
Testing frequency distributions in a stream1

Claire Mathieu2

IRIF-CNRS3

claire@irif.fr4

Michel de Rougemont5

University Paris II6

IRIF-CNRS7

mdr@irif.fr8

Abstract9

We study how to verify specific frequency distributions when we observe a stream of N data items10

taken from a universe of n distinct items. We introduce the relative Fréchet distance to compare two11

frequency functions in a homogeneous manner. We consider two streaming models: insertions only12

and sliding windows. We present a Tester for a certain class of functions, which decides if f is close13

to g or if f is far from g with high probability, when f is given and g is defined by a stream. If f14

is uniform we show a space Ω(n) lower bound. If f decreases fast enough, we then only use space15

O(log2 n · log logn). The analysis relies on the Spacesaving algorithm [18, 20] and on sampling the16

stream.17

2012 ACM Subject Classification18

Keywords and phrases Verification of a distribution, Property Testing, Frequent items, Fréchet19

distance20

Digital Object Identifier 10.4230/LIPIcs...21

Funding Claire Mathieu: [funding]22

Michel de Rougemont: [funding]23

1 Introduction24

We study streams of data items and the distribution g of frequencies where g(i) is the25

number of occurrences of the ith most frequent item in the stream. Here, we consider a26

stream of length N of elements from a domain U of size n and we want to approximately27

verify whether the frequency g of the stream is close to a fixed distribution f . We may also28

look at two different streams and ask whether their frequencies g1 and g2 are close to each29

other. In practice, of particular interest are settings with single-pass streams and very small30

memory [17]. What kind of properties can we hope to verify if we only allow poly-logarithmic31

space? We first prove an Ω(n) space lower bound on the space of the Tester, theorem 1,32

when f is the uniform distribution. We therefore need some additional conditions on the33

frequency function f .34

The approximation follows the Property Testing framework, where we use the relative35

Fréchet distance between two frequency functions f and g as a new measure of distance.36

Given a stream and a frequency function f which satisfies a certain weak continuity property37

and is decreasing fast enough, we decide in space O(log2 n · log logn) whether the frequency38

g defined by the stream is close to f for the relative Fréchet distance.39

Frequency functions. There are two different ways to study frequency functions. Either40

the function is from U to N+ and gives the frequency of each item, in which case the problem41

is easy; or the function f is from {1, 2, ..n} to N such that f(i) is the frequency of the i-th42

most frequent item; we take the latter viewpoint. A frequency function f is a non-negative43

integer-valued function over a set of elements such that f(i) is the number of occurences of44

the ith most frequent element. The problem is harder as we don’t know which element of45

© ;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:claire@irif.fr
mailto:mdr@irif.fr
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Testing frequency distributions in a stream

U is the i-th most frequent, and, for example, the two streams aaabba and bbbaab that are46

identical up to permuting the items have identical frequency functions even though b has 247

occurrences in the first stream and 4 occurrences in the second stream.48

Relative Fréchet distance. What is the relative Fréchet distance? The classical49

(discrete) Fréchet distance between two discrete distributions, viewed as sequences of points50

{(i, f(i))} and {(i, g(i))} is an absolute distance. It is the minimum distance of a coupling51

between the two sequences. The discrete Fréchet distance between discrete curves has been52

studied, in particular in computational geometry, including in the streaming context [8, 12],53

but with a different oracle model. We generalize this distance to a relative Fréchet distance:54

the distance of the coupling must preserve within (1 + ε1) the distance on the x-axis and55

within (1 + ε2) the distance on the y-axis.56

Additional assumptions. The weak continuity property, called ε-step compatibility,57

assumes that the frequency function f may have discontinuities, i.e. large drops, but no58

double discontinuities. Points which are ε-close on the x-axis are also close on the y-axis.59

We combined two well known techniques: the Spacesaving algorithm [18, 20] which60

deterministically selects the most frequent items approximately and the Minhash technique61

which approximates the low frequencies probabilistically. Our main results are:62

A link between the relative Fréchet distance of two discrete functions which are step-63

compatible, and a separating rectangle, theorem 13,64

A streaming Tester for a step compatible frequency function and the relative Fréchet65

distance, when f is γ-decreasing. The Tester uses O(log2 n · log logn) space, theorem 10.66

In the second section, we present our main definitions. In the third section, we define the67

classical distributions with a compact representation, the Spacesaving algorithms whose fine68

analysis, lemma 21, is in the appendix A.2. In the fourth section, we introduce the relative69

Fréchet distance and the proof of theorem 13 is in the appendix B. In the fifth section we70

present the streaming Tester first for the insertion only model, then for the sliding window71

model.72

1.1 Motivations and comparison with other approaches73

Problems that are hard in the worst-case may be much simpler for inputs which follow74

specific distributions, for example power law distributions. It is therefore important to verify75

if some given data follow certain distributions, when the data arrive in a stream. The area of76

Distribution testing [5] studies this type of problems in general.77

We first work in the insertion model, and then consider the sliding window model with78

insertions and deletions outside a window. We will study the turnstile model [19] with79

insertions and deletions for the bounded deletions model1 from [14] in some later work2.80

Notice that the sliding window model is not a bounded deletion model, as I/D tends to 181

when I goes to ∞.82

In [6], the verification of properties of a stream is studied with streaming interactive83

proofs. In [13], the verification is done efficiently thanks to prior work done by annotating the84

stream in advance in preparation for the task. In our setting, we use the Property Testing85

1 In such a model, the number D of deletions is related to the number I of insertions: D ≤ (1− 1/α)I,
for some constant α ≥ 1.

2 Our study of this model is deferred because the bounded deletions model is studied in [20] but the
algorithm therein has some issues currently in the process of being corrected.



XX:3

framework without any annotations or other additional prior information. We propose this86

setting for the verification of the distribution of frequent items.87

A standard problem in statistics is to check if some observed data, i.e. in the insertion88

only model, approximately fit some statistics F where F (ei) is the frequency of the element89

ei. Let G be the frequency of the elements of the observed data. The standard χ2 test90

computes:91

χ2(F,G) =
n∑
i=1

(F (ei)−G(ei))2/F (ei)

If χ2(F,G) ≤ a, we know that G follows F with confidence 1− α, for example a = 11, 0792

and 1− α = 95%. In this setting, [10] gives an algorithm which uses space O(logN.
√
N) to93

decide if F and G are close or far for the χ2 test. In fact, the AMS-sketch [2] can be adapted94

and requires only O(logn) space.95

In this paper, we study the case when the frequency function g is given by a stream of96

N data items and we want to test if g approximately follows the frequency function f over97

the domain {1, 2, ...n}, in polylogarithmic space and without necessarily knowing the exact98

value of n. For example f might be a Zipf distribution. If we observe sliding windows of the99

stream, the frequency g may be stable in each window, although the most frequent items100

change over time.101

Thus we are interested in making restrictive but reasonable assumptions that will imply102

that we can test in polylogarithmic space. We turn to a measure of proximity between103

distributions that we call relative Fréchet distance. We use the Spacesaving algorithm [18]104

with additional hypothesis on the function g, to be step-compatible and γ-decreasing, in105

order to obtain relative errors on the frequencies, as in [7] to approximate the rank of an106

item. Our main result is a Tester when f follows some continuity property for the relative107

Fréchet distance. If f satisfies a decreasing condition, the Tester uses O(log2 n · log logn)108

space.109

2 Definitions and Main Result110

The SpaceSaving algorithm was introduced in [18] to compute estimates of th frequencies111

of the k most frequent elements in a stream of elements from a universe of size n, using a112

table T with K ≤ n entries. Each table entry consists of an element and a counter (plus113

some auxiliary information), which is a rough estimate of the frequency of the element in the114

stream. The table is kept sorted by counters: c1 ≥ c2 ≥ · · · cK . The SpaceSaving algorithm is115

straightforward: if the next element e of the stream is in T , then the algorithm increments the116

corresponding counter; otherwise, it substitutes e for the element whose counter is minimum117

(in position K), and increments the corresponding counter. Let count(e) be the value of the118

counter of elment e. See Appendix A for details.119

The following additive error result was proved in the original paper. (Note that fi is120

the ith largest frequency whereas ci is the ith largest counter, so they count occurences of121

different elements in general).122

I Lemma 1. [18] Let K denote the size of the table, N denote the length of the stream,123

and cK the variable defined in the Space Saving algorithm. Then for every i ≤ K we have124

|fi − ci| ≤ cK and for every i > K we have fi ≤ cK ; moreover, cK ≤ N/K.125

Here, we would like to leverage the power of the SpaceSaving algorithm to test whether the126

entire distribution of frequencies of the stream approximates a given frequency distribution,127



XX:4 Testing frequency distributions in a stream

with small relative error. For example, this can be used to check whether a stream of graph128

edges defines a graph whose degree sequence is close to a predicted degree sequence.129

First, we need to specify what we mean by “close". To that end, we first define a relative130

distance between points.131

I Definition 2. Let 0 < ε1, ε2 < 1. We say that two non-negative numbers a, b are ε-close,132

and denote it by a 'ε b, if |a − b| ≤ ε · min{a, b}. We say that two points p = (x, y) and133

p′ = (x′, y′) are (ε1, ε2)-close, and denote it by p '(ε1,ε2) p
′, if x 'ε1 x

′ and y 'ε2 y
′.134

2.1 Algorithm 1135

With that, we can describe our streaming algorithm to test whether the frequency distribution136

g defined by the elements of a stream is close to a specified frequency distribution f . Let137

zi = (1 + ε2
1)i for i ≥ 1. We first define a partition of {1, 2, . . . , n} for the frequency function138

f into Boxes [`j , rj ] in Lemma 8 and only consider the zi which are not close to the Boxes139

endpoints. The streaming Algorithm 1 consists of the following three steps in parallel for all140

dlog1+ε1 ne distinct values of i:141

142

1. We sample each element of the stream s to define a substreams si. The sample probability143

is chosen so that (assuming that the frequency distribution g of the elements of stream144

s equals f), in expectation substream si contains Θ(1/ε2
1) elements whose number of145

occurences is greater than f(zi).146

2. We consider two cases, the case when ε2f(zi) ≤ f(n) and we run the SpaceSaving147

algorithm with a table size Ki = O(h(γ, ε1, ε2). logn · log logn), and the case when148

ε2f(zi) > f(n) and we do an exact counting. The two cases are determined by a value149

t0 = n/γlog(1/ε2). In the first case, zi ≤ t0 and in the second case zi > t0.150

Let r be the expected number of elements of si whose number of occurences is greater151

than f(zi), and let cr be the corresponding value of the counter in the table.152

3. We apply a simple Coherence test to check whether point (zi, cr) is close to (t, f(t)) for153

some t.154

155

Finally, the algorithm accepts with probability 1 − δ if and only if the Coherence test156

succeeds for every substream si.157

The frequency function g of the stream s and the reference frequency f are both from158

{1, 2, ..n} to N .159

B Notation 1. Let Ki denote the size of the table used by Algorithm 1 for the substream si.
We set

Ki = 4.zi
ε2.ai

· 2(γ − 1)
2− γ · logn

δ
· (1 + ε1) = O(logn · log logn),

where zi = (1 + ε2
1)i, ai = ε2

1zi/ log logn, γ is such that f and g are γ-decreasing (see160

Definition 9), ε1, ε2 are the Fréchet parameters (see Definition 4), and δ is the desired error161

probability of the Tester (see Definition 5). Let U be the set of elements e and occ(e) is the162

number of occurences of e. For each stream si, the counter cr of the Spacesaving algorithm163

is compared with f(zi) where r = dzi/aie.164

Algorithm 1 gives the complete description.165



XX:5

Tester Algorithm 1 A(ε1, ε2, δ; step-compatible function f)
Data: a stream s from a universe {e1, e2, . . . , en}.
Compute the decomposition of [1, n] into Boxes according to Lemma 8 for f .
for each i = 1, 2, . . . , dlog1+ε1 ne : do

zi ← (1 + ε2
1)i ; Ki ← O(logn · log logn) ;

If zi is not ε2
1-close to a Box endpoint then:

1. Defining substreams ;
ai ← Θ(ε2

1.zi/ log logn) ; hi ← uniform hash function over [1, ai] ;
Let si denote the substream consisting of those elements e s.t. hi(e) = 1 ;
2. Dealing with substreams si in parallel ;
if f(n) < ε2.f(zi) then

on substream si, run SpaceSaving with a table Ti of size Ki

else
on substream si, run exact counting algorithm with a table Ti of size equal to
the number of distinct elements in si.

end
3. Coherence Test ;
r ← dzi/aie ; cr ← the counter at position r of table Ti ;
if cr 6'3.ε2 f(zi) then

break and output NO
end

end
output YES

Algorithm 1: The Streaming Tester

2.2 Analysis of Algorithm 1166

What does this algorithm accomplish? Before we answer that question, we first need to167

define what it means for two functions to be relatively close. We thus introduce the notion168

of relative Fréchet distance between two functions. The (absolute) Fréchet distance is based169

on the notion of coupling, defined in [9] and which we now recall. Here we also define the170

relative length of a coupling.171

I Definition 3. Let f and g be two functions with domain {1, · · · , n}. For 1 ≤ t ≤ n,172

consider the points ut = (t, f(t)) and vt = (t, g(t)). A coupling between f and g is a sequence173

(ua1 , vb1), (ua2 , vb2), · · · , (uam , vbm) such that a1 = 1, b1 = 1, am = n, bm = n, and for all i174

we have ai+1 ∈ {ai, ai + 1} and bi+1 ∈ {bi, bi + 1}. The relative length of the coupling is the175

minimum ε1, ε2 such that for all i we have uai '(ε1,ε2) vbi .176

We now define the relative Fréchet distance.177

I Definition 4. (Relative Fréchet distance) Let f and g be two functions with domain178

{1, · · · , n}. We say that f and g are (ε1, ε2)-close, denoted f ∼(ε1,ε2) g, if there exists a179

coupling of relative length at most ε1, ε2.180

Note that unlike the absolute Fréchet distance, the relative Fréchet distance is invariant181

by scaling.182

The relation f ∼(ε1,ε2) g is reflexive and symmetric. The relative Fréchet distance differs183

from the absolute Fréchet distance. For example, consider two families of step functions,184



XX:6 Testing frequency distributions in a stream

depending on an integer parameter a:185

f(i) =
{

2a if i ≤ 10a
a if i > 10a

g(i) =
{

2a if i ≤ 11a
a if i > 11a

(1)186

The absolute Frechet distance between f and g is a which is arbitrary large, whereas the187

relative Frechet distance is ε = 10%, independent of a.188

The notion of a Property Tester goes back to [4] and the streaming version to [11]. We189

use the tolerant version of a Tester.190

I Definition 5. Let ε1, ε2, δ ∈ (0, 1). A streaming δ-Tester is a streaming algorithm A which,191

given a function f over {1, 2, · · · , n}, takes as input a stream of elements from a universe of192

size n defining a frequency function g such that g(j) is the number of occurrences of the jth193

most frequent element in the stream and:194

if f = g then A accepts with probability at least 1− δ; and195

if g is (10ε1, 10ε2)-far from f for the relative Fréchet distance then A rejects with probability196

at least 1− 4δ.197

A more general Tolerant δ-Tester replaces the first condition with the tolerant version: if g198

is (ε1/10, ε2/10)-close to f for the relative Fréchet distance then A accepts with probability199

at least 1 − δ. We want Algorithm 1 to be a streaming δ-Tester. For that, we need two200

assumptions on the frequency distributions being tested: they must be step-compatible and201

γ-decreasing, two notions that we now define.202

I Definition 6. (Rectangle and Step compatibility).203

Let 0 < ε1, ε2 < 1. An (ε1, ε2)-rectangle is a set R ⊆ [1, n] × [0,∞] with bottom left204

corner (x, y) and top right corner (x(1 + ε1), y(1 + ε2)). A function f with domain {1, · · · , n}205

is (ε1, ε2)-step-compatible if for every t, 1 ≤ t ≤ n, there exists an (ε1, ε2)-rectangle R206

containing (t, f(t)) and all the points of f within the horizontal span of R.207

Zipf distributions assume fi = c
iα for α > 0, and power laws assume α > 1. We ignore208

rounding problems as each fi is an integer value. Power laws and Zipf distributions are209

(ε, ε′)-step-compatible whereas the geometric distribution is not step-compatible, as it has210

large consecutive discontinuities.211

I Lemma 7. If f is the frequency function of a Zipf distribution of parameter α, then f is212

(ε/α, ε)-step-compatible.213

Proof. Let us find j > i such that f(j) ' f(i)/1 + ε. We have:

f(j) = c

jα
' c

iα.(1 + ε)

Then j ' i.(1 + ε)1/α ' i.(1 + ε/α). J214

I Lemma 8. (Step-compatible property).215

Let f be an (ε1, ε2)-step-compatible frequency function. Then there exists a partition of216

{1, 2, . . . , n} into Boxes [`j , rj ] such that for all j:217

`j+1 > (1 + ε1)`j; and218

f(`j) ≤ (1 + 4ε2)f(rj).219

Proof. The intervals are defined in a 2-step process. The first step is greedy: let (xi)i≥1220

denote the sequence of distinct values of d(1 + ε1/3)je and yi = xi+1 − 1 (or yi = n if i is the221

last term of the sequence). Using the fact that f is (ε1, ε2)-step-compatible, let Ri denote222



XX:7

the (ε1, ε2) rectangle containing (xi, f(xi)) and note that Ri must contain (xi+1, f(xi+1)) or223

(xi−1, f(xi−1)) (otherwise its relative horizontal span would be less than (1 + ε1)2 < 1 + ε1),224

so it intersects Ri−1 or Ri+1. Extract a maximal subsequence Ri1 , Ri2 , Ri3 , · · · of Ri’s225

containing R1 and among which no two intersect. The sequence `j then consists of the left226

endpoints of the rectangles in that subsequence. Finally, we set rj = `j+1 − 1 (except that227

we set rj = n for the last interval).228

Each interval [`j , rj ] contains at least the horizontal span of a rectangle Rij of the229

subsequence, so the first property holds: `j+1 > (1 + ε1)`j . Consider the rightmost rectangle230

Rk that intersects Rij , and the leftmost rectangle Rk′ that intersects Rij . All the points231

(t, f(t)) with `j ≤ t ≤ rj are in the horizontal span of Rk′ ∪Rij ∪Rk. The vertical span is232

therefore at most that of 3 (ε1, ε2) rectangles, i.e. f(`j) ≤ (1+ε2)3f(rj) < (1+4ε2)f(rj). J233

I Definition 9. (γ-decreasing) Let γ > 1. A non-increasing function f with domain
{1, · · · , n} is γ-decreasing if for all t such that 1 ≤ γ.t ≤ n:

f(dγ.te) ≤ f(t)/2

234

Notice that Zipf distributions are γ-decreasing. We detail some key properties of step-235

compatible functions in section 3.1 and of γ-decreasing functions in section 3.2. We then236

obtain the main result for the Insertion model:237

238

I Theorem 10. Let ε1, ε2, δ, a frequency function f and a stream s with insertions only239

be given. If the distributions f and g are (3ε1, ε2)-step-compatible and γ-decreasing then240

Algorithm A(s, ε1, ε2, f) is a streaming 4δ-Tester that uses space O(log2 n · log logn).241

3 Properties of the Step-compatible and γ-decreasing functions242

The relation 'ε is reflexive and symmetric and satisfies a variant of the triangle inequality:
a 'ε b and b 'ε′ c imply that a '(ε+ε′+εε′) c. Indeed, the largest gap between a, c is when
the a < b < c and the error is:

(b− a) + (c− b) ≤ ε.a+ ε.b ≤ ε.a+ ε′(a+ ε.a) ≤ (ε+ ε′ + εε′)a = ((1 + ε)(1 + ε′)− 1)a.

I Lemma 11. Let pj = (xj , yj) be a sequence of j0 points such that pj '(εj ,ηj) pj+1 for
j = 1, 2, . . . j0 − 1. Then

p1 '(
∏

1≤j≤j0
(1+εj)−1,

∏
1≤j≤j0

(1+ηj)−1) pj0 .

If
∑
j εj < 1 and

∑
j ηj < 1 then

p1 '(2
∑

1≤j≤j0
εj ,2

∑
1≤j≤j0

ηj) pj0 .

Proof. Induction on j0 and standard approximation. J243

3.1 Properties of step-compatible functions, and Separating rectangles244

We will show that functions that are far according to the relative Frechet distance are245

separated by a certain type of rectangle defined as follows.246



XX:8 Testing frequency distributions in a stream

I Definition 12. We say that such a rectangle separates two functions f and g with domain
{1, . . . , n} if

max
j∈(x,x(1+ε1))

g(j) ≤ y and y(1 + ε2) ≤ min
j∈(x,x(1+ε1))

f(j)

or conversely (exchanging f and g).247

In other words, f is below the rectangle R and g is above R. No points (t, f(t)) of f or248

(t, g(t)) of g is in R.249

Notice that the point (t, f(t)) is the left of the rectangle for t = 1 and at the right of the250

rectangle for t = n. We now present a central result used by the analysis of the streaming251

Tester of the subsequent section.252

I Theorem 13 (Separation theorem). If f and g are (3ε1, ε2)-step-compatible and f 6∼(3ε1,3ε2)253

g then there exists an (ε1, ε2)-rectangle which separates f and g.254

The proof is in the appendix B.255

3.2 Properties of γ-decreasing functions256

Let F res(k) =
∑
k+1≤i≤n fi be the tail of the frequency distribution.257

I Lemma 14. If f is γ-decreasing then

ε

k
.F res(k) ≤ ε.fk.

2(γ − 1)
2− γ

Proof. If f is γ-decreasing then for j ≥ 0:

i=γj+1.k∑
i>γj .k

fi ≤
fk · (γj+1.k − γj .k)

2j

Hence:

F res(k) =
∑

k+1≤i≤n
fi ≤ k.fk.(γ − 1).

∑
j≥0

γj

2j = k.fk.(γ − 1). 1
1− γ/2 = k.fk.

2(γ − 1)
2− γ

ε

k
.F res(k) ≤ ε.fk.

2(γ − 1)
2− γ

J258

We use this bound in section 4.1 to obtain a relative error on the estimation of the Top259

frequencies.260

4 Frequency distributions, the Spacesaving algorithms and a simple261

lower bound262

Given a stream of N elements drawn from a universe U of size n, let fj denote the frequency263

(number of occurences) of the jth most frequent element, so that f1 ≥ f2 ≥ · · · ≥ fn ≥ 0264

and
∑n
i=1 fj = N . For example, in the case of a graph given as a stream of m edges, i.e. a265

stream of pairs of vertices, we can define the elements of the stream as the vertices, so the266

length of the stream is N = 2m, and (fj) is the degree sequence of the graph.267

We are particularly interested in frequencies which have a compact representation. For268

example, uniform frequencies where fi = N/n, Zipf frequencies (also called heavy-tailed, or269



XX:9

Frequency of the Top k elements for K = O(k/ε) Error bound
SpaceSaving[18] |fi − ci| ≤ 2ε.N
SpaceSaving with strong error Bounds[3] |fi − ci| ≤ ε

k .F
res(k)

SpaceSaving for γ − decreasing frequency functions |fi − ci| ≤ ε.fk. 2(γ−1)
2−γ ≤ ε.fi.

2(γ−1)
2−γ

Table 1 Error bounds for the top k elements, i ≤ k, K = O(k/ε)

scale-free, or power-law) with parameter α, where fi = cN/iα with c = 1/
∑

1≤j≤n(1/jα),270

and geometric frequencies where fi = cN/2i with c = 1/
∑

1≤j≤n 1/2j .271

For Zipf frequencies with parameter α the maximum frequency is f1 = Θ(N) if α > 1272

and f1 = Θ(N/ logn) if α = 1.273

4.1 The Spacesaving algorithms274

The classical Spacesaving [18] gives a solution to the Top k most frequent elements for the
insertion only model and an additive error. In [3] a better bound is given, which is a lower
bound in the worst-case. We need however to obtain the Top k elements with a relative error
and show that it is possible for γ-decreasing frequency functions f , in section A.1 of the
appendix A. We can summarize the various previous additive bounds in table 1. If we take
the strong bound from [3] and combine it with Lemma 14 of the previous section, we obtain
the relative error bound, where for the top-k frequencies fi where i ≤ k:

|fi − ci| ≤ ε.fk.
2(γ − 1)

2− γ ≤ ε.fi.
2(γ − 1)

2− γ

The Spacesaving± [20] generalizes for the insertion and α-bounded deletion model. We275

will analyse it in some other work. We consider another model, the sliding window model,276

an insertion and window deletion model which is not a bounded deletion model in section277

A.5 of the appendix A. In both cases, we have a solution to the Top-k problem, the building278

block used by the Tester.279

4.2 A lower bound when f is uniform280

A classical observation is that in the worst-case, the approximation of F∞ = Maxj fj requires281

space Ω(n), using a standard reduction from Communication Complexity. [15] reduces the282

Unique-Disjointness problem for x, y ∈ {0, 1}n to the approximation of F∞ on a stream s283

. Another standard problem which requires space Ω(n) for the One-way Communication284

complexity is the Index(x, y) problem, see [16], where x ∈ {0, 1}n, y ∈ {1, 2, ...n} and the285

goal is to compute xy ∈ {0, 1}. We write Index(x, y) = xy, as Alice holds x of length n, Bob286

holds y of length logn and only Alice can send information to Bob. Notice that we can287

assume that |{i : xi = 1}| = O(n) for example n/2, otherwise Alice would directly send288

these positions to Bob.289

We show in the next result a simple reduction from the Index problem to the the streaming290

Test problem which given f and a stream s over the items a1, ...an, which defines a frequency291

g, decides: either f ∼ε/10 g or f 6∼10ε g with h.p.292

B Theorem 1. The streaming Test problem requires space Ω(n).293



XX:10 Testing frequency distributions in a stream

Proof. Consider the following reduction from Index to Test. Given x ∈ {0, 1}n and y ∈294

{1, 2, ...n} the inputs to Index, let f be the uniform distribution on the ai such that xi = 1.295

The stream s is determined by the elements of x of weight 1, followed by the element ay296

associated with y, i.e. ai1 , ...aik where xij = 1 and k = O(n), followed by ay.297

If Index(x, y) = 1 then the relative frequency g has an element of frequency 2/k. The298

point (1, 1/k) of f is far from the closest point (1, 2/k) of g. Hence f 6∼10ε g.299

If Index(x, y) = 0 then g is uniform over k + 1 elements. The points (i, 1/k) of f for300

i = 1, 2...k are at relative distance 1/k−1/(k+1)
1/k = 1/(k + 1) from the closest point (i, 1/k + 1)301

of g for i = 1, 2...k. The point (k + 1, 1/(k + 1)) of g is at relative distance (1/k, 1/(k + 1))302

from the point (k, 1/k) of f . Hence f ∼ε/10 g for n large enough.303

We reduced a Yes-instance to Index to a No-instance of Test, and a No-instance of Index304

to a Yes-instance of Test.305

As Index requires space Ω(n), so does the streaming Test problem. J306

5 Analysis of Algorithm 1, a Streaming Tester307

A stream s of N elements of a universe {e1, e2, · · · , en} of size n determines an integer308

frequency function g whose domain is {1, ...n}, such that g(i) is the number of occurences of309

the ith most frequent element in the stream. Suppose we are given a frequency function f310

whose domain is {1, 2, · · · , n} in a compact form, such that Heavy-tail, power-law or Zipf.311

We want to verify that the frequencies of elements in a stream approximately follows this312

law. We propose the following streaming Tester for this problem.313

5.1 Analysis of the space used by Algorithm 1314

If f is γ-decreasing, we can write: f(γ.t) < f(t)/2. Hence for α = log(1/ε2) we have

f(γα.t) < f(t)/2α = ε2.f(t)

For n = γα.t0, we find the threshold t0 = n/γlog(1/ε2). For zi ≤ t0, we run the Spacesaving315

with a table of size Ki = 4.zi
ε2.ai

· 2(γ−1)
2−γ ·

logn
δ and for zi > t0 we do an exact counting.316

I Lemma 15. Algorithm 1 uses O((logn)2 · log logn) space.317

Proof. For zi ≤ t0, we run the Spacesaving with a table of sizeKi where ai = Θ(ε2
1.zi/ log logn).

Hence:

Ki = 4.zi
ε2.ai

· 2(γ − 1)
2− γ · logn

δ
≤ 4 · log logn

ε2.ε2
1

· 2(γ − 1)
2− γ · logn

δ
= O(logn · log logn)

When zi > t0 = n/γlog(1/ε2), we do an exact counting. In this case, Ki = n/ai. Therefore

Ki = n/ai = n/ε2
1.zi ≤ n/ε2

1.t0 < γlog(1/ε2)/ε2
1

In this case, Ki only depends on the parameters ε1, ε2 and γ and is independent of n.318

Since we run the algorithm in parallel for log1+ε1 n values of zi, for fixed values of ε1, ε2319

and γ the total space used is O((logn)2 · log logn). J320

5.2 Analysis of the error probability of Algorithm 1321

B Notation 2. Let ẽi be the element whose counter value is cr, i.e. count(ẽi) = cr and e′i the322

element whose rank is r in the stream si, for the frequency function gi, i.e. occ(e′i) = gi(r) or323



XX:11

ranksi(e′i) = r. The functions occ, count, rank are from U to N . We assume that tie-breaking324

rules are consistent over s and the substreams si: U = {e1, e2, · · · , en} and if two elements325

ej and ek, with j < k, have the same number of occurrences, then ranks(ej) < ranks(ek)326

and ranksi(ej) < ranksi(ek) for all substreams.327

We recall the following classic Hoeffding probabilistic bound.328

I Lemma 16. Let X =
∑p
j=1Xi where Xj = 1 with probability qj and Xj = 0 with probability

1− qj, and the Xj’s are independent. Let µ = IE(X). Then for all 0 < β < 1 we have

Pr(|X − µ| > βµ) ≤ 2e−µβ
2/3.

We now prove the probabilistic Lemma 17, which analyzes the sampling that is used to329

create the substram si and relates e′i to zi. This depends on the sampling process alone and330

not on the Spacesaving algorithm and analysis. The main Lemma 18 guarantees an error331

bound on Spacesaving on each si with high probability.332

I Lemma 17. Recall that each element is kept in substream si with probability 1/ai and that
e′i denotes the element with rank zi/ai in substream si (when sorted in non-increasing order
of number of occurences): ranksi(e′i) = zi/ai. Then, the rank of e′i in stream s (when sorted
in non-increasing order of number of occurences) satisfies

Pr(zi(1− ε2
1) ≤ ranks(e′i) ≤ zi(1 + ε2

1)) ≥ 1− 4δ/ logn.

Moreover, if f = g then f(zi) ∼ε2 occ(e′i).333

Proof. By definition of e′i, the rank of occ(e′i) in the substream si equals r = zi/ai. We will334

prove the following: With probability at least 1− 4δ/ logn, the following properties hold:335

1. The number of elements that appear in si and have rank less than zi(1− ε2
1) in s is less336

than zi/ai337

2. The number of elements that appear in si and have rank less than zi(1 + ε2
1) in s is more338

than zi/ai339

This will imply the Lemma.340

For the first item, we apply Lemma 16 with X denoting the number of elements that341

appear in si and have rank less than p = zi(1 − ε2
1) in s, so that Xj = 1 if and only if342

the element of rank j ≤ zi(1 − ε2
1) in s appears in si. We have µ = zi(1 − ε2

1)/ai. We set343

β = ε2
1/(1− ε2

1). We obtain that the probability that the statement does not hold is at most344

2exp(− ziε
2
1

3ai(1−ε2
1) ) ≤ 2exp(− ziε

2
1

3ai(1+ε2
1) ).345

For the second item, we apply Lemma 16 with X denoting the number of elements that346

appear in si and have rank less than p = zi(1 + ε2
1) in s, so that Xj = 1 if and only if347

the element of rank j ≤ zi(1 + ε2
1) in s appears in si. We have µ = zi(1 + ε2

1)/ai. We set348

β = ε2
1

(1+ε2
1) . We obtain that the probability that the statement does not hold is at most349

2exp(− ziε
2
1

3ai(1+ε2
1) ).350

By the union bound, the probability that the two statements do not both hold is bounded351

by 4exp(− ziε
2
1

3ai(1+ε2
1) ). Let ai = ε2

1zi/(6 ln((lnn)/δ)). Then this probability is at most 4δ/ lnn.352

Since f = g and zi is not close to one of the endpoints of the boxes of f , we also have353

f(zi) ∼ε2 occ(e′i). J354

Now we turn to the analysis of the SpaceSaving algorithm.355



XX:12 Testing frequency distributions in a stream

I Lemma 18. Assume that g is step-compatible and γ-decreasing. Consider Algorithm 1
and recall that Ki = 4(zi/ai) · 2(γ−1)

2−γ · (1− ε
2
1) · (1 + ε2) · logn

ε2δ
. We have:

Pr[cKi ≤ ε2.g(zi)] ≥ 1− 5δ/ logn.

Proof. Let gi be the frequency function of substream i. For table Ti of size Ki used by the356

algorithm. Let ni denote the number of distinct elements in stream si. Then the domain357

of gi is [1, ni], and ni is a random variable with expectation equal to n/ai. Let Ni denote358

the length of substream si: we have Ni =
∑x=ni
x=1 gi(x). Let Gi(u) =

∑u
j=1 gi(j) denote the359

cumulative frequency, and Gres(u)
i =

∑ni
j=u+1 gi(j). Let ẑi = zi/ai. We apply Lemma 21 to360

table Ti, using u = ẑi and noting that Ki − 2ẑi > Ki/2:361

cKi ≤ min
u<Ki/2

G
res(u)
i

K − 2u ≤
∑ni

ẑi+1 gi(x)
Ki − 2ẑi

≤ 2.
Ki

ni∑
ẑi+1

gi(x). (2)362

363

As in Lemma 17, let e′i denote the element of substream such that ranksi(e′i) = zi/ai. We
have:

ni∑
ẑi+1

gi(x) =
n∑

y=ranks(e′i)+1

g(y)1(the element of s with rank y is in si).

Let A denote the following event:

ranks(e′i) ≥ zi(1− ε2
1)

Assume that A holds. Then
ni∑
ẑi+1

gi(x) ≤
n∑

y=zi(1−ε2
1)+1

g(y)1(the element of s with rank y is in si)

Observe that the value of the right-hand side is determined by which elements of s are put364

in si, among the ones with ranks greater than zi(1 − ε2
1). Also observe that event A is365

determined by how many elements of s are put in si, among the ones with ranks smaller366

than or equal to zi(1 − ε2
1). Thus the expression in the right-hand side is independent of367

event A, and we can write:368

IE[
∑

ẑi<x≤ni

gi(x)|A] ≤ IE[
n∑

y=zi(1−ε2
1)+1

g(y)1(the element of s with rank y is in si)|A]369

= IE[
n∑

y=zi(1−ε2
1)+1

g(y)1(the element of s with rank y is in si)]370

= 1
ai

n∑
y=zi(1−ε2

1)+1

g(y)371

Now, since g is γ-decreasing, applying Lemma 14 to g(zi(1− ε2
1)) and rewriting, we have:372

n∑
y=zi(1−ε2

1)+1

g(y) ≤ 2(γ − 1)
2− γ .zi(1− ε2

1).g(zi(1− ε2
1)) (3)373

374



XX:13

Since zi is not close to a Box endpoint of g, by Lemma 8 we have

g(zi(1− ε2
1)) ≤ g(zi)(1 + ε2).

Combining the inequalities (2) and (3) gives:375

IE[cKi |A] ≤ 2
Ki
· 1
ai
· 2(γ − 1)

2− γ zi(1− ε2
1) · g(zi)(1 + ε2).

As Ki = 4(zi/ai) · 2(γ−1)
2−γ · (1− ε

2
1) · (1 + ε2) · logn

ε2δ
, we have:376

IE[cKi |A] ≤ δ

logn.ε2.g(zi)

We use Markov’s inequality to conclude that, conditioned on event A we have:

Pr(cKi ≤
logn
δ
· IE[cKi |A] | A] ≥ 1− δ/ logn.

By Lemma 17 event A has probability at least 1− 4δ/ logn. We conclude that

Pr[cKi ≤ ε2.g(zi))] ≥ (1− 4δ/ logn)(1− δ/ logn) ≥ 1− 5δ/ logn.

J377

We can now prove our main Theorem:378

B Theorem 10. Let ε1, ε2, δ, a frequency function f and a stream s with insertions only379

be given. If the distributions f and g are (3ε1, ε2)-step-compatible and γ-decreasing then380

Algorithm A(s, ε1, ε2, f) is a streaming 4δ-Tester that uses space O(log2 n · log logn).381

Proof. First, we assume that f = g and aim to prove that the algorithm outputs YES with382

probability 1−O(δ). To that end, for each i such that zi is not ε2
1-close to a Box endpoint,383

we will prove that with probability at least 1−O(δ/ logn) we have |g(zi)− cr| ≤ 3ε2g(zi),384

and then apply the union bound. We conclude that cr '3ε2 f(zj) and the test is positive385

with high probability.386

Focus on one value of i such that zi is not ε2
1-close to a Box endpoint of f , and consider387

the substream si. We first write:388

|g(zi)− cr| ≤ |g(zi)− occ(e′i)|+ |occ(e′i)− count(e′i)|+ |count(e′i)− count(ẽi)| (4)389

and analyze the right-hand side term by term.390

First we will prove that with probability 1− 4δ/ logn we have391

|g(zi)− occ(e′i)| ≤ ε2g(zi). (5)392

To that end, we let I = [zi/(1 + ε2
1), zi(1 + ε2

1)]. Since g is step-compatible and zi it is not393

ε2
1-close to a Box endpoint, g is near-constant inside the entirety of interval I: the maximum394

exceeds the minimum by a (1 + ε2) factor at most. By Lemma 17, with probability at least395

1− 4δ/ logn we have that ranks(e′i) is inside I, hence Equation 5.396

Secondly, we observe that by Property 3 of Spacesaving (see page 19),397

|occ(e′i)− count(e′i)| ≤ cKi . (6)398

Thirdly, we will argue that399

|count(e′i)− count(ẽi)| ≤ cKi . (7)400



XX:14 Testing frequency distributions in a stream

To that end, we refer the reader to Figure 1. By Property 3, for any element e of si we401

have occ(e) ≤ count(e) ≤ occ(e) + cKi , so when we plot the points (occ(e), count(e)) for the402

elements occuring in stream si, all points are inside the strip of equation x ≤ y ≤ x+ cKi .403

Consider the point (occ(e′i), count(ẽi)). We partition the strip into three parts (see Figure 1):404

1. P1 consisting of the points (x, y) such that x > count(ẽi). Since ẽi has rank r according405

to count, there are at most r − 1 points in P1.406

2. P2 consisting of the points (x, y) such that x < count(ẽi) − cKi . Since ẽi has rank r407

according to count, there are fewer than ni − r where ni is the number of elements in the408

stream si.409

3. P3 consisting of the rest. All points of P1 have occ value larger than all points of P3, and410

all points of P2 have occ value smaller than all points of P3.411

Recall that e′i has rank r according to occ. Thus the point (occ(e′i), count(ẽi)) cannot be in412

P1 nor in P2. This implies that e′i is in P3, hence Equation 7.

Frequencies	

Counters	

Count(	ei	)=cr	

Δ	

֮	

			occ(	ei’	)=fr	

P1	

P3	

P2	

Figure 1 Counters and Frequencies for a stream si. The error ∆ = cKi and |occ(e′
i)−count(ẽi)| <

cKi .

413

Finally, we apply Lemma 18: with probability at least 1−5δ/ logn we have cKi ≤ ε2g(zi).414

Combining with Equations 4,5,6 and 7 we obtain that with probability at least 1− 9δ/ logn415

we have |g(zi)− occ(e′i)| ≤ 3ε2g(zi). By the union bound, with probability at least 1−O(δ)416

test test is positive and Algorithm 1 outputs YES, as desired.417

Assume that g is far from f , i.e. f 6∼(20ε1,20ε2) g. By Theorem 13 there exists a separating418

rectangle R = [b, b(1 + 6ε1)] ∗ [c, c(1 + 6ε2)] which separates f from g.419

Let j be the smallest integer such that b(1 + 3.ε1) < zj = (1 + ε2
1)j . Consider the streams420

sj or sj−1 or sj+1 so that zj avoids the limits of the Boxes of f and g.421

As the relative width (1 + 3ε1) is larger than (1 + ε2
1), the point zj is close to the center422

on the x-axis of the separating rectangle R. Consider the two cases, f is above the rectangle423

(case 1) or f is below the rectangle (case 2).424



XX:15

• Assume that g is below R and f is above R (case 1). The value cr is the count of an
element ẽj which with high probability is close to occ(e′j) for an element e′j of the stream sj .
The triangle inequality gives:

|cr − f(zj)| ≥ |occ(e′j)− f(zj)| − |occ(e′j)− cr|

By equations ( 6 ) and (7 ): |occ(e′j)−cr| ≤ |occ(e′i)−count(e′i)|+|count(e′i)−count(ẽi)| ≤
2.cKi and by Lemma 18 with high probability:

|occ(e′j)− cr| ≤ 2ε2.g(zj)

Because g is below the rectangle R, then |occ(e′j)− f(zj)| ≥ 6ε2.g(zj). Then with high
probability:

|cr − f(zj)| ≥ 6ε2.g(zj)− 2ε2.g(zj) ≥ 4ε2.g(zj) ≥ 3ε2.cr

Hence cr 6'3ε2 f(zj) with high probability as cr ≤ f(zj), so the algorithm will reject, as425

desired.426

• Assume that f is below R and g is above R (case 2). Select the position of the427

separating rectangle R = [b, b.(1 + 6ε1)] ∗ [cL, cL.(1 + 6ε2)] so that the top of the rectangle428

coincides with the bottom of the Box of g(zj). Notice that cL ≥ f(zj). As zj is not close429

to the limits of the Boxes of f and g, we can make the separating rectangle narrower, i.e.430

R′ = [b, b.(1 + ε2
1)] ∗ [cL, cL.(1 + 6ε2)]431

We can therefore write: g(zj) ≤ cL.(1 + 6ε2).(1 + ε2) ' cL.(1 + 7ε2). Hence:432

−2ε2.g(zj) ≥ −2ε2.cL.(1 + 7ε2) (8)433

The previous triangle inequality gives:

|cr − f(zj)| ≥ |occ(e′j)− f(zj)| − |occ(e′j)− cr|

As |occ(e′j)− cr| ≤ 2.ε2.g(zj) by Lemma 18 with high probability as in case 1, and f is below
the rectangle R′, we can then bound |occ(e′j)− f(zj)| ≥ 6ε2.cL. Then, with high probability,
using the inequality (8):

|cr − f(zj)| ≥ 6ε2.cL − 2ε2.g(zj) ≥ 6ε2.cL − 2ε2.cL.(1 + 7ε2) ≥ 3ε2.cL ≥ 3ε2.f(zj)

Hence cr 6'3ε2 f(zj) with high probability as cr ≥ f(zj), so the algorithm will reject, as434

desired.435

J436

5.3 Streaming δ-Tester for sliding windows437

Theorem 10 can be extended to the sliding windows model defined in the Appendix A.5. We438

want to test if the last window defined by the parameters λ,∆ follows a frequency function f .439

I Corollary 19. If f and g are (3ε1, ε2)-step-compatible and γ-decreasing in each window, then440

Algorithm A(s, ε1, ε2, f) is a streaming 4δ-Tester which uses uses space O(log2 n · log logn).441

Proof. As f is γ-decreasing, we apply Lemma 14 to the Spacesaving version of the sliding442

window (see Appendix A.5) and obtain the relative error |fk − ck| ≤ ε.fk.
2(γ−1)

2−γ . Both443

Lemmas 17 on the sampling and 18 on Spacesaving generalize. Hence the main Theorem in444

section 5.2 also applies. J445



XX:16 Testing frequency distributions in a stream

6 Conclusion446

We introduced a scale free distance between two frequency distributions, the relative version447

of the Fréchet distance. We then studied how to verify a frequency distribution g defined by448

a stream of N items among n distinct items. We first proved a Ω(n) lower bound on the449

space required in general. If we assume that the frequency distribution f and the frequency450

g defined by the stream satisfy a step-compatibility condition and decrease fast enough, we451

presented a Tester that uses O(log2 n · log logn) space. Zipf and Power law distributions are452

both step-compatible and γ-decreasing.453

454

455

References456

1 Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and457

Ke Yi. Mergeable summaries. ACM Transactions on Database Systems, 38(4), 2013.458

2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the459

frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.460

3 Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. Space-optimal heavy461

hitters with strong error bounds. ACM Trans. Database Syst., 35(4), 2010.462

4 Blum Manuel, Luby Michael, and Rubinfeld Ronitt. Self-testing/correcting with applications463

to numerical problems. Journal of Computer and System Sciences, 1993.464

5 Clément L. Canonne. A Survey on Distribution Testing: Your Data is Big. But is it Blue?465

Theory of Computing Library, 2020.466

6 Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh Ven-467

katasubramanian. Verifiable stream computation and arthur–merlin communication. SIAM468

Journal on Computing, 48(4):1265–1299, 2019.469

7 Graham Cormode, Zohar S. Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý. Relative470

error streaming quantiles. JACM, abs/2004.01668, 2023.471

8 Anne Driemel, Ioannis Psarros, and Melanie Schmidt. Sublinear data structures for short472

frechet queries. CoRR, abs/1907.04420, 2019.473

9 Thomas Eiter and Heikki Mannila. Computing discrete frechet distance. In Tech. Report474

CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.475

10 Emily Farrow, Junbo Li, Farhan Zaki, and Ashwin Lall. Accessible streaming algorithms for476

the chi-square test. In SSDBM. Association for Computing Machinery, 2020.477

11 Joan Feigenbaum, Sampath Kannan, Martin J. Strauss, and Mahesh Viswanathan. Testing478

and spot-checking of data streams. Algorithmica, 34(1):67, 2002.479

12 Arnold Filtser and Omrit Filtser. Static and streaming data structures for fréchet distance480

queries. CoRR, abs/2007.10898, 2020.481

13 Chris Hickey and Graham Cormode. Cheap checking for cloud computing: Statistical analysis482

via annotated data streams. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of483

the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84484

of Proceedings of Machine Learning Research, pages 1318–1326. PMLR, 2018.485

14 Rajesh Jayaram and David P. Woodruff. Data streams with bounded deletions. In Proceedings486

of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,487

PODS ’18, page 341?354. Association for Computing Machinery, 2018.488

15 Akshay Kamath, Eric Price, and David P. Woodruff. A simple proof of a new set disjointness489

with applications to data streams. In Proceedings of the 36th Computational Complexity490

Conference, 2021.491

16 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,492

1996.493



XX:17

17 Gurmeet Singh Manku and Rajeev Motwani. Chapter 31 - approximate frequency counts over494

data streams. In Philip A. Bernstein, Yannis E. Ioannidis, Raghu Ramakrishnan, and Dimitris495

Papadias, editors, VLDB ’02: Proceedings of the 28th International Conference on Very Large496

Databases, pages 346–357. Morgan Kaufmann, San Francisco, 2002.497

18 Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of frequent498

and top-k elements in data streams. In Proceedings of the 10th International Conference on499

Database Theory, ICDT’05, pages 398–412. Springer-Verlag, 2005.500

19 Senthilmurugan Muthukrishnan, Martin Strauss, and Xian Zheng. Workload-optimal histo-501

grams on streams. pages 734–745, 07 2005.502

20 Fuheng Zhao, Divyakant Agrawal, Amr El Abbadi, and Ahmed Metwally. Spacesaving±: An503

optimal algorithm for frequency estimation and frequent items in the bounded-deletion model.504

Proc. VLDB Endow., 15(6):1215?1227, 2022.505



XX:18 Testing frequency distributions in a stream

A Appendix A: The Spacesaving algorithms506

A.1 The SpaceSaving algorithm with insertions only [18]507

The SpaceSaving algorithm introduced in [18] computes an approximation of the frequencies508

of the k most frequent items elements in a stream. It uses a table T of triplets T [j] = (e, cj , εj)509

where e ∈ A is an element of the universe A = {e1, e2, · · · , en}, cj ∈ N is a counter approx-510

imating the number of occurences of element e and εj ∈ N , εj < cj is a bound on the error511

between the counter and the correct number of occurences of e in the stream. The table, of512

size K, is ordered by counters: c1 ≥ c2, ... ≥ cK . Assume k < K.513

514

Algorithm Top-k(k,K)
Data: a stream s of length N , from a universe A = {e1, e2, . . . , en}.
T [j]← (−, 0, 0) for every j ∈ [1,K];
while stream S is flowing do

read next element e of S;
if e is in the table T at position j then

increment cj ;
else

Replace T [K] = (e′, cK , εK) by T [K] = (e, cK + 1, cK) ;
Reorder T by non-increasing values of cj ;

end
end
Result: the sequence S of the first k elements

Algorithm 2: The Top-k algorithm

515

B Notation 3. For a table position j ∈ [1,K] and an element e ∈ A, let σ(j) = i if516

T [j] = (e, cj , εj) and the frequency of element e is fi.517

Thus fσ(i) is the frequency associated with the element whose counter is ci. Algorithm Top-k518

guarantees that σ is injective. In the ideal case in which σ(i) = i for all i ∈ [1,K], then T519

contains the K most frequent elements of A, ordered by non-increasing frequency. Algorithm520

Top-k satisfies the following properties:521

1.
∑

1≤j≤K cj = N522

2. For all j ≤ K, εj ≤ cK .523

3. For all j ≤ K, cj − εj ≤ fσ(j) ≤ cj .524

4. For each element e ∈ A not in T , i.e. for any index i /∈ Im(σ): fi ≤ cK .525

The size K of the table can be tuned to provide the approximate Top-k elements or526

the exact Top-k elements, in some special cases. Let S∗ be the set of top k most frequent527

elements. The following Lemma is implicitly present in [18].528

I Lemma 20. (adapted from [18])529

1. (Exact result) If cK ≤ fk − fk+1, then the Top-k algorithm gives the exact solution S∗.530

2. (Approximate result) If cK ≤ ε.fk, then S contains every element ei such that fi ≥531

(1 + ε).fk and no element ei such that fi ≤ (1− ε).fk.532

Proof. Assume cK ≤ fk−fk+1. From property 4, if e ∈ A is not in the table T , its frequency533

fi ≤ cK . As cK ≤ fk − fk+1 < fk, hence fi < fk and e /∈ S∗. Let us show that if e ∈ T − S,534

then e /∈ S∗.535



XX:19

Let i, j two elements of T such that fi > fj + cK . The corresponding counters cσ−1(i)
and cσ−1(j) are in the right order, i.e.

cσ−1(i) > cσ−1(j)

Apply properties 2 and 3:536

cσ−1(i) ≥ fi > fj + cK ≥ fj + εj ≥ cσ−1(j)

If i ∈ {1, 2, ...k} and j /∈ {1, 2, ...k}, then:

fi − fj > fk − fk+1 ≥ cK

Hence the counters cσ−1(1), ....cσ−1(k) are all greater than the counters cσ−1(j) for j > k.537

Hence S = S∗.538

539

Assume cK ≤ ε.fk, the figure 2 shows that if fi < (1− ε)fk then cσ−1(i) is smaller than540

all the counters of elements of S∗, hence i /∈ S. If fj > (1 + ε)fk, then cσ−1(j) is larger than541

all the counters of elements of A− S∗, hence i ∈ S. J542

f1	

Frequencies				

Counters				

fk	 f2	

c1	
c2	

ci	

cK	

(1-ε)fk	 (1+ε)fk	

	fk-ck	 	fk+ck	

Figure 2 Frequencies-Counters relation: for each 1 ≤ k ≤ n, the i-th element of the table T
is (e, ci, εi) where ci is the i-th counter and σ(i) = k. Then fk ≤ ci ≤ fk + εk ≤ fk + cK . By
properties 2 and 3 the points (fk, cσ−1(k)) are above the diagonal and below the diagonal shifted by
cK .

When the table T of size K > k is such that:543

cK ≤ fk − fk+1 (2)544



XX:20 Testing frequency distributions in a stream

Lemma 20 for the condition (2) guarantees that the Top-k algorithm gives an exact solution.545

In fact the k first elements of the table T are in the right order. In the original paper[18] ,546

Lemma 1 bounded the additive error cK using a simple averaging argument.547

Notice that cK ≤ N/K by the uniform bound on the minimum value, hence K = O( 1
ε ),548

then cK ≤ ε.N and the frequency fi can be approximated with an additive error less than549

ε.N . If we want a relative error for the Top-k algorithm, i.e the hypothesis cK ≤ ε.fk of550

lemma 20, we need to use the γ-decreasing hypothesis.551

A.2 A tighter analysis of the SpaceSaving algorithm552

Here, we prove the following improvement to Lemma 1’s bound on cK , which is a special553

case when u = 0. In [3], a specific stream shows that the bound is tight.554

Consider the cumulative distribution of frequencies, denoted by Ft =
∑

1≤i≤t fi and555

F0 = 0 and the residual cumulative distribution of frequencies F res(t) =
∑
t+1≤i≤n fi556

557

I Lemma 21. (inspired from [3]) Let K denote the size of the table and cK be an integer as
defined in the Space Saving algorithm. Then

cK ≤ min
u<K/2

F res(u)

K − 2u

Proof. Let u be an integer in interval [1,K/2[. To prove the Lemma, it suffices to argue
that cK ≤ F res(u)

K−2u . The minimum value cK of the counters is less than the average of the
counters over the interval [u+ 1,K], so (using properties 1 and 3):

cK ≤
∑K
j=u+1 cj

K − u
=
N −

∑u
j=1 cj

K − u
≤
N −

∑u
j=1 fσ(j)

K − u
.

Notice that fσ(1) + fσ(2) + ...fσ(u) ≤ f1 + f2 + ...fu because (fj) is a non-increasing558

sequence.559

Let us prove that for each i,
fσ(i) ≥ fi − cK

For every j ∈ [1, i] we have fj ≤ cσ−1(j) by Property 3. Hence fi = min1≤j≤i fj ≤560

min1≤j≤i cσ−1(j). But by definition of ci, min1≤j≤i cσ−1(j) ≤ ci, and by Property 3 again,561

ci ≤ fσ(i) + cK . Therefore fσ(i) ≥ fi − cK .562

Hence: f1 − cK + f2 − cK + ...fu − cK ≤ fσ(1) + fσ(2) + ...fσ(u) and:

N −
u∑
j=1

fσ(j) ≤ N −
u∑
j=1

fj + u.cK

cK ≤
N −

∑u
j=1 fσ(j)

K − u
≤
N −

∑u
j=1 fj + u.cK

K − u
=
N −

∑u
j=1 fj

K − u
+ u.cK
K − u

cK .
K − 2u
K − u

≤
N −

∑u
j=1 fj

K − u
=

∑n
j=u+1 fj

K − u
= F res(u)

K − u
If u < K/2 then K − 2u > 0:563

cK ≤
F res(u)

K − 2u



XX:21

As this true for all u < K/2, then

cK ≤ min
u<K/2

F res(u)

K − 2u

J564

A.3 Application to Zipf distributions565

Assume a Zipf distribution of parameter α > 1: fi = cN/iα, where c = 1/(
∑n
i=1 1/iα). We566

apply Lemma 21 to upper bound the main uncertainty parameter cK .567

I Lemma 22. Let K denote the size of the table. Then:

cK ≤
Θ(N)
Kα

.

Proof. Since α > 1, we have c = Θ(1) as n→∞.

F res(u) = cN.
n∑

i=u+1

1
iα

∫ n

u+1

dx

xα
≤

n∑
i=u+1

1
iα
≤

∫ n

u

dx

xα

F res(u) ≤ Θ(N)
uα−1

By lemma 21, for u < K/2, cK ≤ F res(u)

K−2u . Hence for u = K/3:

cK ≤
F res(K/3)

K/3 ≤ Θ(N)
Kα

J568

We need to analyse the size of K in the Top-k algorithm 2 as a function of k for Zipf569

distributions.570

fk − fk+1 = cN.( 1
kα
− 1

(k + 1)α ) ' cN.k
α−1

k2α = cN

kα+1

By lemma 1, cK ≤ N
K , the uniform average. If

cK ≤
N

K
≤ cN

kα+1

the condition (2) on fk − fk+1 is guaranteed and we have an exact solution. Hence:

K = Ω(kα+1)

The new analysis of lemma 21 gives a better bound on K.571

I Lemma 23. For the Zipf distribution with parameter α > 1, K = Ω(k1+1/α) guarantees572

an exact solution.573



XX:22 Testing frequency distributions in a stream

Proof. By lemma 22, cK ≤ Θ(N)
Kα hence if:574

cK ≤
Θ(N)
Kα

≤ Θ(N)
kα+1

the condition (2) is guaranteed. Hence

K ≥ Θ(k1+1/α)

J575

A similar bound is given in [18], by arguing that fi < cK for i > K. In particular for
i = K + 1:

fK+1 = cN

(K + 1)α ≤ cK ≤
cN

kα+1

which gives K ≥ Θ(k1+1/α).576

577

For an approximate solution, we take a table T such that:578

cK ≤ ε.fk (2)579

I Lemma 24. For the Zipf distribution with parameter α > 1, K = Ω(k.( 1
ε )1/α) guarantees580

an approximate solution.581

Proof. By lemma 21, cK ≤ Θ(N)
Kα hence if:582

cK ≤
Θ(N)
Kα

≤ ε.fk = ε.cN.
c

kα

the condition (2) is guaranteed. Hence:

K ≥ Ω(k.(1
ε

)1/α)

J583

A.4 The SpaceSaving algorithm ± [20]584

This algorithm introduced in [20] computes an approximation of the frequencies of the k585

most frequent items elements in a stream of insertions and deletions, with the bounded586

deletions hypothesis [14]. If D is the number of deletions and I the number of insertions,587

then D ≤ (1− 1/α)I, for some constant α ≥ 1. We will analyze this model in some other588

publication.589

A.5 The SpaceSaving algorithm for sliding windows590

Given a stream s of items, we may want to test the frequency g in a time interval [τi, τi + ∆]591

of width ∆, where τi is a timestamp, τi+1 = τi + λ and λ, the shift, divides ∆. Assume we592

want to test the frequency g of the last window of the stream. Notice that this model does593

not follow the bounded deletion hypothesis: for the last window, I −D can be small and not594

larger than I/α for some constant α. The error of the SpaceSaving± algorithm accumulates595

for each window over the time and can’t correctly approximate the Top-k elements in the596

last window.597

Suppose without loss of generality that λ = ∆/2 and consider Blocks Bi of the stream598

for the time intervals [τi, τi + λ[. Each window consists of two consecutive Blocks. Assume599



XX:23

the last entry eN ends the Block Bi. We apply the Spacesaving for each Block Bi but only600

keep the last two tables Ti−1 and Ti. The Top-k elements of the last window uses the merge601

of the last two tables, defined below. We then read the next Block Bi+1, construct Ti+1,602

remove Ti−1 and use the merge of Ti and Ti+1, as in [1].603

604

Algorithm Topsw-k(k,K, λ,∆)
Data: a stream S of length N , from a universe A = {e1, e2, . . . , en}.
p = ∆/λ ;
while stream S is flowing do

read next Block Bi+1 of S and build Ti+1 by Spacesaving;
maintain Ti−p+1, ...Ti built by Spacesaving for the previous Blocks ;
when Bi+1 is read, remove the oldest table Ti−p+1 and keep Ti−p, Ti+1;
i=i+1 ;

end
Result: the sequence S of the first k elements of the Merge of the last p tables

Algorithm 3: The Topsw-k algorithm, or SpaceSaving± algorithm

605

Each Block Bi, with Ni elements and a Table Ti of size K satisfies the Spacesaving606

invariants, with the index i: f iσ(j), εij ,cij are the frequency, counter, error of the j-th element607

of the table.608

1.
∑

1≤j≤K c
i
j = Ni609

2. For all j ≤ Ki, εij ≤ cKi .610

3. For all j ≤ Ki, cij − εij ≤ f iσ(j) ≤ c
i
j .611

4. For each element e ∈ A not in Ti, i.e. for any index j /∈ Im(σ): f ij ≤ cKi .612

We can merge Ti and Ti−1 into a large T of size K at most Ki−1 +Ki as follows:613

614

Merge of Ti−1, Ti into T .615

1. for items j both in Ti−1, Ti, cj = ci−1
j + cij and εj = εi−1

j + εij . For all j ≤ K, then616

εj ≤ cKi−1 + cKi .617

2. for items j in Ti and not in Ti−1, cij − εij ≤ fσ(j) ≤ cij + cKi−1618

3. for items j in Ti−1 and not in Ti, ci−1
j − εi−1

j ≤ fσ(j) ≤ ci−1
j + cKi619

4. For each element e ∈ A not in Ti−1 nor in Ti, i.e. for any index j /∈ Im(σ): fj ≤ ci−1
K +ciK .620

Notice that
∑

1≤j≤K cj = Ni−1 +Ni and therefore we satisfy the invariants of a Block621

with different parameters. We can then obtain a result similar to lemma 20.622

I Lemma 25. If cK ≤ ε.fk, then S contains every element ei such that fi ≥ (1 + ε).fk and623

no element ei such that fi ≤ (1− ε).fk.624

Proof. The proof is as in lemma 20, as the new table T , obtained by the merge, follows the625

same invariant conditions, as the Spacesaving algorithm. J626

B Appendix B: proof of the Separation theorem627

We start the proof by establishing the following Lemma.628

I Lemma 26 (Distance lemma). If f and g are two functions describing frequencies and such
that for every point of f , there is a point of g which is (ε1, ε2)-close and conversely. Then

f ∼(ε1,ε2) g



XX:24 Testing frequency distributions in a stream

1 2 3 4

S1

S2

S3

S4

Figure 3 Proof of lemma 26. The thick red edges are the coupling edges.

Proof. Given a point ui = (i, f(i)) of f , we first claim that the set Si of j such that629

vj = (j, g(j)) satisfies vj '(ε1,ε2) ui is an non-empty interval, as shown in figure 3. Indeed, it630

is non-empty by assumption. Let jmin and jmax be its minimum and maximum elements631

respectively. Then for every j ∈ [jmin, jmax], we have i/(1 + ε1) ≤ jmin ≤ j and j ≤632

jmax ≤ i(1 + ε1), so j 'ε1 i; and by monotonicity, f(j) ≤ f(jmin) ≤ (1 + ε2)g(i) and633

g(i)/(1 + ε2) ≤ g(jmax) ≤ g(j), so f(i) 'ε2 g(j), proving the claim.634

Let Si = [`i, ri]. We also claim that the sequence (`i)i and (ri)i are monotone non-635

decreasing. Indeed, assume, for a contradiction, that `i > `i+1. Then i < i+ 1 < `i+1(1 + ε1)636

and i > `i/(1 + ε1) > `i+1/(1 + ε1), so i 'ε1 `i+1; moreover, g(`i+1) ≤ f(i + 1)(1 + ε2) ≤637

f(i)(1 + ε2), and g(`i+1)(1 + ε2) ≥ g(`i)(1 + ε2) ≥ f(i), so ui '(ε1,ε2) v`i+1 , a contradiction.638

The proof of the monotonicity of (ri) is similar.639

Moreover, the collection of intervals (Si)i covers [1, n] because every point of g is (ε1, ε2)-640

close to some point of f .641

The coupling then simply consists of the pairs

{(i, j) : max(`i, ri−1) ≤ j ≤ ri},

in lexicographic order, i.e. the red edges of figure 3. Let us verify that this is a correct642

coupling sequence. Since ri−1 ≤ ri, every i belongs to at least one pair. Every j will appear643

in the pair (i, j) where i is minimum such that ri ≥ j. Such an i exists because every j644

belongs to at least one Si. From one element of the sequence to the next, we either keep645

i unchanged and move from one element of Si to the next element of Si, incrementing the646

count by 1 on g; or we switch from Si to Si+1, incrementing i and possibly incrementing j647

by one as well, in the case in which ri /∈ Si+1. Thus this forms a correct coupling sequence648

such that f ∼(ε1,ε2) g.649

J650

Proof. (Proof of Theorem 13)651

By contraposition of Lemma 26, and up to symmetry between f and g, there exists a652

point u = (i, f(i)) of f such that no point of g is (3ε1, 3ε2)-close to it. All the points of g are653



XX:25

outside the rectangle Rd = [i/(1 + 3ε1), i.(1 + 3ε1)] ∗ [f(i)/(1 + 3ε2), f(i).(1 + 3ε2)] which654

includes the rectangle Rs defined below.655

Since f is (3ε1, ε2)-step-compatible, there exist x, y such that:656

x ≤ i ≤ x.(1 + 3ε1)

y ≤ f(i) ≤ y.(1 + ε2)

and the points of f whose x coordinate is in the interval [x, x.(1 + 3ε1)] have a y coordonate657

in the interval [y, y.(1 + ε2)]. The points are inside this rectangle Rs = [x, x.(1 + 3ε1)] ∗658

[y, y.(1 + ε2)].659

Notice that Rs ⊆ Rd. The points (j, g(j)) are outside Rd and there are two cases: either
the curve g does or does not cross the rectangle Rs. It crosses Rs if there is a point t such
that:

x ≤ t ≤ x.(1 + 3ε1)

g(t) ≤ f(i)/(1 + 3ε2)

f(i).(1 + 3ε2) ≤ g(t− 1)

In the first case, if g does not cross Rs, it is either above or below. Assume it is below,
then the rectangle below Rs in Rd, i.e.

R = [x, x.(1 + 3ε1)] ∗ [y/(1 + 3ε2), y]

is an (ε1, ε2)-rectangle separating f and g. Its relative width is (1 + 3ε1) and its relative660

height is (1 + 3ε2).661

In the second case, if g crosses Rs, then consider the two rectangles R1 above Rs and R2662

below Rs within the span of Rs on each side of t, as shown in figure 4:663

R1 = [x, t) ∗ [y.(1 + ε2), f(i).(1 + 3ε2)]

R2 = [t, x.(1 + 3ε1)] ∗ [y, f(i).(1 + 3ε2)]

Their relative height is larger than (1 + ε2) because f(i).(1 + 3ε2)/y.(1 + ε2) > (1 + 3ε2)/(1 +664

ε2) > (1 + ε2). At least one of them has a relative width larger than (1 + ε1) because the665

product of their relative width is greater then t/x ∗ x.(1 + 3ε1)/t = (1 + 3ε1). At least one of666

the rectangle has a width greater than
√

1 + 3ε1 > 1 + ε1. J667



XX:26 Testing frequency distributions in a stream

i(1+3ε1)i/(1+3ε1)
i

f(i)

x x(1+3ε1)

y

y(1+ε2)

f(i)(1+3ε2)

t

f

g

g

R1

R2

Figure 4 Separating rectangles in theorem 13


	Introduction
	Motivations and comparison with other approaches

	Definitions and Main Result
	Algorithm 1 
	Analysis of Algorithm 1

	Properties of the Step-compatible and -decreasing functions
	Properties of step-compatible functions, and Separating rectangles
	Properties of -decreasing functions

	Frequency distributions, the Spacesaving algorithms and a simple lower bound
	The Spacesaving algorithms
	A lower bound when f is uniform

	Analysis of Algorithm 1, a Streaming Tester
	Analysis of the space used by Algorithm 1 
	Analysis of the error probability of Algorithm 1 
	Streaming -Tester for sliding windows

	Conclusion
	Appendix A: The Spacesaving algorithms
	The SpaceSaving algorithm with insertions only MAE2005 
	A tighter analysis of the SpaceSaving algorithm 
	Application to Zipf distributions
	The SpaceSaving algorithm   Z22 
	The SpaceSaving algorithm for sliding windows 

	Appendix B: proof of the Separation theorem

