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Abstract. Using the Lempel-Ziv-78 compression algorithm to compress
a string yields a dictionary of substrings, i.e. an edge-labelled tree with
an order-compatible enumeration, here called an LZ-trie. Queries about
strings translate to queries about LZ-tries and hence can in principle be
answered without decompression. We compare notions of automata ac-
cepting LZ-tries and consider the relation between acceptable and MSO-
definable classes of LZ-tries. It turns out that regular properties of strings
can be checked efficiently on compressed strings by LZ-trie automata.

1 Introduction

We are interested in the compressed model checking problem: which
properties of strings can be checked given the compressed strings?
The challenge is to beat the decompress-and-then-check method. We
restrict ourselves to the classical Ziv-Lempel[8] string compression
algorithm LZ-78. It compresses a string w ∈ Σ+ to a generally much
shorter sequence LZ (w) ∈ (N × Σ)+, where the numbers point to
previous elements of the sequence.

As usual, we view a string w as a colored finite linear order Sw =
(D,<, Ua)a∈Σ , where D = {0, . . . , |w| − 1} is the set of positions,
ordered by < as usual, and Ua(i) means that a occurs at position
i of w. Properties of strings are expressed in first-order (FO) or
second-order (SO) logic of colored linear orders. In a similar way, we
give two representations of LZ-78-compressed strings α by relational
structures, one by node-labelled LZ-graphs Gα and another one by
LZ-tries Tα, which are a kind of edge-labelled trees.

A natural approach to the compressed model checking problem is
to translate properties of strings to properties of compressed strings.



In fact, monadic second-order (MSO) formulas ϕ in the language of
strings can be translated to dyadic second-order (DSO) formulas ϕLZ

in the language of LZ-graphs Gα. One can therefore answer queries
ϕ about Sw by evaluating ϕLZ on the smaller structure GLZ (w). How-
ever, since the translation doubles the arity of relation variables, this
is not guaranteed to provide an efficient solution.

By Büchi’s well-known theorem (cf. [4], Theorem 5.2.3), MSO
for strings is equally expressive as regular expressions, or finite au-
tomata, are. This raises the question whether MSO for LZ-graphs
leads to a notion of LZ-automaton that provides an efficient method
for checking a reasonably rich class of properties of compressed strings.

We study this question in the slightly more suitable format of
LZ-tries. These come with an enumeration of their nodes and can be
viewed as simple acyclic directed graphs. We introduce notions of LZ-
trie automata by modifying corresponding notions of tree-automata.
We show that deterministic LZ-trie-automata are less powerful than
non-deterministic ones, and that the latter capture ∃-MSO for LZ-
tries, where ∃-MSO is the set of MSO-formulas of the form ∃Xψ

where X are set variables and ψ is an FO-formula. We show that
some problems that are difficult for arbitrary graphs or dags become
easy for LZ-tries. Finally, we show that MSO-properties of strings
can be checked efficiently on LZ-compressed strings by deterministic
top-down LZ-automata. Thus, regular expression search in strings
can be done on the LZ-compressed strings, without decompression.

2 Lempel-Ziv-78 compression

We fix a finite alphabet Σ and, to avoid structures with empty
universe, only consider non-empty strings w ∈ Σ+. The classical
Lempel-Ziv-78 compression algorithm has many variations (cf. [2],
[3]). It decomposes a string w ∈ Σ+ into a sequence of substrings or
blocks Bi ∈ Σ+, so that w = B0 · · ·Bm−1. The first block B0 con-
sists of the first letter of w. Suppose for some n > 0, we have con-
structed blocks B0, . . . , Bn−1 such that w = B0 · · ·Bn−1v for some
v ∈ Σ+. Then Bn is the shortest non-empty prefix of v that is
not among {B0, . . . , Bn−1}, if this exists, otherwise Bn is v.1 The

1 Note that if Bn extends one of B0, . . . , Bn−1 by exactly one letter.
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LZ-compression LZ (w) of w is the sequence p0 · · · pm−1 of pairs
pn = (k, a) such that Bn = Bk−1a (where B−1 := ǫ) and w =
B0 · · ·Bm−1. The decompression is given by Bk = decode(pk) where
decode((0, a)) = a and decode((n+ 1, a)) = decode(pn)a.

Example 1. The blocks of w = abbbaabbabbb are a.b.bb.aa.bba.bbb,
and its compression is LZ (w) = (0, a)(0, b)(2, b)(1, a)(3, a)(3, b).

2.1 LZ-graphs

Definition 1. A compressed string α = p0 · · ·pm−1 is represented
as a finite labelled ordered graph

Gα := (Dm, <, Ua, E)a∈Σ ,

where m = |α| is the number of blocks, Dm = {0, . . . , m− 1}, < the
natural order on Dm, Ua(i) is true iff the last letter of block Bi is
a. The binary relation E describes the reference to previous pairs: if
pi = (k, a) for some a ∈ Σ and k > 0, (i.e. the k-th block Bk−1 is
the longest strict prefix of Bi), then there is an edge E(i, k−1) from
node i to k − 1.

Example 1 (Cont.). For w = a.b.bb.aa.bba.bbb. = B0B1B2B3B4B5,
the graph GLZ (w) is

0 1 2 3 4

a b b a a b

5

Observe that Sw can be interpreted in GLZ (w) as a binary relation:
a position i in w is mapped to the pair h(i) = (k, j) in LZ (w) iff i

lies in block Bk and Bj is the nonempty prefix of Bk ending in i. Note
that in GLZ (w), node j can be reached from k by a path of E-edges.

Example 2. If w = a.aa.ab.aba.aa, the positions 5,6,7 occurring in
block B3 = aba are represented by (3, 0), (3, 2), (3, 3), because the
nonempty prefixes of B3 are a = B0, ab = B2, and aba = B3.

Theorem 1 ([1]). For every MSO-formula ϕ(x1, . . . , xn,X
(1)) about

strings there is a DSO formula ϕLZ (x1, y1, . . . , xn, yn,X
(2)) about

LZ-graphs, such that for each Sw and all i1, . . . , in ∈ Sw and S ⊆ Sw,

Sw |= ϕ[i,S] ⇐⇒ GLZ (w) |= ϕLZ [h(i), h(S)].
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Proof. (Sketch) In DSO, we can define E∗, the reflexive transitive
closure of E, and then define ϕLZ inductively using

(Ua(xi))
LZ := Ua(yi),

(xi ≤ xj)
LZ := xi < xj ∨ (xi = xj ∧ yi ≤ yj),

(∃xn+1ϕ)LZ := ∃xn+1∃yn+1 (E∗(xn+1, yn+1) ∧ ϕ
LZ ),

(∃X1ϕ)LZ := ∃X2(∀x∀y(X2(x, y)→ E∗(x, y)) ∧ ϕLZ ).

(1)

For the atomic cases, note that in ϕLZ a variable xi stands for a
block of w and yi for a relative position in this block.

A property L of non-empty strings is definable on strings (resp.
on compressed strings or LZ-graphs), if for some formula ϕ of the ap-
propriate language, L = {w | Sw |= ϕ} (resp. L = {w | GLZ (w) |= ϕ}).

Remark 1. There are properties of strings that are FO-definable on
strings, but not on LZ-graphs, like ∃x(Ua(x)∧Ub(x+ 1)). There are
properties of strings that are FO-definable on LZ-graphs, but not
even MSO-definable on strings (cf. [1]).

2.2 LZ-tries

While compressing w = B0 · · ·Bn−1v, the blocks B0, . . . , Bn−1 found
are maintained as a dictionary of subwords of w and stored as a tree
by sharing common prefixes. The linear order of the blocks in LZ (w)
amounts to an enumeration of the nodes of the tree.

Definition 2. A (finite) Σ-tree (T,≤,
a
←− , 0)a∈Σ is a (finite) tree

(T,≤, 0) with root 0, where {
a
←− ⊆ T × T | a ∈ Σ} are pairwise dis-

joint minimal relations such that ≤ is the reflexive transitive closure
of their union.

A Σ-tree is a Σ-trie if to each node n ∈ T and each a ∈ Σ there
is at most one n′ ∈ T such that n

a
←− n′. A (finite) enumerated

Σ-trie
T = (T,≤,

a
←− , 0, Succ)a∈Σ ,

or an LZ-trie for short, is a Σ-trie (T,≤,
a
←− , 0)a∈Σ with a successor

relation2 Succ on T that is compatible with the partial order ≤. We
assume that T = {0, 1, 2, . . . , m} and Succ(i, j) iff i+ 1 = j in N.

2 i.e. a minimal binary relation Succ whose transitive reflexive closure Succ∗ is a total
ordering of T
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Example 1 (Cont.). Enumerating the pairs of LZ (w) by 1,2, etc.
in a third component, we obtain a sequence (0, a, 1)(0, b, 2)(2, b, 3)
(1, a, 4)(3, a, 5)(3, b, 6) of triples. These represent a tree in which
block Bk labels the path from the root 0 to node k + 1:

2

b

3

a b

5 6

a b

1

4

a

0

A tuple (k, a) of LZ (w) is drawn as an edge k
a
←− .

We write Tα for the enumerated trie representing the compressed
word α. We always assume that our strings w have a distinguished
end symbol; then the final block of LZ (w) is different from the pre-
vious ones and the tree of blocks indeed is a trie.

Remark 2. What differs in choosing Gα or Tα is the logical language
used to talk about LZ-compessed strings α. Basically, we have

Gα |= E(i, j) ∧ Ua(i) ⇐⇒ Tα |= (j + 1)
a
←− (i+ 1).

Modulo the additional root node in the trie, ≥ in the trie amounts
to E∗ in the graph, and ≤ in the graph to Succ∗ in the trie.

Using (1), quantifiers Qx and QX about strings translate to
bounded quantifiers Q(x, y) ∈ E∗ and QX ⊆ E∗. Translating to
the language of LZ-tries we only quantify over tuples and relations
whose tuples lie on paths of TLZ (w). Hence we actually translate to a
reasonably nice sublanguage of path-restricted DSO over LZ-tries.

3 MSO-equivalence for LZ-graphs

For relational structures A,B of the same signature, A ≡MSO

r B says
that A and B satisfy the same MSO-sentences of quantifier rank ≤ r.

Two facts about MSO for strings imply the existence of finite
automata that can check MSO-properties of strings (cf. [4]):

a) for each r, there are only finitely many ≡MSO

r -equivalence classes
for word structures Sw, and
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b) for compound strings wa, the ≡MSO

r -class of Swa depends only on
the ≡MSO

r -classes of Sw and Sa.

(The analogous situatation holds for trees over Σ.) LZ-compressed
words α = p0 · · · pm−1 are words over the infinite alphabet N × Σ.
Can we check MSO-properties of compressed strings by a kind of
finite automaton for LZ-graphs? Since we deal with a finite relational
language, we still have a):

Proposition 1. For each r, the equivalence relation ≡MSO

r between
LZ-graphs has finite index.

But what about b)? By extending winning strategies for duplicator
in the Ehrenfeucht-Fraisse-game Gr(Gα,Gβ), we can show:

Lemma 1. (i) For LZ-compressed words α(0, a), β(0, a′) over Σ,

Gα ≡
MSO

r Gβ ∧ a = a′ =⇒ Gα(0,a) ≡
MSO

r Gβ(0,a′).

(ii) For LZ-compressed words α(k + 1, a) and β(k′ + 1, a′) over Σ,

(Gα, k) ≡
MSO

r (Gβ , k
′) ∧ a = a′ =⇒ Gα(k+1,a) ≡

MSO

r Gβ(k′+1,a′).

However, in (ii) one has to assume that the elements k, k′ pointed to
from the new maximal elements share the same properties. Instead,
one would need the stronger claim

Gα ≡ Gβ ∧ Gα↾k ≡ Gβ↾k′ ∧ a = a′ =⇒ Gα(k+1,a) ≡ Gβ(k′+1,a′),

where Gα↾k is the restriction of Gα with k as its maximal element.
The equivalence class of Gα↾k would be the automaton state as-
signed to k. (Notice that Gα↾k is a LZ-graph, but (k + 1, a) is not
a LZ-compressed word.) The problem is that duplicator’s winning
strategies for Gr(Gα,Gβ) and Gr(Gα↾k,Gβ↾k′) may pick different el-
ements to answer spoilers playing of some element of, say, Gα↾k. For
example, if spoiler plays element k in some round < r, duplicator
has to answer with k′ in the second game, but not necessarily so in
the first game.

Thus, unlike in the case of strings or trees, for compound com-
pressed words α(k, a) we have component LZ-graphs Gα and Gα↾k

that are not disjoint, and winning strategies in games for these do
not combine to winning strategies for composed LZ-graphs.

From this we conclude that we cannot use a Büchi-Myhill-Nerode
construction to obtain from the ≡MSO

r -classes a finite sequential au-
tomaton for LZ-graphs, and likewise for LZ-tries.

6



4 LZ-trie-automata

If we view LZ-tries as trees with an additional edge Succ between
nodes, we obtain directed acyclic graphs of a special kind: the suc-
cessor child may be equal to some decendant with respect to the

a
←− -child-relations. Since these are still very close to trees, it is nat-
ural to use a variation of tree-automata as an approximative notion
of LZ-automaton for checking properties of LZ-tries.

Definition 3. Let n ∈ G be a node in a graph (G,E). For m ∈ N,
the sphere of radius m around n, sm(n), is the set of nodes k ∈ G
such that there is a E-path of length ≤ m from n to k or vice versa.
The hemisphere of radius m around n, hsm(n), is the set of nodes k
such that there is an E-path of length ≤ m from n to k.

Definition 4. Let n ∈ T be a node in the LZ -trie T . The bottom-
up LZ-hemisphere of radiusm around n, bu-hsTm(n), is the restriction
of T to the m-hemisphere around n in the graph (T,E), where

E :=
⋃
{

a
←− | a ∈ Σ} ∪ {Succ}.

The top-down LZ-hemisphere of radiusm around n, td-hsTm(n), is the
restriction of T to the m-hemisphere around n in the graph (T, Ĕ),
where Ĕ is the converse of E.

An LZ-hemisphere is an LZ-hemisphere of some radius around
some node in some LZ-trie T .

Definition 5. A finite bottom-up (resp. top-down) m-LZ-automa-
ton A = (Q,Σ, δ, qin , F ) consists of a finite set Q of states, sets
I, F ⊆ Q of initial and final states, a finite alphabet Σ, a finite
transition relation δ consisting of pairs (P, q), written P → q, where
q ∈ Q and P is a bottom-up (resp. top-down) LZ-hemisphere of
radius m whose nodes except the root are labelled by elements of Q.

A run of A on an LZ-trie T is a function r : T → Q where
r(max) ∈ I (resp. r(0) ∈ I) and for each n ∈ T there is some
(P, q) ∈ δ such that bu-hsTm(n) (resp. td-hsTm(n)), expanded by the
labelling of nodes given by r, is isomorphic to P with label q at its
root. A accepts T if there is a run r of A on T such that r(0) ∈ F
(resp. r(max) ∈ F ). Let L(A) := {T | A accepts T } be the class of
LZ-tries accepted by A.
A is deterministic if |I| = 1 and q = q′ when (P, q), (P, q′) ∈ δ.
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Example 1 (Cont.). An LZ-trie and the bottom-up resp. top-down
2-hemispheres of node 3 (with dashed edges for Succ resp. Pred):

2

b

3

a b

5 6

a b

1

4

a

0

3

a b

5 6

4 2

b

3

a b

1

0

While an m-LZ-automaton A sequentially follows the enumera-
tion of a trie Tα, it can access the states reached at suffixes (resp.
prefixes) of α. Strictly speaking, it does not have a ‘finite memory’.

Proposition 2. For every m-LZ-automaton A there is an ∃-MSO-
sentence ϕA defining the class of LZ-tries accepted by A.

Proof. (Sketch) Consider states q of the automaton as monadic pred-
icates on nodes of tries. The condition ”there is an accepting A-run”
can be expressed by a sentence ∃qψ. Here ψ(q) is a FO-formula say-
ing that the q-labelled m-hemispheres of the nodes are isomorphic
to the tiles allowed by δ, and that the acceptance condition holds.

4.1 Bottom-up LZ-trie-automata

A 1-LZ-automaton working bottom-up the LZ-trie towards the root
has transitions that determine the state at a node from the states at
the node’s Σ-children and successor. But it also has to distinguish
which of the Σ-children is the successor of the node, if any.

Example 2. Consider the class K of LZ-tries over Σ = {a, b} which
have a node whose successor and a-child agree, i.e. which satisfy the
sentence ϕ := ∃x∃y [y = x + 1 ∧ (x

a
←− y)]. We give a bottom-up

1-LZ-automaton A accepting K. We write a transition in the form

(qa, qb, qsucc , i)→ p,

where qa, qb, qsucc are the states of the a-, b- and Succ-child or ⊥,
when there is no such child, and i ∈ {1, 2, 3,⊥} says which of the
children is equal to the successor node, if any. Thus, (p, q, p, 1)→ q′

corresponds to the transition P → q′ where P is

8



ba

p(n+1) q(m)

n

A has a final state q1, which is assigned to all ancestors of the root
of a subtrie satisfying ϕ, and an initial state q0, which is assigned to
all other nodes of the input trie. Letting q, p, q′ range over {q0, q1},
the transition table is

a) (⊥,⊥,⊥,⊥)→ q0 e) (q, p, q′, 3)→ q′

b) (q,⊥, q, 1)→ q1 f) (q,⊥, q′, 3)→ q′

c) (q, p, q, 1)→ q1 g) (⊥, q, q′, 3)→ q′

d) (q, p, q′, 2)→ q′ h) (⊥,⊥, q′, 3)→ q′.

Rule a) means that if there is no successor-node, A is in state q0.
Rules b) and c) say that if the successor-node is the a-child, then A
goes to q1 as we just saw the pattern ϕ. Rules d) − f) say that if
the successor node differs from the a-child, A remains in the state of
the successor node. Similar for g) and h), which cover the case when
there is no a-child.

Theorem 2. For every m, there is an MSO-sentence defining a
class of LZ-tries that is not accepted by any b.u. m-LZ-automaton.

Proof. For m = 1, let L = {b1b2 · · · bnab1ab2a · · · bn−1a | n ∈ N} ⊆
{a, b}+. Each w ∈ L has a LZ-block decomposition as indicated by

wn = b1.b2. · · · .bn.a.b1a.b2a. · · · .bn−1a

and a compression

LZ (wn) = (0, b)(1, b) · · · (n− 1, b)(0, a)(1, a) · · · (n− 1, a).

The corresponding tries TLZ (wn) look like

b

b

n+2

a

ba

n

1

n−2

2n−1

a

n−1

2n

a

0

n+1
(2)
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where the successor relation is given by the node numbers.
The class of enumerated tries in LZ (L) can be defined by the

MSO-sentence ϕ saying that the set B of nodes that are the root
0 or a b-child, has the following properties (of which (i) is neither
∃-MSO nor ∀-MSO):

(i) B ⊇ {0} is the smallest set being closed under b-children,
(ii) a node is not in B iff it is an a-child of a node in B,
(iii) for all nodes x, y, we have y = x+1 iff one of the following holds:

(a) y is the b-child of x,
(b) y is the a-child of the b-child y′ of some x′ whose a-child is x,
(c) y is the a-child of 0 and x the member of B that has no b-child.

Claim. LZ (L) is not accepted by a 1-LZ-automaton.

Suppose that A is a 1-LZ-automaton that accepts the class de-
fined by ϕ. Let m > |Q| and w = w2m. An accepting run of A
on TLZ (w) assigns the same state, say q, to at least two different a-
childs, say nodes n+k+2 and n+2. The state of their predecessors
is determined by a rule

(⊥,⊥, q, 3)→ p.

Let T ′ be like TLZ (w), except that nodes n + 1 and n + k + 1 are
switched in the ordering. Then A will also accept the modified struc-
ture, as indicated by the states assigned to nodes as follows:

m

m+1p(n+1)

b

m+k
a

p(n+k+1)

b

m+k+1

a

q(n+k+2)

q(n+2)

a

a

m

m+1

b

m+k
a b

m+k+1

a

q(n+k+2)

q(n+2)

a

a

p(n+k+1)

p(n+1)

But the enumeration of a-children in T ′ does not conform to ϕ, so
T ′ ∈ T (A) \ LZ (L).

For the case m > 1, we modify the example as follows: along the
B-part, between two nodes that have both an a-child and a b-child,
we add m− 1 nodes that have no a-child, i.e. the subgraphs
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ba
k

k+1

n’+1

a
n’

are replaced by
b

ba

a

k

k+1

n’+1

k+m

k+m−1

n’

The LZ-tries arising this way are the compressions of the words

wn,k = b1.b2.b3. · · · .bnm+k.a.bma.b2ma. · · · .bnma.

Then {TLZ (wn,k) | n, k ∈ N, k ≤ m} is accepted by an (m + 1)-LZ-
automaton, hence MSO-definable. But it is not accepted by an m-
LZ-automaton: intuitively, the m-hemisphere of a node k does not
tell whether the path from k following a and successor and the path
following bma end at the same node.

4.2 Graph acceptors and ∃-MSO for LZ-tries

We now compare LZ -automata with the graph acceptors for directed
acyclic graphs presented by W. Thomas [7].

On graphsG = (V,E), a tile δ over a setQ is anm-neighbourhood
of a node with a labelling in Q, i.e. a finite node-labelled graph. A
graph acceptor is a triple A = (Q,∆,Occ) where ∆ is a finite set
of tiles over the finite set Q and Occ is a boolean combination of
conditions: there are ≥ p occurences of tile δ ∈ ∆. A run of A on
G is a function r : V → Q such that each m-neighbourhood of G
becomes a tile δ ∈ ∆. Then A accepts a graph G if there exists a
run of A on G whose tiles satisfy Occ.

Notice that the existence of a run is non-constructive, it could be
exponentially hard to find an accepting run. The main result of [7]
says that a class of graphs of bounded degree is definable in ∃-MSO
iff it is accepted by a graph acceptor.

Theorem 3. A class K of LZ-tries is ∃-MSO-definable iff for some
m, K is accepted by an m-LZ-automaton.

Proof. Note that each LZ-trie T satisfies the following conditions:
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(i) each node of T has a degree ≤ |Σ|+ 1,

(ii) T is an acyclic (directed) graph with a designated out-edge (the
successor) for each node,

(iii) T has a node that is reachable from any node by a path.

Using (i), by Theorem 3 of [7], K is ∃-MSO-definable iff K is recog-
nizable by a graph acceptor. Moreover, from (i)-(iii) and Proposition
6 of [7], it follows that K is recognizable by a graph acceptor iff it is
recognizable by a graph acceptor without occurrence constraints.

⇐: Suppose K is accepted by some m-LZ-automaton A. We may
assume that final states of A do not occur in the m-hemispheres P
of transitions (P, q) of A. Consider the transitions of A as a tiling
system. Then an accepting run of A is a tiling that uses at least one
of the tiles (P, q) where q ∈ F . Thus, K has a graph acceptor.

⇒: By the above remarks, K is recognizable by a graph acceptor
without occurrence constraints. On the LZ-tries, the tiles have a root
node, so we can view each tile as a transition rule saying that the
automaton enters a state at the root depending on the m-sphere of
the root and the states at the descendants in the sphere. Let each
state be final; then the automaton accepts iff there is a tiling.

Remark 3. It may seem to follow that every FO-definable property
of strings can be checked on LZ-tries by an m-LZ-automaton. But
<-conditions on strings translate to conditions involving Succ+ on
the tries, and the transitive closure is not ∃-MSO-definable. (Yet, ∃-
FO-formulas on strings translate to ∃-MSO-formulas on LZ-graphs.)

4.3 Colorability and deterministic acceptors

A graph G = (V,E) is k-colorable if there is a partitioning of the set
V of nodes into at most k classes (colors) such that any two adjacent
nodes belong to different classes.

Clearly, k-colorability can be expressed by an ∃-MSO sentence,
and hence has a graph acceptor. By reduction from the 3-satisfiablility
problem, 3-colorability on arbitrary graphs is an NP-complete prob-
lem. However, on LZ-tries it is not:

Proposition 3. Every LZ-trie is 3-colorable.
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Proof. By induction on the size of the LZ-trie. Suppose the prefix
trie without the maximal node is 3-colorable. The maximal node m
is connected to at most two nodes: to its predecessor, having some
color B, and to a node k such that k

a
←−m, for some a ∈ Σ, having

color A, say. Choose a third color C different form A,B to color m.

Potthoff e.a. [6] have shown that on the class of directed acyclic
graphs whose edges are uniquely labelled with a bounded number
of labels, 2-colorability is not recognizable by a deterministic graph
acceptor, i.e. one with at most one accepting run on each graph. For
the subclass of LZ -tries, however, one gets:

Proposition 4. On the class of LZ-tries, 2-colorability is recogniz-
able by a deterministic graph acceptor.

Proof. We construct a deterministic bottom-up 1-LZ-automaton A
with states q0 = (odd, accept), q1 = (odd, reject), q3 = (even, accept),
q4 = (even, reject), where the first components correspond to the two
colors. Every node n of an LZ -trie has at most 1 + |Σ| children, its
successor node n+1 and nodes ka > n such that n

a
←− ka, for a ∈ Σ.

Let qa resp. qsucc be the states assigned to these nodes by a run from
the maximal node up to node n, beginning in state q0. Then assign
the following state q to node n: the first component of q is odd (resp.
even) if the first component of qsucc is even (resp. odd). The second
component of q is accept if the second component of qsucc is accept,
i.e. if the suffix-trie starting at node n+1 is 2-colorable, and the first
components of qsucc and all the qa’s coincide, i.e. the corresponding
nodes have the same color. Otherwise, the second component of q is
reject. The automaton accepts the input LZ -trie if it assigns one of
the final states q0, q3 to the initial node 0.

Theorem 4. There is a property of LZ-tries that is recognized by a
non-deterministic bottom-up 1-LZ-automaton but not by any deter-
ministic bottom-up m-LZ-automaton.

Proof. Let Σ = {a, b, c} and consider the following property ϕ of
enumerated Σ-tries:

There are two subsequent nodes i − 1 and i such that some
node j is both the a-predecessor of i and a b-ancestor of i−1.
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An LZ-trie satisfies ϕ iff it contains nodes linked as follows (in the
trie and in the LZ-graph, respectively), where j < i− 1:

b

j

b

a

i

j+1

i−2

i−1

bb b b b b b a

ij i−1

(3)

In the appendix we prove that ϕ can be checked by a non-determi-
nistic 1-LZ-automaton, but not by a deterministic m-LZ-automaton.

By the theorem it seems likely that the class of acceptable LZ-
tries is not closed under complement, and hence:

Conjecture 1. On the class of all LZ-tries, not every MSO-formula
is equivalent to an ∃-MSO-formula. (Can the non-existence of a sub-
graph of the form (3) be expressed in ∃-MSO?)

It seems to us that deterministic bottom-up-LZ-automata are too
weak to check properties of strings on the LZ-compressed strings:

Conjecture 2. There is no deterministic bottom-upm-LZ-automaton
that can check on LZ (w) whether w ∈ {a, b}+ has a subword ab.

4.4 Top-down LZ-trie-automata

G.Navarro [5] has shown how to do regular expression search on
LZ-78-compressed texts by simulating an automaton reading the
original text, beating the decompression-and-search approach by a
factor of 2. Actually, this simulation is a deterministic top-down 1-
LZ-automaton on the LZ-compressed text:

Theorem 5. The LZ-compression {TLZ (w) | w ∈ R} of any regular
set R ⊆ Σ+ is accepted by a deterministic top-down 1-LZ-automaton.

Proof. Let A = (Q,Σ, q0, δ, F ) be a deterministic finite automaton
accepting R. Define a deterministic top-down 1-LZ-automaton A′ =
(Q′, Σ, δ′, q′

in
, F ′) by Q′ := Q × (Q → Q), q′0 := (q0, λq.q), F

′ :=
{(q, f) | q ∈ F} and δ′ according to the following transitions:

14



0 · (q0, λq.q)

(p, f) (p′, f ′)

i

i+1

k

a

(δ(f ′(p), a), λq.δ(f ′(q), a))

for each a ∈ Σ (including the case i = k).
Suppose r′ is a run ofA′ on TLZ (w) for a compressed word LZ (w) =

p0 · · · pm−1 where pk represents block Bk of w = B0 · · ·Bm−1. By in-
duction we see that for each k < m,

r′(k) = (δ(q0, B0 · · ·Bk−1), λp.δ(p, Bk−1)). (4)

Hence A′ accepts {TLZ (w) | w ∈ R}, because

w ∈ R ⇐⇒ δ(q0, B0 · · ·Bm−1) ∈ F ⇐⇒ r′(m) ∈ F ′.

Corollary 1. Every property of strings which is definable in MSO
on strings is definable in ∃-MSO on LZ-tries.

Proof. By Büchi’s theorem and Proposition 2.

For the case of sentences, this improves on the translation given
in Theorem 1, at the price of destroying the structure of the sentence.
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5 Appendix

Proof (of Theorem 4). Claim 1 The property ϕ can be checked by
a non-deterministic bottom-up 1-LZ-automaton A.

Proof. A has four states pa, pb, p, accept and transition rules as
follows:

(i) (Delaying rule) For 1-hemispheres P in which the root has no
successor node or its successor node is marked by state p, A has
the rule P → p.

(ii) (Guessing rule 1) For any 1-hemisphere P in which the root has
no successor node or its successor node is marked by state p, A
has a rule P → pa.

(iii) (Guessing rule 2) For each 1-hemisphere P in which the root has
a successor-child having state pa, A has the rule P → pb.

(iv) (Propagating rule 1) For each 1-hemisphere P in which the root
has a successor with state pb which also is the b-child of the root,
but does not have an a-child having state pa, A has the rule
P → pb.

(v) (Checking rule) For any 1-hemisphere P in which the root has a
successor with state pb which also is the b-child of the root, and
does have an a-child having state pa, A has the rule P → accept.

(vi) (Propagating rule 2) For any 1-hemisphere P in which the root
has a successor node with state accept,A has the rule P → accept.

When a given LZ-trie has the property ϕ, then by (i) A may
assign state p to nodes max, . . . , i+ 1. By (ii), A can assign state pa

to node i, then by (iii) state pb to node i − 1. The state pb can be
propagated along the predecessors back to the node j + 1 by (iv),
and by (v) A can assign accept to node j and then propagate accept
to the initial node 0 by (vi).

But A cannot accept an LZ-trie that does not satisfy ϕ: the rules
ensure that pa is assigned to at most one node, so the first time that
accept is assigned to some node of the trie, its a-child is the (only)
node i having state pa and its b-successor chain leads through nodes
in state pb to node i− 1.

Claim 2 The property ϕ cannot be checked by any deterministic
bottom-up m-LZ-automaton.

Intuitively speaking, the m-hemisphere of a node j is not big
enough to see if the predecessor of its a-child is one of its b-descendants.
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Proof. Suppose a deterministic m-LZ-automaton B recognizes the
set of LZ-tries satisfying ϕ. Depending on B we shall construct two
words w,w′ whose graphs look like

b b b b b bc c c c a a a a ab b b b b

j i

a

i’

b b baa

0 maxi−1

c... ......

j’

initial segment middle segment end segment

(5)
such that in the trie of LZ (w), we have edges j

a
←− i and j′

a
←− i′,

so the pattern (3) occurs and ϕ holds, while in the trie of LZ (w′)
we have j′

a
←− i and j

a
←− i′, so that ϕ does not hold. To be specific,

the tries have the following edges:

(i) In the end segment from node i to node max , there are only
outgoing edges, alternatingly labelled with a or b.
The a- and b-edges leaving nodes i, . . . ,max go to nodes in the
initial segment from node 0 to node j, such that the a-edges
leaving {i, i′} go to {j′, j} and the remaining ones go, say, from
max to 0, from max−1 to 1, etc.
In the trie of w, there are edges j

a
←− i and j′

a
←− i′, while in the

trie of w′ these nodes are connected by edges j′
a
←− i and j

a
←− i′.

(ii) The nodes of the middle segment from j to i have no other in-
coming or outgoing edges except the ones shown, i.e. node j has
an outgoing c-edge and incoming a- and b-edges, node i has an
outgoing a-edge, and nodes j to i− 1 are related by b-edges that
connect nodes in the predecessor relation.

(iii) The nodes 0, . . . , j of the initial segment have c-edges between
nodes in the predecessor relation, and incoming a- and b-edges
from nodes in the end segment, as described in (i).

Clearly, the trie of w has the property ϕ while the trie of w′ does
not. We now show that for suitable i, j, i′, j′ and max , B accepts
both tries, contradicting the assumption. Recall that B is a bottom-
up trie-automaton, so it visits the nodes in reverse order, beginning
at node max.

The m-hemispheres of nodes k ∈ {i, . . . ,max −m} consist of m
nodes ordered by the successor and labelled by states of B. Since B
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is finite, there are only finitely many such m-hemispheres. Hence, if
max is large, there are two points i, i′ having the same m-hemisphere
P , where i + m < i′. We may assume that that i and i′ have an
outgoing edge labelled a.

Since the m-hemispheres of i and i′ agree, the m-hemishperes of
i− 1, . . . , j, . . . , j′, . . . , 0 in the tries of w and w′ agree as well. Since
B is deterministic, it has to assign the same state to the initial node
of the two tries.
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