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Abstract. We approximate analytic queries on streaming data with a weighted
reservoir sampling. For a stream of tuples of a Datawarehouse we show how
to approximate some Olap queries. For a stream of graph edges from a Social
Network, we approximate the communities as the large connected components
of the edges in the reservoir. We show that for a model of random graphs which
follow a power law degree distribution, the community detection algorithm is a
good approximation. Given two streams of graph edges from two Sources, we
define the Community Correlation as the fraction of the nodes in communities
in both streams. Although we do not store the edges of the streams, we can
approximate the Community Correlation and define the Integration of two
streams. We illustrate this approach with Twitter streams, taken from TV
programs.

1 Introduction
The integration of several Sources of data is the composition problem when they do not

follow the same schema. It can be asked for two distinct Datawarehouses, two Social networks,
or one Social network and one Datawarehouse. We specifically study the case of two streams
of labeled graphs from a Social network and develop several tools using randomized streaming
algorithms to approximate a notion of correlation between two streaming graphs built from
sequences of edges.

The basis of our approach is the approximation of analytical queries, in particular when
we deal with streaming data. In the case of a Datawarehouse, we may have a stream of tuples
t following an Olap schema, where each tuple has a measure, and we want to approximate
Olap queries. In the case of a Social network such as Twitter, we have a stream of tweets
which generate edges of an evolving graph, and we want to approximate the evolution of the
communities as a function of time.

The main randomized technique used is a k-weighted reservoir sampling which maps an
arbitrarly large stream of tuples t of a Datawarehouse to k tuples whose weight is the measure
t.M of the tuple. It can also map a stream of edges u of a graph, to k edges and the measure is
always 1 for the graph edges. We will show how we can approximate some Olap queries and
the main study will be the approximate dynamic community detection for graphs, using only
the reservoir. We store the nodes of the graph in a database, but we do not store the edges.
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At any given time, we maintain the reservoir with k random edges and compute the connected
components. We interpret the large connected components as communities and follow their
evolution in time.

Edges of the reservoir are taken with a uniform distribution over the edges, hence the
nodes of the edges are taken with a probability proportional to their degrees. Random graphs
observed in social networks often follow a power law degree distribution and random edges are
likely to connect nodes of high degrees. Therefore, the connected components of the random
edges will occur in the dense subgraphs, i.e. in the communities. We will propose a formal
model of random graphs which follows a power law degree distribution with p communities
and will quantify the quality of the approximation.

A finite stream s of edges can then be compressed in two parts: first the set V of nodes
stored in a classical database, and then the communities, i.e. sets C1, ..Cl of size greater then
a threshold h, at times τ, 2.τ, .... for some constant τ . Given two finite streams s1, s2, the node
correlation ρ is the proportion of nodes in common and the edge correlation is the proportion
of edges connecting common nodes.

We introduce the community correlation ρC as the proportion of nodes in both communi-
ties among the common nodes. In our model, we compute the node correlation, approximate
the community correlation , but can not compute the edge correlation as we can not store the
edges. This new parameter can enrich the models of value associated with analytical queries
such as the ones presented in de Rougemont and Vimont (2015) or in in Easley and Kleinberg
(2010) for general mechanisms.

The integration of two streams of edges defining two graphs Gi = (Vi, Ei) for i = 1, 2
can then be viewed as the new structureH = (V1, V2, V1∩V2, C

1
1 , ..C

1
l , C

2
1 , ..C

2
p , ρC) without

edges, where Cji is the i-th community of Gj and ρC is the Community Correlation. All the
sets are exactly or approximately computed from the streams with a database for V and a finite
memory, the size of the reservoir for the edges.

Our main application is the analysis of Twitter streams: a stream of graph edges for which
we apply our k-reservoir. We temporarily store a random subgraph Ĝ with k-edges and only
store the large connected components of Ĝ, i.e. of size greater than h and their evolution in
time. We give examples from the analysis of streams associated with TV shows on French
Television (#ONPC) and their correlation.

Our main results are:

— An approximation algorithm of simple Olap queries for a Datawarehouse stream.
— An approximation algorithm for the community detection for graphs following a degree

power law with a concentration,
— A concrete analysis on Twitter streams to illustrate the model, and the community

correlation of Twitter streams.

We review the main concepts in section 2. We study the approximation of Olap queries
in a stream in section 3. In section 4, we consider streams of edges in a graph and give an
approximate algorithm for the detection of communities. In section 5, we define the integration
of streams and explain our experiments in section 6.
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2 Preliminaries
The introduce our notations for Olap queries and Social Networks, and the notion of ap-

proximation used.

2.1 Datawarehouses and Olap queries
A Datawarehouse I is a large table storing tuples t with many attributes A1, ...Am,M ,

some Ai being foreign keys to other tables, and M a measure. Some auxiliary tables provide
additional attributes for the foreign keys. An Olap or star schema is a tree where each node
is a set of attributes, the root is the set of all the attributes of t, and an edge exists if there
is a functional dependency between the attributes of the origin node and the attributes of the
extremity node. The measure is a specific node at depth 1 from the root. An Olap query for
a schema S is determined by: a filter condition, a measure, the selection of dimensions or
classifiers, C1, ...Cp where each Ci is a node of the schema S, and an aggregation operator
(COUNT, SUM, AVG, ...).

A filter selects a subset of the tuples of the Datawarehouse, and we assume for simplicity
that SUM is the Aggregation Operator. The answer to an Olap query is a multidimensional
array, along the dimensions C1, ...Cp and the measure M . Each tuple c1, ..., cp,mi of the an-

swer where ci ∈ Ci is such that mi =

∑
t:t.C1=c1,...t.Cp=cp

t.M∑
t∈I

t.M
. We consider relative measures

as answers to Olap queries and write QIC as the distribution or density vector for the answer to
Q on dimension C and on data warehouse I , as in Figure 2.

Example 1 Consider tuples t(ID, Tags, RT, Time, User, SA) storing some information about
Twitter tweets. Let Content={Tags, RT} where Tags is the set of tags of the Tweet and RT=1 if
the tweet is a ReTweet and RT=0 otherwise. The measure t.SA is the Sentiment Analysis of the
tweet, an integer value in [1, 2, ...10]. The sentiment is negative if SA < 5 and positive when
SA ≥ 5 with a maximum of 10. The simple Olap schema of Figure 1 describes the possible
dimensions and the measure SA. The edges indicate a functional dependency between sets of
attributes.

Content

TV Show

Channel

RT

Time user

Location Type

Tweet Sentiment Analysis

FIG. 1 – An Olap schema for a Datawarehouse storing tuples t for each Twitter tweet, with
Sentiment Analysis, an integer in [1, 2, ...10] as a measure.

Consider the analysis on the dimension C=Channel, with two possible values c in the set
{CNN, PBS}. The result is a distribution QC with QIC=CNN = 2/3 and QIC=PBS = 1/3 as
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in Figure 2 . The approximation of QC is studied in section 3. In this case | C |= 2, i.e. | C |
is the number of values of the dimension C.

CNN
64%

PBS 
36%

Sentiment Analysis

CNN PBS

CNN
59%

PBS
41%

Approximate Sentiment Analysis

CNN PBS

FIG. 2 – An Olap query measuring the Sentiment analysis per TV channel. The exact solution
and the approximate solution using the weighted reservoir.

2.2 Social Networks
A social network is a labeled graph G = (V,E) with domain V and edges E ⊆ V.V .

In many cases, it is built as a stream of edges e1, .....em wich define E. Given a set of tags,
Twitter provides a stream of tweets represented as Json trees. We construct the Twitter Graph
of the stream, i.e. the graph G = (V,E) with multiple edges E where V is the set of tags (#x
or @y ) seen and for each tweet sent by @y which contains tags #x ,@z we construct the edges
(@y,#x) and (@y,@z) in E.

Social Networks graphs have a specific structure. The graphs are mostly connected, the
degree distribution of the nodes follows a power law and the communities are defined as
the dense subgraphs. The detection of communities is a classical problem, viewed by many
techniques such as Mincuts, hierarchical clustering or the Girwan-Newman algorithm based
on the edge connectivity. All these methods require to store the whole set of edges.

By contrast, we will detect communities without storing the edges, from the stream of
edges, and approximate the dynamic of the communities. We will also use this technique to
compress a stream and to integrate two streams.

2.3 Approximation
In our context, we approximate density values less than 1 of the Olap queries or commu-

nities of a graph, i.e. sets of users. We use randomized algorithms with an additive approxi-
mation, and the probabilistic space Ω for a stream s of m tuples (resp. edges) is a subset of k
tuples (resp. edges) where each edge occurs with some probability p. In the case of edges, the
probability p is uniform, i.e. p = 1/m. There are usually two parameters 0 ≤ ε, δ ≤ 1 for the
approximation of randomized algorithms, where ε is the error, and 1− δ the confidence.

In the case of the density value, i.e. a function F : Σ∗ → R where Σ is the set of possible
tuples, let A be a randomized algorithm with input s and output y = A(s) where y ∈ R is the
density value. The algorithm A(s) will (ε, δ)-approximate the function F if for all s,

ProbΩ[F (s)− ε ≤ A(s) ≤ F (s) + ε] ≥ 1− δ
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In the case of a density vector Q, we use the L1 distance between vectors. The algorithm A(s)
approximates Q if ProbΩ[| Q − A(s) |1≤ ε] ≥ 1 − δ. The randomized algorithm A takes
samples t ∈ I from the stream with different distributions, introduced in the next subsection
and in section 3.

In the case of the community detection, it is important to detect a community S ⊆ V in a
graph G = (V,E) with a set C ⊆ V which intersects S. The function F : Σ∗ → 2V takes a
stream s of edges as input and F (s) ⊆ V . The algorithm A δ-approximates the function F if
for all s,

ProbΩ[A(s) ∩ F (s) 6= ∅] ≥ 1− δ

The randomized algorithmA takes sample edges from the stream swith a uniform distribu-
tion and outputs a subsetA(s) = C of the nodes. If there is no output thenA(s) = ∅. Approxi-
mate algorithms for streaming data are studied in Muthukrishnan (2005), with a particular em-
phasis on the space required. The algorithms presented require a space of | V | +k. log | V |.

2.3.1 Reservoir Sampling

A classical technique, introduced in Vitter (1985) is to sample each new tuple (edge) of a
stream s with some probability p and to keep it in a set S called the reservoir which holds k
tuples. In the case of tuples t of a Datawarehouse with a measure t.M , we keep them with a
probability proportional to their measures.

Let s = t1, t2, ....tn be the stream of tuples t with the measure t.M , and let
Tn =

∑
i=1,...n ti.M and let Ŝn be the reservoir at stage n. We write Ŝ to denote that

S is a random variable.

k-Reservoir sampling: A(s)
— Initialize Sk = {t1, t2, ....tk},
— For j = k+ 1, ....n, select tj with probability (k ∗ tj .M)/Tj . If it is selected replace a

random element of the reservoir (with probability 1/k) by tj .

The key property is that each tuple ti is taken proportionally to its measure. It is a classical
simple argument which we recall.

Lemma 1 Let Sn be the reservoir at stage n. Then for all n > k and 1 ≤ i ≤ n:

Prob[ti ∈ Sn] = k.ti.M/Tn]

Proof : Let us prove by induction on n. The probability at stage n + 1 that ti is in the reservoir
Prob[ti ∈ Sn+1] is composed of two events: either the tuple tn+1 does not enter the reservoir, with
probability (1− k.tn+1/Tn+1) or the tuple tn+1 enters the reservoir with probability k.tn+1/Tn+1 and
the tuple ti is maintained with probability (k − 1)/k. Hence:

Prob[ti ∈ Sn+1] = k.ti.M/Tn((1− k.tn+1/Tn+1) + k.tn+1/Tn+1 .(k − 1)/k)

Prob[ti ∈ Sn+1] = k.ti.M/Tn(1− tn+1/Tn+1) = k.ti.M/Tn+1

In the case of edges, the measure is always 1 and all the edges are uniform.
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3 Streaming Datawarehouse and approximate Olap

Two general methods are used to sample a Datawarehouse stream I:

— Uniform sampling: we select Î , made of k distinct samples of I , with a uniform reser-
voir sampling on the m tuples,

— Weighted sampling: we select Î made of k distinct samples of I , with a k-weighted
reservoir sampling on the m tuples. The measure of the samples is set to 1.

We concentrate on a k-weighted reservoir. Let Q̂C be the density ofQC on Î as represented
in Figure 2, with the weighted sampling, i.e. Q̂C=c be the density of Q on the value c of the
dimension C, i.e. the number of samples such that C = c divided by k. The algorithm A(s)

simply interprets the samples with a measure of 1, i.e. computes Q̂C .
In order to show that Q̂C is an (ε, δ)-approximation of QC , we look at each component

QC=c. We show that IE(Q̂C=c) the expected value of Q̂C=c is QC=c. We then apply a
Chernoff bound and a union bound.

Theorem 1 QC , i.e. the density of Q on the dimension C can be (ε, δ)-approximated by Q̂C
if k ≥ 1

2 .(
|C|
ε )2. log 1

δ .

Proof : Let us evaluate IE(Q̂C=c), the expectation of the density of the samples. It is the expected
number of samples with C = c divided by k the total number of samples. The expected number of
samples is

∑
t:t.C=c

k.t.M
T

as each t such that C = c is taken with probability k.t.M
T

by the weighted
reservoir for any total weight T . Therefore:

IE(Q̂C=c) =

∑
t:t.C=c

k.t.M
T

k
=

∑
t:t.C=c

t.M

T
= QC=c

i.e. the expectation of the density Q̂C=c is precisely QC=c. As the tuples of the reservoir are taken
independently and as the densities are less than 1, we can apply a Chernoff-Hoeffding bound Hoeffding
(1963):

Prob[| QC=c − IE(Q̂C=c) |≥ t] ≤ e−2t2.k

In this form, t is the error and 1 − δ = 1 − e−2t2.k is the confidence. We set t = ε
|C| , and

δ = e−2t2.k. We apply the previous inequality for all c ∈ C. With a union bound, we conclude that if
k > 1

2
.( |C|

ε
)2. log 1

δ
then:

Prob[| QC − IE(Q̂C) |≤ ε] ≥ 1− δ

This result generalizes to arbitrary dimensions but is of limited use in practice. If the Olap
query has a selection σ, the result will not hold. However if we sample on the stream after we
apply the selection, it will hold again. Hence we need to combine sampling and composition
operations in a non trivial way.

In particular, if we combine two Datawarehouses with a new schema, it is difficult to cor-
rectly sample the two streams. In the case of two graphs, i.e. a simpler case, we propose a
solution in the next section.
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4 Streaming graphs
We consider a stream of edges e1, e2, .....em which defines a family of graphGm = (V,E)

at stage m such that E = {e1, e2, .....em} is on a domain V . The graphs are monotone
are no edge is removed. In the Window model, we only want to consider the last edges, i.e.
em−j , em−j+1, .....em. In this case some edges are removed and some edges are added to
define a graphGw. We will consider both models, when j is specified by a time condition such
as the last hour or the last 15mins.

In both models, we keep all vertices in a database but only a few random edges. We
maintain a uniform reservoir sampling of size k and consider the random Ĝ defined by the
reservoir, i.e. k edges, when Gm is large. Notice that in the reservoir, edges are removed and
added hence Ĝ is closer to the window model. In many Social Networks, the set of nodes V
is large but reaches a limit, whereas the set of edges is much larger and can not be efficiently
stored.

4.1 Random graphs
The most classical model of random graphs is the Erdös-Renyi G(n, p) model (see Erdös

and Rényi (1960) ) where V is a set of n nodes and each edge e = (i, j) is chosen indepen-
dently with probability p. In the Preferential Attachment model, PA(m), (see Barabasi and
R.Albert (1999) , the random graph Ĝn with n nodes is built dynamically: given Ĝn at stage
n, we build Ĝn+1 by adding a new node and m edges connecting the new node with a random
node j following the degree distribution in Ĝn. The resulting graphs have a degree distribution
which follows a power law, i.e.

Prob[d(i) = j] =
c

j2

when the node i is selected uniformly.
In yet another model D(δ), we fix a degree distribution, δ = [D(1), D(2), ....D(k)] where

D(i) is the number of nodes of degree i and generate a random graph uniform among all
the graphs with

∑
iD(i) nodes and

∑
i i ∗ D(i)/2 edges. For example if δ = [4, 3, 2] 1, i.e.

approximately a power law, we search for a graph with 9 nodes and 8 edges. Specifically 4
nodes of degree 1, 3 nodes of degree 2 and 2 nodes of degree 3, as in Figure 4 (a). Alternatively,
we may represent δ as a distribution, i.e. δ = [ 4

9 ,
1
3 ,

2
9 ].

The configuration model generates graphs with the distribution δ when
∑
i i∗D(i) is even.

Enumerate the nodes with half-edges according to their degrees, and select a random matching
between the half-edges. The graph may have multiple edges. If δ follows a power law, then
the maximum degree is O(

√
m) if the graph has m edges.

A D(δ) graph is concentrated if all the nodes of maximum degrees are densely connected.
It can be obtained if the matching has a preference for nodes with high degrees, as in Figure 3.

Definition 1 A D(δ) graph with m edges is concentrated when δ follows a power law if the
O(

√
m/2) nodes of highest degree form a dense subgraph S, i.e. each node i ∈ S has a

majority of its neighbors in S.

1. Alternatively, one may give a sequence of integers, the degrees of the various nodes in decreasing order, i.e.
[3, 3, 2, 2, 2, 1, 1, 1, 1], a sequence of length 9 for the distribution δ = [4, 3, 2].
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We will call S the community of the concentrated graph D(δ). If a node is is of degree 3
in S, then at least 2 neighbors must be in S, if it is of degree 2 in S, then at least 1 neighbor
must be in S. It can be checked for S of size 3 in Figure 4.

FIG. 3 – Concentrated random graph G with a community S and 10 random edges from the
reservoir defining Ĝ with the large connected component Ĉ with 4 edges.

The set S is close to a clique of size O(
√
m/2) = n′ and edges are taken with probability

1/m. We will show that the probability that an edge is in the clique S is α/m = p′. We are
then close to the Erdös-Renyi G(n′, p′) model where p′ = 2.α/n′2. In this regime, we know
from Bollobas (2001) that the largest connected component is small, of order O(log n′) =
O(log(

√
m)). The giant connected component requires p′ ≥ (log n′)/n′. The size of the

connected components in a graph specified by a degree sequence is studied in Chung and Lu
(2002).

4.2 Random graphs with p communities

None of the previous models exhibit many distinct community structures. The PA(m)
model or the power law distribution create only one dense community. Consider two random
graphs Ĝ1 and Ĝ2 of the same size following the D(δ) model when δ follows a power law. We
say that Ĝ follows the D(δ)2 model if

Ĝ = Ĝ1 | Ĝ2

i.e. Ĝ is the union of Ĝ1 and Ĝ2 with a few random edges connecting the nodes of low
degree. This construction exhibits two communities S1 and S2 and generalizes to D(δ)p for p
communities of different sizes, as in Figure 4.

Notice that if Ĝ1 and Ĝ2 have the same size and the same degree distribution δ = [ 4
9 ,

1
3 ,

2
9 ],

then Ĝ = Ĝ1 | Ĝ2 has approximately the same distribution δ.
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(a) (b)

FIG. 4 – Concentrated random graph for D(δ) with one community in (a). Random graph for
D(δ)2 with 2 communities in (b) where δ = [4, 3, 2].

4.3 Reservoir based random subgraphs

We maintain a reservoir with k edges, whose edges occur with probability 1
m in a stream

with m edges for any large n, i.e. edges are uniformly selected. Such random graphs are con-
sidered in Lyons et al. (2006) in a different setting, under the name MST (Minimum Spanning
tree) where an arbitrary random order is selected on the edges, hence each edge is uniformly
selected.

We can also select nodes from a reservoir with k edges, by choosing an edge e = (i, j)
and then choosing i or j with probability 1

2 . In this case, we select a node with probability
proportional to its degree d(i), simply because d(i) independent edges connect to i. Therefore,
the reservoir magically selects edges and nodes with high degrees, even so we never store any
information about the degree of the nodes.

If we wish to keep only the last edges, for example the edges read in the last hour, the
reservoir sampling will not guarantee a uniform distribution. A priority sampling for the
sliding window McGregor (2014) will assign a random value in the [0, 1] interval to each edge
and the edge in the window with the minimum value is selected with the uniform distribution.
For simplicity, we say that a k-reservoir window keeps k such edges.

4.4 Community detection

A graph has a community structure if the nodes can be grouped into p dense subgraphs.
Given a graph G = (V,E), we want to partition V into p + 1 components, such that V =
V1 ⊕ V2.... ⊕ Vp ⊕ Vp+1 where each Vi for 1 ≤ i ≤ p is dense, i.e. |Ei| ≥ α.|Vi|2 for some
constant α, and Ei is the set of edges connecting nodes of Vi. The set Vp+1 groups nodes
which are not parts of the communities.

In the simplest case of 2 components, V = V1 ⊕ V2 ⊕ V3 and V1, V2 are dense and
V3 is the set of unclassified nodes, which can also be viewed as noise. If we want to
approximate the communities, we want to capture most of the nodes of high degrees in V1 and
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V2. We adapt the definition and require that: [ProbΩ[A(s)∩S1 6= ∅∧A(s)∩S2 6= ∅] ≥ 1−δ.

Algorithm for Community detection in a stream s of m edges A(k, c, h):
— Maintain a k-reservoir,
— For each c edges, update the nodes database and the large (of size greater than h)

connected components Ĉ1, ...Ĉl of the k-reservoir window.

In practice k = 400, c = 3, h = 3. Therefore each Ĉi will contain nodes of high degrees,
and we will interpret Ĉi as a community at a time t. Figure 5 is an example of the connected
components of the reservoir.

FIG. 5 – Connected components of the k-reservoir.

Lemma 2 Let S be the community of a D(δ) graph following a power law, with m edges.
There are two constants α, β, which depend on the distribution δ such that:

Prob[ei ∈ ES ] > α

Prob[ei ∈ ES ∧ ej ∈ ES ∧ ei, ej share a node] > β

Proof : Recall that S contains the O(
√
m/2) nodes of highest degree. The degrees are from O(

√
m)

until at least O(
√
m −

√
m/2). Among the possible m/4 internal edges of S, we have a constant

proportion because at least half of the edges coming from a node must be internal. As a random edge ei
is chosen with probability 1/m, it has a constant probability to be internal, i.e. there exists α such that:

Prob[ei ∈ ES ] > α

S is dense , i.e. it contains a constant fraction α of the possible edges, hence a fraction1 − α of pairs
which are non-edges. If we select two independent edges ei, ej they are internal with probability α2.
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The probability that they share a node is 1 − η if η is the probability that they do not share a node. The
probability that they do not share a node is the probability that some edge or some non-edge connects
each of the 4 nodes of ei, ej . There are 4 possible connecting edges, hence 16 possibilities, but η is
bounded by a constant, hence 1− η is also constant. If we set: β = α2.(1− η), we obtain:

Prob[ei ∈ ES ∧ ej ∈ ES ∧ ei, ej share a node] > β

We can think of α as 1/4 and β = 1/10. We can now prove the main result in the case of
p = 2 communities, i.e. G = G1 | G2, where the graphs G1 and G2 have the same size. It
generalizes to an arbitrary p and to graphs Gi that do not have the same size. The size must be
at least a fraction of m.

Theorem 2 Let G be a D(δ)2 graph following a power law, with 2m edges. There exists a
constant δ such that the DC-Algorithm δ-approximates the communities of G = G1 | G2.

Proof : By applying Lemma 2, we expect k.α.m/2 edges in each dense component S1 or S2. The
other edges could have one extremity in Si and the other in Vi − Si or both in Vi − Si. In each Vi there
may be several connected components. We consider the largest Ĉ1 for G1 and Ĉ2 for G2. We need to
estimate the probability

Prob[| Ci |≥ h ∧ Ĉi ∩ Si 6= ∅]
for i = 1, 2. Using the same argument as the one used in Lemma 2, there exists a γ such that:
Prob[ei1 ∈ ES ∧ ei2 ∈ ES ... ∧ eih ∈ ES ∧ ei1 , ei2 , ...eih are connected] > γ. We just evaluate the
probability that there are not connected, i.e. one of the edges is not connected to the others because there
exist edges and non edges to each of the nodes of the other edges. Hence if Ĉi is the largest connected
component in Si:

Prob[| Ĉi |≥ h] > γ

and if we take δ = γ2 we conclude that Prob[| Ĉ1 |≥ h∧ | Ĉ2 |≥ h] > δ.

Clearly, if the number p of components is large, the quality of the approximation decreases.
If the size of the communities is small, i.e. one component is too small, the chance of not
detecting it will also increase.

4.5 Dynamic Community detection
We modify the community detection algorithm and maintain two k-reservoirs: one for the

global data, and one for most recent items. Assume a priority sampling McGregor (2014),
which provides a uniform sampling in the last elements of the stream, defined by a time con-
dition such as the last 15mins. We call it a k-reservoir window.

We follow the communities for every c new edges (for example c = 5) in the stream,
and maintain the connected components. We store the connected components at regular time
intervals.

DC-Algorithm for Dynamic Community detection of a stream s of edges: DC(k, h, c, τ)
— Maintain a global k-reservoir and a k-reservoir window,
— For each c edges, update the nodes database and the large (greater than h) connected

components Ĉ1, ...Ĉl of the k-reservoir window. When we remove edges, the compo-
nents may split or disappear. When we add edges, components may merge or appear.
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— Store the components of size greater than h at some time interval τ .
— When the stream stops, store the global connected components Ĉg1, ...Ĉgl of the

k-reservoir.

𝑇 𝑇+1

FIG. 6 – Sizes of the connected components online

In the implementation, k = 400, h = 3, c = 5, τ = 15mins. Figure 6 shows the dynamic
evolution of the sizes of the communities between two iterations.

4.6 Stability of the components
As we observe the dynamic of the communities, there is some instability: some compo-

nents appear, disappear and may reappear later. It is best observed with the following ex-
periment: assume two independent reservoirs of size k′ = k/2 as in Figure 7. The last two
communities of the reservoir 1 with 5 communities merge to correspond to the 4 communities
in reservoir 2.

Reservoir 1 Reservoir 2

FIG. 7 – Sizes of the connected components with 2 independent reservoirs

Consider the subgraphGi of the community Ci. It is most likely a tree if Ci is small, hence
unstable as the removal of 1 edge splits the component or makes it small and it disappears.



M. de Rougemont et al.

Larger components are graphs which are therefore more stable. If the original graph with m
edges has a concentrated component S of size O(

√
m/2) = n, then we can estimate with the

Erdös-Renyi model G(n, p) the connected components inside S. In this case p = 2.α/n2 and
we are in the sparse regime as p < log n/n. The components are most likely trees of size at
most O(log(

√
m/2). Hence the instability of the small components.

5 Integration from multiple sources
Given two streams of edges defining two graphs Gi = (Vi, Ei) for i = 1, 2, what is the

integration of these two structures? The node correlation and the edge correlation between
two graphs G1 and G2 are:

ρV =
|V1 ∩ V2|

max{|V1|, |V2|}
, ρE =

|E1 ∩ E2|
max{|E1|, |E2|}

As we store V1 and V2, we can compute ρV , but we can not compute ρE , as we do not store
E1 nor E2. We can however measure some correlation between the communities as in Figure
8. If C1

i,t be the i-th component at time t in G1 and let C̄1 = ∪i,tCi,t, i.e. the set of nodes
which entered some component at some time. Define the Community Correlation

ρC =
|C̄1 ∩ C̄2|

max{|C̄1|, |C̄2|}

Spectators

TV Show 1

Spectators

TV Show 2

Spectators

Intersect

Approximate Components Reservoir Sampling Components

FIG. 8 – Common communities between two graphs

We just measure the fraction of nodes in common communities. The integration of two
streams of edges defining two graphs Gi = (Vi, Ei) for i = 1, 2 can then be viewed as the
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new structure H = (V1, V2, V1 ∩ V2, C
1
1 , ..C

1
l , C

2
1 , ..C

2
p , ρC) without edges, where Cji is the

i-th community of Gj . All the sets are exactly or approximately computed from the streams as
we stores the nodes and the finite reservoir. It generalizes to n streams as we can look for the
correlation of any pair of streams.

Data integration in databases, often studied with data exchange, does not consider approx-
imation techniques and studies the schemas mappings. Approximation algorithms, as the one
we propose, give important informations for the integration of multiple sources.

6 Experiments
A Twitter stream is defined by a selection: either some set of tags or some geographical

position for the sender is given. A stream of tweets satisfying the selection is then sent in a
Json format by Twitter. We choose a specific tag #ONPC, associated with a french TV program
which lasts 3 hours. We capture the stream for 4 hours, starting 1 hour before the program,
and generate the edges as long as they do not contain #ONPC. There are approximately 104

tweets with an average of 2.5 tags per tweet, i.e. 25.103 potential edges and 15.103 edges
without #ONPC, whereas there are only 3500 nodes. If we do not remove these edges, the
node #ONPC would dominate the graph and it would not follow our model of graphs.

We implemented the Dynamic Community algorithm with the following parameters:
k = 400, c = 3, h = 3, τ = 15mins. The nodes are stored in a Mysql database. The k-
window reservoir is implemented as a dynamic k-reservoir as follows: when edges leave the
window, the size of the reservoir decreases. New selected edges directly enter the reservoir
when it is not full. When it is full, the new element replaces a randomly chosen element. This
implementation does not guarantee a uniform distribution on the edges, but is simpler than the
priority sampling when k is large.

Over 4 hours, there are 16 intervals for τ = 15mins, and 4 components on the average.The
size of a component is 8 on the average. Therefore we store approximately 16 ∗ 4 ∗ 8 = 512
elements, the representation of the dynamic of the communities. Figure 9 shows the evolution
of the sizes of the connected components. Each stream can be stored in a compressed form
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FIG. 9 – Evolution of the sizes of the connected components

and we can then correlate two streams, in particular two streams of the same TV program but
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at different times. We can then compute the Community Correlation. If the two streams have
approximately the same length, we can display the correlation online. In the final version of
the paper we will give the correlation of two streams on #ONPC.

7 Conclusion

We presented approximation algorithms for streams of tuples of a Datawarehouse and for
streams of edges of a Social graph. The main DC algorithm computes the dynamic communi-
ties of a stream of edges without storing the edges of the graph and we showed that for con-
centrated random graphs with p communities whose degrees follow a power law, the algorithm
is a good approximation of the p communities. A finite stream of edges can be compressed as
the the set of nodes and communities at different time intervals.

In the case of two streams of edges, corresponding to two graphs G1 and G2, we define the
Community Correlation of the two streams as the fraction of the nodes in common communi-
ties. It is the basis for the Integration of two streams of edges and by extension to n streams of
edges. We illustrate this approach with Twitter streams associated with TV programs.
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Résumé
Nous présentons des algorithmes d’approximation pour les réponses à des requêtes ana-

lytiques à l’aide d’un échantillonnage par réservoir pondéré. Nous étudions les réponses aux
requêtes Olap pour un flux de tuples t d’un Entrepôt de données, et la détection de commu-
nautés dans un flux d’arêtes d’un graphe social. Nous montrons que pour un modèle de graphe
dont le degré suit une loi de puissance et qui est concentré, l’algorithme proposé est une bonne
approximation. Bien que nous ne gardions pas les arêtes des graphes, nous approximons les
communautés et leur dynamique. Etant donné deux flux, nous définissons la Corrélation de
Communautés comme la fraction de noeuds communs aux communautés des deux graphes.
Nous approximons cette corrélation et définissons l’intégration approchée de deux flux. Nous
illustrons cette approche en analysant plusieurs flux Twitter associés à des programmes de TV.


