ε.T/5

Prob[u is in wj ∧ |wj | ≤ k] ≥ 4ε/5

For the second inequality (2), we have a conditional probability: we measure
the probability, given that we hit a small block j, that the next block j + 1
is also small. We therefore measure the probability that a sample hits a small
block followed by another small block. Consider the sequences of consecutive
small blocks, which exist since γ ≥ 3β from lemma 6. If we erase all the small
blocks which have a small successor, we capture the small blocks followed by
another small block, i.e. the event we want to measure when we take a sample
of weight at least 2k. There remains small blocks followed by large blocks, at
least one small block when all the small blocks were consecutive and at most
β small blocks in the worst case. We must therefore correct at most 2β cuts,
for the large blocks and the remaining small blocks. The cost of the erasure is:

Prob[|wj+1| ≤ k | u is in wj ∧ |wj | ≤ k].T

and the correction cost is at most 2β.3κmB. As the word is ε-far, then:

Prob[|wj+1| ≤ k | u is in wj ∧ |wj | ≤ k].T + 2β.3κmB ≥ ε.T

Prob[|wj+1| ≤ k | u is in wj ∧ |wj | ≤ k].T ≥ ε.T − 2β.3κmB

We use the bound (∗) on β in lemma 6.

Prob[|wj+1| ≤ k | u is in wj ∧ |wj | ≤ k].T ≥ ε.T − 2ε.T.3κmB/24κmB

Prob[|wj+1| ≤ k | u is in wj ∧ |wj | ≤ k].T ≥ 3ε.T/4

We can then bound the probability that a sample of weight 2k is incom-
patible: it is greater than the probability that a sample u contains 2 successive
small blocks.

Prob[sample u of weight 2k is incompatible] ≥

Prob[u is in wj ∧ |wj | ≤ k].P rob[|wj+1| ≤ k | u is in wj ∧ |wj | ≤ k]

Prob[sample u of weight 2k is incompatible] ≥ (4ε/5).(3ε/4) ≥ δ = 3ε2/5

�

Testing Membership for Timed Automata 23

Theorem 1 For a thick component C, the Membership problem is testable.

Proof Lemma 2 shows the first property of the tester: if w is in Lf (C),
the tester always accepts. Let us show the second property: if w is ε-far
from the language of Lf (C), a random sample u of weight at least 2k with
k = 24κmB/ε, taken from the weighted distribution µ, is incompatible with
probability at least 3.ε2/5. If w is ε-far, the total weight of the cuts must be
large by lemma 4. Either the total weight of the strong cuts is large, greater
than ε.T/2, or the weight of the weak cuts is large, greater than ε.T/2. In the
first case, lemma 5 shows that a one letter sample is incompatible with high
probability, at least ε/2. In the second more difficult case, lemma 7 shows that
a sample of weight at least 2k with k = 24κmB/ε contains at least 2 cuts with
high probability, at least 3.ε2/5, hence is incompatible. �

We need to generalize this argument to a sequence Π̄ of extended compo-
nents.

5.2 Correction and Tester for one extended component

An extended component consists of transient states which may be followed
by a component. Let a transition be bounded if the constraint g contains an
atomic constraint of the form x ./ c where x ∈ X, c ∈ N and ./∈ {<,≤,=}
and unbounded otherwise. Transient states with unbounded transitions have
to be analysed differently from transient states with bounded transitions. We
therefore distinguish the two cases.

In the example of Figure 7, the extended component s0.s1.C1 of A′0 has
bounded transitions whereas its extended component s0.s1.C2 has an un-
bounded transition.

5.2.1 Bounded transitions.

Let (q,R) be a transient state which appears in Π. Let w1.(ai, τi).w
′ be the

word w where we read (ai, τi) in state (q,R) with the value v ∈ R. Assume w1

is compatible for a prefix π of Π but w1.(ai, τi) is not compatible for the prefix
π followed by the transient state (q,R). We introduce a cut before (ai, τi).

Lemma 8 The correction cost of a word w for a transient state with a bounded
transition is less than B.

Proof We insert (a′i, τ
′
i) such that τ ′i ≤ B before (ai, τi) which is always possi-

ble. The correction cost is less than B. �

After the bounded transitions, we correct for the component C as in the
previous section.

24 Richard Lassaigne, Michel de Rougemont

s1	s0	

	a,		x	≤1,		
x:=0	

a,		x<2,	x:=0	

s2	 s3	

s4	 s5	

	b,		x	<1,		

	b,		x	<1		

	b,		x	>1,		
	x:=0	

	c,		x	<1		

a,		x<1		

	c,		x	<2	,x:=0	

C0	 C1	

C2	A’0	

s1	s0	

	a,		x	≤1,		
x:=0	

a,		x<2,	x:=0	

s2	 s3	

s4	 s5	

	b,		x	<1,		

	b,		x	<1		

	b,		x	 1,		
	x:=0	

	c,		x	<1		

a,		x<1		

	c,		x	<2	,x:=0	

C0	 C1	

C2	A’’0	
sb	

	b,		x	 1,		
	x:=0	

	b,		x	 1,		
	x:=0	

Fig. 7: Automaton A′
0 with an unbounded transition, and its bounded expansion A′′

0 =
Ta(A′

0, 1)

5.2.2 Unbounded transitions

Let (q,R) be a transient state with an unbounded transition which appears in
Π. We show how to generalize the analysis in this context and treat an un-
bounded transition whose weight can be arbitrarly high as a new component.
Consider the transformation T of a timed word w relative to a bound c where
letter (b, τi) in position i in w with weight τi > c is decomposed into dτi/ce
consecutive letters (b, c) with a extra letter (b, r) such that τi = c.dτi/ce + r
where r < c. For example (b, 10.5) for c = 1 is decomposed into 10 consec-
utive letters (b, 1) followed by (b, 0.5), which we write as (b, 1)10, (b, 0.5). Let
T (w, i, c) be such a transformation.

Decomposition at position i for w, c and A.

• Erase all the letters before i for a global cost ce.

• Correct the letter i for the unbounded transition at a cost ca which is at
most B+ τi. In fact, if the letter is incompatible, we erase it at the cost τi and
insert the correct letter with a weight at most B. If the letter is compatible,
we may have to modify its weight at a cost at most B.

Testing Membership for Timed Automata 25

• Correct the rest of the word w for the component C at a cost cC . The
total cost is at most ce + τi +B + cC . The decomposition saturates if

ce + ca + cC ≥ ε.T

Let A be a timed automaton where the unbounded transient transition is:

b, x > c, x := 0

We define Ta(A, c) a new timed automaton where this unbounded transition
is replaced by three bounded transitions b, x ≤ c, x := 0 with one additional
state with a loop, as in Figure 7. Without loss of generality we consider timed
automata without transition with an unbounded clock constraint without re-
set.

The decomposition at position i for w, c and A generalizes to a decompo-
sition at position i for T (w, i, c), c and Ta(A, c), with exactly the same costs.

Lemma 9 If there is a choice of the i-th letter where the decomposition does
not saturate, then w is ε-close to Lf (Π̄) and T (w, i, c) is ε-close to Lf (Ta(Π̄, c).

Proof We just apply the corrections associated with the decomposition. We
erase all the letters before the i-th letter at a cost ce, adjust the ith letter to
the unbounded transition at a cost ca and correct the suffix for C as in section
5.1. The total cost is less than ε.T , hence w is ε-close to Lf (Π̄). For T (w, i, c)
the adjustment concerns the i-th letter and the factor replacing (b, τi), with
the exact same cost ca. Hence T (w, i, c) is ε-close to Lf (T (Π̄, c). �

We will use the contraposition: if w is ε-far from Lf (Π̄), then for any guess
i, the decomposition saturates.

Lemma 10 If w ∈ Lf (Π̄) then there exists a choice of a i-th letter of w such
that T (w, i, c) ∈ Lf (Ta(Π̄), c). If w is ε-far from the language of Π̄, then for
any choice of a i-th letter of w, T (w, i, c) is ε-far from Lf (Ta(Π̄), c).

Proof Consider a run for w in Π̄. There is a letter (b, τi) for the unbounded
transition x > c. We choose this letter for the transformation T and write
τi = c.dτi/ce+ r where r < c. We rewrite (b, τi) as (b, c)dτi/ce.(b, r) as a word
of at least 2 letters. We simulate the run in Lf (Ta(Π̄), c).

If w is ε-far from the language of Π̄, then by lemma 9 for any choice i, the
decomposition saturates and T (w, i, c) is ε-far from Lf (Ta(Π̄), c). �

In the section 5.3, we show how the Tester rejects with constant probability,
as we consider two components and only bounded transient transitions.

26 Richard Lassaigne, Michel de Rougemont

5.3 Decomposition strategy for a sequence Π̄ of 2 extended components with
bounded transient transitions

We now define a correction strategy for a timed word w for a sequence Π̄ when
a timed word w is ε-far from the language of Π̄. Consider the case Π̄ = C̄1, C̄2,
which we can later generalize to an arbitrary Π̄. The decomposition splits the
word into 2 parts and we apply the correction strategy for C̄1 on the first part
I1 and the correction strategy for C̄2 on the second part I2. We define the
border as the position of the cut which partitions the word w into (I1, I2), i.e.
the last cut for the correction on C1.

5.3.1 Decomposition strategy for a sequence Π̄ = C̄1, C̄2

If a timed word w is ε/2-far from the language of Π̄, there is an (I1, I2)
decomposition, defined as follows.

– Start in any state of C1 and take the longest compatible prefix w1. It
determines a cut of cost c with the corrector for C1. We continue in a
similar way and accumulate the costs of the corrections. If we reach a cut
whose total weight Vc is at least ε.T/2 the border is the position of this
cut and I1 is the prefix and I2 is the suffix.

– After we reach the border, we correct the word for C2. If the total cost of
the corrections reaches ε.T , we say that the decomposition saturates w for
Π̄ = C̄1, C̄2 .

The goal is to guarantee that at least ε.T/2 error occurs for C̄1 in I1 and
for C̄2 in I2 if the word w is ε-far.

Lemma 11 If a timed word w is ε-far from the language of Π̄ = C̄1, C̄2 then
there is a border and the decomposition saturates w.

Proof By contraposition, we consider two cases. If there is no border, then w
is ε-close to C̄1 hence to C̄1, C̄2. If there is a border and the decomposition
does not saturate then w is close to C̄1, C̄2, as we can find a correction of total
cost less than ε.T .�

5.3.2 Tester for Π̄ of 2 extended components with bounded transient
transitions

If w is ε-far from Π̄ = C̄1, C̄2, then there are many samples u’s of weight
2k incompatible for C1 in the interval I1 and many samples u’s of weight 2k
incompatible for C2 in the interval I2. We write u ∈ I1 to indicate that the
sample u is a subword of I1. We conclude, in lemma 12 below, that the Tester
will reject with constant probability.

Lemma 12 If w is ε-far from the language of Π̄ = C̄1, C̄2 and k = 48κmB/ε,
then the Tester along Π̄ rejects with constant probability.

Testing Membership for Timed Automata 27

Proof Assume w is ε-far from Π̄ = C̄1.C̄2. By lemma 11 we have a decompo-
sition (I1, I2). Consider two distinct samples u1 < u2 taken independently of
weight at least 2k. If u1 is incompatible for C1 and u2 is incompatible for C2,
then the Tester rejects. Hence:

Prob[Tester rejects] ≥ Prob[u1 incompatible for C1 ∧ u2 incompatible for C2]

≥ Prob[(u1 ∈ I1∧u1 incompatible for C1)∧(u2 ∈ I2∧u2 incompatible for C2]

These two events are independent because the samples are independent, hence
we can rewrite the expression as:

Prob[(u1 ∈ I1∧u1 incompatible for C1)].P rob[(u2 ∈ I2∧u2 incompatible for C2]

Let ε′ = ε/2. From the Theorem 1, if k = 24κmB/ε′ = 48κmB/ε, then

Prob[u1 incompatible for C1|u1 ∈ I1] ≥ 3ε′ 2/5 = 3ε2/20

and

Prob[u1 ∈ I1] ≥ (ε/2)

Hence:

Prob[(u1 ∈ I1 ∧ u1 incompatible for C1)] ≥ (ε/2).3ε2/20

and similarly for u2. Hence:

Prob[Tester rejects] ≥ (3ε3/40)2

�

5.4 Decomposition strategy for a sequence Π̄ of 1 or 2 extended components
with unbounded transient transitions

We apply the transformation of section 5.2.2 and consider the unbounded tran-
sient transitions as new components. We therefore have at least 2 components
and in addition a new component for each unbounded transition. We study
this general case in section 5.5.

28 Richard Lassaigne, Michel de Rougemont

5.5 Correction strategy and Tester for an arbitrary sequence Π̄ of length l

Let Π̄ = C̄1....C̄l be a sequence where l is the number of components plus the
number of unbounded transient transitions. The decomposition generalizes to
C̄1....C̄l by taking cuts for C̄1 of global cost greater than ε.T/l, until a first
border and a prefix I1, taking cuts for C̄2 of global cost at least ε.T/l until
a second border I2 and so on until possible cuts for C̄l of global cost at least
ε.T/l and a last border Il−1.

The decomposition (I1, I2, ...Il−1) saturates w if the total cost is larger than
ε.T .

Lemma 13 If a timed word w is ε-far from the language of Π̄ = C̄1....C̄l then
there are l − 1 borders and the decomposition saturates w.

Proof By contraposition, we consider two cases. If there are less than l − 1
borders, then w is ε-close to a prefix of Π̄ hence to Π̄. If the decomposition
does not saturate then w is close to Π̄, as we can find a correction of total
cost less than ε.T . �

Theorem 2 If A is a timed automaton with thick components only, the Mem-
bership problem is testable.

Proof Lemma 2 shows the first property of the tester: if w is in Lf (A), there
is a Π such that w is in Lf (Π) and the tester for this Π always accepts.
Let us show the second property: If w is ε-far from the language Lf (A), it is
also ε-far from all Lf (Π). Let Π̄ = C̄1...C̄l and k = 24l.κmB/ε: let us show
that the Tester along the path Π̄ rejects with constant probability. If w is
ε-far from Π = C̄1....C̄l, there is a decomposition (I1, I2, ...Il) with non-empty
segments by the lemma 13, the decomposition saturates w. Consider l samples
u1 < u2 < < ul taken independently of weight at least 2k which do not
overlap. If u1 is incompatible for C̄1 and u2 is incompatible for C̄2.... and ul
is incompatible for C̄l, then the Tester rejects. Hence:

Prob[Tester rejects] ≥ Prob[u1 incompatible for C̄1∧u2 incompatible for C̄2....

∧ul incompatible for C̄l]

Prob[(ui incompatible for C̄i) ≥ Prob[(ui ∈ Ii ∧ ui incompatible for C̄i)]

All these events are independent, hence we can rewrite the expression as:∏
i

Prob[(ui ∈ Ii ∧ ui incompatible for C̄i)]

Let ε′ = ε/l. From the lemma 7, if k = 24κmB/ε′ = 24l.κmB/ε, then

Prob[ui incompatible for C̄i|ui ∈ Ii] ≥ 3ε′2/5 = 3ε2/5l2

and
Prob[ui ∈ Ii] ≥ (ε/l)

Testing Membership for Timed Automata 29

Hence:

Prob[(ui ∈ Ii ∧ ui incompatible for C̄i)] ≥ (ε/l).3ε2/5l2 = 3ε3/5l3

Prob[Tester rejects] ≥
∏
i

Prob[(ui ∈ Ii∧ui incompatible for C̄i)] ≥ (3ε3/5l3)l

The Tester rejects with a probability greater than a function of ε and l, but
independent of T . �

6 Conclusion

We introduced the timed edit distance between timed words and use it to
test the membership property of timed automata with thick components. We
select factors of a timed word proportional to their weight according to the
weighted time distribution µ. We followed the property testing framework and
constructed a tester which selects finitely many samples of bounded weight
to detect if a timed word is accepted or ε-far from the language of the timed
automaton.

In a streaming context, the weighted samples can be taken online, and the
tester provides an approximate decision to the Membership problem.

This work can be extended in several directions. A first direction is the
comparison of the languages of two timed automata, an undecidable problem
[2,5]. Let us say that two timed automata A1 and A2 are ε-close if any timed
word of L(A1) is ε-close to L(A2) and symmetrically. A natural question is to
decide if two timed automata are close or far for finite words, as it is stud-
ied in [15] in the case of classical automata. A second direction would be to
generalize to infinite words. The distance can be extended to infinite words
by taking the limits of the distance on their prefixes. We can then ask for
efficient probabilistic algorithms which approximate the equivalence of timed
automata for finite and infinite timed words.

Acknowledgment. The authors thank E. Asarin for pointing out the
concept of forgetful cycles and thick components [7] and Aldric Degorre for
the bound on the weight of a forgetful cycle. We also thank the two reviewers
for their constructive comments.

References

1. N. Alon, M. Krivelich, I. Newman, and M. Szegedy. Regular languages are testable with
a constant number of queries. SIAM Journal on Computing, 30(6), 2000.

2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

3. Rajeev Alur, Robert P. Kurshan, and Mahesh Viswanathan. Membership questions
for timed and hybrid automata. In Proceedings of the 19th IEEE Real-Time Systems
Symposium, Madrid, Spain, December 2-4, 1998, pages 254–263, 1998.

30 Richard Lassaigne, Michel de Rougemont

4. Rajeev Alur, Salvatore La Torre, and P. Madhusudan. Perturbed timed automata. In
Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Computation and Control.
Springer Berlin Heidelberg, 2005.

5. Rajeev Alur and P. Madhusudan. Decision Problems for Timed Automata: A Survey,
pages 1–24. Springer Berlin Heidelberg, 2004.

6. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-
tion of np. J. ACM, 45(1):70–122, 1998.

7. Eugene Asarin, Nicolas Basset, and Aldric Degorre. Entropy of regular timed languages.
Inf. Comput., 241(C):142–176, April 2015.

8. Eugene Asarin, Nicolas Basset, and Aldric Degorre. Distance on timed words and
applications. In FORMATS, 2018.

9. M. Blum and S. Kannan. Designing programs that check their work. Journal of the
ACM, 42(1):269–291, 1995.

10. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to nu-
merical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

11. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robustness in timed automata. In
Parosh Aziz Abdulla and Igor Potapov, editors, Reachability Problems. Springer Berlin
Heidelberg, 2013.

12. Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Rupak Majumdar. Edit distance for
timed automata. 17th International Conference on Hybrid Systems: Computation and
Control, pages 303–312, 2014.

13. Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Robust
safety of timed automata. Formal Methods in System Design, 33(1):45–84, Dec 2008.

14. Simon Dobrisek, Janez Zibert, Nikola Pavesic, and France Mihelic. An edit-distance
model for the approximate matching of timed strings. IEEE Trans. Pattern Anal.
Mach. Intell., 31(4):736–741, 2009.

15. Eldar Fischer, Frédéric Magniez, and Michel de Rougemont. Approximate satisfiability
and equivalence. SIAM J. Comput., 39(6):2251–2281, 2010.

16. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, 45(4):653–750, 1998.

17. Thomas A. Henzinger and Jean-Francois Raskin. Robust undecidability of timed and
hybrid systems. Technical report, University of California at Berkeley, Berkeley, CA,
USA, 1999.

18. F. Magniez and M. de Rougemont. Property testing of regular tree languages. Algo-
rithmica, 49(2):127–146, 2007.

19. Mehryar Mohri. Edit-distance of weighted automata. In Jean-Marc Champarnaud and
Denis Maurel, editors, Implementation and Application of Automata. Springer Berlin
Heidelberg, 2003.

20. Rohit J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
21. Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,

10(1):87–113, Jan 2000.
22. R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications

to program testing. SIAM Journal on Computing, 25(2):23–32, 1996.
23. Imre Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65–94,

1990.
24. Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,

11(1):37–57, March 1985.
25. Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J.

ACM, 21(1):168–173, January 1974.

