
Automata on Lempel-Ziv Compressed

Strings

Hans Leiß1 and Michel de Rougemont2

1 Universität München, CIS, D-80538 München, Germany,
leiss@cis.uni-muenchen.de

2 Université Paris-II & LRI Bâtiment 490, F-91405 Orsay Cedex, France,
mdr@lri.fr

Abstract. Using the Lempel-Ziv-78 compression algorithm to compress
a string yields a dictionary of substrings, i.e. an edge-labelled tree with
an order-compatible enumeration, here called an LZ-trie. Queries about
strings translate to queries about LZ-tries and hence can in principle be
answered without decompression. We compare notions of automata ac-
cepting LZ-tries and consider the relation between acceptable and MSO-
definable classes of LZ-tries. It turns out that regular properties of strings
can be checked efficiently on compressed strings by LZ-trie automata.

1 Introduction

We are interested in the compressed model checking problem: which
properties of strings can be checked given the compressed strings?
The challenge is to beat the decompress-and-then-check method. We
restrict ourselves to the classical Ziv-Lempel[8] string compression
algorithm LZ-78. It compresses a string w ∈ Σ+ to a generally much
shorter sequence LZ (w) ∈ (N × Σ)+, where the numbers point to
previous elements of the sequence.

As usual, we view a string w as a colored finite linear order Sw =
(D,<, Ua)a∈Σ , where D = {0, . . . , |w| − 1} is the set of positions,
ordered by < as usual, and Ua(i) means that a occurs at position
i of w. Properties of strings are expressed in first-order (FO) or
second-order (SO) logic of colored linear orders. In a similar way, we
give two representations of LZ-78-compressed strings α by relational
structures, one by node-labelled LZ-graphs Gα and another one by
LZ-tries Tα, which are a kind of edge-labelled trees.

A natural approach to the compressed model checking problem is
to translate properties of strings to properties of compressed strings.

In fact, monadic second-order (MSO) formulas ϕ in the language of
strings can be translated to dyadic second-order (DSO) formulas ϕLZ

in the language of LZ-graphs Gα. One can therefore answer queries
ϕ about Sw by evaluating ϕLZ on the smaller structure GLZ (w). How-
ever, since the translation doubles the arity of relation variables, this
is not guaranteed to provide an efficient solution.

By Büchi’s well-known theorem (cf. [4], Theorem 5.2.3), MSO
for strings is equally expressive as regular expressions, or finite au-
tomata, are. This raises the question whether MSO for LZ-graphs
leads to a notion of LZ-automaton that provides an efficient method
for checking a reasonably rich class of properties of compressed strings.

We study this question in the slightly more suitable format of
LZ-tries. These come with an enumeration of their nodes and can be
viewed as simple acyclic directed graphs. We introduce notions of LZ-
trie automata by modifying corresponding notions of tree-automata.
We show that deterministic LZ-trie-automata are less powerful than
non-deterministic ones, and that the latter capture ∃-MSO for LZ-
tries, where ∃-MSO is the set of MSO-formulas of the form ∃Xψ

where X are set variables and ψ is an FO-formula. We show that
some problems that are difficult for arbitrary graphs or dags become
easy for LZ-tries. Finally, we show that MSO-properties of strings
can be checked efficiently on LZ-compressed strings by deterministic
top-down LZ-automata. Thus, regular expression search in strings
can be done on the LZ-compressed strings, without decompression.

2 Lempel-Ziv-78 compression

We fix a finite alphabet Σ and, to avoid structures with empty
universe, only consider non-empty strings w ∈ Σ+. The classical
Lempel-Ziv-78 compression algorithm has many variations (cf. [2],
[3]). It decomposes a string w ∈ Σ+ into a sequence of substrings or
blocks Bi ∈ Σ+, so that w = B0 · · ·Bm−1. The first block B0 con-
sists of the first letter of w. Suppose for some n > 0, we have con-
structed blocks B0, . . . , Bn−1 such that w = B0 · · ·Bn−1v for some
v ∈ Σ+. Then Bn is the shortest non-empty prefix of v that is
not among {B0, . . . , Bn−1}, if this exists, otherwise Bn is v.1 The

1 Note that if Bn extends one of B0, . . . , Bn−1 by exactly one letter.

2

LZ-compression LZ (w) of w is the sequence p0 · · · pm−1 of pairs
pn = (k, a) such that Bn = Bk−1a (where B−1 := ǫ) and w =
B0 · · ·Bm−1. The decompression is given by Bk = decode(pk) where
decode((0, a)) = a and decode((n+ 1, a)) = decode(pn)a.

Example 1. The blocks of w = abbbaabbabbb are a.b.bb.aa.bba.bbb,
and its compression is LZ (w) = (0, a)(0, b)(2, b)(1, a)(3, a)(3, b).

2.1 LZ-graphs

Definition 1. A compressed string α = p0 · · ·pm−1 is represented
as a finite labelled ordered graph

Gα := (Dm, <, Ua, E)a∈Σ ,

where m = |α| is the number of blocks, Dm = {0, . . . , m− 1}, < the
natural order on Dm, Ua(i) is true iff the last letter of block Bi is
a. The binary relation E describes the reference to previous pairs: if
pi = (k, a) for some a ∈ Σ and k > 0, (i.e. the k-th block Bk−1 is
the longest strict prefix of Bi), then there is an edge E(i, k−1) from
node i to k − 1.

Example 1 (Cont.). For w = a.b.bb.aa.bba.bbb. = B0B1B2B3B4B5,
the graph GLZ (w) is

0 1 2 3 4

a b b a a b

5

Observe that Sw can be interpreted in GLZ (w) as a binary relation:
a position i in w is mapped to the pair h(i) = (k, j) in LZ (w) iff i

lies in block Bk and Bj is the nonempty prefix of Bk ending in i. Note
that in GLZ (w), node j can be reached from k by a path of E-edges.

Example 2. If w = a.aa.ab.aba.aa, the positions 5,6,7 occurring in
block B3 = aba are represented by (3, 0), (3, 2), (3, 3), because the
nonempty prefixes of B3 are a = B0, ab = B2, and aba = B3.

Theorem 1 ([1]). For every MSO-formula ϕ(x1, . . . , xn,X
(1)) about

strings there is a DSO formula ϕLZ (x1, y1, . . . , xn, yn,X
(2)) about

LZ-graphs, such that for each Sw and all i1, . . . , in ∈ Sw and S ⊆ Sw,

Sw |= ϕ[i,S] ⇐⇒ GLZ (w) |= ϕLZ [h(i), h(S)].

3

Proof. (Sketch) In DSO, we can define E∗, the reflexive transitive
closure of E, and then define ϕLZ inductively using

(Ua(xi))
LZ := Ua(yi),

(xi ≤ xj)
LZ := xi < xj ∨ (xi = xj ∧ yi ≤ yj),

(∃xn+1ϕ)LZ := ∃xn+1∃yn+1 (E∗(xn+1, yn+1) ∧ ϕ
LZ),

(∃X1ϕ)LZ := ∃X2(∀x∀y(X2(x, y)→ E∗(x, y)) ∧ ϕLZ).

(1)

For the atomic cases, note that in ϕLZ a variable xi stands for a
block of w and yi for a relative position in this block.

A property L of non-empty strings is definable on strings (resp.
on compressed strings or LZ-graphs), if for some formula ϕ of the ap-
propriate language, L = {w | Sw |= ϕ} (resp. L = {w | GLZ (w) |= ϕ}).

Remark 1. There are properties of strings that are FO-definable on
strings, but not on LZ-graphs, like ∃x(Ua(x)∧Ub(x+ 1)). There are
properties of strings that are FO-definable on LZ-graphs, but not
even MSO-definable on strings (cf. [1]).

2.2 LZ-tries

While compressing w = B0 · · ·Bn−1v, the blocks B0, . . . , Bn−1 found
are maintained as a dictionary of subwords of w and stored as a tree
by sharing common prefixes. The linear order of the blocks in LZ (w)
amounts to an enumeration of the nodes of the tree.

Definition 2. A (finite) Σ-tree (T,≤,
a
←− , 0)a∈Σ is a (finite) tree

(T,≤, 0) with root 0, where {
a
←− ⊆ T × T | a ∈ Σ} are pairwise dis-

joint minimal relations such that ≤ is the reflexive transitive closure
of their union.

A Σ-tree is a Σ-trie if to each node n ∈ T and each a ∈ Σ there
is at most one n′ ∈ T such that n

a
←− n′. A (finite) enumerated

Σ-trie
T = (T,≤,

a
←− , 0, Succ)a∈Σ ,

or an LZ-trie for short, is a Σ-trie (T,≤,
a
←− , 0)a∈Σ with a successor

relation2 Succ on T that is compatible with the partial order ≤. We
assume that T = {0, 1, 2, . . . , m} and Succ(i, j) iff i+ 1 = j in N.

2 i.e. a minimal binary relation Succ whose transitive reflexive closure Succ∗ is a total
ordering of T

4

Example 1 (Cont.). Enumerating the pairs of LZ (w) by 1,2, etc.
in a third component, we obtain a sequence (0, a, 1)(0, b, 2)(2, b, 3)
(1, a, 4)(3, a, 5)(3, b, 6) of triples. These represent a tree in which
block Bk labels the path from the root 0 to node k + 1:

2

b

3

a b

5 6

a b

1

4

a

0

A tuple (k, a) of LZ (w) is drawn as an edge k
a
←− .

We write Tα for the enumerated trie representing the compressed
word α. We always assume that our strings w have a distinguished
end symbol; then the final block of LZ (w) is different from the pre-
vious ones and the tree of blocks indeed is a trie.

Remark 2. What differs in choosing Gα or Tα is the logical language
used to talk about LZ-compessed strings α. Basically, we have

Gα |= E(i, j) ∧ Ua(i) ⇐⇒ Tα |= (j + 1)
a
←− (i+ 1).

Modulo the additional root node in the trie, ≥ in the trie amounts
to E∗ in the graph, and ≤ in the graph to Succ∗ in the trie.

Using (1), quantifiers Qx and QX about strings translate to
bounded quantifiers Q(x, y) ∈ E∗ and QX ⊆ E∗. Translating to
the language of LZ-tries we only quantify over tuples and relations
whose tuples lie on paths of TLZ (w). Hence we actually translate to a
reasonably nice sublanguage of path-restricted DSO over LZ-tries.

3 MSO-equivalence for LZ-graphs

For relational structures A,B of the same signature, A ≡MSO

r B says
that A and B satisfy the same MSO-sentences of quantifier rank ≤ r.

Two facts about MSO for strings imply the existence of finite
automata that can check MSO-properties of strings (cf. [4]):

a) for each r, there are only finitely many ≡MSO

r -equivalence classes
for word structures Sw, and

5

b) for compound strings wa, the ≡MSO

r -class of Swa depends only on
the ≡MSO

r -classes of Sw and Sa.

(The analogous situatation holds for trees over Σ.) LZ-compressed
words α = p0 · · · pm−1 are words over the infinite alphabet N × Σ.
Can we check MSO-properties of compressed strings by a kind of
finite automaton for LZ-graphs? Since we deal with a finite relational
language, we still have a):

Proposition 1. For each r, the equivalence relation ≡MSO

r between
LZ-graphs has finite index.

But what about b)? By extending winning strategies for duplicator
in the Ehrenfeucht-Fraisse-game Gr(Gα,Gβ), we can show:

Lemma 1. (i) For LZ-compressed words α(0, a), β(0, a′) over Σ,

Gα ≡
MSO

r Gβ ∧ a = a′ =⇒ Gα(0,a) ≡
MSO

r Gβ(0,a′).

(ii) For LZ-compressed words α(k + 1, a) and β(k′ + 1, a′) over Σ,

(Gα, k) ≡
MSO

r (Gβ , k
′) ∧ a = a′ =⇒ Gα(k+1,a) ≡

MSO

r Gβ(k′+1,a′).

However, in (ii) one has to assume that the elements k, k′ pointed to
from the new maximal elements share the same properties. Instead,
one would need the stronger claim

Gα ≡ Gβ ∧ Gα↾k ≡ Gβ↾k′ ∧ a = a′ =⇒ Gα(k+1,a) ≡ Gβ(k′+1,a′),

where Gα↾k is the restriction of Gα with k as its maximal element.
The equivalence class of Gα↾k would be the automaton state as-
signed to k. (Notice that Gα↾k is a LZ-graph, but (k + 1, a) is not
a LZ-compressed word.) The problem is that duplicator’s winning
strategies for Gr(Gα,Gβ) and Gr(Gα↾k,Gβ↾k′) may pick different el-
ements to answer spoilers playing of some element of, say, Gα↾k. For
example, if spoiler plays element k in some round < r, duplicator
has to answer with k′ in the second game, but not necessarily so in
the first game.

Thus, unlike in the case of strings or trees, for compound com-
pressed words α(k, a) we have component LZ-graphs Gα and Gα↾k

that are not disjoint, and winning strategies in games for these do
not combine to winning strategies for composed LZ-graphs.

From this we conclude that we cannot use a Büchi-Myhill-Nerode
construction to obtain from the ≡MSO

r -classes a finite sequential au-
tomaton for LZ-graphs, and likewise for LZ-tries.

6

4 LZ-trie-automata

If we view LZ-tries as trees with an additional edge Succ between
nodes, we obtain directed acyclic graphs of a special kind: the suc-
cessor child may be equal to some decendant with respect to the

a
←− -child-relations. Since these are still very close to trees, it is nat-
ural to use a variation of tree-automata as an approximative notion
of LZ-automaton for checking properties of LZ-tries.

Definition 3. Let n ∈ G be a node in a graph (G,E). For m ∈ N,
the sphere of radius m around n, sm(n), is the set of nodes k ∈ G
such that there is a E-path of length ≤ m from n to k or vice versa.
The hemisphere of radius m around n, hsm(n), is the set of nodes k
such that there is an E-path of length ≤ m from n to k.

Definition 4. Let n ∈ T be a node in the LZ -trie T . The bottom-
up LZ-hemisphere of radiusm around n, bu-hsTm(n), is the restriction
of T to the m-hemisphere around n in the graph (T,E), where

E :=
⋃
{

a
←− | a ∈ Σ} ∪ {Succ}.

The top-down LZ-hemisphere of radiusm around n, td-hsTm(n), is the
restriction of T to the m-hemisphere around n in the graph (T, Ĕ),
where Ĕ is the converse of E.

An LZ-hemisphere is an LZ-hemisphere of some radius around
some node in some LZ-trie T .

Definition 5. A finite bottom-up (resp. top-down) m-LZ-automa-
ton A = (Q,Σ, δ, qin , F) consists of a finite set Q of states, sets
I, F ⊆ Q of initial and final states, a finite alphabet Σ, a finite
transition relation δ consisting of pairs (P, q), written P → q, where
q ∈ Q and P is a bottom-up (resp. top-down) LZ-hemisphere of
radius m whose nodes except the root are labelled by elements of Q.

A run of A on an LZ-trie T is a function r : T → Q where
r(max) ∈ I (resp. r(0) ∈ I) and for each n ∈ T there is some
(P, q) ∈ δ such that bu-hsTm(n) (resp. td-hsTm(n)), expanded by the
labelling of nodes given by r, is isomorphic to P with label q at its
root. A accepts T if there is a run r of A on T such that r(0) ∈ F
(resp. r(max) ∈ F). Let L(A) := {T | A accepts T } be the class of
LZ-tries accepted by A.
A is deterministic if |I| = 1 and q = q′ when (P, q), (P, q′) ∈ δ.

7

Example 1 (Cont.). An LZ-trie and the bottom-up resp. top-down
2-hemispheres of node 3 (with dashed edges for Succ resp. Pred):

2

b

3

a b

5 6

a b

1

4

a

0

3

a b

5 6

4 2

b

3

a b

1

0

While an m-LZ-automaton A sequentially follows the enumera-
tion of a trie Tα, it can access the states reached at suffixes (resp.
prefixes) of α. Strictly speaking, it does not have a ‘finite memory’.

Proposition 2. For every m-LZ-automaton A there is an ∃-MSO-
sentence ϕA defining the class of LZ-tries accepted by A.

Proof. (Sketch) Consider states q of the automaton as monadic pred-
icates on nodes of tries. The condition ”there is an accepting A-run”
can be expressed by a sentence ∃qψ. Here ψ(q) is a FO-formula say-
ing that the q-labelled m-hemispheres of the nodes are isomorphic
to the tiles allowed by δ, and that the acceptance condition holds.

4.1 Bottom-up LZ-trie-automata

A 1-LZ-automaton working bottom-up the LZ-trie towards the root
has transitions that determine the state at a node from the states at
the node’s Σ-children and successor. But it also has to distinguish
which of the Σ-children is the successor of the node, if any.

Example 2. Consider the class K of LZ-tries over Σ = {a, b} which
have a node whose successor and a-child agree, i.e. which satisfy the
sentence ϕ := ∃x∃y [y = x + 1 ∧ (x

a
←− y)]. We give a bottom-up

1-LZ-automaton A accepting K. We write a transition in the form

(qa, qb, qsucc , i)→ p,

where qa, qb, qsucc are the states of the a-, b- and Succ-child or ⊥,
when there is no such child, and i ∈ {1, 2, 3,⊥} says which of the
children is equal to the successor node, if any. Thus, (p, q, p, 1)→ q′

corresponds to the transition P → q′ where P is

8

ba

p(n+1) q(m)

n

A has a final state q1, which is assigned to all ancestors of the root
of a subtrie satisfying ϕ, and an initial state q0, which is assigned to
all other nodes of the input trie. Letting q, p, q′ range over {q0, q1},
the transition table is

a) (⊥,⊥,⊥,⊥)→ q0 e) (q, p, q′, 3)→ q′

b) (q,⊥, q, 1)→ q1 f) (q,⊥, q′, 3)→ q′

c) (q, p, q, 1)→ q1 g) (⊥, q, q′, 3)→ q′

d) (q, p, q′, 2)→ q′ h) (⊥,⊥, q′, 3)→ q′.

Rule a) means that if there is no successor-node, A is in state q0.
Rules b) and c) say that if the successor-node is the a-child, then A
goes to q1 as we just saw the pattern ϕ. Rules d) − f) say that if
the successor node differs from the a-child, A remains in the state of
the successor node. Similar for g) and h), which cover the case when
there is no a-child.

Theorem 2. For every m, there is an MSO-sentence defining a
class of LZ-tries that is not accepted by any b.u. m-LZ-automaton.

Proof. For m = 1, let L = {b1b2 · · · bnab1ab2a · · · bn−1a | n ∈ N} ⊆
{a, b}+. Each w ∈ L has a LZ-block decomposition as indicated by

wn = b1.b2. · · · .bn.a.b1a.b2a. · · · .bn−1a

and a compression

LZ (wn) = (0, b)(1, b) · · · (n− 1, b)(0, a)(1, a) · · · (n− 1, a).

The corresponding tries TLZ (wn) look like

b

b

n+2

a

ba

n

1

n−2

2n−1

a

n−1

2n

a

0

n+1
(2)

9

where the successor relation is given by the node numbers.
The class of enumerated tries in LZ (L) can be defined by the

MSO-sentence ϕ saying that the set B of nodes that are the root
0 or a b-child, has the following properties (of which (i) is neither
∃-MSO nor ∀-MSO):

(i) B ⊇ {0} is the smallest set being closed under b-children,
(ii) a node is not in B iff it is an a-child of a node in B,
(iii) for all nodes x, y, we have y = x+1 iff one of the following holds:

(a) y is the b-child of x,
(b) y is the a-child of the b-child y′ of some x′ whose a-child is x,
(c) y is the a-child of 0 and x the member of B that has no b-child.

Claim. LZ (L) is not accepted by a 1-LZ-automaton.

Suppose that A is a 1-LZ-automaton that accepts the class de-
fined by ϕ. Let m > |Q| and w = w2m. An accepting run of A
on TLZ (w) assigns the same state, say q, to at least two different a-
childs, say nodes n+k+2 and n+2. The state of their predecessors
is determined by a rule

(⊥,⊥, q, 3)→ p.

Let T ′ be like TLZ (w), except that nodes n + 1 and n + k + 1 are
switched in the ordering. Then A will also accept the modified struc-
ture, as indicated by the states assigned to nodes as follows:

m

m+1p(n+1)

b

m+k
a

p(n+k+1)

b

m+k+1

a

q(n+k+2)

q(n+2)

a

a

m

m+1

b

m+k
a b

m+k+1

a

q(n+k+2)

q(n+2)

a

a

p(n+k+1)

p(n+1)

But the enumeration of a-children in T ′ does not conform to ϕ, so
T ′ ∈ T (A) \ LZ (L).

For the case m > 1, we modify the example as follows: along the
B-part, between two nodes that have both an a-child and a b-child,
we add m− 1 nodes that have no a-child, i.e. the subgraphs

10

ba
k

k+1

n’+1

a
n’

are replaced by
b

ba

a

k

k+1

n’+1

k+m

k+m−1

n’

The LZ-tries arising this way are the compressions of the words

wn,k = b1.b2.b3. · · · .bnm+k.a.bma.b2ma. · · · .bnma.

Then {TLZ (wn,k) | n, k ∈ N, k ≤ m} is accepted by an (m + 1)-LZ-
automaton, hence MSO-definable. But it is not accepted by an m-
LZ-automaton: intuitively, the m-hemisphere of a node k does not
tell whether the path from k following a and successor and the path
following bma end at the same node.

4.2 Graph acceptors and ∃-MSO for LZ-tries

We now compare LZ -automata with the graph acceptors for directed
acyclic graphs presented by W. Thomas [7].

On graphsG = (V,E), a tile δ over a setQ is anm-neighbourhood
of a node with a labelling in Q, i.e. a finite node-labelled graph. A
graph acceptor is a triple A = (Q,∆,Occ) where ∆ is a finite set
of tiles over the finite set Q and Occ is a boolean combination of
conditions: there are ≥ p occurences of tile δ ∈ ∆. A run of A on
G is a function r : V → Q such that each m-neighbourhood of G
becomes a tile δ ∈ ∆. Then A accepts a graph G if there exists a
run of A on G whose tiles satisfy Occ.

Notice that the existence of a run is non-constructive, it could be
exponentially hard to find an accepting run. The main result of [7]
says that a class of graphs of bounded degree is definable in ∃-MSO
iff it is accepted by a graph acceptor.

Theorem 3. A class K of LZ-tries is ∃-MSO-definable iff for some
m, K is accepted by an m-LZ-automaton.

Proof. Note that each LZ-trie T satisfies the following conditions:

11

(i) each node of T has a degree ≤ |Σ|+ 1,

(ii) T is an acyclic (directed) graph with a designated out-edge (the
successor) for each node,

(iii) T has a node that is reachable from any node by a path.

Using (i), by Theorem 3 of [7], K is ∃-MSO-definable iff K is recog-
nizable by a graph acceptor. Moreover, from (i)-(iii) and Proposition
6 of [7], it follows that K is recognizable by a graph acceptor iff it is
recognizable by a graph acceptor without occurrence constraints.

⇐: Suppose K is accepted by some m-LZ-automaton A. We may
assume that final states of A do not occur in the m-hemispheres P
of transitions (P, q) of A. Consider the transitions of A as a tiling
system. Then an accepting run of A is a tiling that uses at least one
of the tiles (P, q) where q ∈ F . Thus, K has a graph acceptor.

⇒: By the above remarks, K is recognizable by a graph acceptor
without occurrence constraints. On the LZ-tries, the tiles have a root
node, so we can view each tile as a transition rule saying that the
automaton enters a state at the root depending on the m-sphere of
the root and the states at the descendants in the sphere. Let each
state be final; then the automaton accepts iff there is a tiling.

Remark 3. It may seem to follow that every FO-definable property
of strings can be checked on LZ-tries by an m-LZ-automaton. But
<-conditions on strings translate to conditions involving Succ+ on
the tries, and the transitive closure is not ∃-MSO-definable. (Yet, ∃-
FO-formulas on strings translate to ∃-MSO-formulas on LZ-graphs.)

4.3 Colorability and deterministic acceptors

A graph G = (V,E) is k-colorable if there is a partitioning of the set
V of nodes into at most k classes (colors) such that any two adjacent
nodes belong to different classes.

Clearly, k-colorability can be expressed by an ∃-MSO sentence,
and hence has a graph acceptor. By reduction from the 3-satisfiablility
problem, 3-colorability on arbitrary graphs is an NP-complete prob-
lem. However, on LZ-tries it is not:

Proposition 3. Every LZ-trie is 3-colorable.

12

Proof. By induction on the size of the LZ-trie. Suppose the prefix
trie without the maximal node is 3-colorable. The maximal node m
is connected to at most two nodes: to its predecessor, having some
color B, and to a node k such that k

a
←−m, for some a ∈ Σ, having

color A, say. Choose a third color C different form A,B to color m.

Potthoff e.a. [6] have shown that on the class of directed acyclic
graphs whose edges are uniquely labelled with a bounded number
of labels, 2-colorability is not recognizable by a deterministic graph
acceptor, i.e. one with at most one accepting run on each graph. For
the subclass of LZ -tries, however, one gets:

Proposition 4. On the class of LZ-tries, 2-colorability is recogniz-
able by a deterministic graph acceptor.

Proof. We construct a deterministic bottom-up 1-LZ-automaton A
with states q0 = (odd, accept), q1 = (odd, reject), q3 = (even, accept),
q4 = (even, reject), where the first components correspond to the two
colors. Every node n of an LZ -trie has at most 1 + |Σ| children, its
successor node n+1 and nodes ka > n such that n

a
←− ka, for a ∈ Σ.

Let qa resp. qsucc be the states assigned to these nodes by a run from
the maximal node up to node n, beginning in state q0. Then assign
the following state q to node n: the first component of q is odd (resp.
even) if the first component of qsucc is even (resp. odd). The second
component of q is accept if the second component of qsucc is accept,
i.e. if the suffix-trie starting at node n+1 is 2-colorable, and the first
components of qsucc and all the qa’s coincide, i.e. the corresponding
nodes have the same color. Otherwise, the second component of q is
reject. The automaton accepts the input LZ -trie if it assigns one of
the final states q0, q3 to the initial node 0.

Theorem 4. There is a property of LZ-tries that is recognized by a
non-deterministic bottom-up 1-LZ-automaton but not by any deter-
ministic bottom-up m-LZ-automaton.

Proof. Let Σ = {a, b, c} and consider the following property ϕ of
enumerated Σ-tries:

There are two subsequent nodes i − 1 and i such that some
node j is both the a-predecessor of i and a b-ancestor of i−1.

13

An LZ-trie satisfies ϕ iff it contains nodes linked as follows (in the
trie and in the LZ-graph, respectively), where j < i− 1:

b

j

b

a

i

j+1

i−2

i−1

bb b b b b b a

ij i−1

(3)

In the appendix we prove that ϕ can be checked by a non-determi-
nistic 1-LZ-automaton, but not by a deterministic m-LZ-automaton.

By the theorem it seems likely that the class of acceptable LZ-
tries is not closed under complement, and hence:

Conjecture 1. On the class of all LZ-tries, not every MSO-formula
is equivalent to an ∃-MSO-formula. (Can the non-existence of a sub-
graph of the form (3) be expressed in ∃-MSO?)

It seems to us that deterministic bottom-up-LZ-automata are too
weak to check properties of strings on the LZ-compressed strings:

Conjecture 2. There is no deterministic bottom-upm-LZ-automaton
that can check on LZ (w) whether w ∈ {a, b}+ has a subword ab.

4.4 Top-down LZ-trie-automata

G.Navarro [5] has shown how to do regular expression search on
LZ-78-compressed texts by simulating an automaton reading the
original text, beating the decompression-and-search approach by a
factor of 2. Actually, this simulation is a deterministic top-down 1-
LZ-automaton on the LZ-compressed text:

Theorem 5. The LZ-compression {TLZ (w) | w ∈ R} of any regular
set R ⊆ Σ+ is accepted by a deterministic top-down 1-LZ-automaton.

Proof. Let A = (Q,Σ, q0, δ, F) be a deterministic finite automaton
accepting R. Define a deterministic top-down 1-LZ-automaton A′ =
(Q′, Σ, δ′, q′

in
, F ′) by Q′ := Q × (Q → Q), q′0 := (q0, λq.q), F

′ :=
{(q, f) | q ∈ F} and δ′ according to the following transitions:

14

0 · (q0, λq.q)

(p, f) (p′, f ′)

i

i+1

k

a

(δ(f ′(p), a), λq.δ(f ′(q), a))

for each a ∈ Σ (including the case i = k).
Suppose r′ is a run ofA′ on TLZ (w) for a compressed word LZ (w) =

p0 · · · pm−1 where pk represents block Bk of w = B0 · · ·Bm−1. By in-
duction we see that for each k < m,

r′(k) = (δ(q0, B0 · · ·Bk−1), λp.δ(p, Bk−1)). (4)

Hence A′ accepts {TLZ (w) | w ∈ R}, because

w ∈ R ⇐⇒ δ(q0, B0 · · ·Bm−1) ∈ F ⇐⇒ r′(m) ∈ F ′.

Corollary 1. Every property of strings which is definable in MSO
on strings is definable in ∃-MSO on LZ-tries.

Proof. By Büchi’s theorem and Proposition 2.

For the case of sentences, this improves on the translation given
in Theorem 1, at the price of destroying the structure of the sentence.

References

1. Fota Afrati, Hans Leiß, and Michel de Rougemont. Definability and compression.
In 15th Annual IEEE Symposium on Logic In Computer Science, LICS’2000. Santa

Barbara, CA, June 22-26, 2000, pages 151–172. Computer Society Press, 2000.
2. Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text Compression. Prentice

Hall, Englewood Cliffs, NJ, 1990.
3. T. Cover and J. Thomas. Elements of Information Theory. John Wiley, 1991.
4. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1991.
5. Gonzalo Navarro. Regular expression searching on compressed text. Journal of

Discrete Algorithms, 2003 (to appear).
6. Andreas Potthoff, Sebastian Seibert, and Wolfgang Thomas. Nondeterminism ver-

sus determinism of finite automata over directed acyclic graphs. Bull. Belg. Math.

Soc., 1:285–298, 1994.
7. Wolfgang Thomas. Automata theory on trees and partial orders. In eds. M. Bidoit,

M. Dauchet, editor, TAPSOFT’97, LNCS 1214, pages 20–38. Springer Verlag, 1997.
8. J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.

IEEE Transactions on Information Theory, pages 530–536, 1978.

15

5 Appendix

Proof (of Theorem 4). Claim 1 The property ϕ can be checked by
a non-deterministic bottom-up 1-LZ-automaton A.

Proof. A has four states pa, pb, p, accept and transition rules as
follows:

(i) (Delaying rule) For 1-hemispheres P in which the root has no
successor node or its successor node is marked by state p, A has
the rule P → p.

(ii) (Guessing rule 1) For any 1-hemisphere P in which the root has
no successor node or its successor node is marked by state p, A
has a rule P → pa.

(iii) (Guessing rule 2) For each 1-hemisphere P in which the root has
a successor-child having state pa, A has the rule P → pb.

(iv) (Propagating rule 1) For each 1-hemisphere P in which the root
has a successor with state pb which also is the b-child of the root,
but does not have an a-child having state pa, A has the rule
P → pb.

(v) (Checking rule) For any 1-hemisphere P in which the root has a
successor with state pb which also is the b-child of the root, and
does have an a-child having state pa, A has the rule P → accept.

(vi) (Propagating rule 2) For any 1-hemisphere P in which the root
has a successor node with state accept,A has the rule P → accept.

When a given LZ-trie has the property ϕ, then by (i) A may
assign state p to nodes max, . . . , i+ 1. By (ii), A can assign state pa

to node i, then by (iii) state pb to node i − 1. The state pb can be
propagated along the predecessors back to the node j + 1 by (iv),
and by (v) A can assign accept to node j and then propagate accept
to the initial node 0 by (vi).

But A cannot accept an LZ-trie that does not satisfy ϕ: the rules
ensure that pa is assigned to at most one node, so the first time that
accept is assigned to some node of the trie, its a-child is the (only)
node i having state pa and its b-successor chain leads through nodes
in state pb to node i− 1.

Claim 2 The property ϕ cannot be checked by any deterministic
bottom-up m-LZ-automaton.

Intuitively speaking, the m-hemisphere of a node j is not big
enough to see if the predecessor of its a-child is one of its b-descendants.

16

Proof. Suppose a deterministic m-LZ-automaton B recognizes the
set of LZ-tries satisfying ϕ. Depending on B we shall construct two
words w,w′ whose graphs look like

b b b b b bc c c c a a a a ab b b b b

j i

a

i’

b b baa

0 maxi−1

c...

j’

initial segment middle segment end segment

(5)
such that in the trie of LZ (w), we have edges j

a
←− i and j′

a
←− i′,

so the pattern (3) occurs and ϕ holds, while in the trie of LZ (w′)
we have j′

a
←− i and j

a
←− i′, so that ϕ does not hold. To be specific,

the tries have the following edges:

(i) In the end segment from node i to node max , there are only
outgoing edges, alternatingly labelled with a or b.
The a- and b-edges leaving nodes i, . . . ,max go to nodes in the
initial segment from node 0 to node j, such that the a-edges
leaving {i, i′} go to {j′, j} and the remaining ones go, say, from
max to 0, from max−1 to 1, etc.
In the trie of w, there are edges j

a
←− i and j′

a
←− i′, while in the

trie of w′ these nodes are connected by edges j′
a
←− i and j

a
←− i′.

(ii) The nodes of the middle segment from j to i have no other in-
coming or outgoing edges except the ones shown, i.e. node j has
an outgoing c-edge and incoming a- and b-edges, node i has an
outgoing a-edge, and nodes j to i− 1 are related by b-edges that
connect nodes in the predecessor relation.

(iii) The nodes 0, . . . , j of the initial segment have c-edges between
nodes in the predecessor relation, and incoming a- and b-edges
from nodes in the end segment, as described in (i).

Clearly, the trie of w has the property ϕ while the trie of w′ does
not. We now show that for suitable i, j, i′, j′ and max , B accepts
both tries, contradicting the assumption. Recall that B is a bottom-
up trie-automaton, so it visits the nodes in reverse order, beginning
at node max.

The m-hemispheres of nodes k ∈ {i, . . . ,max −m} consist of m
nodes ordered by the successor and labelled by states of B. Since B

17

is finite, there are only finitely many such m-hemispheres. Hence, if
max is large, there are two points i, i′ having the same m-hemisphere
P , where i + m < i′. We may assume that that i and i′ have an
outgoing edge labelled a.

Since the m-hemispheres of i and i′ agree, the m-hemishperes of
i− 1, . . . , j, . . . , j′, . . . , 0 in the tries of w and w′ agree as well. Since
B is deterministic, it has to assign the same state to the initial node
of the two tries.

18

