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Abstract

We study how to detect clusters in a graph defined by a stream of
edges, without storing the entire graph. We extend the approach to
dynamic graphs defined by the most recent edges of the stream and
to several streams. The content correlation of two streams ρ(t) is the
Jaccard similarity of their clusters in the windows before time t. We
propose a simple and efficient method to approximate this correlation
online and show that for dynamic random graphs which follow a power
law degree distribution, we can guarantee a good approximation. As
an application, we follow Twitter streams and compute their content
correlations online. We then propose a search by correlation where an-
swers to sets of keywords are entirely based on the small correlations of
the streams. Answers are ordered by the correlations, and explanations
can be traced with the stored clusters.

Keywords: Streaming algorithms, Dynamic graphs, Clustering, Approxi-
mation

1 Introduction

Consider a stream of edges of a graph which follows a power law degree
distribution. Sliding windows define dynamic graphs Gt and we select each
edge with a uniform probability in each window. There are several techniques
which generalize the original Reservoir sampling [12] for a fixed window, to
dynamic windows. At any given time t, we have a Reservoir which keeps
k edges among the possible m edges which have been read (m >> k), and
each edge has the same probability k/m to be chosen in the Reservoir. If
the cluster S and the Reservoir size k are large enough, a large connected
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component will appear in the Reservoir. The random edges of S are taken
with the same probability p = k/m, i.e. follow the Erdös-Renyi model G(n, p)
and the giant component in S occurs if p = k/m > 1/n = 1/|S|, the classical
phase transition probability. In the dynamic case, we will observe changes in
the communities as new communities appear and old communities disappear.
At discrete times ti we store only the large connected components of the
Reservoirs.

We study the correlation between multiple streams of graph edges and
define the content correlation ρ of two streams of edges, based on the Jaccard
similarity of their clusters and extend it to ρ(t) on the dynamic graphs Gt.
We provide an analysis of dynamic random graphs which follow a power
law degree distribution, based on the Configuration Model [10]. We give
sufficient conditions to detect clusters depending on their size, the Reservoir
size k and the length of the observation. We then approximate the content
correlation with an online algorithm, i.e. estimate the correlation ρ(ti) at
discrete times ti.

Streams of graph edges are ubiquitous, in particular in social networks
where the graphs have a degree distribution close to a power law, a small
diameter and clusters (communities) which evolve in time. Twitter streams
are defined by some tags and generate a stream of edges of large dynamic
graphs. We estimate the correlations between multiple streams and obtain
a correlation matrix A, from which we build a phylogeny tree. We then
introduce a Search by correlation: given some tags, we find the most correlated
tags which depend on the history of the clusters and on the phylogeny tree.
Our main results are:

• We propose an Algorithm which detects large static clusters in a graph
which follows a power law degree distribution, with high probability,
using only a few edge samples (theorem 1) and its extension to dynamic
graphs (theorem 2),

• We present an online algorithm for ρ(t). For two dynamic graphs with
clusters S and S′ whose Jaccard similarity is ρ∗, the correlation ρ(t) is
close to ρ∗ (theorem 3).

We estimated the content correlations of 4 Twitter streams (approximately
2.106 edges) over 24h online and built the closest phylogeny tree. The
Search by correlation illustrates the technique which uses the correlations, a
phylogeny tree and the stored clusters. In the second section, we define the
framework of dynamic graphs defined by a stream of edges and introduce the
notion of content correlation of two streams. In the third section, we set a
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model of random dynamic graphs where we can guarantee the approximation
of the correlation. In the fourth section, we present our analysis of multiple
Twitter channels and their correlations. In the fifth section, we introduce
the Search by correlation, using a phylogeny tree built from the correlation
matrix of the streams.

2 Dynamic graphs in a window of streaming edges

Let e1, e2, ....ei... be a stream of edges where each ei = (u, v). It defines a
graph G = (V,E) where V is the set of nodes and E ⊆ V 2 is the set of edges:
we allow self-loops and multi edges and assume that the graph is symmetric.
In the window model we isolate the most recent edges at some discrete
t1, t2, .... There are two models of sliding windows: the most recent τ edges
or the most recent edges in some fixed time interval τ . If the rate (the number
of edges per time unit) of the stream is fixed, both models coincide. It is
not the case in practice, as the rate fluctuates within a factor 2 at any given
time. We take the second model, i.e. keep the length of the window τ , hence
t1 = τ and each ti = τ +λ.(i−1) for i > 1 and λ < τ determines a window of
length τ and a graph Gi defined by the edges in the window or time interval
[ti − τ, ti]. The number of edges in a window may increase or decrease and
reflects the increasing or decreasing rates of a stream. Consecutive windows
overlap within a factor τ/λ, about 50% in the experiments. In practice,
τ = 60 mins and λ = 30 mins. The graphs Gi+1 and Gi share many edges:
old edges of Gi are removed and new edges are added to Gi+1. Social graphs
have a specific structure, a specific degree distribution (power law), a small
diameter and some dense clusters. The dynamic random graphs introduced
in the next section satisfy these conditions.

There are several definitions of a cluster or community or dense subgraph.
We consider a cluster of domain S as a maximal dense subgraph which
depends on a parameter γ. Let γ ≤ 1 and let E(S) be the multiset of internal
edges i.e. edges e = (u, v) where u, v ∈ S. A γ-cluster is maximal subset
S such that E(S) ≥ γ.|S|2. There are several other possible definitions of
clusters which capture the high internal global density, and there are many
algorithms to detect such clusters in a static graph. We are mainly interested
in the approximate detection of clusters in the dynamic case, without storing
the whole graph.
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2.1 Detecting clusters in a stream of edges

If the entire graph is known, there are several classical techniques to approx-
imate communities. For γ = 1, the problem is known as Maxclique, which
is NP-hard. In our framework, we do not store the entire graph but only a
few edges, and will only approximate the communities. We take a uniform
sampling of the edges1 for each window of the stream i which defines Gi(t),
and keep k samples in Reservoirs Ri(t) for a fixed size k. There are several
techniques to build such dynamic Reservoirs [4].

The sampling method we propose is not new, it is one of the sampling
methods in [3]. Its analysis for dynamic graphs which follow a power law
degree distribution is one of the central points of this paper. If a cluster
is large, there will be a large connected component in the Reservoir as a
witness. We ignore all the small connected components of the Reservoir and
only store in a database the large ones.

In a typical experiment k = 400 whereas we read 104 edges in a window. We
ignore all the components of size less than 10, a threshold value. For a graph
Gi, there could be several large clusters Ci,j or there could be none. For a
stream Gi(t), we write Ci,j(t) for the j-th cluster of the stream i at time t.

2.2 Correlations

The classical correlation, also called the Pearson correlation p(X,Y ) of two

random variablesX,Y of mean µ and standard deviation σ is IE[(X−µX)(Y−µY )]
σX .σY

.
How could it be extended to graphs? One could choose some statistics on
the graphs and take the correlations between the statistical parameters.
Social graphs have however very similar statistics and yet the core of the
information seems to hide in the structure of their clusters. Given two graphs
G1 and G2, a first approach to their content correlation would be to consider
the Jaccard similarity2 J(V1, V2) on the domains of the two graphs. It has
several drawbacks: it is independent of the structures of the graphs, it is
very sensitive to noise, nodes connected with one or few edges and it is not
well adapted when the sizes are very different. It also requires to store the

1Notice that such a uniform sampling on the edges is equivalent to a sampling of the
nodes proportionally to their degrees.

2The Jaccard similarity or Index between two sets A and B is J(A,B) = |A∩B|/|A∪B|.
The Jaccard distance is 1− J(A,B).
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entire graphs.
We propose instead the following approach: we first estimate the dense

components (clusters or communities) using the uniform sampling on the
edges in the sliding windows and apply the Jaccard similarity only to these
large dense components. It exploits the structure of the graphs, is insensitive
to noise and adapts well when the graphs have different sizes. Let Ci =

⋃
j Ci,j

be the set of clusters of the graph Gi, for i = 1 or 2. The correlation of
two graphs ρ = J(C1, C2). This definition is ρ(t1) for the first window or for
two static graphs. For two dynamic streams G1(t) and G2(t)which share
a time scale, we generalize Ci to Ci(t) =

⋃
t′≤t

⋃
j Ci,j(t

′). The correlation

of two graph streams G1(t) and G2(t) is ρ(t) = J(C1(t), C2(t)). We can
refine the correlation and define an amortized correlation ρa(t), to give more
importance to the recent components. In the next section, we give an
algorithmic solution for graphs presented as streams of edges which scales
when we consider dynamic graphs.

2.3 What is stored over time

At some discrete times t1, t2, ...., we store the large connected components of
the Reservoirs Rt. There could be none. We use a NoSQL database, with 4
(Key, Values) tables where the key is always a tag (@x or #y) and the Values
store the clusters nodes. Notice that a stream is identified by a tag (or a set
of tags) and a cluster is also identified by a tag, its node of highest degree.

• Stream(tag, list(cluster, timestamp)) is the table which provides the most
recent clusters of a stream,

• Cluster(tag, list(stream, timestamp, list(high-degree nodes), list(nodes,degree))))
is the table which provides the list of high-degree nodes and the list of nodes
with their degree, in a given cluster,

• Nodes(tag, list(stream, cluster, timestamp)) is the table which provides for
each node the list of streams, clusters and timestamps where the node appears,

• Correlation((tag1,tag2), list(value,timestamp)) is the table which provides for
each pair of streams (tag1,tag2) the different correlation values ρ(t).

2.4 Other approaches

There are many other approaches to detect clusters in streams of graphs edges.
The dynamic graphs algorithms community studies the compromise between
update and query time in the worst case. The graph streaming approach [8]
emphasizes the space complexity in the worst case and in particular for the
window model. The network sampling approach such as [3] does consider the
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uniform sampling on the edges but there is no analysis for the detection of
clusters in dynamic graphs. The detection of a planted clique is a classical
problem [6], hard when the clique size is for example O(

√
(n)/2) in the worst

case. The graph mining community [2, 1, 13] studies the detection of clusters
when the graphs are entirely known.

In our approach, we only consider classes of graphs which follow a power
law degree distribution, and study approximate algorithms for the detection
of dynamic γ-cliques in the window model using only small Reservoirs.

3 Deciding properties and correlations in dynamic
random models

We define a model of dynamic random graphs G(t) which may or may not
have clusters and follow a degree distribution using the Configuration Model.
Temporal Logic is a framework to decide temporal properties of the dynamic
graphs Gt. Let P be a graph property such as Connectivity, or the existence
of a γ-cluster of size at least 10. A typical temporal property is ♦ P stating
that there exists a t such that Gt |= P or �P stating that for all t, Gt |= P .
In this section, we show that the algorithmic approach guarantees a good
approximation of the correlation ρ(t) with high probability.

3.1 Dynamic Random graphs

The classical Erdös-Renyi model G(n, p) [5], generates random graphs with n
nodes and edges are taken independently with probability p where 0 < p < 1.
The degree distribution is close to a gaussian centered on n.p. Most of the
social graphs have a degree distribution D close to a power law, such as
a Zipfian distribution distribution where Prob[d = j] = c/j2, where d is
the degrre of a node. In this case, the maximum degree is dmax = O(

√
n).

The Configuration Model for D and a graph with n nodes enumerates each
node u with d half-edges (stubs) and takes a symmetric random matching
π between two stubs, for example with a uniform permutation such that
π(i) 6= i. All the possible graphs are obtained with a distribution close to
the uniform distribution.

A classical study is to find sufficient conditions so that a random graph
has a giant component, i.e. of size O(n) for a graph of size n. In the Erdös-
Renyi model G(n, p), it requires that p > 1/n, and in the Configuration
Model it requires that IE[D2]− 2IE[D] > 0 as proved in [9], which is realized
for the Zipfian distribution. There is a phase transition for both models.
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There are several possible extensions to dynamic random graphs. In our
model, the Dynamics is exogenous and at any time chooses between the
Uniform and the Concentrated Dynamics.

3.1.1 Uniform Dynamics

we generalize the Configuration Model in a dynamic setting. Remove q ≥ 2
random edges, uniformly on the set of edges of G, freeing 2.q stubs. Generate
a new uniform matching on these hubs to obtain G′. The distribution of
random graphs stays uniform.

3.1.2 Concentrated Dynamics

a typical graph generated by the Uniform Dynamics is not likely to have
a large cluster. The S-concentrated Dynamics fixes some a subset S
among the nodes of high degree. Remove q ≥ 2 edges, uniformly on the set
of edges of G, freeing 2.q stubs, as before. A stub is in S if its origin or
extremity is in S. With probability 80%, match the stubs in S uniformly in
S. With probability 20%, match the stubs in S uniformly in V − S. This
dynamics will concentrate edges in S and will create a γ-cluster after a few
iterations with high probability, assuming the degree distribution is a power
law. The distribution of graphs with a γ-cluster stays also uniform.

3.1.3 General Dynamics

a general Dynamics is a function which chooses at any given time, one of the
two strategies: either a Uniform Dynamics or some S-concentrated Dynamics
for a fixed S. An example is the Step Dynamics: apply the Uniform
Dynamics first, then switch to the S-dynamics for a time period ∆, and
switch back to the Uniform Dynamics. In our setting, the Dynamics depends
on some external information, which we try to approximately recover. Notice
that during the Uniform Dynamics phase, there are no large components
and we store nothing. For the step phase, we store some components which
will approximate S. More complex strategies could involve several clusters
S1 and S2 which may or may not intersect.

3.2 Deciding a static property: there is a large γ-cluster

Let R be the Reservoir of size k after we read m edges e1, e2, ....em. In this
simple case, we first fill the Reservoir with e1, e2, ....ek. For i > k, we decide
to keep ei with probability k/i and if we keep ei, we remove one of the edges

7



(with probability 1/k) to make room for ei. Each edge ei has then probability
k/m to be in the Reservoir, i.e. uniform.

The probabilistic space Ω is determined by the choices taken at every step
by the Reservoir sampling. Consider a clique S in the graph: its image in the
Reservoir is the set GS of internal edges e = (u, v) in the Reservoir, where
u, v ∈ S. Each edge of the clique S is selected with constant probability k/m,
so we are in the case of the Erdös-Renyi model G(n, p) where n = |S| and
p = k/m. We know that the phase transition occurs at p = 1/n, i.e. there is
a giant component if p > 1/n and the graph is connected if p ≥ log n/n.

In the case of a γ-clusters S associated with the S-concentrated Dynamics,
the phase transition occurs at p = 1/γ.n. Let VS be the set of nodes of
the giant component GS whose nodes are in S. As it is customary for
approximate algorithms, we write ProbΩ[Condition] ≥ 1− δ to say that the
Condition is true with high probability.

Lemma 1 For m large enough, there exists α = O(log n) and δ such that if
|S| ≥ m/γ.k in the concentrated Dynamics, then ProbΩ[|VS | > α] ≥ 1− δ.

Proof : If S is almost a clique, i.e. a γ-cluster, then the phase transition occurs

at p = 1/γ.|S|. Hence if p > 1/γ.|S|, there is a giant component of size larger than

a constant times |S|, say |S|/2 with high probability 1− δ. As the probability of

the edges is k/m, it occurs if |S| ≥ m/γ.k. Hence for m large enough, there exists

α = O(log n) such that ProbΩ[|VS | > α] ≥ 1− δ.
In order to decide the graph property P : there is a large γ-cluster,

consider this simple algorithm.
Static Cluster detection Algorithm 1: let C be the largest connected

component of the Reservoir R. If |C| ≥ α then Accept, else Reject.

Theorem 1 If |S| ≥ m/γ.k for the concentrated Dynamics, then:
ProbΩ[Algorithm 1 Accepts] ≥ 1− δ
and for the uniform Dynamics:
ProbΩ[Algorithm 1 Rejects] ≥ 1− δ.

Proof : If |S| ≥ m/γ.k for the concentrated Dynamics, Lemma 1 states that

|VS | > α with high probability, hence as VS ⊆ C, the condition |C| ≥ α is true

with high probability hence ProbΩ[Algorithm 1 Accepts] ≥ 1− δ. For the Uniform

Dynamics (|S| = 0), [9] shows that the largest connected component has size

O(log n). Hence ProbΩ[Algorithm 1 Rejects] ≥ 1− δ.
Notice that m = c1.n. log n, as the average degree in a power law is

c1. log n. If k =
√
c1.n. log n and |S| ≥ m/γ.k =

√
c1.n/γ, it satisfies the

condition and it can be realized with the nodes of high degree.
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3.3 Deciding a dynamic property: ♦ P

Let P be the previous property: is there a γ-cluster? How do we decide
♦ P? Consider the step strategy of length ∆ > τ . When we switch strategy
at time t1 there is a delay until S is a γ-cluster and symmetrically the same
delay when we switch again at time t2 > t1. The probabilistic space Ωt is
now much larger.

Dynamic Cluster detection Algorithm 2: let Ci be the largest
connected component of a dynamic Reservoir Ri at time ti. If there is an i
such that |Ci| ≥ α, then Accept, else Reject.

We can still distinguish between the Uniform and the S-concentrated
Dynamics, if S is large enough. Let m(t) be the number of edges in the
window at time t. Let G(t) be a graph defined by a stream of m(t) edges
following a power law D.

Theorem 2 For the step Dynamics of length ∆ and t > t2, if |S| ≥
m(t)/γ.k, then ProbΩ[A2 Accepts] ≥ 1 − δ∆/τ For the Uniform Dynam-
ics ProbΩ[A2 Rejects] ≥ (1− δ)∆/λ.

Proof : For each window, we can apply theorem 1 and there are ∆/τ in-

dependent windows. If |S| ≥ m/γ.k for the concentrated Dynamics, the error

probability is smaller than the error made for ∆/τ independent windows, which is

δ∆/τ . Hence ProbΩ[Algorithm 2 Accepts] ≥ 1− δ∆/λ. For the Uniform Dynamics

(equivalent to |S| = 0), the algorithm needs to be correct at each ∆/λ step. Hence

ProbΩ[Algorithm 2 Rejects] ≥ (1− δ)∆/λ.

The probability to accept for the S concentrated Dynamics is amplified
whereas the probability to reject for the Uniform Dynamics decreases. One
single error generates a global error. Clearly, we could also estimate ∆, for
step strategies with similar techniques.

3.4 Correlation between two streams

Suppose we have two streams G1(t) and G2(t) which share the same clock.
Suppose that G1(t) is a step strategy ∆1 on a cluster S1 and G2(t) is a step
strategy ∆2 on a cluster S2. Let ρ∗ = J(S1, S2). How good is the estimation
of their correlation? Let Ci(t) =

⋃
t′≤t

⋃
j Ci,j(t

′) be the set of large clusters
Ci,j(t

′) at time t′ ≤ t of the graph Gi, for i = 1 or 2. Consider the following
online algorithm to compute ρ(t):

Online Algorithm 3 for ρ(t). At time t + λ, compute the increase
δi in size of Ci(t + λ) for i = 1, 2 from Ci(t), and δ′ the increase in size of
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Figure 1: Number of edges in 1h windows, for 4 streams during 24h

Figure 2: Online content correlation for 24h

C1(t + λ) ∩ C2(t + λ). Suppose ρ(t) = I/U where I = |C1(t) ∩ C2(t)| and

U = |C1(t) ∪ C2(t)|. Then: ρ(t+ λ) = ρ(t) + U.δ′−I.(δ1+δ2)
U.(U+δ1+δ2) .

A simple computation shows that ρ(t + λ) = I+δ′

U+δ1+δ2
, i.e. the correct

definition. The δi, δ
′ are computed by standard operations on sets.

Theorem 3 Let G1(t) and G2(t) be two step strategies before time t on two
clusters such that |Si| ≥ m/γ.k for i = 1, 2. Then ProbΩt [|ρ(t)− ρ∗| ≤ ε] ≥
1− δ.

Proof : After the first observed step, for example on S1, Lemma 1 indicates
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Figure 3: Online averaged content correlation for 24h

that VS1
is already some approximation of S1. After ∆1/τ independent trials,

V1 =
⋃
i VS1,i will be a good approximation of S1. Similarly for S2 and therefore

ρ(t) = J(V1, V2) will (ε, δ) approximate ρ∗.

4 Twitter streams

Given a set of tags such as #CNN or #Bitcoin, Twitter provides a stream
of tweets represented as Json trees whose content contains at least one of
these tags. The Twitter Graph of the stream, is the graph G = (V,E) with
multiple edges E where V is the set of tags #x or @y seen and for each tweet
sent by @y which contains tags #x ,@z we construct the edges (@y,#x) and
(@y,@z) in E. The URL’s which appear in the tweet can also be considered
as nodes but we ignore them for simplicity. A stream of tweets is then
transformed into a stream of edges e1, ......em, .....

We simultaneously captured 4 twitter streams3 on the tags #CNN,
#FoxNews, #Bitcoin, and #Xrp (Ripple) during 24 hours with a window
size of τ = 1h and a time interval λ = 30mins, using a standard PC.
Figure 1 indicates the number of edges seen in a window, approximately
m = 20.103 per stream, on 48 points. For 24 independent windows, we read
approximately 48.104 edges, and globally approximately 2.106 edges. The
Reservoirs size k = 400 and on the average we save 100 nodes and edges, i.e.

3Using a program available on https://github.com/twitterUP2/stream which takes
some tags, a Reservoir size k, a window size τ , a step λ and saves the large connected
components of the Reservoirs Rt.
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4.48.100 ' 2.104 edges, i.e. a compression of 100. For γ = 0.8, the minimum
size of a cluster is m/γ.k ' 60. Notice that k is close to

√
m.

Figure 2 gives the three mains correlations ρ(t) out of the possible 6 and
the averaged correlation:

ρ′(t) = (ρ(t− 1) + ρ(t) + ρ(t+ 1))/3

The correlation is highly discontinuous, as it can be expected, but the
averaged version is smooth. The maximum value is 1% for the correlation
and 0.5% for the averaged version. It is always small as witnessed by the
correlation matrix. We experienced very small changes in the correlations and
ρ′(t), also computed online, witnessed it. The spectrum of the Reservoirs, i.e.
the sizes of the large connected components is another interesting indicator.
For the #Bitcoin stream, there is a unique very large component.

5 Search by correlation

We stored the history of the large clusters for each stream, i.e. the set of
nodes of the clusters. Given a search query defined by a set of tags, the
answer to the query is the set of the most correlated tags. We first need a
definition of the correlation between a tag and a set of tags. Given a stream,
we need to find some other close streams and use the standard Phylogeny
method.

5.1 Phylogeny

Given a correlation matrix At between streams, a standard approach, such as
the Neighbor Joining method [11], constructs a tree T with valued edges such
that each stream appears as a leaf in T and the distance d(i, j) between two
streams in the tree is approximately the distance defined by the correlation
matrix, i.e. d(i, j) ' 1 − A(i, j). This construction assumes an additive
property of the distances, but there is always an approximate solution.

In a learning phase ended at time t, we construct the tree T . Later on,
we have a different matrix A′ and a different tree T ′ as in the Figure 4. The
Tree Edit distance with moves is a standard distance between trees where the
basic operations are: edition of a label, insertion/deletion of an edge, move of
a subtree. This distance is very easy to approximate [7], although the exact
distance is NP -hard to compute. We just have to compare the k-grams of
the subtrees at depth k. For the unordered trees of Figure 4, dist(T, T ′) = 2.
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Input: CNN Input: CNN POTUS Input: CNN POTUS NRA

Ranking t =12 t = 24 Ranking t = 12 t = 24 Ranking t = 12

1 #ODonnell #POTUS 1 #MondayMotivaton #Tucker 1 #Hannity

2 #NRA #NRA 2 #Hannity #2A 2 #2A

3 #POTUS #ODonnell 3 #NRA #NRA 3 #1A

4 #Obamacare #Tucker 4 #1A #1A 4 #Clinton

5 #MondayMotivaton #2A 5 #Tucker #Hannity 5 #ClintonFoundation

Table 1: Search results on inputs: σ=CNN, σ=CNN, POTUS and σ=CNN,
POTUS, NRA

We can hence easily detect small or large changes in the tree T . Given a
stream, the neighbors of a leaf in T are the closest streams in T , which we
use in the Search by correlation.

Figure 4: Phylogeny tree T (center) from the correlation matrix, and another
close tree T ′ (right)

We have a dynamic representation of the distances between streams,
which we use in the next section.

5.2 Correlation between tags at time t

We extend the amortized correlation of section 2 to tags, i.e. node labels.
Given a tag σ, we first check if it is a stream, the name of a cluster, or
a simple node, using the tables Stream, Clusters, Nodes. In each case we
recover the most recent clusters Cti of a stream σ′, or of the nodes. By
construction, all the tags have at least one component they belong to.

Given two tags σ1 and σ2, we retrieve their most recent components, C1,ti

and C2,tj of the streams σ′1 and σ′2 and suppose ti > tj and ∆(u) = ti − tj .
Assume dist is the distance between the streams σ′1 and σ′2 in the phylogeny
tree. If one tag belongs to another component, we output the nodes of
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Figure 5: Nodes in an intersection of clusters for the input CNN, POTUS,
NRA

high-degree of the components. If these components intersect, then the tags
of the intersection have a correlation coefficient of (1− ∆

t ).( tit )(1− dist). If a
tag is in several intersections, we add the correlations.

If the components do not intersect, we look for another component C ′ of
another stream close to σ′1 and σ′2 (using the phylogeny tree) which intersects
C1,ti and C2,tj , or we look for older components C1,t′i

and C2,t′j
where t′i < ti

or t′j < tj which do intersect. We generalize this definition for more than 2
tags. We can synthetize the Search Algorithm as follows:

Search by correlation Algorithm A4(σ1, ....σl):

• For each tag σi, find the most recent components Ci,ti . Output the
nodes with the highest correlation coefficient,

• If there are no tags in the intersections, look at close streams (using
the phylogeny tree) and their components.

The nodes in some intersection of recent components will have the highest
correlation and will be the in the top answers. The explanation of the search
will be these clusters Ci,ti , which are associated with the given tags. In the
example for Figure 5, the first answer #Hannity belongs to to two CNN
clusters, NRA and POTUS.

5.3 Experimental results

In the first example, we are given the tag σ1=CNN. As the table 1 indicates,
the answers are the nodes of high-degree of the most recent component of
the stream CNN. Notice that the anwers depend on t, for the two examples
t = 12h and t = 24h. For the tags σ2=CNN, POTUS, we retrieve the most
recent components and in this case, POTUS belongs a component of CNN:
we output the nodes of high degree of that component.
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For the tag, σ3=CNN, POTUS, NRA, we retrieve the three most recent
components and in this case, the component of POTUS intersects the com-
ponent of NRA and are both components of CNN. We output the nodes of
the intersection, ordered by degree.

6 Conclusion

We introduced the content correlation ρ between two graphs and its extension
ρ(t) between two dynamical graphs based on the Jaccard similarity of their
clusters. In the model of Uniform and Concentrated Dynamics for graphs
with a power law degree distribution, we showed that the detection of a
large connected component in a Reservoir built from uniform edge samples
is a good method to distinguish a Uniform Dynamics from a Concentrated
Dynamics, when S is large enough. This method generalizes to dynamic
graphs and we can compute the content correlation of two streams with an
online algorithm (Algorithm 3).

As we read different streams of edges in the window model, we only store
the large connected components at some times t1, t2, ..... In our experiments,
we followed 4 Twitter streams for 24h, reading 2.106 edges, but kept approx-
imately 2.104 nodes, i.e. 1% of the data. From the correlation matrix, we
obtained the closest phylogeny tree. We defined the Search by correlation
on some given tags, where the answers are tags ordered by correlation. The
witnessed used as explanations of the correlations are the stored clusters.
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