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In the theoretical computer science community recently there has been much
interest in proof theory: the study of logics not in terms of their consequence
relations, but in terms of their proofs. The point of interest is not just whether
propositions are provable, but how they are proved, and what mathematical
structure can be given to proofs. This raises the question of which proofs
should be considered equivalent, and which are distinct. Traditional proof
theory answers this with the notions of cut elimination (for sequent calculus)
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and proof normalisation (for natural deduction), which identify proofs by
certain syntactic rules. Typically, the introduction followed by immediate
elimination of a connective is equated with a trivial proof. This kind of
syntactic rule is really justified by the fact that it works: we are left with the
suspicion that there might be another way to do it.

Categorical logic provides an alternative, more mathematical, approach
to the same problem, at least for intuitionistic logic. Here the propositions
and proofs of a logic are taken to be the objects and arrows of a category
respectively, and two proofs are equal if, and only if, the corresponding ar-
rows are forced to be equal by the axioms of category theory. In other words,
the logic is identified with a free category of a certain form, depending on
the connectives of the logic. The connectives are given universal proper-
ties: conjunction as product, disjunction as coproduct and implication as
exponential, for example. Since universal properties characterise objects up
to isomorphism, this gives a more convincing reason for identifying proofs.
Categorical proof theory arises from the observation that the identifications
justified by the category theory are the same as the traditional syntactic
ones.

The aim of this work is to develop a proof theory for rewriting. Our anal-
ogy is this: the elements (terms, strings, etc.) of a rewrite system correspond
to the propositions of a logic, and the rewrite relation ¢ —, s (¢ rewrites in
zero or more steps to s) corresponds to the consequence relation. The ana-
logue of a proof we call a rewrite, and we write a: t = s when « is a rewrite
whose effect is to transform ¢ into s. Just as proofs say how propositions are
proved, so the rewrite « says how ¢ is rewritten to get s. We can think of o as
an algorithm—perhaps as simple as a sequence of instances of rewrite rules—
which expresses the necessary computational information. The questions we
wish to study are: what form do such algorithms take, what mathematical
structure do they have, and when are two of them equal?

The reflexivity and transitivity of the relation —, suggest that we push
our analogy further, and try to develop categorical rewriting. We take the
elements and rewrites of a rewrite system to be the objects and arrows of
a category respectively. Composition of arrows is sequential composition
of rewrites, corresponding to the transitivity of —,, and identity arrows
are “zero-step” rewrites, corresponding to reflexivity. We can then look for
categorical justification of identifications between rewrites. In particular, we
would hope that Seely’s description of S-reduction and n-expansion as unit
and counit of an adjunction [16] would fit this framework.

In this paper we study one particular rewrite system, the simply-typed \-
calculus, in some detail. We define the types and terms in the usual way, and
give a language for rewrites generated from S-reduction and n-expansion by



sequential and parallel composition. We then introduce equations between
rewrites which are motivated by categorical considerations similar to those
of Seely. These equations lead to a simple canonical form for rewrites, which
solves the word problem, and allows us to prove several results about our
system.

Generalising from this example, we then define categorical rewriting by
which we mean a theory of rewriting which concerns not just the relation —,
but the rewrites themselves. Our intention is to axiomatise those categories
which behave like the theory of rewriting considered earlier, independently
of the particular syntax of the A-calculus. Of course we do not want merely
to recapture the usual notions of normal forms, confluence and normali-
sation, but rather to say when these notions interact well with the proof
theory of the rewrites. We show that our main example has extremely good
proof-theoretic properties, and characterise Huet’s long-#n-normal forms [11]
purely categorically.

1.1 Related Work

This work brings together several strands of recent research in theoretical
computer science. The author’s own introduction was via “2-categorical
rewriting” [15, 16] which studies the relationship between rewriting and term
structure. By concentrating on one particular system (the A-calculus) this
paper shows that this technique can lead to greater understanding of impor-
tant languages.

The main content of the paper is the notion of equivalence between
rewrites. Previous work on “strongly equivalent reductions” [14], summarised
in [2, chapter 12|, introduced an equivalence between S-reduction sequences
with rather different motivation. In fact our equivalence agrees with the def-
inition of strong equivalence on S-reductions, and extends it to n-expansions
as well.

Recently there has been much interest in typed A-calculi with n-expansion
[1, 5, 6, 7, 12, 13], which seems to have much better confluence properties
than n-contraction. [7] provides a valuable historical survey including older
references. Of course, the problem with n-expansion is how to avoid the
infinite sequences which arise. Our method is most closely related to that of
[13], which advocates that certain “loops” should be “cut”. Our work can
be interpreted as giving an algebraic method for determining precisely which
loops should be cut, and which represent genuine nontermination.



1.2 The Paper

In section 2 we define the simply-typed 2A-calculus: its types, terms and
rewrites. There are several forms of substitution, and we prove the basic
syntactic properties. In section 3 we introduce the equations on rewrites of
the theory 2-A. We give an axiomatisation and a categorical semantics, and
use the syntax to construct the free model.

In section 4 we solve the word problem for the theory 2-A by choosing a
unique canonical rewrite from each equivalence class. This is the fundamental
result of this paper; unfortunately the proof is long and intricate with a great
many cases. The high points are a form of “cut-elimination” for rewrites,
and the associativity of this “cut” operation.

In section 5 we investigate the relationship between the equational theory
2-\ and the properties of the A-calculus as a rewrite system. We show that
the theory 2-\ agrees with the notion of “strongly equivalent reductions” on
p-rewrites, and extend the “strong Church-Rosser” theorem to our system.
Next we prove a new property we call “mellifluence”, and we characterise the
long-n-normal forms by a property of their rewrites.

Finally in section 6 we take the properties we have proved of the 2\-
calculus as the basic definitions of a categorical theory of rewriting. We
show that in any mellifluent category, we can define notions closely related
to (strong) confluence, (long) normal forms, weak and strong normalisation,
such that weak normalisation implies existence of normal forms, and conflu-
ence implies their uniqueness up to isomorphism.

2 The Simply-Typed 2X-Calculus

The simply-typed 2A-calculus is a language of three syntactic classes, called
types, terms and rewrites. Each term has a context which gives the types
of free variables which might appear in the term, and a type. Each rewrite
has a source term and a target term, which share a common context and
type. These well-formedness conditions are expressed by two judgements:

e ['—1¢: X means that t is a well-formed term of type X in context I.

e ' ~v:t= wu:X means that v is a well-formed rewrite with source ¢
and target u, where ¢ and u are well-formed terms of type X in context
[

The intended interpretation of the language is that the types and terms
are those of the simply-typed A-calculus, and the rewrites are algorithms



which describe a sequence of S-reductions and n-expansions which can be
applied to a term.

2.1 Syntax

Let B be a set of “basic types”, with typical element B. The language is
defined inductively as follows, where (in order to simplify several points)
DeBruijn notation (see [4] or [2, Appendix C]) is used for variables.

Types

X:=B|X—->X

Since this is a simply-typed calculus, a type is built up from basic types using
the — (function space) constructor.
A context I is just a list of types Xy,..., X,,.

Terms

Xi, .., XnkFg X (1 <j<n) (variable)
X,TF¢:Y

TEM: X Y (lambda)
't: X =Y T'Fu: X
F'Htu:Y (aPPIY)

A term t is a term of the simply-typed A-calculus, in DeBruijn notation.



Rewrites

Xi,...,. XpFjig=7:X; (1<j<n) (id)
X, TFy:t=1t:Y

lambd
F'EAM: M= M X =Y (lambda)
FEyit=t: X—>Y I'Fdhu=d: X (apply)
a
CEryd:tu=tu:Y pply
FEyit=t: X TFE6:t =" X
Thyo:t=t" X (compose)
'¢t: X »Y )
eta
Chmp:t=At'1): X > Y
X, IT'Ht:Y TThu: X
’ : (beta)

I'E B (A)u=tu]: Y

Rewrites are built up from S-reduction and n-expansion by sequential and
parallel composition. By a simple induction, for any term I' - ¢: X there is
a rewrite ' =¢: ¢ = ¢: X, which we call an identity rewrite. The notations
t! and t[u] are defined below.

2.2 Substitution

For definiteness, we give our notation for substitution in some detail. The
reader who is unfamiliar with DeBruijn notation should read this carefully,
noting how variable capture and other problems are dealt with.

Terms

Firstly, t" is t with all free variables greater than or equal to n incremented
by one:

L fit1 iz,
7= J otherwise
(tu)" =t"u"

(At)" = A"t
The effect of this operation on terms in context shows that it is a form of

weakening: If Xy,.... X,, F#:Y, 1 <n <m+1and X is a type, then
Xy, 0, X 1, XX, .., X B Y



Next, t[vy, v, ...] is t with v; substituted for j:

j[Ul,Ug,...] = Uy
(tu)[vy,ve,...] =tlvy,va, ... ufvy, ve,...]
(A)[v1,va,...] = Mt[L, v, 05, ...]

for brevity we write t[u] for t[u,1,2,...]. The effect of this on terms in
context shows that it is a form of cut: If Xy,..., X, F¢t: Y and I' - u;: X
for j=1,...,n, then I' Ftluy, ..., u,]: Y.

Lemma 1. Some basic properties of substitution:
1. The identity substitution: ¢[1,2,...] = t.

2. Associativity of term substitution:

tluy, ug, . .. J[v1,ve, ... = tus|vy, ve, ... ], us[vr, va, ... ], .. .]
3. 1] =t.
4. (tug,ug, ... D =t1,ul,ud, . ...

Proof. These results (and the weakening and cut properties above) are all
straightforward structural inductions. O

Rewrites

The operation of incrementing variables extends to rewrites in a straightfor-
ward way:

" {j+1 if > n,
j =

J otherwise
(o) =" "
(M) = Ay
(7:0)" = 7"; 0"
n = T

Btrfu — Bt’“rl,u”

Its effect on rewrites in context is as expected: If Xy,..., X,, Fv:t=u:Y,
1 <n<m+1and X isatype, then Xy,..., X,,_1, X, X,,,..., X;,, Fy": t" =
u": Y.



Substitution extends to rewrites as two distinct operations. Substitution
of rewrites into terms is defined by:

Jlv s -] =
Eu)y e, -1 =t e, - Jubn, e, -
A, 72, 1= ML, 7, ]
giving a cut rule: If Xy,..., X, = ¢:Y and I' = ;1 uy = wf: Xj for j =
L...,n, then T'F t[yy, ..oyl tlug, ..o upn] = tul, ..o ul]: Y.
Substitution of terms into rewrites is defined by

Jlvr, ve, . ] =v;
(v 0)[v1,va, ... ] = y[v1, v, ...] 8v1, 09, ... ]
(AM)[vr, va, ... ] = M[L, 01,0, . ..]
(7; 0)[vr, va, ... ] = y[vr, v, ... ]; 0[vr, v, . . . ]
Nelv1, V2 -] = Mifor 0s,...]
Braulvi, va, - ] = By ot wb,Jufor,vs,en

giving a cut rule: If Xy,..., X, Fy:t=t:Y and I' F u;: X for j =
L,...,n, then T'F ~yluy, ... up]: tug, ... uy] = tug, .. up]: Y

Note that there are three interpretations of t[ug, us, .. .| as a rewrite: the
identity on t[uy, ug, .. .|, the substitution of [uy, us,...] into the identity on ¢
and substitution of identities on [uy, ug, ...] into . A simple induction shows
that these three are equal, so there is no ambiguity.

Lemma 2. Basic properties of substitution of rewrites:

1. Identity substitution: [1,2,...] = .
2. Associativity of term-term-rewrite substitution:

tlug, wo, . [y, vas - - -] = tlua [y, 2, -] w2, -] ]
3. Associativity of term-rewrite-term substitution:

ty1, v, - J[v1, ve, . . ] = v, v, L] 201, U2 ]
4. Associativity of rewrite-term-term substitution:

v[ul,u% .. .]['Ul,'UZ, .. ] = ’}/[Ul[vl,'ljg, .. .],’LLQ[’UI,'UZ, .. .], .. ]

5. (th/la’y?a - ])1 = t1[1a7115 /Y%a - ]
6. v*[1] = 1.
7. (7[“1? U2y - - - ])1 = 71[1a U}, U%, s ]
Proof. Again, these are straightforward structural inductions. O



3 The Theory 2-)\

The theory 2-)\ is an equational theory on the rewrites of the 2A-calculus.
We write it as a judgement:

e 'F~vy=0:t= u: X means that v and ¢ are equivalent in the theory
2-)\, where v and ¢ are well-formed rewrites with source ¢ and target u,
of type X in context I'.

The intention is to axiomatise not when two rewrites have the same effect—
after all, we are only considering equations between rewrites with common
source and target—but when two rewrites might be implemented identically;
for example, a parallel rewrite might be implemented on a sequential machine
in either order. This is an attempt to say when two rewrites represent the
same algorithm.

3.1 The Axiomatisation of 2-)\.

The first axioms need no explanation, they merely formalise what might be
called a 2\-theory: an equivalence which respects the syntactic structure.

FEyit=1t: X

T ThE (reflexivity)
r'Ey=6:t=t: X
TFo=n:t=t:X (symmetzy)
'Fy=6:t=>t: X IFi=et=1t:X (transitivity)
lEy=et=t: X
XThy=9t=t:Y (A-subst)

FEAMy =M M= M X =Y
FEy=9t=t: X->Y I'téi=d:u=u:X
F'Eryd=vd0:tu=tu:Y
FEy=9t=t: X TrH=§t=t" X
CEvo=~50:t=1t"X
The particular axioms which define the theory 2-\ are as follows. Rewrites
J act as left and right identities of composition:
FEyig=t: X
F'Epyv=vy:7=>t: X
FEy:it=75: X
PEyg=vt=7:X

(app-subst)

(;-subst)

(id-1)

(id-r)



Abstraction and application distribute over composition:
X,ITk~y:t=t:Y XTE6:t=1"Y
CEAM A =A(y;0): M= M X - Y
FFy:it=t: X—->Y I'Fy:t'=t": XY
FForu=uv:X TFEW=uX (app-dist)
CE#O); ()= (7;9)(6;0): tu=t"u": Y

(A-dist)

Composition is associative:

FEy:t=t: X TF:t'=t"'X TrRet'=1t":X

CEy(0;e)=(vy;0);e:t =" X (assoc)
n and § commute with rewrites of their subscripts:
FEy:t=t: X —>Y ( )
-na
TEnA D) =yt = AET1): X 5 Y 7
X, TFy:t=t:Y TrF6u=u:X (B-nat)
-na
'k ()‘7) 6; ﬁt’,u’ = ﬁt,u; 7[“]; t,[é] : ()‘t) u = tl[u,] Y
n-expansion followed by g-reduction cancels out:
X,I'Ht: Y (trianglel)
riangle
T F e ABpzy = Mt M= M X — Y &
'Ft: X =Y T'Fu: X )
(triangle2)

FEnouBagy =tu:tu=tu:Y

Lemma 3. Basic properties of the theory, relating the equations to substi-
tution:

1. Substitution into equations: If X;,..., X, F v =4d:¢t = t': Y and
I'Fuj: X for j=1,...,n, then

CEAfur, .o un] = 0[ur, .oy up): tlug, ..o up] = Hug, .y up): Y

2. Substitution of equals for equals: If Xy,..., X, F#: Y and I' F v; =
0j: uj = ui: Xj for j =1,...,n, then

T t[ye, .oy Yn] =01, o0, 00 tug, .. uy] = tuy, ... ul]: Y

3. Composition with identities: If I' = v: ¢t = u: X then T' - ¢;v =
vit=u:Xand'Fyu=vy:t=u: X.
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4. Distributivity of substitution: If Xy,..., X, = ¢:Y, ' b v: u; =
wi: Xy and I' 65 uf = uf: Xjfor j=1,...,n, then

Fl—t[’yl,él,,’yn,én] :t[’yl,,’yn],t[él,,&n]
Dty . up] = ] Y

5. The interchange law: If X;,..., X, Fy:t=t:Y and ' - §;: u; =
uj: Xj for j =1,...,n, then

U A[ug, ooy un]; 801, 0n) = 01, -+, 0n; YUl - o ul]
Dt{ug, . up] = Uy, ] Y

Proof. Yet more structural inductions. O

3.2 The Categorical Description of 2-)\

In this paragraph we present the author’s original motivation for the theory
2-), which justifies the equations of section 3.1. It is based on Seely’s de-
scription of the A-calculus as a 2-category [16]. This motivation uses some
fairly delicate notions from the theory of 2-categories. The reader who is un-
familiar with this material can safely skip the rest of this section, as neither
the results nor the methods will be used in the rest of the paper.

The 2-categorical objects which occur here are either strict or laz, but
not pseudo. We will therefore stick to the “Australian” terminology, where
everything is preserved on the nose unless otherwise qualified, and the word
strict is used only for emphasis.

The theory of 2-categories has several notions of adjunction (see, for ex-
ample, [10]) of which we shall need the following:

Definition. A 2-natural adjunction consists of the following data:
e Two 2-categories C' and D,
e Two (strict) 2-functors F,G: C' — D,
e Two 2-natural transformations o: F' = G and 7: G = F, and
e Two modifications n: 1z — 70 and €: o7 — 14,

satisfying the triangle laws:

ecoon =1,

Teont =1,

In this case we say that o is naturally left adjoint to 7.

11



Definition. Let F': C' — D be a 2-functor. A lax right adjoint to F'
assigns to each object Y of D the following:

e An object G(Y') of C' and

e Two 2-natural transformations o(Y): C(,,G(Y)) = D(F(.),Y) and
T(Y): D(F(),Y) = O, G(Y)),

such that o(Y) is naturally left adjoint to 7(Y").

Definition. Let C' be a 2-category with finite products (in the enriched
sense). We say C has lax exponentials if for each object X the 2-functor
X x _: €' = C has a lax right adjoint.

Lemma 4. Let C be a 2-category with finite products, and X, X’ be objects
of C. If X x _and X’ x _ have lax right adjoints, then so does X x X' x _.

Proof. Let X x _have lax right adjoint G, 0%, 7% etc. Then
GYN(Y) =GN (GH(Y))

N (V) = 0N (V) xrwzo™ (GX(Y))
TOX(Y) = X’(GX( )z (V) xrxz

defines a lax right adjoint to X x X' x _. O

This 2-category theory is related to the theory 2-\ by a 2-categorical
version of the Lambek-Lawvere correspondence. We associate a 2-category
with 2-) as follows:

Definition. The 2-category A is defined by
e The objects are contexts I'.

e The arrows are lists of terms [t1,...,t,]: I' — Xy,..., X}, where I -
tjl Xj.

e The 2-cells are lists of equivalence classes of rewrites
[ViseoosYal: [ty tn] = [ug, - yun: T = Xy o0, Xy
where I' = ;: &; = u;: Xj;
e Two rewrites vy and 6: ¢t = u: ' — X are equivalent if 'y =¢:¢ =

u: X.

12



e Horizontal composition of [t1,...,t,]: A = Eand [uy,...,uy]: T — A

is
[ttty oy Umly o tpfug, o up]] T — F
e Vertical composition of [y1,...,v.]: [t1,...,tn] = [u1,...,u,] and
(01, e ey Ot [Ugy .oy upn] = (U1, .., 0] s

V1501, Yni On]: [trs o tn] = [vr,. 0 v

Proposition 5. A is a 2-category with finite products and lax exponentials.

Proof. That A is a 2-category amounts to checking various axioms, all of
which are either immediate or appear in lemmas 1-3.

Products are defined by concatenation of contexts, projections are vari-
ables and universal arrows are given by concatenations of lists.

In view of lemma 4, it is enough to give a lax right adjoint to X x _. This
is defined by

G*Y1,... . Ym) =X =Y, X =Y,
o (Y, o, Yo )r ([t tm]) = [H 1,0 1 1]
XY, Yo)r ([t tm]) = [M, - A
(Y, Ya)e([t o ) = [ e
(Vi Ya)r([tr, oo tm]) = [Bt%,la" , Bz, 1]
Again, all the work has been done in the lemmas. O

Theorem 6. A is the universal (free) 2-category with finite products and
lax exponentials on the set B of basic types.

Proof. Let C be a 2-category with finite products and lax exponentials, the
lax right adjoint to X x _ being given by G*X, 0%, 7%, X and ¢X. For each
B € B let B¢ be an object of C. We construct a 2-functor F: A — C which
preserves finite products and lax exponentials as follows:

F(X1, ..., Xn) = F(X1) x -+ x F(Xp)
F(X =Y)=G"TN(F({Y))

j:(B) = Bc
Flti, ... tn] = (F(t1),..., F(tn))
F(j) =m;
F\t) = 77ONFE) sy (F(t))  where X, T F¢: Y

F(tu) = o™ NFV)) ray(F(t) o (F(u),1)  where ¢ X -V

13



:Fh/la . --a’)’n] = <f(71)7"'vf(7n)>
f(]) = 1
FAy) =7 NFN) sy (F(y))  where X, T Fy:t =Y
F(y6) = o7 NF (V) 7y (F(7)) 0 (F(6),1)
where TH~y:t=t: X -V
F(y;0) = F(v); F(6)
Fn) =" NFV) ey (F(t) whereTHt: X =Y
FBru) = FNF ) ray(F(t)) o (F(u),1)  where THt: X —»V

It is straightforward to check that this is well-defined. Uniqueness is imme-
diate because each of the clauses above must be true if F is to preserve finite
products and lax exponentials. O

4 The Canonical Form of Rewrites

This section is the heart of the paper. By analogy with proof theory, we view
the composition (;) of rewrites as a cut rule, and prove a kind of ;-elimination
theorem. This operation of ;-elimination preserves the equations of the theory
2-); we show that conversely, it maps equated rewrites to identical ones.

Although this process of ;-elimination does not remove all ;s, it does map
all rewrites to a syntactically simple kind we call canonical form. This
solves the word problem for 2-\: two rewrites are equated in 2-X if, and only
if, they have the same canonical form. This result is particularly useful when
proving properties of the theory.

Definition (Canonical Form). In order to define the canonical form, we
identify three special classes of rewrites. Let A be defined inductively as
follows:

e Every identity rewrite is in A.

e IfTFag:t; = M: X > Yand '+ ay: tlu] = t3: Y are in A, then
IC'Fayu;fru;a: tiu —te: Y isin A.

let £ be defined inductively by:
e Every identity rewrite is in £.

elf'Fe:ty =1t: X - Yand X,'F e:1 = t,: X and X,['
€3:t'ty = t3: YVarein &, then T e;m ANt exse3): 6 = M3: X -V
isin £.
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and let G be defined inductively by:

elf'Fa:t=j: XisinAand ' Fe€:j = u: X isin &€ then T -
a;j;€:t=wu: XisingG.

elflT'Fa:t=MM:X—>YisinA T'Fe Auy =u: X ->Yisin &
and X, 'F~v:¢t;, = wu;:Yisin Gthen ' F a;A\y;e: t = u: X - Y is
in G.

elf '+ a:t = tiu:Yisin A, T F €:tguy = u: Y is in &£, and
' vty = t: X > Yand ' F 0: uy = uy: X are in G, then
'Fa;vyd;e:t=wu: Y isin G.

A rewrite is in canonical form when it is in G.

The notation 7;;7y2; 73 is shorthand for (v1;72);vs. (Of course, the choice of
left rather than right bracketing is arbitrary, as long as we are consistent.)

This canonical form is not meant to have anything to do with efficiency
of implementation, nor should it be understood as an evaluation strategy: it
is simply a formal device for studying the theory 2-A. Nonetheless, we can
make some attempt to describe it informally.

e A rewrite in A is a sequence of J-reductions at the top level. However,
the first term of a [-redex must be a A-abstraction: a sequence of
top-level B-reductions to this term will achieve this.

e A rewrite in £ is a sequence of n-expansions at the top level. However,
n-expansions create new subterms, which can themselves be expanded.

e A rewrite in G takes the form: first all the top-level S-reductions, last
all the top-level n-expansions, and in between, all the rewrites of the
subterms.

Lemma 7. The following results are no more than observations; they are
recorded here so that we can use them without further comment.

1. Every rewrite in G is of the form «;d;¢, where a € A, € € £ and ¢ is
either j, Ay, or v; ¥s.

2. IfI'Fa:t=t: X in A is not an identity rewrite, then ¢t = ¢, t5 for
some %y, ts.

3. fI'Fe:t = t: X in £ is not an identity rewrite, then ¢’ = At; for
some ;.
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4. fT'F~v:1=1¢: Xisin G then vy =1;1;e forsome ' Fe: 1 = ¢: X in
E.

In general, identity rewrites are not members of G. The following defini-
tion describes those canonical rewrites which play the role of identities.

Definition. For each term ¢ we define Z(¢) inductively as follows:
Z(4) = 3; 433
T(At) = M; AT (2); Mt
I(tu) =tu; Z(t) Z(u);tu

This definition is justified by the following lemma.
Lemma 8. If ' F¢: X then
LLTFZI({t):t=t: Xisin g
2.THI(t)=t:t=t: X.
Proof. Structural induction. O

Substitution of rewrites in G takes a different form from either of the
substitutions of rewrites defined so far.

!

Definition. If I' - 6;: u; = u}: X; for j = 1...n, then:
(; 73 €)[01, ..., 0] = @fur, ..., up];; 0555 €[uy, ..., ul]
(05 X7 b1s 1 82] = s o s AL 3L D) il 1]
(06;7172;6)[(51,...,(571] a[ula---aun];fyl[(slr~~aén]’yZ[éla---aén];ﬁ[ulla'“au%]

The relationship of this form with the other two is given by the following
lemma.

Lemma 9. Let Xi,..., X, Fv:t = ¢ X and T' - §;: u; = uj: X; for
j=1...n be rewrites in G. Then
L ThEAy[or, ..., 0] tlur, ... up] = t[u), ..., ul]: Xisin G
2. TEA[b1,...,00] =[ut, ., un); t'[01, - ., O]
Dtun, . un] = U, ] X
3. TEAb1, ..., 0] =01, ..., 0] v[ul, ..., ul]

Dtun, . un] = U, ] X

Proof. Structural induction. O
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The heart of the proof of the canonical form theorem is the definition of
sequential composition of rewrites as a binary operation on G. The composi-
tion of rewrites in £ and A is straightforward; we use the symbol ;;” defined
as follows, with the convention that o € A, € € £ and «a;0;¢ € G.

t;;a=a where t is an identity

(aW; Bt,u; CYQ); ; = 01U, 5t,u; (02; ; CY)

€;;t =€ where t is an identity
€ (s s At 62,63)) = (e ,,61) M At €2 €3)
(a J; e) €= q 6 ( )

Note that ;; is associative (in every possible way) and that identities in A
and & are identities of ;;.

Definition. If 7, and <, are rewrites in G, their composition 7, { ¥ is
defined by syntactic cases:

;75717056 =a;75€
a; A3 AT A Ay € = as A1 T 2)5€
;11 Yizstu T tu v Yas € = o (Van T v21) (a2 T y22); €

Vii My A(E] €115 €12) T Abo; Ayas €0 =
Y1 T V35 Mt )\(t%, €315 €32)} 5 €2
if 1 LZ(H) (1 Len)s e tre =t 175 (1 15 e1); €50
Y1 T az; Ays; €2
if 11 ;Z(t) (L1 en); @2 T 72 = 03 15 By 1573

a1 Vi1 V12; tor toz T Q21 6225 Biog tnei V2 =

Qs s b2 By e V3l V12) T2
if y11 T 213 AZ(tas); Atog = aiz; Ays; Alas

a1y (71235 €31[t22]); €32[ta2] T 72
if Y11 T ao1; AZ(ta3); Moz = 33 0eys A(23 €315 €32)
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This definition is not easy to motivate intuitively, although we will show
formally that it is correct. The following lemma shows that { is the operation
which finds the canonical form of the sequential composition ;v of two
canonical rewrites 7y, and 7. By analogy with proof theory, this should be
thought of as the ‘elimination’ of the ; (which is analogous to a cut).

Lemma 10. If 'Fy: ¢t = ty: X and ' F,: &5 = t3: X are in G, then
1. 71 T is well-defined and I' vy { y2: ¢t = t3: X isin G,
2. TErntre=mrt =t X,

Proof. (1) That the clauses defining t are exhaustive follows from lemma 7.
The well-foundedness of the recursion is slightly more complicated than the
simple structural inductions considered so far; we define a measure |y|g on
G and |a|4 on A as follows:

o jselg = |afa+1
s Ay;€lg = [ala+ |vlg +1
lo; v d5€lg = |afa+ |7]g + |d]g + 1

tla=0
| 5 B 2] = o]+ Z(t)]g + |azfa + 1
and use the inductive hypothesis on n that:

e 71 T2 is well defined for all composable vq, v, € G such that |y3|g < n,
and

o If |yo]g < mthen [(¢1;Z(t) (1;1;€1); €2) Ty2|lg < m for all €, €5 € € which
make the composition defined.

The proof is then straightforward.

(2) This is a fairly straightforward induction, which amounts to justifying
the clauses in the definition of { using the rules (id-l-triangle2) of section
3.1. U

Lemma 11. Basic facts relating the various operations on G.

1. The compositions ;; and T agree: If I' - «a: t; = t5: X is in A, and
'Fyito=t3: Xand 'y t3 = t4: X are in G, then

;s (7T 72) = (a557) e
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2. Similarly: fI'F vty = t9: X and I' -1 £ty = t3: X are in G, and
['Fe:ty=1t4: X isin &, then

(mtr)ie=mnt(nee
3. Rewrites Z(t) are identities for {: If ['t=v: ¢ = u: X is in G then
I(t)ty=7=71Z(u)

4. The interchange law for 1: If Xi,...,X, F ~v:¢t = ¢: X and
Xy, oo, Xy Byt =" Xand U F 6 uy = uj: Xjand I - 65 uf =
u;’:Xj are in G for j = 1...n, then

(Y TG 101, 0 T 0p] = [01, -, 0u] TY[01, - -, 6]
Proof. Straightforward inductions, using the complexity measure |y|g of
lemma 10. O

The final result we need before proving the canonical form theorem is the
associativity of f:

Proposition 12. If ' - ity = to: X and ' -t ty = t3: X and ' -
v3: t3 = ty: X arein G, then (v 1 72) tv3 =71 (721 73).

The proof of this proposition is long and technical, with a large number
of cases. It has been moved to an appendix.
Using f, we now formally define the canonical form of a general rewrite.

Definition. If I' - ~v: ¢ = u: X is any rewrite, we define ' - C(v): t =
u: X in G as follows:

st At 1560 1)
C(Bra us Beus tuls ;s Z(t[ul)

This definition is justified by the following proposition.

C(j) =757
C(Ay) = ; XC(); Au where X, TF~y:t=u:Y
C(y172) =t1te;C(11) C(y2);urug  where I' = ;0 t; = uj: X
C(1;72) =C(n) TC(12)
)
)

Proposition 13. If ' - v: ¢t = u: X then
IL.TFC(y):t=u: Xisin G
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2.THC(y)=7:t=u: X.

Proof. Straightforward induction. The work has already been done in lem-
mas 8-10. U

Finally, we show that C preserves the equalities of the theory 2-\.
Proposition 14. f '~y =0: ¢t = u: X then C(y) = C(J).

Proof. By induction on the length of the derivation of '~y =9:1 = u: X.
The hard cases have already been done in lemmas 11-12. O

Theorem 15 (The Canonical Form Theorem). The set G contains ex-
actly one member of each equivalence class of the rewrites quotiented by the
theory 2-\.

Proof. This follows immediately from the last two results. O

Corollary 16. The theory 2-) is consistent, in the sense that it does not
identify everything possible.

Proof. By the theorem, it suffices to give two distinct elements of G with the
same source and target. We give two different examples:

e If X 'H1%:Y then

T E MM 1);0C(Brz1); M mag; (A2 1; A2 1)
AN L) = AMP1): X - Y

is in G, but it is not equal to Z(A(At? 1)).
e Let ] = Al. Then
XHEIIL1Z()C(Bra);I1:I(I1)=>11:X
and
XECBi): I(I1)=11:X

are both in G, but they are not equal.
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5 The 2)X-Calculus as a Rewrite System

In this section we use the canonical form of rewrites to investigate the 2\-
calculus as a rewrite system. First we investigate the relationship between
equality of rewrites in 2-A and ‘strongly equivalent’ reductions of the A-
calculus. Next we generalise the ‘strong Church-Rosser’ theorem to our set-
ting, and prove a related property we call ‘mellifluence’. Finally we char-
acterise the long-f#n-normal forms in terms of the properties of the rewrites
starting from them. These results provide evidence for the claim that the
2X-calculus is not just a formalism for talking about rewrites, but also has
something to say about the process of reduction.

From this point on, we consider rewrites up to equivalence. The formalism
of the first part of the paper has done its job, and we no longer need the notion
of syntactic equality. We can assume that any rewrite is in G even though
we will use the rules of 2-) to reason about them, and write 3, , instead of
At u; By; t{ul; s Z(t[u]) and 7; 0 instead of v 6. The more pedantic reader can
insert C at every appropriate point.

5.1 Strongly Equivalent Reductions

The theory 2-X is closely related to Lévy’s notion of strongly equivalent
reductions, defined as follows (see [14] or [2, chapter 12]).

Two sequences of g-reductions o and p in the A-calculus from the
same term are strongly equivalent if the residuals o/p and p/o
are both empty.

This definition does not extend to an equivalence relation in the presence of
n-expansion, since

Ne/ne = A 1)

so the relation is not reflexive. However, for S-reductions, the two theories
agree, as we now demonstrate.

Proposition 17. The S-reductions of the simply-typed A-calculus, quo-
tiented by strong equivalence, are in bijective correspondence with those
rewrites in G which contain no 7s.

Proof. In [2, chapter 12] it is shown that every finite S-reduction is strongly
equivalent to a unique standard reduction. Therefore we need only show a
bijection between standard reductions and canonical forms.
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A standard reduction is one in ‘leftmost-outermost’ order. We define a
map S from canonical forms with no ns to standard reductions (using the
notation of [2]) as follows:

S(a;j;7) = S(a)
S Ay At) = S(a) + AS(7)
S(a; vzt u') = S(a) + (S(n) u) + (' S(r2))
S(t) =0
S(Ozl U, ﬁtu,QQ) = (S( ) )+ﬁt,u+8(0&2)

This is clearly a bijection: it just sequentialises the reductions in a standard
way. U

The theory 2-\ can therefore be seen as a way of extending the notion
of strong equivalence to the A-calculus with n-expansion. The triangle laws
(trianglel) and (triangle2) mean that it is not just a simple-minded adapta-
tion of Lévy’s definition, but has rather more structure.

5.2 Strong Confluence

The most important concept of rewriting theory is that of confluence/the
Church-Rosser theorem /the diamond property: that ify;: ¢ = uy and 75: t =
Uy are two rewrites with a common source then there exist §;: u; = v and
d2: up = v with common target. This is proved for the A-calculus with
n-expansion in [13]. The definition of strongly-equivalent reductions in the
A-calculus gives rise to the strong Church-Rosser theorem/commuting dia-
mond property: that 0; and d, can be chosen so that v;;0; and 7,; 0, are
strongly equivalent (see [2, chapter 12]). In this section we extend this result
to the 2\-calculus.

The first lemma we prove says that if two rewrites in A have a common
source, one is a prefix of the other:

Lemma 18. If o: t = u; and as: t = uy are in A then either there exists
a3: u; = us in A such that - aq; a3 = ay or vice versa.

Proof. By induction on the structure of oy and as.
case 1: ay; =t. Then u; =t, take az = as.

case 2: ap =t. Then uy =t, take az = a;.
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case 3: Q5 = Q41 to; ij,t2; Q2 where t = t; to, Q1 t1 = )\Uj.

Apply the inductive hypothesis to aqq, ey to get (without loss of gen-
erality) ag;: Av; = Avg. But any rewrite in A with source a A-term is
identity, so v; = vy and «y; = an;. The result then follows by applying
the inductive hypothesis to aqa: v1[ts] = uy and age: vofte] = ue. O

Next we turn our attention to rewrites in £: they commute with any
other rewrite:

Lemma 19. If e: ¢t = wu is in £ and ~: t = uy then there exist v': u; = v
and €': upy = v in € such that - €;v' = ;€.

Proof. By induction on the structure of €.
case 1: e =t. Then u; =t, take ' = v and € = us.

case 2: € = €1;Muw; Mw' €95€3), where €1: t = w, e2: 1 = z and e3: w'z = y.

Apply the inductive hypothesis to €; and 7y to get €| and ~;, then apply
it to €3 and v{ = to get 7, and €5. We then have

€ A2 = 13 us AW’ €25 €3); A7
€15 Tw; MW €23 €3;7)
= €15 7w; MW" €571 ;5 €)

. . . ,1 . ,
= €1, 715 Nw'; )\(’U] €2; 63)

1
= 75 €5 N A(w" €25 €3)
so take 7' = Ay and € = €); 3 AW € €)). O
A final lemma to say how rewrites in £ interact with S-reductions:

Lemma 20. If ¢: Mt = w and ¢: us = v are in £ then there exist w,
v:v=-w and 7'": t[s] = w such that - es;e’;v = 47

Proof. By induction on the structure of e.
case 1: € = At. Then u = A¢; apply lemma 19 to €' and j3; ;.

case 2: € = €1; Mz Mzt €25 €3), where €1: M = x, 65: 1 = r and e3: 2l r = y.

Apply lemma 19 to € and S, to get v1: v = wy and €': y[s] = wy,
then apply the inductive hypothesis to €; and e3[s]; €” to get vo: w; = w

23



and 73: t[r[s]] = w. We then have

€5 €577 = €157 5; Mz €25 €3) 5 By 55 €73 72
= €1 537 €g[s]; ea[s]; € 72
= Mt ey[s]; e 7[s]; e3[s]; €5 72
= At €2[s]; Biris]; 73
= Bi,s; tleals]]; 13

s0 take v = 7157, and ¥ = t[ea[s]]; vs. O

We are now in a position to prove confluence. For this (and another)
proof, some more sophisticated well-foundedness is needed: the usual proof
of confluence of the A-calculus depends upon ‘finiteness of developments’ [2,
chapter 11]. Rather than set up all that machinery here, we use the fact that
the simply-typed A-calculus (with n-reduction) is strongly normalising. We
write ||t|| for the length of the longest fn-reduction path starting from t.

Proposition 21. If v;: t = u; and y9: t = uy then there exist vj: uy = v
and v,: us = v such that = vy; 9] = 72;75.

Proof. By induction on ||t||, the complexity of their common source term.
Let (ay;0;5€j) =y for j = 1,2. Then «; and ay have the same domain;
by lemma 18 there exists a3 such that (without loss of generality) as = ;3.

case 1: 0; = j. Apply lemma 19 to ¢; and (as;da; €2).

case 2: 07 = A1, a3 = Aty and 03 = A\ya;. Apply the inductive hypothesis to
~v11 and Y21 to get 1o and y99; two applications of lemma 19 then give
the answer.

case 3: 01 = Y11 Y12 and ag = t ty. Similar to case 2.

case 4: 07 = y11 712 and a3 = asy ta; Big 15 Q32

Apply the inductive hypothesis to v11: t; = v; and az;: t; = A3 to
get v3: v; = wy and y4: Atz = wp, and lemma 19 to €; and 3 vy to
get v5 and e€3. The domain of v, is a lambda term, so it is of the form
(At3; A\yar; €4). Apply lemma 20 to €, and €3 to get vg and 7.

Now consider the terms 741 [v12]; 77 and ass; d2; €. They have common
source t3[ts], which is strictly simpler than the source of a3, so we can
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apply the inductive hypothesis to get vs and 79. We then have:

Vo3 Yo = 015 Qi3 ta; By 1 (323 023 €25 Y9
= ;031 o3 AVar V125 Bra e V73 V8
= ;i3 tay AYa1 V125 €4 V25 €33 V65 )8
= Q15711 7125 €15 V55 V65 V8
= 713755 76578

so take v = 755 76; 78 and 3 = 7o. 0

5.3 Mellifluence

The 2A-calculus has another property, related to strong confluence, which
has not been investigated in the A-calculus. In section 6 we use this property
to relate confluence, strong normalisation and normal forms. In this section
we show that every rewrite is mellifluent, where:

Definition. A rewrite v : t = u is mellifluent if whenever 6;,9, : u = v
satisfy ;01 = 7; 09, there exists 7/ : v = w such that §;;+" = da; 7.

Lemma 22.

1. Any rewrite in A is mellifluent.

2. If v and v, are mellifluent, then ~;; s is mellifluent.

3. If v1;y9 is mellifluent, then 7, is mellifluent.
Proof. Straightforward. O
Lemma 23. If v: ¢t = u is mellifluent, then A\y: At = Au is mellifluent.

Proof. Let v1,v2: Au = v satisfy Ay;v1 = Ay; 7. Then v; = (Au; Avyj1;€5)
so Ay;y; = (A5 A(7;951);5€;) which is in canonical form, so €, = € and
Yivi1 = 7;7Y21. But v is mellifluent, so there exists -3 satisfying vi1;v3 =
Y21;73. Now by lemma 19 there exist v, and €4 satisfying \ys; €4 = €;; 74, and
Y13 Y4 = Y25 Y4 50 A7y is mellifluent. O

The next lemma describes a property of rewrites in &£:

Lemma 24. If e: \t = u in £ then u = A\u’ and there exist v;,: t = v and
721 u' = v such that € A\ye = Avq.

Proof. By induction on the structure of e.
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case 1: € = At. Then u' =t; take v; = v = t.

N 2T
case 2: € = €1; Ny, ; Muj €9; €3)

Apply the inductive hypothesis to €; to get uy = Aug, v3: t = v; and
Y41 Uy = v;. We now have ul ex;e3: ul 1 = u' and Buzi; Ve ui 1 = vg;
apply confluence to get v5 and 4. We then have:

€ A\Y6 = €15 My )\(Ui €2;€3); A6
= €13 Murs ABug 13 74); A5
= €1; A5 A5
= )\(73W5)

so take y1 = 73; 75 and 2 = 7. O
From this it follows that n-expansion is mellifluent:
Lemma 25. The rewrite n;: t = A(¢! 1) is mellifluent.
Proof. Let v1,72: A(t' 1) = v satisfy 091 = 75 72. Then
%= (A1) M )

where €;: A\u; = v. By lemma 24, there exist 7o, ;3 such that €;; Ay;3 =
Avj2; apply confluence to vi3 and 723 to get 14 and 4. We will take v3 =

(7133 714) = A(7235724), and prove that 1593 = 72573
If vjs = 7515752 V4 then M Ayis = i Ayes and 5593 = Ayjs. Let
vjs = (ay; 0,5 €1), and proceed by cases of «;:
case 1: a; = ap = t" 1. Then §; = vj; (1;1;¢52), and
: e 1, .
M AYjs = Vi Tos AW €523 €51)

which is in canonical form. Therefore, y16 = Y26, €12 = €92 and €17 = €1,
S0 Y15 = Y25-

case 2: a; = ajy 1; Buwa; oy, Then my; Ayjs = (oy1; AMao; 055 €51); Az) which is
in canonical form; matching up as before gives v5 = 5.

case 3: One of each. This case is impossible, since the two canonical forms
cannot match. I

Finally:

Proposition 26. All the rewrites of the 2A-calculus are mellifluent.
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Proof. By induction on ||u||, where v : ¢ = u.
Let v = (a;d;€). By lemma 22, it is sufficient to prove that §: ¢’ = o’
and e: u' = wu are mellifluent; note that ||u'|| < ||u||. First consider e:

case 1: e =t. This is identity, therefore mellifluent.

case 2: € = €1;m,; Mv' €2;€3). Then v'ey;ez: v' 1 = uy where A\uy = u so
llua|] < [|Jul] so by the inductive hypothesis, v!ey;ez: v11 = uy is
mellifluent, and by lemma 23, (v €3; €3) is mellifluent. Also, €;,: v/ =
v, and ||v|] < ||A(v'1)]] < [|u|| so by the inductive hypothesis, € is
mellifluent. Finally, n, is mellifluent by lemma 25, so € is mellifluent.

Next we consider §: t' = u':
case 1: 0 = j. This is identity, therefore mellifluent.

case 2: 0 = Av;. This is mellifluent by the inductive hypothesis and lemma
23.

case 3: 0 = Y17v. Then t' = t1ty and v’ = ujug. Let v3,74: v’ = v satisfy
0;v3 = 0; 74 and proceed by cases of 3 and 7y:

case 3.1: v; = (uyg ug; vj1 V25 €) for j = 3,4. Then
0375 = (5 (va5751) (25 vj2); €5)

which is in canonical form, so €3 = €; and Vx; V3 = Vi; Yar for k =
1,2. By the inductive hypothesis, there exist vs, satisfying vsg; v5 =
Vak; Vsk, and by confluence there exist s, €5 satisfying vs1 vs2; €6 = €;; V6.
Then v3;v6 = 74; 76, S0 ¢ is mellifluent.

case 3.2: v; = (@ ug; Bo,up; 1) for j = 3,4. Then a3 = a4 and vz = vy
by lemma 18, s0 0;v; = (85 v u2; Bo; up); V1. But 050 uo; By yt T =
vjlus] and ||v;[us]|] < ||Avjus|| < [|u'|], so by the inductive hypothesis
it is mellifluent, and there exists ~5 satisfying v31;95 = 741;75. Then
Y33 Y5 = V45 Vs, S0 O is mellifluent.

case 3.3: v3 = (u';y31 7325 €3) and 4 = (v Ua; By up; Ya1), Or vice versa. This
case cannot arise since ¢;vy4 and d;7s; then have different canonical
forms. O
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5.4 Long Normal Forms

The 2A-calculus (thought of naively as a rewrite system) has unrestricted
n-expansion, which is clearly non-terminating. Nonetheless, it does have
certain terms, the ‘long-gn-normal forms,” which play the role of normal
forms in several treatments [1, 5, 6, 7, 11, 12, 13]. These long normal forms
avoid infinite expansion paths by stopping n-expansion when the structure
of the term matches its type.

In this section we investigate these long-8n-normal forms, and show that
any rewrite whose source is of this form has a very special property. Not
only is such a rewrite reversible (in the sense that there is a rewrite back
the other way) but the composition of the rewrite with its reversal is equal
to the identity in the theory 2-A. Furthermore, we show that this property
precisely characterises the long-/5n-normal forms.

First we define the necessary concepts.

Definition.

e A rewrite v: t = u is split monic if there exists d: u = ¢ such that
v;6 =t

e A term t is essentially normal if every rewrite v: ¢ = w is split monic.

e Recall that long-Bn-normal forms and reduced forms are defined
inductively by

— t: X = Y is in long-gn-normal form iff ¢t = At’ where t': Y is in
long-fAn-normal form.

— t: B is in long-fgn-normal form iff ¢ is in reduced form.

— 7 is in reduced form.

— t1ty is in reduced form iff #; is in reduced form and ¢; is in long-
Bn-normal form.

— At is not in reduced form.

We will prove that the rewrites from long-fn-normal forms are split
monic. This involves studying the rewrites from reduced forms, which satisfy
the following.

Definition. Let P be the smallest set of rewrites such that:
e All identity rewrites are in P.

o If v € P then v;e € P, for all € in €.
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o If v1;7, € P then 7, € P.

Note that we have defined P for each type independently. In particular,
for base types B, the second clause does not apply, and v € P iff 7 is split
monic.

The following lemma describes a closure property of P which relates
rewrites of different type:

Lemma 27. If vi: t; = u1: X — Y € P and t5: X is essentially normal,
then for any 7,: to = us, the application v; v, is in P.

Proof. We prove that this property is preserved by the three clauses defining
P.

e If v, is identity then 7y, 5 is split monic, so a member of P.

e If v; has this property then we prove that ;e does by structural
induction on e.

case 1: € = uy. Then ;e = 7.
case 2: € = €1;1,; AM(u' €95 €3). Then
(713 €) V25 Buwe = (t15 (715 €1) (725 €2[v]); €3[0])

which, by inductive hypothesis, is a member of P. Therefore v;;¢ € P
as required.

o If v1;93 € P has this property, then (y172); (v3u2) = (71;73) 72 is a
member of P, so v y2 € P as required. O

We are now ready to prove half our theorem:

Proposition 28.
o If v: £ = w and t is in long-fSn-normal form, then ~ is split monic.
e If v: £ = w and ¢ is in reduced form, then v € P.

Proof. By structural induction on t. We proceed by cases:

case 1: t: X — Y is in long-fgn-normal form. Then t = At; where t; is in
long-fAn-normal form, and v = (¢; Ay1;¢€). By lemma 24, there exist
Yo: uy = v and y3: uy = v s.t. €;Ay3 = Aye. Then vy;79,: ¢, = v and
by inductive hypothesis, has a left inverse v4. Now A(73;74) is a left
inverse for 7.
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case 2: t: B is in long-f8n-normal form. Then ¢ is in reduced form, and by the
second inductive hypothesis, v € P. As remarked above, this means ~y
is split monic.

case 3: t = j is in reduced form. Then = (j; j; €) which is certainly in P.

case 4: t = t; ty is in reduced form. Then v = (¢;7; 2;€) by a simple induc-
tion. By inductive hypothesis 7, € P, and t5 is essentially normal, so
7172 € P by lemma 27. Therefore v € P as required. O

The next lemma tells us more about the rewrites in P:

Lemma 29. Every v € P is of the form (¢;9; ¢) where § satisfies one of the
following:

e 0=7
e d=Ayand vy € P
® 0 = 7,7 where 7 is in P and 7, is split monic.

Proof. We prove that this property is preserved by the three clauses defining
P. It is clear that all identities are of this form, and that it is preserved by
composition with rewrites in £. It remains to prove that if v;;7, € P is of
one of the three forms above, then so is 7;. The proof is by induction on
72lg-

Let v; = (j;9;;€5); it is clear from the definition of { that c; = ¢t. We
proceed by cases of €; and am:

case 1: € = ay = u. There are three subcases, depending on the form of ¢;:
case 1.1: 0; =i. Then 7, is of the required form.

case 1.2: 6; = Ay;1. Then 57 = (t; A(7113721):€2) and y113721 € P, so
v11 € P and  is of the required form.

case 1.3: §; = 1 vj2. Then 1395 = (&5 (7115 721) (V125 722)5 €2) and 115921 €
P, 712; Y22 is split monic. Then ~;; € P and vy is split monic, so 7, is
of the required form.

case 2: ag = u, € # u. Then ;95 = (t;91;v); (€1;72) and by inductive
hypothesis, (¢;d1;v) is of the required form. Therefore 7, is also.

case 3: € = U, Qg = Qa1 b2} By, 1,3 o2. Then &1 = 711 712, and we proceed by
cases of vy T awy:
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case 3.1: yi1; 91 = (a3; A\y3; Aty). Then 71572 = (a3 v; Bys- - - ), contradict-
ing the hypothesis that it is of the given form.

case 3.2: Y115 o1 = (V35 Mw; AMw' €315 €32)). Then

Y1372 = t; 73 (7125 €31[u]); €32]u]); (Qa2; d2; €2)

By inductive hypothesis, 73 € P and 719; €31[u] is split monic, so vy;; € P
and 5 is split monic, as required. O

We can now prove the other half of the theorem:
Proposition 30. Let ¢t be a term. Then
o If every v: t = w is split monic, then ¢ is in long-3n-normal form.

o If every v: ¢t = w is in P, and ¢ is not of the form A¢;, then ¢ is in
reduced form.

Proof. By structural induction on t. We proceed by cases:

case 1: t: X — Y and every 7:t = wu is split monic. Then in particu-
lar, nm;: t = A(t'1) is split monic, and its inverse v has the form
(A(t'1); \y'5€). Then t = M. Let vy: t; = uy. Then A\yp: t = Auy is
split monic, with inverse (Aui; Ays;€2), say. Then Ayi; (Aug; Aye; €2) =
(At1; M(71;72); €2) and 7 is split monic. By inductive hypothesis, there-
fore, t; is in long-An-normal form, and so is ¢.

case 2: t: B and every 7v: t = wu is split monic. Then every such v is in P, and
since ¢t cannot be a lambda term, ¢ is in reduced form by the second
inductive hypothesis. Therefore ¢ is in long-£n-normal form.

case 3: t = j. Then t is in reduced form.

case 4: t = t1ty and every v:t = w is in P. If t; = My, then fy, 4,1t =
t11[t2], contradicting lemma 29.

Let v1: ty = wuy. Then v ty: t = wuyty is in P, and by lemma 29 v, is
in P. By inductive hypothesis, therefore, ¢; is in reduced form.

Let v9: t3 = wuy. Then ty7vy: ¢t = tyuy is in P, and by lemma 29
7o is split monic. By the first inductive hypothesis, therefore, ¢, is in
long-n-normal form, so ¢ is in reduced form. O

Putting this together with proposition 28, we have proved

Corollary 31. A term is in long-8n-normal form iff it is essentially normal.
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We need one more property of split monic arrows, related to mellifluence:

Lemma 32. If v: ¢ = uw and (1, (>: u = v satisty v;(; = 7; (s where (1, (>
are split monic, then ¢; = (s.

Proof. 1t is convenient to define a set Q of rewrites whose canonical forms
are built up entirely from rewrites in &:

e Ife:j=tisin &£ then j;j;e € Q
e [fe: M= wuisin & and (: s = tisin O, then As; A\(;€isin Q.

e Ife:tity = uisin & and (G : s;1 = t; and (5 : s = t, are in Q, then
51 52;C1 G5 € is in Q.

By lemma 29, P C Q, so every split monic rewrite is in Q. A straightforward
induction shows that the composition of two rewrites in Q is in @. We prove
the stronger condition that the lemma is true for all (;, (s in Q.

The proof is by induction on |(;|g. Let («;d;€) be the canonical form of
v, and (t;;60;;€;) that of (. There are three cases of 6; and 6s:

case 1: 0 = 0, = i. Then € = i and 6 = i so 1;(; = (a;4;¢;). Matching
canonical forms gives €; = €5, so (; = (5 as required.

case 2: 0; = A\(j1. Proceed by cases of e:

case 2.1: € = u. Then § = Ay; and v;(; = (o; A(715(j1)5€5), 50 € = €2 and
Y1;C11 = 71;C21. By inductive hypothesis, (11 = (21 so @ = (2 as
required.

case 2.2: € = e3;n; M@t eg565). Then (2 1521 €45 €5); (1 is in Q, so equals
(z" 1; (jo €515 €j2) for some (jp in Q. Therefore

v G = (505 €3); (Gizy My Ay €515 €42); €5)

and by inductive hypothesis, C12 = CZQ, €11 — €21, €19 — €22 and €1 = €a.
Therefore (z' 1; 2" €45 €5); (11 = (2" 1; 2" €45 €5); (o1, and by the inductive
hypothesis (11 = (21. So (; = (5 as required.

case 3: 0; = (j1 (jo. Then € = uy uy and 6 = y; 72 so
v; G = (@5 (715 Gin) (923 G2); €5)

Therefore v1; (11 = 715 Ca1, V25 Ci2 = 725 G2 and €; = €. By inductive
hypothesis, (11 = (21 and (13 = (99, s0 (1 = (5 as required. O
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6 General Results

In this section we take the results we have proved about the 2\-calculus and
generalise: we aim for a theory which can be applied to many different rewrite
systems. Of course it is dangerous to generalise from one example, and the
definitions of this section must be taken as tentative. Nonetheless, the results
do clarify the relationships between the properties proved in sections 4 and
5.

We assume a rewrite system to consist of elements with rewrites acting
between them. These rewrites are multi-step: in particular, there is a zero-
step rewrite on each element, and rewrites to and from any element can be
composed. This immediately leads us to the idea that a rewrite system forms
a category, and we take this as the basic definition.

An important example is given by any set of elements together with a
set of one-step rewrites between them, i.e. a graph. The categorical rewrite
system is then given by the path category of the graph: the objects are
the elements, and the arrows are the sequences of one-step rewrites. This
example provides important intuition, even when the category is far from
this form. In particular, we always interpret the identity on an element as
a zero-step operation, which is never actually performed, so takes no time.
Similarly, we always interpret composition in the category as concatenation
of rewrite sequences, even when the result is shorter than the sum of the
parts.

The example which forms the subject of this paper we will call ‘the cat-
egory 2-)\’. Its objects are the terms (in context) of the 2A-calculus, and its
arrows are equivalence classes of rewrites, under the equivalence defined by
the theory 2-)\. Identities are as expected, and composition is ;.

This leads to a subtle form of conditional rewriting, the full implications
of which have not been explored. For example, the n-expansion

nou:tu— At 1) u
can be followed by the S-reduction
ﬁ(tl D' )\(tl 1) u—tu

and the composition is the zero-step rewrite. This reduction path cannot
therefore be followed by any legitimate strategy, as the resulting composition
is supposed to take no time to execute. We must discard the idea of an
abstract machine which ‘picks a rewrite at random’ to execute, and continues
until there are none left.

A full understanding of these points requires a formal definition of a
‘legitimate strategy’ for an abstract machine. There is no space to develop
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this here; indeed the author must confess to having no completely satisfactory
definition. Nonetheless, this approach is related to Jay and Ghani’s idea
of ‘cutting loops’ [13], and is more algebraic than Di Cosmo and Kesner’s
‘simulated expansions’ [7]. We hope the reader finds it stimulating.

In the following development, one property recurs in almost every proof:
the mellifluence of section 5.3. Since it is needed so often, and its significance
to rewriting is unclear, we assume it as an axiom of rewrite systems.

Definition. A category is mellifluent if the following holds for all arrows
f, g and h:

o If f: x — yand g,h: y — z are such that f;g = f; h then there exists
k: z — w such that g;k = h; k.

We proved the mellifluence of the category 2-A in proposition 26. The
path category on any graph is clearly mellifluent, since the hypothesis of the
axiom only holds when g = h.

An intuitive understanding of mellifluence is not easy. It is something like
“If the difference between g and h is invisible from x, then it doesn’t matter
in the long run.” The author discovered this property when trying to prove
the results of this section.

If the only rewrite from an element is the identity, that element is clearly
in normal form. Furthermore, if every rewrite from an element is a prefix of
the identity, the informal arguments about legitimate strategies imply that
this, too, is a normal form. We take this as the definition.

Definition.

e An object = of a rewriting category is normal if every arrow f: z — y
is split monic, i.e. there exists ¢g: y — x such that f;g = 1,.

e An object y is weakly normalising if there exists f: y — = for some
normal z. In this case we call x a normal form of y.

e A rewriting category is weakly normalising if every object is weakly
normalising.

Corollary 31 states that the normal forms of the category 2-A are precisely
the long-An-normal forms. Since every term of the simply typed A-calculus
has a long-fAn-normal form, the category 2-) is weakly normalising.

In the path category of a graph, an object is normal iff there are no edges
from that object in the original graph. An object is weakly normalising iff
there is a path to a normal object.
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Lemma 33.
1. Any arrow between normal objects is an isomorphism.
2. If f: x — y then any normal form of y is a normal form of x.

3. Let z be a normal object in a mellifluent category, and f: x — y. Then
the map ¢: y — x satisfying f; ¢ = 1, is unique.

Proof. (1) Let z and y be normal objects, and f: x — y. Then because z
is normal, there exists g: y — x such that f;g = 1,. Similarly, because y
is normal, there exists h: x — y such that g;h = 1,. Now, f = f;(g;h) =
(f;9); h = h, so it is iso.

(2) If g: y — 2z with z normal then f;g: z — z.

(3) Let g1, 92: y — = both satisfy f;g; = 1,. Then by mellifluence, there
exists h: x — z such that g;;h = go;h. But h must be monic because x is
normal, so g; = gs. U

Perhaps the most obvious definition of confluence is the diamond prop-
erty: that any span has a cospan. However, this definition completely ignores
the equalities between rewrites, and relies instead on equality between ob-
jects. We reject this definition as ‘uncategorical’ and regard diamonds which
do not commute as ‘fortuitous’. The commuting diamond property has a
much better theory:

Definition.

e An object x of a rewriting category is confluent if for all pairs f;: z —
y1 and fo: x — yo there exist 2z, g1: y1 — 2z and ¢2: Y2 — z such that

fi501 = f25 92
e A rewriting category is confluent if every object is confluent.

Proposition 21 states that the category 2-A is confluent. The path cate-
gory of a graph is confluent iff there is at most one edge from each node in
the graph. This means that in many cases the path category is not the right
category to study: equations between paths must be imposed which render
the completions of critical pairs commuting.

Note that confluence and mellifluence are precisely the conditions for a
calculus of fractions [8]. This means that we can calculate the free groupoid
on a confluent rewriting category in a particularly simple way. This groupoid
can be interpreted as the equational theory generated by the rewrite system.

Lemma 34. Let x be an object in a mellifluent category. Then
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1. If z is confluent and f: z — y then y is confluent
2. If z is normal then z is confluent

3. If x is confluent and f: x — y then any normal form of x is a normal
form of y

4. If x is confluent then all its normal forms are isomorphic.

Proof. (1) Let g1:y — z; and g: y — 2o. Then f;g1: x — 2z and f;go: © —
23 so by confluence of x there exist hy: z; — w and hy: 25 — w such that
fig1;h1 = f;g2; ho. Now by mellifluence there exists k: w — v such that
g1;h1;k = go; hos k so two arrows which complete the commuting diamond
are hy; k and ho; k.

(2) Let f1: 2 — y; and fo: © — yo. Since x is normal there exist g; : y; —
x and go: y» — x such that fi;91 = 1, = f5;92. But this shows that z is
confluent.

(3) Let g: © — z where 2z is normal. Since x is confluent there exist
hi:y — w and hy: z — w such that f;h; = g; hy. But 2z is normal, so there
exists k: w — z such that ho;k = 1,. Now hy;k: y — z (and f;hy; k= g).

(4) By part (3), if  has two normal forms, then there is an arrow between
them. But by lemma 33, this arrow is iso. O

Strong normalisation is the property that every rewrite sequence from an
element is finite. This is clearly false in any category, as there are always
infinite sequences of identities. Nonetheless, we can capture the idea that an
w-sequence is a sequence of prefixes of a fixed (finite) rewrite, by saying that
there is a cocone over the corresponding w-chain.

In order to develop a good theory, we strengthen this idea in two ways.
Firstly we generalise w-chains to filtered diagrams; secondly we demand that
the cocone is separating. The first allows us to find a cocone not just over
a particular w-chain, but over a class of equivalent chains. The second is a
technical condition, but can be thought of as choosing a cocone at whose
vertex there are no sudden ambiguities.

Definition.

e Let D be a diagram in a category. We call a cocone pu: D — x over
D separating if for any other cocone v: D — y there is at most one
arrow f: x — y such that u; f = v.

e An object x of a rewriting category is strongly normalising if every
filtered diagram containing = has a separating cocone.
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e A rewriting category is strongly normalising if every object is strongly
normalising.

Note that if we replace ‘at most one’ with ‘exactly one’ in the definition
of separating cocone, it becomes the definition of colimiting cocone. The
category 2-)\, however, does not have filtered colimits.

In the path category of a graph, an object is strongly normalising iff there
is no infinite sequence of edges from the node. The following lemma, together
with lemma 32 shows that the category 2-A is strongly normalising:

Lemma 35. Let x be an object of a mellifluent category.

1. If x is confluent and weakly normalising, then any filtered diagram
containing it has a cocone whose apex is normal.

2. If whenever f: x — vy, g1,92 : y — z are such that f;g; = f; g2 then
g1 = g2, then any cocone over a diagram containing x with vertex y is
separating.

Proof. (1) Let D be a filtered diagram containing x, and e: z — v for v
normal. Define p: D — v as follows:

e For each object y € D there exist z,, f,: ¥ — 2, and g,: ¥ — 2, in
D (since D is filtered). By lemma 34, there exists h,: z, — v s.t.
gy; hy = e. Then

ty = fyshy:y — v

e For each arrow k: y — ¢ in D there exist w, {1 2z, = w, ' 2y = w
s.t. gy;l = gy;l" and fy;l = k; fy; ', since D is filtered. Then there
exists m: w — v s.t. g,;l;m = e, and by mellifluence, h, = [;m and
hy =1';m. Now

kypy = ks fyshy = ks fyslsm = fyilim = fyhy = py
SO j4 1S a cocone.
(2) Straightforward. O
Lemma 36. Let x be an object in a mellifluent category. Then
1. If z is strongly normalising and f: x — y then y is strongly normalising

2. If x is normal then z is strongly normalising
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Proof. (1) Let D be a filtered diagram containing y. Then there is a diagram
D' formed by adjoining one new object x and one new arrow f: x — y to D.
D' is filtered and contains x, so has a separating cocone, but a separating
cocone over D' restricts to one over D.

(2) Immediate from lemma 35 O

Finally, we show that strong normalisation implies weak normalisation.
This result always depends on the axiom of choice, to chose a path to a
normal form. Here we use the equivalent Zorn’s Lemma: that if every chain
in a poset is bounded, the poset has a maximal element.

Proposition 37. If z is a strongly normalising object in a mellifluent cate-
gory C', then it is weakly normalising, i.e. it has a normal form.

Proof. Let < be the partial order on arrows f: z — y induced by (z | C):
so [f] = [f'] iff there exists g: y — ¥’ such that f;¢g = f’. We will prove that
every chain in this poset has an upper bound.

Let [f;] < [fj+1] be such a chain, and choose g¢;: f; — fj41 in (z | C).
The resulting diagram in C' is linear, so filtered, so has a separating cocone.
The image of this cocone in the partial order is an upper bound for the chain.

So every chain is bounded and we can apply Zorn’s lemma to find a
maximal element [h]|, where h: © — 2. Now consider the full subcategory
of (x | C) of arrows in the equivalence class [h]. This category is filtered
because of mellifluence and maximality, so its image in C' has a separating
cocone p: [h] — v. We will show that v is normal.

Let f = h; up: x = v. Now if g: v = u then by maximality f;g € [h] so
there exists ¢': u = v st. f;¢;¢' = f, and by separation, g; ¢ = 1. O

The combination of lemma 34 and proposition 37 means that if = is
confluent and strongly normalising then it has a normal form, unique up
to isomorphism. However, the proof is unnecessarily complicated and non-
constructive, using the axiom of choice. The next result gives a simple con-
struction of the normal form in the confluent case.

Lemma 38. Let z be an object in a mellifluent category C, and let P: (z |
C') — C be the usual projection functor. Then

1. z is confluent iff (x | C) is filtered.
2. If pu: P — y is separating then y is normal.

Proof. (1) The two conditions for filteredness of the slice category are pre-
cisely mellifluence and confluence of z.
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(2) The map py,: * — y is an object of (z | C), so p,,: y — y, and by
separation j,, = 1,. If f: y — 2, then py; f: * — z is an object of (z | C),
SO fhuysr: 2 — Y. Then fipr = pu =1 O

We have proved all the expected relationships between confluence, weak
and strong normalisation, and even found a simple condition (lemma 35) for
confluence + weak normalisation to imply strong normalisation. We now
give an example to show that some such condition is necessary.

Let C' be the category with three objects x y and z, and eight non-identity

arrows:
[N G
g

h I m |y
z
with composition defined by

=17 [i9=y9 [ih=h
giki=yg gika =g gim=nh
hily =g hily =g
ki ke = ky ki; ko = ko ki;m =m
koy kv = ky ki ko = Ky ko;m =m
liyky =1 li; ko = Iy lyym=1,
lo;ky =1y lo; ko =1y loym =1,
m;ly = ky m;ly = ko

Then C' is a mellifluent, confluent category and z is normal, but z is not
strongly normalising because none of the three cocones over

PR A R

is separating.
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7 Conclusions

This treatment of the A-calculus shows that rewriting can have a well-behaved
proof theory. The analogy of terms as propositions and rewrites as proofs
has lead to an interesting equational theory on rewrites with a lot of the feel
of proof theory. Sequential composition acts like cut, and the triangle laws
make n-expansion a sort of right rule, with S-reduction the corresponding left
rule. This theory has a “cut-elimination” theorem which is associative and
deterministic, and a categorical semantics which characterises A-abstraction
by an adjointness property. The author finds it hard to conceive of a neater
state of affairs.

The application of these ideas to more general rewrite theory is perhaps
less immediately convincing. In order to produce a good theory, we have
defined normal forms which can be rewritten, confluence which puts a strong
condition on the rewrites, strong normalisation which allows infinite reduc-
tion paths, and the condition “mellifluence” which has no obvious interpreta-
tion in terms of rewriting. Nonetheless, the author feels that these definitions
have some justification if we understand the equations on rewrites as condi-
tions on legitimate strategies. Only further work will decide this point.

The potential applications of this new theory are many. The 2\-calculus
would generalise straightforwardly to more complex type theories such as
‘system F’ [9] and the ‘calculus of constructions’ [3]; indeed, since the proofs
in this paper do not really depend on the types, we can expect the same
results to hold. Many other types have “n-expansion” rules: unit types,
surjective pairing, strong sums, recursive datatypes and so on. The prob-
lems here are not very different from 7n-expansion in the A-calculus, and this
approach is clearly worth trying.

In fact the generality of the definitions invites their application to much
more varied examples. Since normal forms are defined ‘up to isomorphism’ we
can normalise a commutative binary operation * by making x*y isomorphic to
y*x. The definition of “strong normalisation” allows the possibility of infinite
normal forms, which can be used to study streams and lazy datatypes. There
are many other examples where some restriction on the rewrite strategy is
essential. This is a fertile field for further work.

Finally, the author would like to thank the referees, whose comments lead
to enormous improvements to this paper. If the result is at all readable, it is
thanks to them.
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A The Proof of Proposition 12

Uyt =t X, ThEyity=t3: Xand D yg:ty3 =64 X
are in G, then (y1172) T3 =71 (21 73)-

The proof is by induction on |y3|g. There are a total of eight well-formed
cases of v1, 72, 73, with up to four subcases each. Fortunately, six of the main
cases are straightforward, and can be left to the reader. The two remaining
cases are as follows:

case 1: v1 = ;711 7125 tar to,
Yo = la1 loo; Y21 Yoo; €31 t32
and v3 = a3 t32; Brag tan; V31

There are several subcases, corresponding to the different cases in the defi-
nition of T:

case 1.1: g1 T ag; AL(33); Alsg = aug; AMya; Atss
and y11 T au; AZ(t3); AMag = ais; Ays; Atas.

Then
(v11 T v21) T as; AZ(ts3); Atz = Y1 T s Aya; Atss
= 53 AV5; Alag T Atag; Ava; Alss
= a5 A5 T 7a); Ass
SO

(71 T 72) Ty = ai;;astio; 5t13,t12; (75 T 74)[712 T ’722] T 731
= (041; s Qs 1125 Biis s Vs [712] T ’74[722]) T 31
=710t

case 1.2: Y21 'I' A3, )\Z(t33), )\t33 = Oy, )\’}/4, )\t33,
Y11 T o AZ (t23); Moz = 755 Mis; AM(t4 €515 €52)
and 2 1;Z(t2) (1;1; €51); €52 Ty = tL 1579 (1515 €61); €62-

Then

(711 T v21) T as; AZ(t33); Atas = Y11 T s Ayas; Atss
= V55 Nty )\(té €515 €52) T Alaz; Aya; Atss
= V5 T 76 Mo s A(L§ €615 €62)
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SO

(71 T72) T3 = a1; (75 T96) (712 T 72235 €61[E32]); €6altsa] T 31
= 1395 i2i ts oz T (5 1576 (1515 €61); €62) [Y22] T 1
= 15757125 ts a2 T (té 1§I(té) (L5 15 e51)s €52 T ya)[722) T 731
= a1; 75 (7123 5 €s1[ta2]); €salton] T va[v22] T 31
=711 (rT7s)

case 1.3: a1 T ag; AL(ts3); Alsg = o Ay Atss,
Vit T s AL (tas); Atag = 55 Mes; A(L5 €515 €52),
L Z(t) (1; 15 €s1); €50 T e = o 15 Big 15 %6
and s T ag; AMYe; AMsz = ar; Ayr; Alss.

Then

(11 T v21) T az; AZ(t33); Mtz = yi1 T s Aya; Atss
= 755 T3 AT €513 €52) T Mag; Ava; Atas
=75 T a6 A5 Alas
= 73 Ayr; sy

SO

(711 72) T3 = o155 artio; B Y712 Ty22] Ty

= a; (73 Ayrs Atss) (12 T v22); Atas tao
T (Mt13 t12; Brrg e L(tis[tiz])) T a1

= a3 (75 T s Ayes Atss) (V12 T y22); Atss tao
T (Mt13 t12; Bryg e L(tis[tiz])) T a1

= a1; Y5 V123 ts Lo T a6 223 Big 1003 Ve V22) T Y31

= 1575 Vi2; ts toa T s tao; Z(ts) (Z(t22);; €51 [taz]); €saltao]
T yalv2e] 131

= a1; Y5 (V125 5 €s1(ta2]); €s2lton] T va[V22] T 31

=711

case 1.4: vy T ag; AL(ts3); Alsg = o Ay Atss,
Y11 T o AZ(t23); Moz = 753 Mis; AM(E3 €515 €52),
ts LI(t5) (1; L es1); €52 T 71 = 0 13 Big 13 %
and 75 T ag; Myg; Msg = 773 Tips AL €715 €72).
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Then

(11 T v21) T az; AZ(t33); Atz = yi1 T s Aya; Atss
= 755 T3 AT €515 €52) T Mag; Ava; Atas
=75 T a6 A5 Alss
= 773 My At €713 €72)

SO

(71 T72) T3 = a1;97 (12 T yezs 5 enltse]); €raltse] T s
= a1; (Y73 s M7 €715 €72) (12 T 722); Abgs to
T (Mt t12; Biyg e Z(tis[ti2])) T 51
= a; (75 T as; Aye; Atss) (712 T y22); Atss ts
T (Mt t12; Biyg s Z(tis[ti2])) T 51
= 1575 Y125 By Log T 06 t225 Bretans V6[V22) T 731
s s Y123 s tan 1t tao; T(ts) (Z(taz); 5 €s1(tan]); €52ta]
T yaly22] T 51
= a1; Y5 (V125 5 €s1[ta2]); €s2lton] T va[V22] T 31
=711

case 1.5: yo1 T ag; AZ(ts3); Atsz = a5 Megs ML) €415 €42).
Then

(y11 T 721) T s AZ(t33); Atss = Yin T Va5 My )\(t}l €41} €42)

SO

(711 72) T3 = a1; (yin T 7a) (72 T 72055 €an[t32]); €anltso] T va1
=t (21n)

This completes the first main case.

case 2: Y1 = Y113 My, At €115 €12),
Yo = Alar; AYar; Algi
and 3 = At31; A\y31; €3.

Again there are several subcases:

case 2.1: t; LZ(t) (1 L enn);ean 921 = 1y 17 (15 1 €01 €
and ti 1,1-(25411) (1, 1, 641); €492 "' Y31 = ti 1, Y5 (1, 1, 651); €59.
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Then

th () (L L en)sent (vor T1) =ty 13y (1 1y €a1); €40 T30
= th L; 741(1)5 tzll I tzll 1;7s (15 1; 651); €52
= th L; (74 T 75) (1§ 1; 651); €52

SO

7T (72 T 73) =71 T (74 T 75); Mts 5 )\(té €51; 652)
= (71 JF%) T3

case 2.2: th 1;1(75%1) (1§ 1; 611); €12 T 721 = th Ly (1; L; 641); €42,
LT (11 ean); €00 Ty31 = a5 15 Bis 1375
and vy T as; AZ(ts); Ats = a5 MYe; Ats.
Then

t LZ(t) (L L en)senn T (von 1) =8 Ly (115 €a1); €40 T s
= th L; 741(1)§ tzll 1Tasl; 5t5,1; Y5
= ag 1; Bie,157 T 75

SO

YT (etys) =71 Tas A6t s) €
=711 72 T as; AVs; €3
= (71 Jf%) T3

case 2.3: t1; L;Z(t])) (1; 15 €11); €12 T 921 = t11 174 (15 15 €41); €42,
tiLZ(t) (11 ea1); €40 Ty31 = 5 15 Big 1595
Ya T as; AL (t5); Ms = Ye; Mie; AML§ €615 €62)
and t1;;76 (1; 15 €61); €62 T 75 = 1, 197 (1; 15 €01); €na

Then

t LZ(t) (L1 en)s e t (o tam) =t 17a (11 em)s ean T
= th Ly Z(1); tzll Liasl; B
= th; Yo (1515 €61); €62 T 75
= th Liyr (1515 en1); ez
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SO

T (21 73) = 711 T v s At en1 €n2); 5 €3
= Y11 T Z(t11); Ny Aty 181, 1)

P D)5 A5 76 (115 €61); €62 1955 €3
= Y11 T Y63 Mo AL €613 €62) T Als; M5 €3
=711 T 72 T as; Ays; €3
= (71 Jf%) T3

case 2.4: t1, L;Z(t1) (1; 15 €11); €10 T vor = thy 134 (1 15 €41); €42,
ty LI (1 L ea)s € tysr = a5 15 B 13 %
Ya T as; MI(t5); Ms = ¥e; Mg ML €615 €62)
and t1;;% (1;1;€61); €62 T 75 = @7 15 By 13 77

Then
th LZ(t) (L L en)s et (var T 1) =ty 137 (1 1y €a1); €40 T 731
= th L; 741(1)3 75411 11asl; 5t5,1; V5
=t11;% (1;1;€61); €62 T 75
=arl; B0

SO

Yt (2t ys) =1 Tar Ay e
= 711 T Z(t11); 1y A(E, L7, 1)
F At 15 At 76 (1 L €61)i €62 T 5)5 €3
= Y11 T 765 s A(tg €615 €62) T Ms; Ays; €3
= Y11 T Y2 T @55 AYs; €3
=ty tns

case 2.5: t1; 1;Z(t1;) (1; 15 €11); €12 T Y21 = @ 1; By 15 Y4
Then
t LZ(t) (1 en) et (yor T931) = aa 15 Beyasva T3

SO

7t (72 T 73) =711 T ou; >\(74 T 731); €3
=Mty s

This completes the proof.
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