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Abstract
In order to describe conditional iteration in quantum systems, we consider categories

where hom-sets have a partial summation based on an axiomatisation of uniform

convergence. Such structures, similar to Haghverdi’s Unique Decomposition Categories

(UDCs), allow for a number of fundamental constructions including the standard, or

‘particle-style’, categorical trace.

We demonstrate that the category of continuous maps on Hilbert spaces falls within this

fraqmework, and has a (partially defined) categorical trace based on iteration. This trace

formula converges for unitary maps, but has no immediate physical interpretation. We

then give a general construction that splits this trace into the composite of three maps: a

canonical inclusion, a series of unitary operations, and a co-diagonal. We show that these

unitary operations give a particle-style trace in a larger category (the convolution

category), and demonstrate how the familiar (Elgot, Arbib-Manes) programming

language interpretation of ‘conditional loops’ (via the standard trace over coproducts)

gives a semantics of iteration conditioned on a purely quantum variable. Algorithms and

physical interpretations are given.

1. Introduction

In this paper, we study conditional iteration in Hilbert spaces, in order to give a physi-
cally reasonable notion of conditional quantum iteration. This is not the “quantum data,
classical code” paradigm (Selinger 2004(i)) — rather we seek a fully quantum, and hence
unitary, system that allows for iteration conditioned on quantum variables, without mea-
surement.

A natural first question is whether such a thing exists at all — indeed, the usual model
of While loops (The Elgot Dagger, described in Section 10.1) is not even applicable to
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classical reversible computation. However, partial feedback – without measurement – is
certainly a physical construction, and is a common feature of (for example) quantum
optics experiments and quantum error-correction (Sarovar, Millburn 2005). Similarly,
the original conception of a universal quantum Turing machine (Deutsch 1985) has a
purely unitary evolution (We emphasise that it is the evolution of the quantum Turing
machine that is purely unitary, not the Halting Scheme described in (Deutsch 1985).
This is based on repeated observation of a subsystem, and we refer to (Myers 1997) and
(Linden, Popescue 1998) for the problems associated with this approach), and hence a
fully quantum control structure.

However, there are a number of well-established problems associated with a direct
attempt to generalise iteration to the unitary setting: we refer to (Linden, Popescue
1998) for a general discussion, (Hagar, Korolev 2004) for a good discussion in terms of
halting problems, and (Bernstein, Vazirani 1997) for an analysis of the restricted case,
where all branches of a superposition reach a halting state after the same number of
steps.

The approach we take is to investigate the structure of conditional iteration, using
familiar categorical tools, but without assuming that it may fit into pre-existing pro-
gramming language paradigms (such as ‘While loops’). By generalising the Unique De-
composition Categories of (Haghverdi 2000; Haghverdi, Scott 2006) to cover categories
of Hilbert spaces and linear maps, we give a description of conditional iteration in uni-
tary systems. This is via the construction of an ‘iterative’ or ‘particle-style’ trace, and
corresponds to physical experiments based on partial feedback. The particle-style trace
is a description of ‘eliminating a subspace by conditional iteration’ that is applicable to
classical reversible computation. We refer to (Abramsky 1996) for an overview of cate-
gorical traces, including interpretations as both iteration and fixed-point constructions,
(Haghverdi 2000) for the formalisation of the particle-style trace in Unique Decompo-
sition Categories and applications to reduction in linear logic, (Abramsky et. al. 2002)
for examples of traces used in building models of linear logic and (untyped λ-calculus
equivalent) combinatory algebra, (Hines 2003) for the particle-style trace as the seman-
tics of reversible space-bounded Turing machines, and (Selinger 2004(i)) for applications
to classical-control, quantum-data programming languages.

The particle-style trace is defined in terms of categories with additional structure which
permits both formal sums of families of arrows, and matrix representations (the Unique
Decomposition Categories of (Haghverdi 2000)). We generalise this notion to a setting
that covers Hilbert and Banach spaces, and demonstrate that this more general setting
also gives a categorical trace. Consideration of partial feedback in a simple linear-optics
thought experiment also demonstrates that the iterative or ‘particle-style’ trace is a 3-
step process: a canonical inclusion, a reversible (and, in the appropriate setting unitary)
process, and a codiagonal. Further, the central reversible (or unitary) part of this is itself
a categorical trace in a larger category.

Finally, we consider computational interpretations. Given a classical reversible function
f computed by an algorithm based on conditional iteration, we demonstrate how we
may produce a quantum-mechanical analogue F . This reproduces the behaviour of this
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classical algorithm on the computational-basis (i.e. F (|x〉) = |f(x)〉 for basis vectors |x〉),
and is superposition-preserving, so F (α(|m〉) + β|n〉) = α|f(m)〉+ β|f(n)〉.

2. Categorical Preliminaries

We assume the reader is familiar with the basic language of category theory. We refer
to (MacLane 1998) for the definitions, together with the notions of naturality, functors,
natural transformations and adjoints (see also (Blute, Scott 2004) for a basic survey).

Definition 2.1. Symmetric Monoidal Categories
A monoidal (or tensored) category (C, I,⊗,α, $, r) is a category C, with functor
⊗ : C × C → C, unit object I ∈ ob(C), and specified isos:

— αABC : (A⊗B)⊗ C
∼=−→ A⊗ (B ⊗ C)

— $A : I ⊗A
∼=−→ A

— rA : A⊗ I
∼=−→ A

satisfying various naturality and coherence equations. A monoidal category is symmetric
if there is a natural isomorphism (or “twist”) sAB : A⊗B → B⊗A satisfying sB,AosA,B =
idA⊗B in addition to appropriate naturality and coherence equations.

Monoidal tensors satisfying additional conditions are of particular importance :

— (Products) If, for all objects X1, X2 ∈ Ob(C) there exist arrows

X1 X1 ⊗X2
π1!! π2 "" X2

such that, for all arrows f1 ∈ C(Y, X1) and f2 ∈ C(Y,X2) there exists a unique arrow
〈f1, f2〉 ∈ C(Y, X1 ⊗X2) making the following diagram commute :

Y
f1

##!!!!!!!!!!
f2

$$""""""""""

〈f1,f2〉
%%

X1 X1 ⊗X2π1
!!

π2
"" X2

then ⊗ is called a categorical product, and often denoted ×.
— (Coproducts) If, for all objects X1, X2 ∈ Ob(C) there exist arrows

X1
ι1 "" X1 ⊗X2 X2

ι2!!

such that, for all arrows f1 ∈ C(X1, Y ) and f2 ∈ C(X2, Y ) there exists a unique arrow
[f1, f2] ∈ C(Y, X1 ⊗X2) making the following diagram commute :

Y

X1 ι1
""

f1

&&!!!!!!!!!!
X1 ⊗X2

[f1,f2]

''

X2ι2
!!

f2

((""""""""""

then ⊗ is called a categorical coproduct, and often denoted (.
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For numerous examples, we refer to the previously mentioned sources, as well as (Ge-
roch 1985), a category-oriented text on mathematical physics. Particular important ex-
amples, to be described in Section 3 below, include categories of relations (Rel, )) (sets
and relations, with tensor being disjoint union), (pFun, )) (sets and partial functions),
(Vecfd,⊕) (finite dimensional vector spaces and linear maps, with monoidal tensor being
the direct sum), and various categories of Banach and Hilbert Spaces.

Notation: We write our categories in boldface. Some authors adopt the convention of
naming categories according to their objects — an equally common alternative convention
is to name categories according to their arrows. Where possible we follow previously
established conventions so, for example, we refer to the category Vec of vector spaces
and linear maps, but the category pInj of partial injections, &c.

2.1. Traced Monoidal Categories

Traced monoidal categories, introduced by Joyal, Street, and Verity (Joyal et. al. 1996) for
studies in knot theory and algebraic topology, turn out to provide a convenient framework
for studying many areas of theoretical computer science, including iteration theories,
parametrized feedback, fixed-points in computation, algebra of networks, state machines,
and categorical aspects of Girard’s Geometry of Interaction (GoI) program (Abramsky
1996; Hines 1997; Haghverdi 2000; Abramsky et. al. 2002; Hines 2003; Haghverdi, Scott
2006).

The following definition is equivalent to the original, in the case of a traced symmetric
monoidal category.

Definition 2.2. A traced symmetric monoidal category is a symmetric monoidal category
(C,⊗, I, s) with a family of functions TrU

X,Y : C(X⊗U, Y ⊗U) −→ C(X, Y ) called a trace,
subject to the following conditions:
1 Natural in X, TrU

X,Y (f)g = TrU
X′,Y (f(g ⊗ 1U )) , where f : X ⊗ U −→ Y ⊗ U ,

g : X ′ −→ X,

2 Natural in Y , gTrU
X,Y (f) = TrU

X,Y ′((g ⊗ 1U )f) , where f : X ⊗ U −→ Y ⊗ U ,
g : Y −→ Y ′,

3 Dinatural in U , TrU
X,Y ((1Y ⊗g)f) = TrU ′

X,Y (f(1X⊗g)) , where f : X⊗U −→ Y ⊗U ′,
g : U ′ −→ U ,

4 Vanishing I, TrI
X,Y (f) = f , for f : X ⊗ I −→ Y ⊗ I .

5 Vanishing II, TrU⊗V
X,Y (g) = TrU

X,Y (TrV
X⊗U,Y⊗U (g)), for

g : X ⊗ U ⊗ V −→ Y ⊗ U ⊗ V .

6 Superposing,
g ⊗ TrU

X,Y (f) = TrU
W⊗X,Z⊗Y (g ⊗ f)

for f : X ⊗ U −→ Y ⊗ U and g : W −→ Z .

7 Yanking, TrU
U,U (σU,U ) = 1U .
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The axioms of a traced monoidal category have a strongly geometric flavour, with an
associated graphical calculus (Joyal et. al. 1996; Joyal,Street 1991; Abramsky et. al.
2002), all this being presaged by R. Penrose’s graphical notation for tensor calculus
(Penrose 1971). We also observe that (Joyal et. al. 1996) studies the braided and tortile
monoidal cases, giving further close connections to braid closure in knot theory. However,
categorical traces in symmetric monoidal categories have been shown to have important
connections to computer science (Abramsky 1996; Abramsky et. al. 2002; Hines 2003).

3. Sets with notions of summation

In order to produce categorical traces that provide a notion of iteration, we will consider
categories whose hom-sets have a notion of partial summation. We now introduce a very
general notion of summation, motivated by absolute convergence.

We recall some standard notation. Let M be a fixed set. If I is a set, an I-indexed
family of M is a function x : I → M . We often denote such a family x by {xi}i∈I . In
what follows we only consider countably indexed families. As we are considering partial
summations, we also make heavy use of Kleene’s notation for equality of partial functions
as in (Freyd and Scedrov 1990): u + v means: one side is defined iff the other side is,
and in that case they are equal. When we know that both sides exist, we use the usual
symbol = for equality.

Definition 3.1. Partial commutative monoids, Weak partition-associativity
We define a partial commutative monoid or PCM to be a set M together with a
partial function Σ from countably indexed families of M to elements of M that satisfies
the following axioms, where we write

∑
i∈I xi for Σ(x), when the operation Σ is defined:

1 The Unary Sum axiom Any family {xi}i∈I , where I = {i′} is a singleton set, is
summable, and

∑
i∈I xi = xi′ .

2 The Weak Partition-Associativity Let {xi}i∈I be a countably indexed summable
family, and let {Ij}j∈J be a countable partition† of I. Then {xi}i∈Ij is summable for
every j ∈ J , and {

∑
i∈Ij

xi}j∈J is summable, and

∑

i∈I

xi =
∑

j∈J




∑

i∈Ij

xi





We then say that (M,Σ) is a PCM.

We first need to show that the Σ operation of a PCM is well-defined — that is, the
partial summation operation preserves “equivalent” families. For this, we define equiva-
lence of families as follows: given families x : I → M and y : J → M , two countably
indexed families of elements of M , we write x ∼= y when there exists a bijection ϕ : I → J
such that yoϕ = x. This means, for all i ∈ I, yϕ(i) = xi.

† Here, ‘countable’ means either finite or denumerable. Following (Manes, Arbib 1986), we allow count-
able many Ij to be empty.
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Proposition 3.2 (Well-definedness of Σ). Suppose x ∼= y are two equivalent families
of M . If Σ(y) is well defined, then so is Σ(x) and they are equal. That is, writing x =
{xi}i∈I , and similarly for y, if Σj∈Jyj exists, then so does Σi∈Ixi and Σj∈Jyj = Σi∈Ixi.
In particular, if x ∼= y then Σ(x) + Σ(y) (note the use of Kleene equality).

Proof. Suppose ϕ is a bijection, as above, so xi = yϕ(i), for all i ∈ I. Let Ji = {ϕ(i)}
be a singleton set; hence {Ji | i ∈ I} is a partition of J . Then we have:

Σj∈Jyj = Σi∈IΣj∈Jiyj Weak partition associativity
= Σi∈Iyϕ(i) Defn, and Unary sum axiom
= Σi∈Ixi Defn

If Σ(x) is defined, where x = {xi}i∈I , we may write Σ(x) (unambiguously) as
∑

i∈I xi.
For example, if I = {1, . . . , n}, we write Σ(x) = x1 + x2 + x3 + · · · + xn, and if I = N,
Σ(x) = x1 + x2 + x3 + · · · + xn + · · · . Notice that by Weak Partition Associativity, we
may equate different partitions of a summable family x, for example:

x1 + x2 + x3 + · · · = x1 + (x2 + x3 + · · ·+ xn + · · · )
= (x1 + x2) + (x3 + x4) + · · ·+ (xn + xn+1) + · · · .

The terminology ‘Weak Partition Associativity’ comes from the Partition Associativity
Axiom of Definition 3.4 (for example, as presented in (Manes, Arbib 1986)). We have
weakened this to allow for analogues of negative elements in a summation, which are ruled
out by the full partition-associativity axiom (see the Positivity Property of Proposition
3.5).

Proposition 3.3. Let (M,Σ) be a PCM. Then

1 (Summable Subfamilies) Let {xi}i∈I be a summable family of M . Then any subfamily
{xi}i∈K , where K ⊆ I, is also summable.

2 (Existence of Zero) The empty set is summable, and x + {} = x = {} + x for all
x ∈ M . Hence it is a zero for M , and we write 0 =

∑
{}.

3 (Sums of Zeros) For any index set I, let 0I : I → M denote the constantly zero family
(so OI(i) = 0, for all i ∈ I). Then 0I is summable, and ΣI0I = 0. More generally, for
any element x ∈ M , x + 0 + 0 + 0 + · · · = x (where 0 + 0 + · · · denotes (the sum of)
either a finite or infinite sequence of 0’s).

Proof. The proofs of (1) and (2) below are based on very similar proofs (for the special
case of partially additive monoids – see below) presented in (Manes, Arbib 1986).

1 (Summable Subfamilies) Any subset K ⊆ I defines a partition of I, namely {K, I\K}.
By Weak Partition Associativity,

∑
i∈K xi exists.

2 (Existence of Zero) As M is by definition non-empty, the unary sum axiom implies
that the set of summable families is also non-empty. The empty family is a subfamily
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of any summable family; hence letting K = ∅ in the partition above, we see that the
empty family {} is summable. It is then immediate that

∑
{} = 0 is a zero for the

summation operation, and 0 + x = x = x + 0 exists for arbitrary x ∈ M .
3 (Sums of Zeros) Pick any partition of I whose first cell is I itself, and the remaining

cells are empty (the number of empty cells is either finite or infinite, depending
upon whether one wishes a finite (resp. infinite) sum of 0’s. For example, write I =
I1 ) ()n>1In), where I1 = I, Ii = ∅, if i > 1. If x = {xi}i∈I is an I-indexed
summable family, then by Weak Partition Associativity we have:

∑
i∈I xi =

∑
i∈I1

xi+∑
n>1(

∑
i∈In

xi) =
∑

i∈I1
xi+0+0+· · · . Now pick a singleton family {x}, so Σ(x) = x.

The result follows.

We now present Σ-monoids, and partially additive monoids, as introduced in (Manes,
Benson 1985), as special cases of PCMs :

Definition 3.4. (Σ-monoids, Partially additive monoids)
A PCM (M,Σ) is called a Σ-monoid when it satisfies the following additional axiom :

— The (full) Partition-Associativity Axiom. Let {xi}i∈I be a countably indexed
family, and let {Ij}j∈J be a countable partition of I. Then {xi}i∈I is summable if
and only if {xi}i∈Ij is summable for every j ∈ J , and {

∑
i∈Ij

xi}j∈J is summable, in
which case

∑

i∈I

xi =
∑

j∈J




∑

i∈Ij

xi





Note that this is a special case of the weak partition-associativity axiom, with a two-way,
instead of a one-way, implication.

We say a Σ-monoid is a partially additive monoid if it also satisfies the axiom :

— The Limit Axiom. If {xi}i∈I is a countably indexed family, and {xi}i∈F is summable
for every finite F ⊆ I, then {xi}i∈I is summable.

The limit axiom is a very strong condition that certainly is not satisfied by many forms
of summation. When considering summation on the real line, finite sums always exist.
However, the convergence of an infinite sum is certainly not implied by the (guaranteed)
convergence of all finite sub-sums. An illustrative example of a summation satisfying the
limit axiom is the set-theoretic union of partial functions. In Section 5, the distinction
between ‘analytic’ and ‘algebraic’ notions of summation is explored in various contexts.

Partially additive monoids are used in the theory of program and flowchart semantics
(Manes, Arbib 1986). The following results on Σ-monoids are given in this reference:

Proposition 3.5. Let (M,Σ) be a Σ-monoid. Then

1 (Summable Subfamilies) Let {xi}i∈I be a summable family of M . Then any subfamily
{xi}i∈K , where K ⊆ I is also summable.

2 (Existence of Zero) The empty set is summable, and x + {} = x = {} + x for all
x ∈ M . Hence it is a zero for M , and we write 0 =

∑
{}.
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3 (The Positivity Property) Let X = {xi}i∈I be a summable family of M satisfying∑
i∈I xi = 0. Then xi = 0 for all i ∈ I.

Proof. 1. and 2. follow immediately, since Σ-monoids are special cases of PCMs. It
remains to prove 3., the positivity property:

Let X={xi}i∈I be a summable family satisfying
∑

i∈I xi = 0. For some i ∈ I, we define
Y = {xj}j '=i∈I , so xi +

∑
Y = 0 =

∑
Y + xi by weak partition associativity. Then by

the full partition-associativity axiom,

xi = xi + 0 + 0 + 0 + . . . by Proposition 3.3
= xi + (

∑
Y + xi) + (

∑
Y + xi) + (

∑
Y + xi) + . . .

(by full partition associativity)

= (xi +
∑

Y ) + (xi +
∑

Y ) + (xi +
∑

Y ) + . . .

= 0 + 0 + · · · = 0,by Proposition 3.3

Hence xi = 0. However, as i was chosen arbitrarily, xk = 0 for all k ∈ I.

We emphasise that the above proof of positivity does not apply to general PCMs, as it
depends on the two-way implication in the (full) partition-associativity axiom. In Section
6, we present examples of PCMs that do not satisfy the positivity property.

Remark Positivity and quantum computation
Categories that carry a Σ-monoid structure on their hom-sets (see Section 5) have long
been known to have a close connection with models of conditional iteration (see, for
example (Manes, Arbib 1986)) – however, we have gone to a great deal of trouble to find
generalisations of Σ-monoids that do not satisfy the positivity property of Proposition
3.5. This is because positivity prevents Σ-monoids from being used to reason about
negative or complex values.

Our eventual aim is quantum computation where both constructive and destructive
interference play an important part in quantum algorithms. The importance of com-
plex amplitudes in quantum computation is shown by the Gottesman-Knill Theorem
(Gottesman 1999) (Knill et. al. 2001). This states that a system with the controlled not
gate, computational-basis preparations and measurements, and classical control can be
efficiently simulated by a classical computer, whereas a system with these features, and
additionally, single-qubit π/8 phase shifts, is universal for quantum computation (up to
a well-defined notion of approximation, see (Shi 2002)).

3.1. A group-like notion of summation

For completeness, we also consider Σ-groups – sets with a notion of summation similar
to Σ-summability, where the failure of positivity is part of the definition. These were
introduced, in slightly different terms, in (Wylie 1957) and by Denis Higgs in his theory
of axiomatic integration theory. We follow the notations and conventions of (Higgs 1988),
in particular because of the direct application to Banach and Hilbert spaces given in
(Higgs 1989). The following definitions and notions are due to Higgs.
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Definition 3.6. Σ-groups
A Σ-group is defined in (Higgs 1989) to be a set G, together with a partial summation
Σ : F(G) → G, where F(G) is the set of arbitrarily indexed families of G. Then
1 Unary sum axiom Any family {gi}i∈I , where I = {i′} is a singleton set, is

summable, and
∑

i∈I{gi} = gi′ .
2 Finite abelian group axiom The set G, together with the restriction of Σ to finite

sets, is an abelian group, and hence all finite families are summable.
3 Weak Higgs axiom (I) Let {gi}i∈I be a summable family, and let {Ij}j∈J be a

partition of I into finite subsets. Then {gi}i∈Ij is summable for every j ∈ J , and∑
i∈Ij

gi is summable for j ∈ J . Finally,

∑

i∈I

gi =
∑

j∈J




∑

i∈Ij

gi





4 Weak Higgs axiom (II) Let {gi}i∈I be an arbitrary family, and let {Ij}j∈F be
a partition of I for some finite index set F . If {gi}i∈Ij is summable for every j ∈ J ,
and

∑
i∈Ij

gi is summable for j ∈ J , then {gi}i∈I is summable and

∑

i∈I

gi =
∑

j∈J




∑

i∈Ij

gi





Proposition 3.7. The following properties of Σ-groups are immediate from the defini-
tion:
1 A Σ-group G, together with the restriction of the summation to binary pairs x + y =∑

{x, y} for all x, y ∈ G, gives an abelian group. Hence Σ-groups do not satisfy the
positivity property.

2 Imposing the limit axiom (as in Definition 3.4) on a Σ-group results in all series being
summable.

The Higgs axioms provided the motivation for the generalisation from Σ-monoids to
the more general PCMs. Despite this, Σ-groups themselves are not PCMs : Σ-groups
allow for arbitrarily indexed summable families, and the Weak Higgs axioms (I) and (II)
are restricted to either finite partitions, or partitions into finite subsets. However, all the
examples of Σ-groups we consider are also PCMs. Because of this, we make the following
definition :

Definition 3.8. Strong Σ-groups
A strong Σ-group is defined to be a Σ-group that is also a PCM (with respect to the
same summation operator). Examples will be presented in Section 6.3.

Terminology We also use the generic term “Sigma-structures” for any of the structures
given in the above section.

4. The category of PCMs

As may be expected, we may form a category of partial commutative monoids :
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Definition 4.1.
We define the category PCM as follows:

— The objects of PCM are partial commutative monoids.
— Given objects (X, Σ), (Y,Σ′) ∈ Ob(PCM), an arrow f : (X, Σ) → (Y, Σ′) is a function

from X to Y such that, for all countably indexed families {xi}i∈I of X,

{xi}i∈I is summable ⇒ {f(xi)}i∈I is summable

in which case

f

(
∑

i∈I

xi

)
= Σ′i∈If(xi)

Note that f(0X) = 0Y , for arbitrary f ∈ PCM(X, Y ), since 0X = Σ(X){}, and so
0Y = Σ(Y ){} = f

(
Σ(X){}

)
= f(0X).

We may make similar definitions for PAMs, Σ-groups and Σ-monoids, to give the cate-
gories PAM,ΣGrp,ΣMon respectively. Note that PAM and ΣMon are subcategories
of PCM; however ΣGrp is not because, as noted above, Σ-groups are not required to
satisfy the weak partition-associativity axiom.

Proposition 4.2. The category PCM has products, coproducts, and equalizers.

Proof.

— (products) We first describe finite products. Given PCMs A = (X, Σ(X)) and B =
(Y,Σ(Y )), their product A×B has, as underlying set the Cartesian product Z = X×Y .
A countably indexed family {zi}i∈I = {(xi, yi)}i∈I is defined to be summable exactly
when either

1 The sums Σ(X)
i∈I xi and Σ(Y )

i∈Iyi exist, in which case Σ(Z)
i∈Izi =

(∑
i∈I xi,

∑
i∈i yi

)

2 I is the empty set, in which case Σ(Z){} =
(
Σ(X){},Σ(Y ){}

)
, giving the zero

element of A×B.

It is easy to verify that A×B satisfies the axioms for a PCM and satisfies the required
universal property for a categorical product.
Extension to arbitrary Λ-indexed products Πλ∈ΛAλ, where Aλ = (Xλ,Σ(Xλ)), is
defined analogously to the finite case, with coordinate-wise Σ structure.

— (coproducts) Again, we start with finite coproducts. Given PCMs A = (X, Σ(X))
and B = (Y, Σ(Y )), their coproduct A ( B has as underlying set the disjoint union
X )Y = X×{0} ∪ Y ×{1}. A countably indexed family {ui}i∈I in X )Y is defined
to be summable when either

1 {ui}i∈I = {(xi, 0)}i∈I and {xi}i∈I is a summable family of A. In this case
Σ(X(Y )

i∈I ui =
(
Σ(X)

i∈I xi, 0
)

2 {ui}i∈I = {(yi, 1)}i∈I and {yi}i∈I is a summable family of B. In this case
Σ(X(Y )

i∈I ui =
(
Σ(Y )

i∈Iyi, 1
)

3 I is the empty set, in which case Σ(X(Y ){} =
(
Σ(X){}, 0

)
=

(
Σ(Y ){}, 1

)
giving

the zero element of A(B.



Conditional quantum iteration from categorical traces 11

It is again easy to verify that X (Y satisfies both the PCM axioms and the required
universal property for a coproduct.
The case of Λ-indexed coproducts (λ∈ΛAλ is analogous: one forms the disjoint union
of their underlying sets, and we declare a family {ui}i∈I in the disjoint union to
be summable if it arises as the injection of a summable family from a component
(in which case, the sum is the appropriate injection of the sum in that compo-
nent). More precisely, if {ui}i∈I in the disjoint union is summable because it arises
from a summable family (xα0

i ) in the α0-th component, then we define the sum
Σ()λ∈ΛXλ)

i∈I ui =
(
Σ(Xα0 )

i∈I xα0
i ,α0

)
.

Finally, equalizers are constructed as in the category of sets, with the induced Σ-
structure. That is, given morphisms f, g : (X, Σ(X)) → (Y,Σ(Y )), we form the set-
theoretic equalizer E = {x ∈ X | f(x) = g(x)}. We declare a family to be summable
in E iff it is already summable in X, in which case its sum is the sum in X. Notice
this forces the inclusion map E ↪→ X to be a morphism. It is readily verified that the
universal property is satisfied; in particular, this amounts to showing that the unique
map in Sets making the appropriate diagram commute actually is a morphism in
PCM. This follows from the induced Σ structure on E.

4.1. PCM as a closed category

We show that PCM is a closed category, without assuming it is monoidal closed; for
the latter, see Section 7 below. We follow the treatment in Laplaza (Laplaza 1977). We
demonstrate that hom-sets in PCM are themselves PCMs, i.e., there is a notion of
internal hom satisfying appropriate naturality equations.

Lemma 1. Let A,B be PCMs with summations Σ(A),Σ(B), respectively. Define the
internal hom [A,B] = PCM(A,B). Then [A,B] can be given a natural PCM structure.

Proof. Recall the definition of arrows in the category PCM : an arrow f : A → B is
a function from A to B such that, for all countably indexed summable families {xi}i∈I

of A, the family {f(xi)}i∈I in B is summable and

f
(
Σ(A)

i∈Ixi

)
= Σ(B)

i∈If(xi)

We say an indexed family of arrows {fj}j∈J in [A,B] is summable when, for all summable
families {xk}k∈K ∈ A, the doubly-indexed family {fj(xk)}j∈J,k∈K is summable in B: that
is, if

∑
j∈J

∑
k∈K fj(xk) exists.

In the case {fj}j∈J in [A,B] is summable, we define its sum pointwise:
(
Σ[A,B]

j∈J fj

)
(x) = Σ(B)

j∈Jfj(x) for all x ∈ A.

We now show Σ[A,B] satisfies the unary sum and partition-associativity axioms :

— (unary sum) Given a singleton family {f}, observe that, for all summable families
{xk}k∈K , the family {f(xk)}k∈K is summable, by definition of morphism.
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— (weak partition-associativity) Consider a summable family {fi ∈ [A,B]}i∈I , and
a partition I =

⊎
j∈J Ij . Then for all j ∈ J and {xk}k∈K ∈ A, the (sub)families

{fi(xk)}i∈Ij ,k∈K are summable (over Ij ,K) by the weak partition-associativity axiom
for (B,Σ(B)), and hence so is the subfamily {fi}i∈Ij .
Similarly, since {fi}i∈I is summable, then for all {xk}k∈K ∈ A, the family of subsums
{
∑

i∈Ij
fi(xk)}j∈J,k∈K is itself summable.

Hence [A,B], with this summation, is a PCM.

We demonstrate functoriality of this operation :

Lemma 2. The map [ , ] above defines a functor from PCMop ×PCM to PCM.

Proof.
— (on objects) [ , ] is as defined in Lemma 1 above.
— (on arrows) Given f ∈ PCMop(A,B) and g ∈ PCM(C,D), we define [f, g] ∈

PCM([A,C], [B,D]) as follows :
First note that f ∈ PCMop(A,B) is specified by f ′ ∈ PCM(B,A) in the usual way.
Then, given p ∈ [A,C], we define [f, g](p) ∈ [B,D] to be the morphism [f, g](p) = gpf ′

given by the diagram below

A
p "" C

g

%%
B

f ′

''

[f,g](p)
"" D

and functoriality follows by pasting together such commuting squares.

We now show that PCM has a unity object.

Lemma 3. There exists an object I ∈ Ob(PCM) such that [I,A] ∼= A, for all A ∈
Ob(PCM).

Proof. We define I to be the PCM with two elements {∗, 0}. Note that the summation
Σ(I) on I is uniquely determined by the PCM axioms, so Σ(I){∗} = ∗ and Σ(I){} = 0.
The isomorphism iA : A → [I,A] is then given by, for all a ∈ A,

iA(a)(x) =
{

a x = ∗
0 x = 0

It is immediate that i is a bijection — we now demonstrate that it preserves summation.
Let {ai}i∈I be an indexed family of A. By definition, {iA(ai)}i∈I is summable in [I,A]
exactly when {ai}i∈I is summable in A, in which case

(
Σ[I,A]

i∈I iA(ai)
)

(x) =

{
Σ(A)

i∈Iai x = ∗
0 x = 0

and hence Σ[I,A]
i∈I iA(ai) = iA

(
Σ(A)

i∈Iai

)
. Hence i : A → [I, A] is indeed an isomorphism of

PCMs.
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Corollary 4.3. This family of isomorphisms iA , A ∈ Ob(PCM) are natural in A, and
so form the components of a natural isomorphism IdPCM

∼=−→ [I, ].

Definition 4.4. For all A ∈ Ob(PCM), we define jA ∈ PCM(I, [A,A]) by

jA(x) =
{

idA ∈ PCM(A,A) x = ∗
0AA x = 0

and this almost trivially gives the components of a natural transformation (note that
0AA exists, since [A,A] is a PCM, as shown in the first Lemma above).

Finally, following Laplaza, we require a natural map LABC : [B,C] → [[A,B], [A,C]],
representing composition: L(g)(f) = gof . We must show that this is a morphism.

Suppose {gj}j∈J is summable in [B,C]. We claim the family {L(gj)}j∈J is summable in
[[A,B], [A,C]]. Hence we must show: if {fi}i∈I is summable in [A,B] then {gjofi}j∈J,i∈I

is summable in [A,C], i.e. that
∑

j∈J(
∑

i∈I gjofi) exists. This latter means: for any
summable family {xk}k∈K , the family {(gjofi)(xk)}j∈J,i∈I,k∈K is summable in C.

Let us break this down into steps. We introduce the notation
∑

J,I(gjofi) for∑
j∈J(

∑
i∈I gjofi).

1 Let us show for each j ∈ J ,
∑

i∈I gjofi exists (in [A,C]). So suppose {xk}k∈K

is summable in A, i.e.
∑

k xk exists. Then since {fi}i∈I is summable, the sum∑
I,K fi(xk) exists. But gj is a morphism, so gj(

∑
I,K fi(xk)) =

∑
I,K gj(fi(xk))

exists. Hence each sum
∑

i∈I gjofi exists, for any j ∈ J .
2 Consider the family of sums {

∑
i∈I gjofi}j∈J . We must show it is summable

(over J). This means whenever {xk}k∈K is summable in A, that we must show∑
J,K(

∑
I(gjofi)(xk)) =

∑
J,K(

∑
I(gj(fi(xk)))) exists. But since the families {fi}i∈I

and {gj}j∈J are summable, then
∑

J,K((gj(
∑

I fi(xk)))) exists. But the gjs are mor-
phisms, so this equals

∑
J,K(

∑
I(gj(fi(xk)))) , which is what we want.

It is easy to verify the diagrams in Laplaza (Laplaza 1977) trivially commute (pointwise),
thus we obtain what he calls a formally closed category structure. Finally, Laplaza de-
fines a closed category in the sense of Eilenberg-Kelly as one for which the natural map
PCM(A,B) −→ PCM(I, [A,B]) given by f 2→ [idA, f ]ojA is an isomorphism. This is the
case here; indeed, it is easily seen that [idA, f ]ojA = i[A,B](f), for any f ∈ PCM(A,B).

5. Categories carrying Σ-structures

Motivated by a definition of (Manes, Arbib 1986), p.75 for partially additive monoids,
we consider categories where there is a partial summation on hom-sets, compatible with
composition.

Definition 5.1. Let C be a category. A PCM-structure on C is an assignment, for
all objects X, Y ∈ Ob(C), of a partial summation Σ(X,Y ) on indexed families of C(X, Y ),
such that (C(X, Y ),Σ(X,Y )) is a PCM. This assignment is required to satisfy the left and
right distributive laws :
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— for all summable {gj} ⊆ C(Y, Z) and f ∈ C(X, Y ), then {gjf}j∈J is summable and



(Y,Z)∑

j∈J

gj



 ◦ f =
(X,Z)∑

j∈J

(gj ◦ f)

— for all summable {fi}i∈I ⊆ C(X, Y ) and g ∈ C(Y,Z), then {gfi}i∈I is summable, and

g ◦




(X,Y )∑

i∈I

fi



 =
(X,Z)∑

i∈I

(g ◦ fi)

We say that C carries a PCM-structure, and make similar definitions for categories
carrying various Σ-structures (e.g. Σ-groups, Σ-monoids, PAMs, &c.). Although the Σ-
structure assignment to the hom-sets need not be unique, in practice we do not consider
distinct Σ-structures on the same hom-set. We also omit the superscripts on Σ for clarity
and refer to the Σ-structure (C(X, Y ),Σ).

Note that the above definition does not require an explicit description of the category
of PCMs (or PAMs, Σ-monoids, &c.) or its monoidal structure. However, when a category
S of Σ-structures has a suitable monoidal tensor, there is a close connection with the
theory of categorical enrichment (Definition 7.1). We consider this further in Section 7.

We also consider functors between categories carrying PCM-structures, and monoidal
tensors on such categories. This is in the general setting of the structure of the category
of all categories carrying PCM-structures, and is postponed until Section 14.

6. Examples of categories carrying Σ-structures

We now give examples of various categories that carry Σ-structures (i.e. their hom-
sets have the appropriate Σ-structure and composition distributes over summation as in
Definition 5.1). We also indicate their consistency, or otherwise, with the various axioms
from Section 3. In what follows, keeping with usual tradition of summation theory, we
restrict ourselves to Σ structures with countably-indexed families.

Example 6.1. (Relations, Partial functions, partial injections)

1 The category of relations (Rel, )) has sets as objects, relations between sets (with
the usual relational composition) as arrows, and disjoint union as monoidal tensor.
Any (countable or otherwise) set of arrows {Ri : X → Y }i∈I has a sum, given by
set-theoretic union, and basic set theory demonstrates that Rel carries a Partially
Additive Monoid structure.

2 The subcategory of Rel of partial functions, (pFun, )), has the same objects as Rel,
partial functions as arrows, and again disjoint union as monoidal tensor. A family
{fi : X → Y }i∈I is summable when dom(fi) ∩ dom(fj) = ∅ for all i 5= j, in which

case
(∑

i∈I fi

)
(x) =

{
fj(x) x ∈ dom(fj)
⊥ otherwise

. We refer to (Manes, Arbib 1986) for a

detailed study of this category, including the fact that it carries a Partially Additive
Monoid structure.
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3 An important subcategory of (pFun, )) is the category pInj of partial injections.
This again has sets as objects, with arrows restricted to partial functions that are
injective on their domains. The monoidal tensor is once again disjoint union, and a
family {fi : X → Y }i∈I is summable when dom(fi)∩ dom(fj) = ∅ = im(fi)∩ im(fj)
for all i 5= j, in which case the sum is the same as for pFun. We refer to (Haghverdi
2000) for a proof that pInj carries a Σ-monoid structure, (Hines 1997) for a study of
this category, and (Lawson 1998) for the algebraic theory of inverse semigroups – the
endomorphism monoids of this category.

4 We may also consider the subcategory Bij of (pInj, )) of global bijections between
sets. However, in this case, the only summable families are the singleton sets, and
hence it does not carry any Σ structure (as the empty set is not summable).

We now present a number of examples based on Banach and Hilbert spaces. Because
of the required connection with matrix representations (see Section 8) we use the direct
sum as monoidal tensor in each case.

Definition 6.2. (Banach spaces, direct sums, inner products, Hilbert Spaces)
Let I be a countable (i.e. finite or denumerable) index set. Let {Bi}i∈I be a family
of Banach spaces (i.e. complete normed vector spaces). The direct sum of a countably
indexed family of Banach spaces {Bi}i∈I is the vector space whose elements are functions
x : I →

⊎
i∈I Bi satisfying

1 x(i) ∈ Xi

2
∑

i∈I ‖x(i)‖Xi < ∞
under componentwise addition and scalar multiplication, with norm given by 2. above.
We refer to (Brown, Page 1970) for the theory of Banach Spaces. Categorically, finite
direct sums are biproducts.

Given a vector space V over C, an inner product is a Hermitian symmetric form (i.e.
a map 〈 | 〉 : V × V → C that is linear in the first variable and conjugate-linear in the
second) satisfying 〈x|x〉 ≥ 0 and 〈x|x〉 = 0 iff x = 0. A complex Hilbert Space is then a
Banach space over C whose norm is defined by an inner product, ‖x‖ = (〈x|x〉) 1

2 .
By the Reisz representation theorem (Hartig 1983), for every bounded linear map

L : H → K of Hilbert spaces, there exists a unique bounded linear map L∗ : K → H
such that, for all k ∈ K and h ∈ H,

〈k|L(h)〉 = 〈L∗(k)|h〉

This is called the Hermitian adjoint of L, and is often denoted by either L† (quantum-
mechanical notation) or LH (functional-analysis notation).

We refer to (Halmos 1958) for the abstract theory of Hilbert spaces, including the
definition of the direct sum of an indexed family of Hilbert spaces : Given an indexed
family of Hilbert spaces, {Hi}i∈I , the direct sum ⊕i∈IHi has elements given by functions
α : I →

⊎
i∈I Hi such that α(i) ∈ Hi, and

∑
i∈I ‖xi‖2Hi

< ∞. exists. The inner product
of two elements α, β ∈

⊕
i∈I Hi is then given by 〈α|β〉 =

∑
i∈I〈α(i)|β(i)〉.

When the index set I is the natural numbers, this implies that a member of ⊕ωX
may be written as (x0, x1, x2, . . .) where

∑∞
i=0 ‖xi‖2 exists. By the triangle inequality,
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∑∞
i=0 xi exists, and this implies that Hilbert spaces with direct sum as monoidal tensor

have countable codiagonal maps ⊕ωX → X, given by (x0, x1, · · · ) 2→ Σixi.

The following categories carry Σ-structures :

Example 6.3. (Analytic examples: Banach and Hilbert spaces)
We restrict ourselves to separable Banach and Hilbert spaces in all the following examples.
We also take the direct sum ⊕ as the monoidal tensor in each case.

1 The category Ban has Banach spaces as objects and bounded linear maps as arrows.
2 The subcategory cBan of Ban has the same objects, and nonproper contraction maps

or non-expansive maps as arrows, i.e. linear maps L satisfying ‖L(x)‖ ≤ ‖x‖.
3 The category Hilb has Hilbert spaces as objects and continuous (and hence bounded

- see (Brown, Page 1970)) linear maps as arrows.
4 The subcategory cHilb consists of Hilbert spaces and non-expansive contraction

maps.
5 A partial isometry in Hilb is a linear map L : X → Y where L∗L : X → X and

LL∗ : Y → Y are projectors, called the initial and terminal projectors respectively.
Given partial isometries L : X → Y and M : Y → Z, it is well known (Erdelyi 1968)
that the composite ML ∈ Hilb(X, Z) is a partial isometry exactly when the terminal
projector of L commutes with the initial projector of M . However, an associative
composition on partial isometries is given in (Lawson 1998), and put into a categorical
setting in (Braunstein, Hines 2007).
The category pIsom has the same objects as cHilb. An arrow L ∈ cHilb(X, Y ) is
an arrow of pIsom(X, Y ) exactly when it is a partial isometry. The composition in
pIsom is as follows:

Let L : X → Y and M : Y → Z be partial isometries with initial and terminal
projectors EL, FL and EM , FM respectively. Their composite in pIsom is given by
M(EM ∧ FL)L where EM ∧ FL is given by the ‘infinite filter procedure’ of (Shimony
1970) or (Jauch 1968) as (EM∧FL) = limn→∞(EMFL)n. By the properties of the meet
in the lattice of projectors, EM ∧ FL commutes with both EM and FL, as required.
Note that when EM commutes with FL, this is exactly the usual composition of
linear maps. We also refer to (Szymanski 1990) for a semigroup-theoretic perspective
on partial isometries.

6 The category uHilb has Hilbert spaces as objects, and unitary maps (i.e. linear, inner-
product preserving isomorphisms) as arrows, with the usual composition. Unitary
maps are trivially partial isometries, with (commuting) global identities as initial and
terminal projectors, so uHilb is a subcategory of both cHilb and pIsom.

7 Another subcategory of both pIsom and cHilb is given by the image of Barr’s
$2 monoidal functor. Recall (Definition 6.1) the category pInj of sets and partial
injections. This category is self-dual (pInjop ∼= pInj). In (Barr 1992) the following
functor $2 : pInjop → Hilb is studied:

— On objects: Given a set X, $2(X) is defined to be the set of all complex valued func-
tions a : X → C for which the sum

∑
x∈X ‖a(x)‖2 is finite. It is immediate to verify
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that this is a Hilbert space, with inner product given by 〈b|a〉 =
∑

x∈X b(x)a(x)
for all a, b ∈ $2(X) .

— On arrows: Given a partial injection f : X → Y in pInj, then l2(f) : $2(Y ) →
$2(X) is defined by

$2(f)(b)(x) =
{

b(f(x)) x ∈ Dom(f)
0 otherwise.

— The monoidal tensor : Recall that the monoidal tensor of pInj is disjoint union.
Note that the functor $2 satisfies, for objects X, Y ,

$2(X ) Y ) = $2(X)⊕ $2(Y )

and for arrows g : A → B, C → D in pInj,

$2(f ) g) = $2(f)⊕ $2(g) .

This implies that $2(pInjop) is a monoidal subcategory of Hilb and $2 is a monoidal
functor. Observe that for arbitrary partial injections f : X → Y and g : Y → Z,
the images $2(f) : $2(Y ) → $2(X) and $2(g) : $2(Z) → $2(Y ) are partial isometries.
However, as $2 is a faithful functor, the appropriate initial and terminal projectors
commute, and so $2(pInjop) is a subcategory of both pIsom and cHilb.
The category $2(pInj) is studied in (Haghverdi, Scott 2006) under the name Hilb2

for its role in Geometry of Interaction, following Girard’s original presentation of the
Geometry of Interaction (Girard 1988). However, as this functor is faithful, the results
of (Girard 1988) do not require C∗-algebras, and may be given entirely in terms of
the algebra of partial injections on sets.
Finally, the $2 functor may also be applied to the subcategory Bij of global bijections
between sets, yielding $2(Bijop), as a subcategory of both pIsom and uHilb.

For all the spaces above, we may also consider the subcategories given by restricting
the objects to finite-dimensional spaces. We denote these categories by a subscript
(−)fd, for example Vecfd,Hilbfd, &c.

We may give the above inclusions (up to the isomorphism pInj ∼= pInjop) of subcategories
diagrammatically:

uHilb!"

%%

#$

))########## Hilb%&

**$$$$$$$$$

l2(Bij)
'
(

++%%%%%%%%%%

#$

))#########
pIsom cHilb

)
*

&&!!!!!!!!!!

%&

$$$$$$$$$$$$ Ban

l2(pInj)
+,

''

)
*

++&&&&&&&&&&
cBan

-
.

,,'''''''''

Theorem 6.4.
1 The categories Ban and Hilb carry both strong Σ-group and PCM structures.
2 The categories cHilb and cBan carry PCM structures, but not strong Σ-group struc-

tures.
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3 The categories $2(pInj) and pIsom carry Σ-monoid structures.
4 The categories uHilb and $2(Bij) do not carry PCM structures.

Proof.

1 We present the proof for Ban; the proof for Hilb follows as a special case.

We first demonstrate that Banach spaces are PCMs. The proof that they are Σ-groups
is found in (Higgs 1989) and we do not reproduce it here.

Let B be a Banach space and, as in Definition 3.6, denote the set of arbitrarily indexed
families of B by F(B). We define a partial summation

∑
: F(B) → B by

— A countable family {xi}i∈I is summable exactly when
∑

i∈I ‖xi‖ < ∞ in R+

— Given that a family is summable, its sum in B is the usual Banach space summa-
tion

∑
i∈I xi.

It is trivial that the unary sum axiom holds. It is also almost immediate that B is
closed under this summation. For a summable family {xi}i∈I , the triangle inequal-
ity gives

∥∥∑
i∈I xi

∥∥ ≤
∑

i∈I ‖xi‖. As Banach spaces are (by definition) complete,∑
i∈I ‖xi‖ < ∞ implies that

(∑
i∈I xi

)
∈ B. Therefore the sum of any summable

family is in B. To show that this summation satisfies weak Partition-Associativity, we
need to show that, for a countably indexed summable family {xi}i∈I and partition
I = {Ij}j∈J :

(a) {xi}i∈Ij is summable for each j ∈ J

(b) {
∑

i∈Ij
xi}j∈J is summable

(c)
∑

i∈I xi =
∑

j∈J

(∑
i∈Ij

xi

)
.

We demonstrate these properties as follows:

(a)As norms of elements of Banach spaces are non-negative reals,
∑

i∈Ij
‖xi‖ ≤∑

i∈I ‖xi‖ < ∞ and so {xi}i∈Ij is summable.

(b)By the triangle inequality,
∥∥∥
∑

i∈Ij
xi

∥∥∥ ≤
∑

i∈Ij
‖xi‖ and as J is a partition of I,

we deduce that
∑

j∈J

(∑
i∈Ij

‖xi‖
)

=
∑

i∈I ‖xi‖, since all summands are non-

negative real numbers. Therefore,
∑

j∈J

∥∥∥
∑

i∈Ij
xi

∥∥∥ is finite and so {
∑

i∈iJ
xi}j∈J

is a summable family.

(c)Given that both the left and right hand sides of this sum converge absolutely, and
J is a partition of I, this is just the fact that absolutely convergent series may be
reordered without affecting the result.

We have now shown that Banach spaces are PCMs. It is then a simple corollory that
they also carry PCM structures :

A standard fact of linear algebra (as in (Brown, Page 1970)) is that the hom-set of
linear maps {L : R → S} between Banach spaces R,S is itself a Banach space, with
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norm given by the supremum norm

‖L‖ = sup‖r‖=1{‖L(r)‖}

We write this as hom(R,S) ∈ Ob(Ban). This shows that hom(R,S) in Ban is a
PCM. It is also immediate that composition of arrows distributes over summation,
and our result follows.

2 We present the proof for cBan; the proof for cHilb again follows as a special case.
Let B be a Banach space, and let BallB denote the unit ball

BallB = {b ∈ B : ‖b‖ ≤ 1}

We define a partial summation
∑

: F(BallB) → BallB by
— A countable set {xi}i∈I is summable exactly when

∑
i∈I ‖xi‖ ≤ 1 in R+

— Given that a set is summable, its sum in BallB is the usual Banach space sum-
mation

∑
i∈I xi.

To show that BallB is closed under this summation, note that for a summable family
{xi}i∈I , the triangle inequality gives

∥∥∑
i∈I xi

∥∥ ≤
∑

i∈I ‖xi‖, and the sum
∑

i∈I xi

exists since Banach spaces are complete. However, by assumption,
∑

i∈I ‖xi‖ ≤ 1, so
the sum of any summable family is in BallB.

It is trivial that the unary sum axiom holds, since any x ∈ BallB satisfies ‖x‖ ≤ 1,
so {x} is summable, and

∑
{x} = x. To show the weak (i.e. one-way) Partition-

associativity axiom holds, for a countable summable family {xi}i∈I and partition
I = {Ij}j∈J , we need:
(a) {xi}i∈Ij is summable for each j ∈ J

(b) {
∑

i∈Ij
xi}j∈J is summable

(c)
∑

i∈I xi =
∑

j∈J

(∑
i∈Ij

xi

)
.

To show (a), the definition of summability gives that
∑

i∈I ‖xi‖ ≤ 1, and as norms
of elements of Banach spaces are non-negative reals,

Ij ⊆ I ⇒
∑

i∈Ij

‖xi‖ ≤
∑

i∈I

‖xi‖ ≤ 1

Hence {xi}i∈Ij is summable. To show (b), note that by the triangle inequality,
∥∥∥∥∥∥

∑

i∈Ij

xi

∥∥∥∥∥∥
≤

∑

i∈Ij

‖xi‖

and as J is a partition of I,

∑

j∈J




∑

i∈Ij

‖xi‖



 =
∑

i∈I

‖xi‖ since ‖b‖ ∈ R+ ∀ b ∈ BallB

Therefore,

∑

j∈J

∥∥∥∥∥∥

∑

i∈Ij

xi

∥∥∥∥∥∥
≤

∑

i∈I

‖xi‖ ≤ 1
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So the family {
∑

i∈Ij
xi}j∈J is summable. Part c) follows trivially, since the summa-

bility condition
∑

i∈I ‖xi‖ ≤ 1 implies uniform convergence in complete normed
linear spaces. Hence (BallB,

∑
) is a PCM.

Finally, recall from part 1. above that hom(R,S) ∈ Ob(Ban). The unit ball on this
space, Ballhom(R,S) is exactly the set of nonproper contraction maps, by definition of
the supremum norm—and we have seen that unit balls are PCMs. This shows that
hom(R,S) in cBan is a PCM. The distributivity of composition over summation also
follows from part 1. above.

Note that neither cHilb nor cBan carry Σ-group structures; the definition of Σ-
groups calls for the summability of all finite families: as a counterexample, consider
two identity maps {IB , IB} on a Banach space. Then ‖IB + IB‖ = 2, so IB + IB is
not a contraction!

3 The proof that $2(pInjop) carries a Σ-monoid structure follows from the fact that $2
is an embedding of pInjop into cHilb — note that the condition for summability in
pInj, namely:

A family {fi}i∈I is summable exactly when, for all i != j,

— dom(fi) ∩ dom(fj) = ∅
— im(fi) ∩ im(fj) = ∅
becomes the condition

A family {Li}i∈I is summable exactly when, for all i != j,

— The initial projectors Ei and Ej of Li and Lj satisfy EiEj = 0 = EjEi

— The terminal projectors Fi and Fj of Li and Lj satisfy FiFj = 0 = FjFi

A proof that pIsom carries a Σ-monoid structure is to be found in (Braunstein, Hines
2007). This relies on the fact that pIsom is an inverse category with zero arrows.

4 Any Σ-structure on hom-sets of a category implies the existence of zero arrows be-
tween objects (given by the summation of the empty set), and neither uHilb nor
$2(Bij) admit zero arrows. Also, we cannot artifically adjoin zero elements; observe
that doing this to $2(Bij) will generate the whole of $2(pInj), since every partial
injection may be thought of as the direct sum of total bijections and zero arrows.

7. Categories carrying Σ-structures and categorical enrichment

The notion of a Σ-structure on a category, or (in our terminology) a category carrying
a Σ-structure, is based on a construction of (Manes, Arbib 1986) for Partially Additive
Monoids. In certain cases, there is a very close connection with the categorical notion of
enrichment, as described below. However, the connection, when it exists, depends on the
existence of a suitable monoidal tensor on the relevant category of Σ-structures.

7.1. Enriched Category theory

Many interesting categorical structures arise when the hom-sets of one category are
objects in some monoidal category. This the general area of enriched category theory,
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and the following definitions and diagrams (with minor notational differences) are taken
directly from (Kelly 1982).

Definition 7.1. Enriched categories
Let (V, I,⊗,α, l, r) be a monoidal category. A category enriched over V , or V -
category, C consists of :

— a set Ob(C) of objects,
— for each pair X, Y ∈ Ob(C), a hom-object C(X, Y ) ∈ Ob(V )
— for each triple X, Y, Z ∈ Ob(C), a composition law, i.e. a V -arrow

M = MX,Y,Z : C(X, Y )⊗ C(Y,Z) → C(X, Z)

— for each object X, an identity element in V , jX : I → C(X, X).

These are required to satisfy the associativity axiom, and the unit axioms, given
by the commutativity of the following diagrams :

(C(Z,W )⊗ C(Y,Z))⊗ C(X, Y ) α ""

M⊗1

%%

C(Z,W )⊗ (C(Y,Z)⊗ C(X, Y ))

1⊗M

%%
C(Y,W )⊗ C(X, Y )

M
"" C(X, W ) C(Z,W )⊗ C(X, Z)

M
!!

and

C(Y, Y )⊗ C(X, Y )M "" C(X, Y ) C(X, Y )⊗ C(X, X)M!!

I ⊗ C(X, Y )

j⊗1

''

l

--((((((((((((
C(X, Y )⊗ I

1⊗j

''

r

..))))))))))))

(We have omitted subscripts on canonical morphisms, for readability). We also refer to
(Kelly 1982) for the natural notion of a V -functor between V -enriched categories, as a
functor that preserves the V -enrichment.

7.2. Enrichment over Σ-structures

Definition 7.2. Let S be some category of Σ-structures (e.g. PCM, PAM, or similar).
Given A,B, C ∈ Ob(C), a map Ψ : A×B → C is called 2-additive (following terminology
of (Manes, Arbib 1986)) when, for all a ∈ A and b ∈ B, the maps Ψa : B → C amd
Ψb : A → C defined by

Ψa(y) = Ψ(a, y) , Ψb(x) = Ψ(x, b)

are both arrows of C (i.e. summation-preserving functions). Now let ⊗ : S × S → S be a
monoidal tensor on this category. We say that ⊗ is a tensor product when it satisfies
the following universal property :

There exists a 2-additive map Φ : A × B → A ⊗ B such that for all 2-additive maps
Ψ : A×B → C, there exists a unique morphism Ψ′ ∈ C(A⊗B,C) such that the following
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diagram commutes

A×B
Ψ ""

Φ ))********* C

A⊗B

Ψ′

''

A tensor product can therefore be characterised as setting up a bijection between 2-
additive maps Ψ : A × B → C and (sum-preserving) morphisms Ψ′ : A ⊗ B → C. We
emphasise that this is a very strong condition on the monoidal structure, and certainly is
not satisfied in all cases (it is simple to check that neither the product nor the coproduct
of PCMs given in Section 4.2 satisfies this property).

A tensor product ⊗ on S satisfying the above universal property allows us to deduce
that a category carrying an S-structure in the sense of Definition 5.1 is in fact a category
enriched over (S,⊗), as in Definition 7.1.

Unwinding the above definitions of S-enrichment, a category C is S-enriched, if each
homset C(X, Y ) is an object of S (i.e. has a partial summation on indexed families
satisfying the S axioms) satisfying the appropriate conditions. In particular, composition
C(X, Y ) ⊗ C(Y, Z) M−→ C(X, Z) is an S –morphism, (i.e. it preserves sums of summable
families). Writing M(f, g) as gof , as usual, this translates to the following:

— Each homset has a partial summation on indexed families that makes C(X, Y ) an
object of S ( in particular, there is a zero morphism 0XY ∈ C(X, Y ) ) .

— For summable families {fi}i∈I ∈ C(X, Y ) and {gj}j∈J ∈ C(Y,Z), by the univer-
sal property of the tensor product, the family {(gjofi)}(j,i)∈J×I is summable and
moreover

(
∑

j∈J

gj)o(
∑

i∈I

fi) =
∑

(j,i)∈J×I

(gjofi) =
∑

J,I

(gjofi) (1)

We also assume the unary sum axiom. This states that
∑
{f} = f for arbitrary arrows

of C. Hence, as a special case of (1) above, we have: for any arrows f ∈ C(X, Y ) and
g ∈ C(Y, Z), and summable families {fi}i∈I and {gj}j∈J ,

(
∑

j∈J

gj)of =
∑

j∈J

(gjof) (2)

go(
∑

i∈I

fi) =
∑

i∈I

(gofi) (3)

The only assumptions we make on S are the existence of zero arrows and the unary
sum axiom (and, of course, the existence of a suitable tensor product). When a category
S does have a tensor product, the notion of ‘categories with S-structure’ due to (Manes,
Arbib 1986) is then exactly the notion of ‘enrichment over (S,⊗)’, as found in (Kelly
1982).

Proposition 7.3. The following categories have tensor products :

1 Ab, the category of abelian groups and group homomorphisms.
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2 PAM, the category of partial additive monoids.
3 Hilb and Ban, the categories of Hilbert of Banach spaces, and bounded linear maps

(considered as subcategories of PCM).
4 cHilb and cBan, the categories of linear contraction maps on Hilbert or Banach

spaces.

Proof.

1 This is a canonical example of enrichment, given in (Kelly 1982).
2 The existence of such a tensor product is is proved in (Bahamonde 1985), although

an explicit description of the tensor product of PAMs is not given. This proof is based
on a free PAM construction that relies on the limit axiom, and hence is not applicable
to either PCM or ΣMon.

3 The objects and hom-sets of Hilb and Ban have been shown to be PCMs. By for-
getting about additional structure, we may consider them as subcategories of PCM.
The usual tensor product ⊗ on Hilbert spaces then satisfies the above condition for a
categorical tensor product. For Banach spaces, there are many different tensor prod-
ucts (we refer to (Ryan 2002) for a good exposition) — however the projective tensor
(for example) described in this reference satisfies the required properties.

4 We have also seen that objects and arrows of cHilb and cBan are PCMs. We observe
that the tensor product of two contraction maps is also a contraction map. Hence the
usual tensor product ⊗ of Hilbert spaces is a tensor product on cHilb, and the
projective tensor is a tensor product on cBan, considered as subcategories of PCM.

We now demonstrate abstractly that the category PCM also has a tensor product.
We will use (a corollary of) the special adjoint functor theorem to demonstrate that
the internal hom functor [A,−] exhibited in Section 4.1 has a left adjoint (i.e. has a
monoidal tensor on PCM) that makes PCM monoidal closed, in the sense above, and
this monoidal tensor is a tensor product, as in Definition 7.2.

Proposition 7.4. In PCM, the internal hom [A,−] has a left adjoint A⊗−, and this
is a tensor product in the sense of Definition 7.2.

Proof.

— The existence of the left adjoint (Sketch) Observe that PCM is complete (by
Proposition 4.2) and is locally small. Also note that I (the unity object) is a cogener-
ator, by the same argument as in the category of sets. Finally, [A,−] is continuous; so
by the Corollary of the Special Adjoint Functor Theorem 2 ((MacLane 1998), Chap.
V (8)), it has a left adjoint A⊗−.

— ⊗ is a tensor product As we have established monoidal closure,

Hom(A⊗B,C) ∼= Hom(A, [B,C])

By definition of the internal hom, the term on the rhs (that is, Hom(A, [B,C])) is
the set of maps that are 2-linear, in both A and B. Hence by the above bijection,
A⊗B classifies maps that are 2-linear. By taking C = A⊗B, it is immediate that the
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canonical map A×B → A⊗B is 2-linear, and hence the required universal property
holds.

Remark 7.5. Further work on the properties of such tensor products, including an
explicit description of the tensor product of two PCMs, is currently being pursued with
Tim Porter (Bangor).

Terminology Although we have established that the Manes-Arbib notion of, ‘a category
with a PCM–structure’ is exactly the usual categorical notion of, ‘a category enriched
over (PCM,⊗)’, we will use the Manes-Arbib terminology for the remainder of the paper.

8. Categories carrying Σ-structures, and matricial representations

In order to use Σ-structures on categories to provide a categorical trace based on iteration
(the particle-style trace), we also need a notion of matrix representation of arrows. For
a number of examples, matrices may be given in terms of quasi-projections and quasi-
inclusions (see (Haghverdi 2000; Manes, Arbib 1986)). In what follows, we write the
monoidal tensor as ⊕ :

Definition 8.1. (quasi- projections & inclusions, Σ-matrix categories, UDCs)
We say that a category carrying a Σ-structure has quasi-projections and quasi-inclusions
when, for any object ⊕n

i=1Xi, there exist quasi-projection and quasi-inclusions arrows

πk : ⊕n
i=1Xi → Xk , ιk : Xk → ⊕n

i=1Xi

satisfying
∑n

i=1 ιiπi = 1⊕n
i=1Xi and πiιj =

{
1Xi i = j
0 otherwise.

Similarly, in the presence of infinitary monoidal tensors, X = ⊕∞i=1Xi, we make the
natural definition of infinitary quasi-projections and quasi-inclusions.

A Σ-matrix category, or ΣMC is a symmetric monoidal category (C,⊕) that carries a
PCM structure, and has quasi-projections and quasi-inclusions.

In the special case where the category carries a Σ-monoid structure, this gives a Unique
Decomposition Category, or a UDC. We refer to (Haghverdi 2000) for the full theory
of UDCs, together with computational interpretations. Grouplike Decomposition Cate-
gories or GDCs are defined analogously to UDCs, using strong Σ-groups, rather than
Σ-monoids.

Proposition 8.2. Matrix representations of arrows
Let X = ⊕n

i=1Xi and Y = ⊕m
j=1Yj be objects in a ΣMC. Then any arrow f : X → Y

has a decomposition as {fij : Xj → Yi}i=1..n,j=1..m, where fij is given by fij = πif ιj :
Xj → Yi. This decomposition may be written in matrix form as

f =





f11 f12 . . . f1n

f21 f22 . . . f2m

. . . . . .
fm1 fm2 . . . fmn




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and composition of arrows in this form is given by the familiar formula for matrix mul-
tiplication (gf)ki =

∑m
j=1 gkjfji.

Proof. We refer to (Haghverdi 2000) for the proof of this result for Unique Decom-
position Categories, along with questions of existence and uniqueness, and observe that
this proof does not require the Partition-Associativity axiom. Hence it is also applica-
ble to arbitrary categories carrying Σ-structures that also have quasi-projections and
quasi-inclusions.

We also have the following result connecting matrix representations and summation :

Proposition 8.3. Let {F (a) : X → Y }a∈A be an indexed family of arrows in a ΣMC,
where

X =
n⊕

i=1

Xi and Y =
m⊕

j=1

Yj

giving matrix representations for each F (a) as

{f (a)
ij : Xj → Yi}i=1..n,j=1..m

Then
{F (a)}a∈A is summable ⇒ {F (a)

ij }a∈A is summable ∀i, j
However, the reverse implication does not hold.

Proof. Assume that {F (a) : X → Y }a∈A is summable, so
∑

a∈A F (a) exists. Then
πi

(∑
a∈A F (a)

)
ιj exists and by the distributivity of composition over summation,

∑
a∈A

(
πiF (a)ιj

)
exists. Therefore, {f (a)

ij = πiF (a)ιj}a∈A is summable.
To show that the converse does not hold, we present 2 examples :

1 (an arbitrary ΣMC) In the category of contraction maps on Hilbert spaces, the ma-

trices
(

1 0
0 1

)
and

(
0 1
1 0

)
are both contraction maps, and are componentwise-

summable. However,
(

1 0
0 1

)
+

(
0 1
1 0

)
=

(
1 1
1 1

)

which is not a contraction map.
2 (a UDC) Let X be an object in pInj, and let M : X → X be an isomorphism. Then(

M 0
0 M

)
and

(
0 M
M 0

)
are both (global) bijections; however, global bijections

are not summable in pInj.

8.1. Partially Additive Categories

A computationally important subclass of UDCs (and hence ΣMCs) are the Partially
Additive Categories, or PACs, of (Manes, Arbib 1986). These are computationally im-
portant in that they are guaranteed to have a particle-style trace (Section 9), and this
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may be defined in terms of the Elgot Dagger (Section 10.1). The Elgot dagger is the
taken as the definition of a While loop in (Manes, Arbib 1986), and this gives a flowchart
interpretation of the particle-style trace, as used in Section 10.

Definition 8.4. Let (C,⊕) be symmetric monoidal category carrying a PAM structure
((Definition 3.4) that has quasi-projections and quasi-injections. (C,⊕) is called a Par-
tially Additive Category when it satisfies the following axioms:

— countable coproducts: The monoidal tensor ⊕ is a coproduct, and C has countable
coproducts.

— compatible sum axiom: Let {fi : X → Y }i∈I be a countable family where there exists
f : X → ⊕i∈IY such that if

X
f ""

fi **+++++++++ ⊕i∈IY

πi

%%
Y

commutes, then
∑

i∈I fi exists.
— untying axiom: If (f + g) : X → Y exists, then so does ι1f + ι2g : X → Y + Y

For numerous examples of PACs, we refer to (Manes, Arbib 1986) and (Haghverdi 2000).

8.2. Matrix representations without quasi-projections/inclusions

Observe that a category may have matrix representations for arrows, even though it does
not have quasi-projections and quasi-inclusions. In this case, the entries of the matrix are
arrows from another category (a canonical example being (uHilb,⊕) — unitary maps
certainly have matrix representations, but the matrix components are not themselves
unitary maps). We formalise this situation as follows:

Definition 8.5. Matrix representations
Let (C,⊕) be an arbitrary category, and let (W,⊕,Σ) be a ΣMC. We say that (C,⊕)
has matrix representations in (W,⊕) when there exists a faithful strict monoidal
functor Γ : (C,⊕) → (W,⊕). It is immediate that every arrow f : ⊕n

i=1Xi → ⊕m
j=1Yj has

a representation as a matrix [fij ]i=1..n,j=1..m of arrows in W, and for all X, Y ∈ Ob(C),

the matrix representation of 1X ⊕ 1Y is
(

Γ(1X) 0
0 Γ(1Y )

)
.

When the functor Γ is the inclusion functor for some monoidal subcategory (C,⊕) of a
Σ-matrix category (W,⊕,Σ) we abuse notation, and elide the inclusion functor. Hence,

we may write, for example, 1X ⊕ 1Y =
(

1X 0
0 1Y

)
, with the understanding that the

matrix entries are taken from W rather than from C.

Proposition 8.6. The category (Bijfin,)) of bijections on finite sets has matrix repre-
sentations within (pInj,)).
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Proof. This is immediate from the definitions of Bij and pInj. We present the example
Bijfin, rather than Bij, due to an interesting connection with the categorical trace
(Proposition 9.6).

9. The particle-style Trace

A particle-style or iterative Trace is a categorical trace defined in terms of PCM-structures
on categories, and matrix representations of arrows. We first present the iterative trace
for UDCs, as decribed in (Haghverdi 2000), and demonstrate that it is equally applicable
in a more general setting.

Theorem 9.1. The particle-style trace on UDCs

Let (C,⊕) be a UDC, where, for all objects X, Y, U and arrows F =
(

a b
c d

)
: X⊕U →

Y ⊕ U , the sum a +
∑∞

i=0 bdic exists. Then C is traced, with the categorical trace given
by

TrU
X,Y (F ) = a +

∞∑

i=0

bdic

We refer to this trace as the iterative or particle-style trace of C.

Proof. We refer to (Haghverdi 2000) — alternatively, Theorem 9.3 considers this result
in a more general setting.

Corollary 9.2. Let (C,⊕) be a partially additive category. Then (C,⊕) is a traced
monoidal category, with trace given by the iterative trace formula.

Proof. We refer to (Haghverdi 2000) for a demonstration that the PAC axioms imply
the existence of the above summation – this is also implicit from the construction of the
iterative trace from the Elgot dagger (Manes, Arbib 1986), given in Section 10.1.

In order to use the iterative trace in a more general setting, we demonstrate the minimal
conditions for a categorical trace:

Theorem 9.3. the general iterative trace Let (C,⊕) be a category carrying a Σ-
structure, with matrix representations given by an inclusion into a ΣMC, where for all

F =
(

a b
c d

)
: X ⊕ U → Y ⊕ U the sum a +

∑∞
i=0 bdic exists. Then C is traced, with

the categorical trace given by

TrU
X,Y (F ) = a +

∞∑

i=0

bdic

We refer to this trace as the particle-style trace of C.

Proof. We postpone the proof of this result to Appendix A. The proof presented is
based on a close analysis, and graphical interpretation, of the proof given in (Haghverdi
2000) for UDCs.
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9.1. Examples

The following UDCs have an iterative trace :

— (Rel,)), the category of relations with disjoint union. This is also a PAC — however,
observe that the all families are summable, so we are immediately guaranteed the
existence of the iterative trace summation.

— (pFun,)), the category of partial functions with disjoint union. This is a PAC, and
so is guaranteed to have an iterative trace .

— A closely related example is (pFunD,)), where D is an arbitrary fixed set. This
category has sets as objects, and an arrow from X to Y is a partial function from
X ×D to Y ×D. The proof that this is a PAC (and hence traced) is almost identical
to that for pFun.

— (pInj,)), the category of partial injections, with disjoint union. This is a UDC, but
not a PAC. However, the required summation always exists — we refer to (Hines
1997; Haghverdi 2000; Abramsky et. al. 2002) for proofs of this fact.

— ($2(pInj),⊕), the image of pInj under Barr’s $2 functor also has an iterative trace.
This follows from the fact that $2 : pInj → Hilb is a faithful monoidal functor of
Σ-matrix categories.

— SRel, the category of stochastic relations. The objects of SRel are measurable
spaces (X,FX) and maps f : (X,FX) → (Y,FY ) are stochastic kernels (i.e. functions
f : X×FY → [0, 1] that are bounded measurable in the first variable and subprobabil-
ity measures in the second). Composition is given by g ◦ f(x,C) =

∫
Y g(y, C)f(x, dy)

where f(x, ) is the measure for integration. A family {fi}i∈I is summable exactly
when

∑
i∈I fi(x, Y ) ≤ 1 , ∀x ∈ X. We refer to (Haghverdi 2000) for more details,

and a proof that this is a PAC (and hence traced).

Note that all the above examples are UDCs.
To deal with ΣMCs generally, we require a theory of partial traces (however, we present

an example of a UDC that has a partial, but not total, trace in Proposition 9.8).

9.2. Partiality and the iterative trace formula

From its description in terms of a summation, there is the possibility that the iterative
trace formula is not globally defined, but ‘converges’ on a certain subclass of arrows.
Alternatively, the sum may be defined, but only within some ‘larger’ category. This would
seem particularly applicable to the ‘analytic examples’ of Example 6.3. To accommodate
this, we need a theory of partial traces, and the notion of a category being ‘traced within
another category’.

Definition 9.4. Partial categorical traces, one category traced within another
Given a symmetric monoidal category (C,⊗), together with a family of partial functions

TrU
A,B : C(X ⊗ U, Y ⊗ U) → C(X, Y )

we say that TrU
A,B is a partial categorical trace when it satisfies the following axioms

(we use + for Kleene equality throughout) :
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1 Naturality in X and Y : for any f ∈ dom(TrU
A,B), g : X ′ −→ X and h : Y −→ Y ′,

TrU
X′,Y ′((h⊗ 1U )f(g ⊗ 1U )) + h TrU

X,Y (f) g

2 Dinaturality in U : For any f : X ⊗ U −→ Y ⊗ U ′, g : U ′ −→ U ,

TrU
X,Y ((1Y ⊗ g)f) + TrU ′

X,Y (f(1X ⊗ g)).

3 Vanishing I: Given f : X ⊗ I → Y ⊗ I, then TrI
X,Y (f) exists, and TrI

X,Y (f) =
ρfρ−1 : X → Y .

4 Vanishing II: For any g : X ⊗ U ⊗ V −→ Y ⊗ U ⊗ V , then the existence of both
TrV

X⊕U,Y⊕U (g) and TrV
X,Y (TrU

X⊕U,Y⊕U (g)) implies the existence of TrU⊗V
X,Y (g), in

which case

TrU⊗V
X,Y (g) = TrU

X,Y (TrV
X⊗U,Y⊗U (g))

5 Superposing: For any f : X ⊗ U → Y ⊗ U and g : W −→ Z,

TrU
W⊗X,Z⊗Y (g ⊗ f) + g ⊗ TrU

X,Y (f).

6 Yanking: For all objects U , TrU
U,U (sU,U ) exists and TrU

U,U (sU,U ) = 1U .

Given a monoidal subcategory (D,⊕) of (C,⊕), we say that D is traced in C if
TrU

X,Y (f) exists in C, for all f : X ⊕U → Y ⊕U in D. We do not require that TrU
X,Y (f)

is a member of D, or that C carries a Σ-structure, or has matrix representations, &c.
Note that the above definition of partial trace is essentially the usual notion of traced

monoidal category, with equality of partial functions defined in the usual (Kleene) sense
(Freyd and Scedrov 1990): “one side is defined iff the other side is defined, and in that
case they are equal”. There are many other theories of partial trace and/or traced ideals
in monoidal categories, developed for special purposes. For a theory of partial traces
with applications to a typed version of Girard’s Geometry of Interaction, see (Haghverdi,
Scott 2005). For a study of partial traces and trace ideals in monoidal categories related
to nuclearity in functional analysis, see (Abramsky et. al. 1999); however, we emphasize
that for our purposes, we do not require that D be a multiplicative ideal of C. In fact, we
are often interested in the case where D is a monoidal subcategory of C, not necessarily
closed under composition with arrows of C.

Theorem 9.5. The iterative trace formula defines a partial trace on every ΣMC.

Proof. We refer to Appendix B for a full statement of this result, and a proof.

An interesting example of an iterative trace on a category that does not carry any Σ-
structure is given in (Abramsky 2005) :

Proposition 9.6. Consider the category (Bijfin,)) of bijections on finite sets, as a
monoidal subcategory of (pInj,)). Then (Bijfin,)) has a (globally defined) iterative
trace.

Proof. This is proved (albeit using different terminology) in (Abramsky 2005), where
it is demonstrated that the iterative trace of a bijection between finite sets is itself a
bijection between finite sets.
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9.3. Partially and globally traced UDCs

So far, all the examples of UDCs given are ‘algebraic’ examples that have a globally
defined iterative trace, whereas all ΣMCs that are not UDCs are ‘analytic’, and have a
partially defined iterative trace. However, this is not a reliable pattern – we now present a
UDC that is very analytic in nature, and has a partially defined trace. Various versions of
this category are studied in (Selinger 2004(ii)), in the context of higher-order operations
on quantum-data classical-control programming languages:

Definition 9.7. Real cones
The category Cone of cones over R has as objects n-fold Cartesian products of the non-
negative real numbers, denoted R+. The arrows of Cone are linear maps specified by
matrices with non-negative entries. There is a partial summation defined component-wise
on arrows by: given a family {Fi : (R+)a → (R+)b}i∈I , then

∑
i∈I Fi is defined when it is

summable component-wise, as a sum of positive real numbers. The category Cone, also
has a monoidal tensor ⊕, where

— On objects (R+)x ⊕ (R+)y = (R+)x+y

— On arrows, F ⊕G =
(

F 0
0 G

)

It is then easy to demonstrate that this is a unique decomposition category, where all
finite sums exist.

Proposition 9.8. The iterative trace formula on Cone defines a partial categorical
trace. This example is based on constructions from (Selinger 2004(ii))

Proof. Given an arrow F =
(

A B
C D

)
: (R+)x+u → (R+)y+u, then the the iterative

trace formula

Tru
x,y(F ) = A +

∞∑

i=0

BDiC

converges for some, but not all, arrows F : (R+)x+u → (R+)y+u.
Characterising when this converges is non-trivial. However, when u = v = 1, the

commutativity of real multiplication makes the characterisation simple. For a (2 × 2)

matrix, Tr(R+)

(
a b
c d

)
= a +

∑
bdic exists when either

1 b = 0 or c = 0, in which case

Tr(R+)2
(

a b
c d

)
= a

2 d < 1, in which case

Tr(R+)2
(

a b
c d

)
= a + b

(
1

1− d

)
c

by a simple summation.
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Note that in an arbitrary ΣMC, the existence of the trace of a matrix
(

a b
c d

)
does

not depend on the existence of
∑∞

i=0 di, as the following example demonstrates :

Proposition 9.9. Let F =
(

A B
C D

)
: X⊕U → Y ⊕U be an arrow in the UDC pInj

of partial injections. Then the iterative trace

TrU (F ) = A +
∞∑

i=0

BDiC

exists for arbitrary F . However
∑∞

i=0 Di exists exactly when D = 0U .

Proof. We refer to (Hines 1997) for a proof that pInj has a global trace. However,
recall the definition of summation in pInj from Example 6.1. We observe that the partial
identity on dom(D) ∩ dom(D2) is given by (D2)−1D, and this is required to be 0U for
D + D2 to exist. However, this implies that D = 0 = D2, and so

∑∞
i=0 Di exists exactly

when D = 0U .

10. Flowchart Interpretations

10.1. Elgot Dagger and Iteration

The semantic treatment of While loops and conditional iteration in flowcharts, for clas-
sical, irreversible computation is given by the theory of the Elgot Dagger. Although we
present the general definition, we give the computational interpretation for pFun, the
PAC of partial functions, and refer to (Manes, Arbib 1986) for the general theory (ap-
plicable to all PACs).

Definition 10.1. Let (C,⊕) be a partially additive category, and let f : X → X ⊕Y be
an arbitrary arrow in this category. Then, as C has projections and inclusions, we may
write f in matrix form as

f =
(

f1 f2

)
f1 : X → X , f2 : X → Y

The Elgot dagger, f† : X → Y is then defined by

f† =
∞∑

n=0

f2f
n
1 : X → Y

We refer to (Manes, Arbib 1986) for a proof that this sum exists, in all PACs.

For an interpretation in the category pFun, note that the matrix decomposition forces
a partition of the set X as X = A∪B for some disjoint subsets A,B ⊆ X. The application
of f† to some x ∈ X may be given by the flowchart in Figure 1.

As well as the flowchart formalism, the Elgot dagger is also taken as the definition of
the semantics of a While loop:

f† =def input(x); {(while x ∈ A) x 2→ f(x); } return(x);
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Fig. 1. Flowchart intepretation of the Elgot dagger

(see (Manes, Arbib 1986) for details of this, and the general flowchart semantics for
arbitrary PACs.)

The close connection between the Elgot dagger and the categorical trace is given by
the following:

Proposition 10.2. Every partially additive category has a particle-style trace, defined
in terms of the codiagonal and the canonical inclusions, by

TrU
X,Y (F ) = [1Y , f†2 ](ι1f11 + ι2f21)

for all F =
(

f11 f12

f21 f22

)
, where we take f2 =

(
f12 f22

)
: U → Y ⊕ U .

Proof. (Outline) By definition of the codiagonal and the Elgot dagger,

TrU
X,Y (F ) = [1Y , f†2 ](ι1f11 + ι2f21) = f11 +

( ∞∑

n=0

f12f
n
22

)
f21 = f11 +

∞∑

n=0

f12f
n
22f21

which is the required formula. For a proof that this does indeed define a categorical trace
in a PAC (and for a more categorical construction), we refer to (Haghverdi 2000).

10.2. Guarded While loops

It is immediate that the category pInj of partial injections, as a subcategory of pFun
is not closed under the Elgot dagger; given a partial injection f ∈ pFun(X, X ) Y )
then f† ∈ pFun(X, Y ) need not be a partial injection. Computationally, this states
that a program built up using reversible operations, together with a full “While loop”
control structure may not have a reversible semantic interpretation. As a simple example,
consider the almost trivial bijection:

f : {1, 2, . . .}→ {1, 2, . . .} ∪ {0} given by f(n) = n− 1.

Then the Elgot dagger of this is the constant function f† : N+ → {0}. The interpretation
of the Elgot dagger as a While loop describes a subroutine on the integers:

input(x); {(while x > 0) x 2→ x− 1; } return(x);
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Although this is built up from a single globally reversible function, together with a
simple conditional iteration, it has the semantic interpretation of the constant function
const(x) = 0 for all x ∈ N+.

However, we have seen that the category (pInj,)) has an iterative trace , which has
the intuition of ‘eliminating a subspace through conditional iteration’. More generally,
from Proposition 10.2, the categorical trace on (pFun, )) may (informally) be described
as ‘an Elgot dagger, guarded by partial functions’ as follows.

Given a partial function

f =
(

f11 f12

f21 f22

)
: X ) U → Y ) U,

we define A = dom(f11) and B = dom(f22) and give a flowchart interpretation to the
iterative trace as shown in Figure 2:

Fig. 2. Flowchart intepretation of the particle-style Trace

We may also give a ‘guarded While loop’ interpretation to the iterative trace , based
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on this flowchart formalism:
Input(x);
If (x ∈ A)

{x 2→ f11(x)
Return(x)}

(x 2→ f21 (x)
(While (x ∈ B)

{x 2→ f22(x)}
x 2→ f12(x)
Return(x)

Observe that the central While loop is guarded by conditionals & function applica-
tions that preserve the reversibility. As pInj is a traced monoidal subcategory of pFun,
the categorical trace on pFun maps partial injections to partial injections. Therefore,
‘guarded While loops’ cannot be used to create irreversible programs from reversible
building blocks.

11. Conditional feedback in the quantum world: a physical viewpoint

In the classical world, the particle-style trace may be given a physical interpretation —
as noted in Sections 1 and 10, it corresponds to notions of conditional iteration that have
been widely implemented, and are at the core of most computer architectures.

We have now introduced a framework that allows us to describe and reason about
the iterative trace in categories of Banach and Hilbert spaces. This naturally raises the
following questions:
1 Are ‘conditionals’ and ‘conditional iteration’ meaningful concepts in a purely quantum

setting ?
2 What, if anything, is the connection with the iterative trace in categories of Hilbert

spaces?
We emphasise that we are considering the purely quantum world (pure states and unitary
operations), and hence are not considering iteration conditioned on the result of mea-
surements, which would require a formalism based on density matrices such as (Selinger
2004(i)).

11.1. Basics of quantum information

We briefly reprise some fundamentals of quantum information and computation; a fuller
introduction, and the alternative density matrix formulation may be found in either
(Gruska 1999) or (Nielsen, Chuang 1991).

Definition 11.1. Qubits, computational basis, quantum registers
The atomic building-blocks of quantum information are qubits, norm-1 vectors in a 2-
dimensional complex Hilbert space Qu. These play an analogous rôle to bits in classical
computation, and are assumed to have a fixed orthonormal basis set, the computational
basis.
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In both quantum computation and quantum mechanics generally, it is common to use
Dirac notation for both state vectors and linear maps. This is the very categorical idea
that, instead of referring to a state vector ψ ∈ H we consider the linear map |ψ〉 : C → H,
defined in the natural way as |ψ〉(z) = z.ψ. These linear maps are known as Ket vectors,
and have duals, the Bra vectors, which are linear maps (functionals) 〈ϕ| : H→ C defined
by the condition that the composite 〈ϕ|o|ψ〉, as a linear endomap of C, is the inner product
of ϕ and ψ. A categorical framework for the Dirac notation in “strongly compact closed
categories” is developed in (Abramsky, Coecke 2004).

Concatenation of qubits is given by the tensor product of Hilbert spaces, so n qubits
are modelled by the space ⊗n

i=1Qu. Spaces of this form are called quantum registers
of n qubits, and are taken to have computational basis given by {|w〉}w∈{0,1}n , often
denoted {|i〉}i=0,...2n−1. An n-qubit register has 2n basis vectors, and it is this exponential
property that is expected – via the resulting property of entanglement – to provide a
computational advantage in using quantum-mechanical rather than classical computing
devices (however, see (Jozsa, Linden 2003) for a more in-depth view).

Operations on quantum registers are taken to be either unitary maps, or measurements.
Unitary maps, describing the evolution of isolated, or unobserved, quantum systems are
used from Definition 6.3 onwards. Note that, as well as undisturbed evolution of a system
over time, an arbitrary unitary map may be applied to a quantum register.

A measurement is determined by a self-adjoint operator, or Hermitian matrix. By the
spectral decomposition theorem, every (finite) Hermitian matrix has a unique decompo-
sition as the sum of projection operators — in this way a Hermitian matrix describes a
set of projections, labelled by eigenvalues, and these are taken to be the experimental
outcomes of a measurement — we refer to (Feynman et. al. 1965) for details.

We first present a negative result on the iterative trace on Hilbert spaces. This demon-
strates that the iterative trace formula is not immediately a physical operation :

Proposition 11.2. The partial trace on Hilbert spaces
In the category (Hilbfd,⊕), there exist unitary maps where the iterative trace formula
converges, but the result is not unitary.

Proof.
We prove this by example. Consider the ‘square root of NOT’ map, as commonly used
in quantum computing :

√
NOT =

1√
2

(
1 1
−1 1

)
: Qu → Qu

Applying the iterative trace formula to the subspace spanned by |1〉 gives

Tr|1〉|0〉,|0〉(
√

NOT ) =
1√
2

+
1√
2

∞∑

i=0

(
1√
2

)i −1√
2

=
1−

√
2√

2− 1

However, a unitary map on a one dimensional space is exactly scalar multiplication by
a member of S1 = {z : zz = 1}, so the above map is not unitary (it is also, trivially, not
Hermitian).
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In the language of Definition 9.4, we say that uHilb is not a traced monoidal category;
however, it may well be traced within, or partially traced within either (Hilb, ⊕) or
(cHilb, ⊕). Given the intuition of the trace as ‘eliminating a subspace by iteration’, we
can also see on purely physical grounds why (uHilb, ⊕) cannot be traced. Given an
iterative trace, implemented as a physical unitary map, we could start with an arbitrary
qubit ψ = α|0〉+ β|1〉, and ‘trace out’ the subspace given by the basis vector |1〉, leaving
the norm-1 vector |0〉. This would violate the no-deleting theorem of (Pati, Braunstein
2001), which states that an unknown quantum state cannot be overwritten by a known
quantum state, even in the presence of a copy (in fact, it would exhibit a stronger form of
deletion known as erasure. We refer to (Pati, Braunstein 2001) for the distinction between
deleting and erasure). From a logicians’ viewpoint, the no-deleting theorem states that
the contraction rule fails for quantum systems; similar considerations motivated linear
logic (Girard 1987).

We now consider physical feedback in quantum-mechanical systems. A common ex-
ample of qubits as physical systems is as photon polarisation. We use this in the follow-
ing thought-experiments, together with some well-established illustrations of quantum
phenomena, to both give examples of conditional quantum feedback, and to motivate
constructions related to the categorical trace.

11.2. Single-photon interference

We now present a series of thought experiments in order to justify a construction to be
introduced in Section 12, closely related to the iterative trace. The quantum-mechanical
phenomenon we use for our interpretation is that of single-particle interference.

The phenomenon of interference, as in classical optics, is well-known and demonstrated
by Young’s double-slit experiment (Young 1807). However, a more detailed analysis is
required when using a single-photon source in such an experiment. This was originally
a thought-experiment‡ (Feynman et. al. 1965), but practical demonstrations were soon
given (for example, (Parker 1972)), and it is now recommended as an undergraduate-level
lecture demonstration (L.D.S. 2006). This requires a quantum-mechanical description
invoking the phenomenon of single-particle interference – the ability of a particle (photon)
to not only take a superposition of physical locations, but to interfere with itself. As stated
in (Pittman et. al. 1996),

“ In his famous introduction (Feynman et. al. 1965) to the single particle superposition prin-

ciple, Feynman stated that, ‘. . . it has in it the heart of quantum mechanics. In fact, it contains

the only mystery.’ ”.

In what follows, we make heavy use of this principle, and also refer to (Pittman et.
al. 1996) for a demonstration of why the many (entangled) particle case is qualitatively
different to the single-photon case.

‡ We refer to (Lamb 1995) for objections to single-photon thought experiments, as ‘conflating a sta-
tistical description with physical reality’. However, such objects are harder to sustain for similar
experiments performed with (for example) electrons (Smith 1955) or neutrons (Greenberger 1983).



Conditional quantum iteration from categorical traces 37

11.3. Quantum phenomena and classical wave-mechanics

Although we take a single-photon description of the devices used in Section 11, we will
mention neither measurement nor entanglement – features that are taken to distinguish
quantum phenomena from classical wave-mechanics. The intention is to provide a notion
of conditional iteration that is applicable in the quantum setting (in stark contrast to, for
example, the classical While loop, since the latter can create irreversible programs). To
demonstrate that the constructions presented are indeed valid in the quantum setting,
we refer to (Cerf et. al. 2005) for a demonstration that single-photon experiments, using
the toolkit presented, can model any quantum computational procedure based on the
circuit model (Nielsen, Chuang 1991).

11.4. The polarisation analyser

Many experiments in introductory quantum mechanics make use of the optical properties
of calcite (CaCO3) crystals. We refer to (Brom, Rioux 2002) for the following example :

Example 11.3. Calcite as a polarisation analyser
A calcite crystal may be used as an optical device with a single input channel and two
output channels, as shown in Figure 11.3.

Fig. 3. An optical property of calcite

The input is unpolarised, and (using a classical description) is ‘split into two distinct
beams, with perpendicular polarisations’. If we consider the same experiment with a
single-photon source§, we must take a quantum description, and state that an incident
photon with vertical polarisation produces an output on the upper channel, and an
incident photon with horizontal polarisation produces an output on the lower channel.

Linearity then requires that an incident photon in a superposition of horizontal and
vertical polarisations produces a single output photon¶ in a superposition of locations

§ Despite being a common feature of thought-experiments, single-photon sources are technically very
difficult. We refer to (Kuhn et. al. 2002) for a physical realisation, (Kuhn et. al. 2003) for some
questions associated with this, and observe that in many cases (including the lecture demonstrations
of (L.D.S. 2006)) a low probability of multi-photon emission is sufficient.

¶ This experiment should be sharply distinguished from parametric down-conversion (Kurtsiefer et. al.
2001), where a single high-energy input photon may produce 2 entangled output photons of lower-
energy. The output channel, in parametric down-conversion, requires the tensor product of two single-
photon states.
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(i.e. the upper and lower channels). We now analye this type of experiment with reference
to the standard toolkit of quantum optics devices.

11.5. Standard quantum optics devices

We now present various devices commonly used in linear and quantum optics experi-
ments. This exposition is based on (Gerry, Knight 2005), with thanks to (Beige 2005).
Note that the devices presented are properly modelled in Fock space – however, we re-
strict ourselves to the single-photon case, and give a simplified description. We refer to
(Beige 2005; Gerry, Knight 2005) for a justification of this approach.

Example 11.4. The phase plate
A simple optical device is the phase plate (PP). This has a single input and output
channel and is drawn schematically as in Figure 4.

Fig. 4. The phase plate

Intuitively, this transmits all photons on the input channel, and adds a θ rotation to
the phase. Given an incoming photon, described by an element of the Hilbert space Hin,
and an outgoing photon described by a member of the space Hout

∼= Hin, then the action
of the phase plate is given by a unitary map UPP : Hin → Hout, specified by

UPP (|ψ〉) = eiθ|ψ〉

Example 11.5. The half-wave plate
An equally simple optical device, also part of the standard toolkit for quantum optics, is
the half wave plate (HWP). This has a single input and output channel and is drawn
schematically as in Figure 5.

Fig. 5. The half wave plate

Intuitively, this transmits all photons on the input channel, and adds a π
2 rotation to

the polarisation. Let an incoming photon be an element of the Hilbert space Hin spanned
by {|Vin〉, |Hin〉}, and let an outgoing photon be a member of the space Hout spanned
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by {|Vout〉, |Hout〉}. Then the action of the half wave plate is given by a unitary map
U : Hin → Hout. This is specified by its action on the basis of Hin, as follows :

UHWP (|Hin〉) = 1√
2

(|Hout〉+ |Vout〉)

UHWP (|Vin〉) = 1√
2

(−|Hout〉+ |Vout〉)

Example 11.6. The polarising beamsplitter
A common device, closely related to Example 11.3 is the polarising beamsplitter
(PBS). This has 2 input channels and two output channels, and is drawn schematically
as in Figure 6.

Fig. 6. The polarising beamsplitter

Intuitively, this transmits photons with horizontal polarisation and reflects (through
π/2) photons with vertical polarisation. We again restrict ourselves to the case where
there is a single input photon‖.

Let us denote a horizontally (resp. vertically) polarized photon input in channel 1.
by |Hin1〉 (resp. |Vin1〉, and similarly denote a horizontally (resp. vertically) polarized
photon input in channel 2. by |Hin2〉 (resp. |Vin2〉).

Similarly, a horizontally (resp. vertically) polarized output photon in channel 1. is
denote |Hout1〉 (resp. |Vout1〉, and similarly for a horizontally (resp. vertically) polarized
photon output in channel 2., denoted |Hout2〉 (resp. |Vout2〉).

The polarising beamsplitter (at least in the special case where there is a single input
photon) is then modelled by a unitary map UPBS . This is defined as follows :

UPBS(|Hin1〉) = |Hout1〉 UPBS(|Vin1〉) = |Vout2〉

UPBS(|Hin1〉) = |Hout2〉 UPBS(|Vin2〉) = |Vout1〉

‖ Precisely, we allow for a photon in Channel 1, or Channel 2, or a photon in a superposition of these
locations. We do not allow for an input photon in each channel – not only would this require a more
sophisticated mathematical treatment, but would also take us away from the underlying motivation
of single-particle interference. The mathematical treatment given can be considered as ‘neglecting the
vacuum states, for simplicity of notation’.
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Note that we do not explicitly give the source / target spaces for this example, as this
would involve discussing the appropriate Fock spaces. We refer to (Gerry, Knight 2005)
for a fuller treatment, and (Beige 2005) for the special case presented. Wherever we need
an explicit description of the source / target space for a given experiment, we will give
it directly, in terms of some orthonormal basis.

Example 11.7. A modified polarising beamsplitter
An alternative, equally common, polarising beamsplitter is given by taking tha apparatus
described in Figure 6 above, and adding 2 half-wave plates and a phase plate into channel
2, as shown in Figure 7. Although this is not the standard terminology, we refer to this
as the modified polarizing beamsplitter (MPBS).

Fig. 7. A modified polarising beamsplitter

By composing the appropriate unitary maps, we see that, given an arbitrary single pho-
ton input on channel 1, the output regardless of the original polarisation is horizontally
polarised. Similarly, given a single photon input on channel 2, the output is vertically
polarised.

At first sight, it appears that this violates the quantum no-deleting theorem (Pati,
Braunstein 2001). However, consider the case where a photon with polarization α|Hin1〉+
β|Vin1〉 is input on channel 1. A simple analysis shows that the output photon is in the
state α|Hout1〉+β|Hout2〉 – that is, the qubit that was encoded on the photon polarisation
(as a superposition of horizontal and vertical polarisation) is now encoded on the output
channel (i.e. a superposition of channel 1 and channel 2).

Therefore, this device does not delete any information from the system. We have
merely exchanged uncertainty about the polarization of a photon for uncertainty about
its location. This is as described in (Jozsa 2002),

Considering no-cloning and no-deleting together we see that quantum information (of non-

orthogonal states) has a quality of ”permanence”: creation of copies can only be achieved by

importing the information from some other part of the world where it had already existed;

destruction (deletion of a copy) can only be achieved by exporting the information out to some

other part of the world where it must continue to exist.
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11.6. An optical example of a quantum conditional

We now present a common application of the above toolkit, as intuition for the notion
of a ‘purely quantum conditional’.

Example 11.8. Interference Microscopy
A common application of the polarizing beamsplitter is in the field of Interference Mi-
croscopy. In an example such as (Carl et. al. 2005), a coherent input beam is divided
into its horizontally and vertically polarized components, and the microscope sample is
placed in one of the two output channels. A reversed polarising beamsplitter is then used
to recombine the two channels, as shown in Figure 8 :

Fig. 8. A (small part of a) Polarizing Interference Microscope

This enables identification of the optical properties of the test sample – for example
it is the industry-standard technique for identification of asbestos fibres (Asbestosis Re-
search Council 1978). We refer to (Strong 1958) for a classical overview of interference
microscopy, and other applications.

For our purposes, we take this (using a single-photon description) as an example of
a quantum-mechanical conditional, so interaction of a photon with the test sample is
conditioned on the polarisation of the photon.

In general, unitary maps may be considered as describing a conditional operation —
this intuition of ‘unitary matrices as quantum conditionals’ is used to give ‘quantum
conditionals’ in the QML language of (Altenkirch, Grattage 2005)). Given a unitary map
U : Q → Q on a two-dimensional space, with computational basis {|0〉, |1〉}, then U may

be written in terms of its action on this basis as U =
(

a b
c d

)
. The application of U

to a state vector ψ has a simple interpretation as a conditional:

(Cond
( (ψ = |0〉) ( Replace ψ by ϕ0 = a|0〉+ c|1〉 ) )
( (ψ = |1〉) ( Replace ψ by ϕ1 = b|0〉+ d|1〉 ) )

)

where a superposition ψ = α|0〉+ β|1〉 results in ψ being replaced by α|ϕ0〉+ β|ϕ1〉.
Note that a unitary, per se, cannot be interpreted as a conditional map. In order to

describe a unitary map in terms of a conditional, we need to take a matrix decomposition
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— from Section 8, this is giving the space Q as the direct sum of two subspaces. Physi-
cally, this is via the specification of complete disjoint sets of distinguishable experimental
outcomes (Feynman et. al. 1965).

11.7. Conditional quantum feedback

We now present a thought-experiment, closely related to the apparatus and examples
presented in previous sections. However, we postpone a formal analysis until we have
presented and justified the categorical tools needed.

Example 11.9. A P.I.M. with feedback
Based on the example of polarizing interference microscopy given above, we consider the
conditional application of a unitary map to a photon. However, instead of recombining
the two channels with a reversed polarizing beamsplitter (and hence producing a useful
interference pattern), the result of the application is returned to the second input channel,
as shown in Figure 9.

Fig. 9. Conditional feedback
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There is a strong temporal aspect to this thought-experiment††. Let us (as usual) take
a single-photon description, and introduce a horizontally polarised photon on channel
1. We assume that the unitary map shown modifies the photon polarisation (otherwise
the experiment is a triviality) by a process such as |H〉 → α|H〉 + γ|V 〉 and |V 〉 →
γ|H〉 + δ|V 〉 . Assuming γ 5= 0 5= β, we see that at any subsequent time, the photon
is in a superposition of locations — both within the feedback loop, and on the output
channel. In particular, the ‘number of times the photon has traversed the feedback loop’
is not a well-defined quantity, and the phenomenon of single-particle interference has a
large part to play in any formal description.

Because of this temporal aspect, it is not immediate how to give a treatment in terms
of input and output spaces. Instead, we describe this apparatus in terms of a unitary
operator that is repeatedly applied to a single space.

†† We emphasis that this is a thought-experiment. Practically the apparatus shown will rapidly amplify
any small errors in the alignment of (for example) the mirrors. However, we refer to (Casati1, Prosen
1995) for numerical simulations of a similar setup involving a perfectly reflecting spherical cavity.
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11.8. Analysing Example 11.9

In order to analyse the above thought-experiment, we first use the assumption of discrete
space and time, as in the ‘toy models’ of (Griffiths 2002) — we refer to this for justification
and interpretations. We still require a single-photon thought experiment — however, we
allow this photon to be in a coherent superposition of any of the locations shown in
Figure 10. The set of possible locations is then {. . . , in2, in1, current, out1, out2, . . .}.

Fig. 10. Input / output streams in a conditional feedback apparatus
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As well as the possible locations of the photon, a complete description of the
configuration requires the photon polarisation, which is horizontal |H〉 or verti-
cal |V 〉. Hence, an instantaneous configuration of this system is a member of
the (infinite-dimensional) Hilbert space LOC ⊗ POL, where LOC has orthonormal
basis {. . . , |in2〉, |in1〉, |current〉, |out1〉, |out2〉, . . .}, and POL has orthonormal basis
{|H〉, |V 〉}.

From the interpretation of the individual components, it is then straightforward to
write down a description of the unitary evolution of the configuration space over time,
in terms of the basis elements of LOC ⊗ POL, as follows:
1 For ‘input modes’

— When i > 1,

|ini〉 ⊗ |p〉 2→ |ini−1〉 ⊗ |p〉 for all |p〉 ∈ POL

— When i = 1,

|in1〉 ⊗ |V 〉 2→ |out1〉 ⊗ |V 〉 and |in1〉 ⊗ |H〉 2→ current〉 ⊗ |H〉

2 For ‘current modes’
— For horizontal polarisation :

|current〉 ⊗ |H〉 2→ α|out1〉 ⊗ |H〉+ γ|current〉 ⊗ |V 〉
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— For vertical polarisation :

|current〉 ⊗ |V 〉 2→ β|out1〉 ⊗ |H〉+ δ|current〉 ⊗ |V 〉

3 For ‘output modes’

— In every case,

|outi〉 ⊗ |p〉 2→ |outi+1 ⊗ |p〉
We may combine these descriptions of the action of this apparatus on basis vectors

in order to form a unitary giving a global description of the action; however, there is
no sense in which this ‘takes an input space to an output space’. Instead we consider a
restricted sub-experiment, where we have such a notion (as a limit, where the number of
time-steps tends to infinity).

11.9. A restricted quantum feedback experiment

We now restrict the thought-experiment presented in Section 11.8 by imposing (physically
reasonable) initial conditions, and eliminating those starting configurations that have no
non-trivial interaction with the feedback loop.

The assumptions we make are

1 A photon in location current has vertical polarisation.
2 The input stream is horizontally polarised.
3 At the start of the experiment, the output stream is empty.

Assumption 1. may readily be justified in that no input stream can lead to a horizon-
tally polarised photon in this location — any vertically polarised input will be reflected
into the output stream. Assumption 2. is again because a vertically polarised input is
simply reflected into the output stream without interacting with the feedback loop. Fi-
nally, assumption 3. is simply to make calculation simple — the case where the output
stream is initially non-empty is a trivial extension of the case we consider. Note that,
under this assumption, the output stream is always horizontally polarised.

A simple corollary of these initial conditions is that, in this experiment :

The location of a photon determines its polarisation.

Hence we may give a significantly simplified description of the evolution over time of
this apparatus.

As a final simplifying step, we do not assume that the unitary evolution is from a
some fixed space H to itself. Instead, we consider that at each timestep, we have unitary
evolution Fi from space Hi to space Hi+1. This is as shown in Figure 11.

Hence we may give orthonormal bases for the space Hi, as follows

— the space H0 has basis {|current〉, |in1〉, |in2〉, |in3〉, . . .}
— the space H1 has basis {|out1〉, |current〉, |in2〉, |in3〉, |in4〉, . . .}
— the space H2 has basis {|out1〉, |out2〉, |current〉, |in3〉, |in4〉, |in5〉, . . .}
— . . .
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Fig. 11. Timesteps in a simplified conditional feedback apparatus
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Using the description of the actions of the individual components, we may write down
the linear maps {Fi : Hi−1 → Hi}i>0 as follows :

— F1 =





β α 0 . . .
δ γ 0
0 0 1

. . . . . .




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— F2 =





1 0 0 0 . . .
0 β α 0
0 δ γ 0
0 0 0 1

. . . . . .





— F3 =





1 0 0 0 0 . . .
0 1 0 0 0
0 0 β α 0
0 0 δ γ 0
0 0 0 0 1

. . . . . .





— . . .

Proposition 11.10. The composite Fk−1Fk−2 . . . F1 is given by

Πi=k
i=1Exi =





β α 0 0 0 . . . 0 0 0 . . .
βδ βγ α 0 0 . . . 0 0 0 . . .
βδ2 βδγ βγ α 0 . . . 0 0 0 . . .
βδ3 βδ2γ βδγ βγ α . . . 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

βδk−1 βδk−2γ βδk−3γ βδk−4γ βδk−5γ . . . α 0 0 . . .
δk δk−1γ δk−2γ δk−3γ δk−4γ . . . γ 0 0 . . .
0 0 0 0 0 0 1 0 . . .
0 0 0 0 0 0 0 1

. . . . . . . . . . . . . . . . . . . . . . . .





Proof. This follows by direct calculation. Of more interest is the similarity between
column 1. and the summands of the Elgot dagger, and columns 2. onwards and the
summands of the iterative trace. We consider the convergence of this process, the general
categorical setting, and potential applications in terms of a computational theory of
iteration in the following sections.

12. Factoring the Trace and Twisted Daggers

We have seen in Proposition 11.2 that the iterative trace on Hilbert spaces may converge,
but does not have an immediate physical interpretation. However, from Proposition 11.10,
we recover the summands of both the particle-style trace and the Elgot dagger from a
single physical experiement. We now investigate this in a more general setting. We will
demonstrate that the iterative trace on a ΣMC factored as a canonical inclusion, followed
by an iterative step, followed by a ‘forgetful’ step (a codiagonal, in the appropriate
setting).

In the physical setting, this central iterative step is the repeated application of uni-
tary maps. Hence the non-unitarity of the iterative trace on Hilb arises, not from its
interpretation as conditional iteration, but from the ‘forgetting of information’ encoded
by the application of the codiagonal.We also demonstrate in Section 14 that this central
iterative part is also gives iterative trace, albeit in a larger category.
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12.1. The ‘twisted dagger’ construction

We now introduce a construction on ΣMCs with infinite matrices. Intuitively, this con-
struction is similar to the Elgot dagger, up to an additional symmetry map, or twist.
Because of this, we refer to it as the twisted dagger operation.

Definition 12.1. The twisted dagger
Given a ΣMC (C,⊕,Σ), and an arrow L : X ⊕ U → Y ⊕ U with matrix representation

L =
(

a b
c d

)
, we define the Twisted Dagger of L to be the matrix

†U (L) =





b a 0 0 0 0 0 0 . . .
bd bc a 0 0 0 0 0 . . .
bd2 bdc bc a 0 0 0 0 . . .
bd3 bd2c bdc bc a 0 0 0 . . .
bd4 bd3c bd2c bdc bc a 0 0 . . .
bd5 bd4c bd3c bd2c bdc bc a 0 . . .
bd6 bd5c bd4c bd3c bd2c bdc bc a . . .
. . . . . . . . . . . . . . . . . .





(Note that we do not yet claim this is the matrix representation of an arrow in a ΣMC. At
this stage, the twisted dagger is simply a formal matrix of arrows in a ΣMC. Questions
about when it represents an arrow in some appropriate category form the substance of
this section).

The twisted dagger matrix is based on Proposition 11.10, extended to both block
matrices, and the limit as the number of timesteps increases. As before, we note the
correspondence between the first column and the summands of the Elgot dagger, (d b)† =∑∞

i=0 bdi, and the correspondence between the remaining columns and the summands
of the iterative trace TrU (L) = a +

∑∞
i=0 bdic. We now investigate the existence and

properties of this matrix, with particular reference to unitary maps on Hilbert spaces.

Lemma 4. Given L =
(

a b
c d

)
∈ Hilbfd(X⊕U, Y ⊕U), and arbitrary ϕ =





ϕ0

ϕ1

ϕ2

...




∈

U ⊕X⊕ω, let us define the formal matrix

ζ =





ζ0

ζ1

ζ2

...





to be given by the formal matrix composition ζ = †U (L)(ϕ). so

ζn =
{

bdn(ϕ0) +
∑n

i=1 bdn−ic(ϕi) + a(ϕn+1) (n > 0)
b(ϕ0) + a(ϕ1) (n = 0)
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Then ζn exists, for all n ∈ N.

Proof. Observe that ζn is given by a finite sum of continuous linear maps applied to a
finite vector of elements.

Note that we do not claim that
∑∞

n=0 ‖ζn‖2 exists, or (equivalently) that ζ is an element
of Y ⊕ω — a sufficient condition for this is given by Theorem 12.2 below.

Theorem 12.2. Let L =
(

a b
c d

)
: X ⊕ U → Y ⊕ U be a linear map between finite-

dimensional Hilbert spaces. Then :

1 A sufficient, but not necessary, condition for †U (L) to be the matrix representation
of an arrow in Hilb is that the component d is a strict contraction (i.e. ‖d‖ < 1).

2 When L is a unitary map, a sufficient condition for the component †U (L) to be unitary
is that the component d is a strict contraction.

Proof. As a preliminary to these proofs, we define

{Fi : Y ⊕i ⊕ U ⊕X⊕ω → Y ⊕i+1 ⊕ U ⊕X⊕ω}∞i=0

by

Fi = (1Y ⊕i)⊕ LsX,U ⊕ (1X⊕ω )

and define

{Gn : U ⊕X⊕ω → Y ⊕(n+1) ⊕ U ⊕X⊕ω}∞n=0

by Gn = FnFn−1Fn−2 . . . F0.
We may write {Fi} explicitly as :

F0 =





b a 0 . . .
d c 0
0 0 1

. . . . . .



 F1 =





1 0 0 0 . . .
0 b a 0
0 d c 0
0 0 0 1

. . . . . .





F2 =





1 0 0 0 0 . . .
0 1 0 0 0
0 0 b a 0
0 0 d c 0
0 0 0 0 1

. . . . . .





. . .
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and, using the formula for matrix composition,

Gk =





b a 0 0 0 . . . 0 0 0 . . .
bd bc a 0 0 . . . 0 0 0 . . .
bd2 bdc bc a 0 . . . 0 0 0 . . .
bd3 bd2c bdc bc a . . . 0 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

bdk−1 bdk−2c bdk−3c bdk−4c bdk−5c . . . a 0 0 . . .
dk dk−1c dk−2c dk−3c dk−4c . . . c 0 0 . . .
0 0 0 0 0 0 1 0 . . .
0 0 0 0 0 0 0 1

. . . . . . . . . . . . . . . . . . . . . . . .





It is immediate that Fi is a well-defined linear map for all i ≥ 0, and is unitary exactly
when L is unitary. Similarly, for all k ∈ N, the map Gk is the composite of a finite series
of linear bounded maps, and hence is linear bounded, and unitary when L is unitary.

We now use these preliminaries to prove 1 - 2 above :

1 Consider arbitrary ϕ ∈ U ⊕X⊕ω. We now study the sequence

ϕ = ϕ(0)
F0 "" ϕ(1)

F1 "" ϕ(2)
F2 "" ϕ(3)

F3 "" . . .

so ϕ(n) = Gn(ϕ). We write ϕ(n) explicitly as

ϕ(n) =





ϕ(n)
0

ϕ(n)
1

ϕ(n)
2

ϕ(n)
3
...




where






ϕ(n+i)
n ∈ Y

ϕ(n)
n ∈ U for all n ∈ N , i > 0

ϕ(n)
n+i ∈ X

In particular, we make the identification ϕ(0)
i = ϕi, for all i ∈ N.

From the explicit description of {Fi}i∈N, we may use standard diagrammatic notation
for matrix composition, and draw the calculation of the components of ϕ(n) as
From either this diagram, or by direct calculation, we may inductively calculate these
components by, for all p, q > 0 :

ϕ(p)
q =






ϕ(0)
q q > p

b(ϕ(p−1)
p−1 ) + a(ϕ(0)

p ) q = p− 1

d(ϕ(p−1)
p−1 ) + c(ϕ(0)

p ) p = q

ϕ(q+1)
q p > q + 1
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Fig. 12. Calculating components of ϕ(n)
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It is immediate that, comparing these elements with the formal matrix ζ =





ζ0

ζ1

ζ2

...





from Lemma 4, that for all n ∈ N,

ζi = ϕ(j)
i , ∀ i < N , j > i

By direct calculation, and the Cauchy-Bunyakovski-Schwarz inequality,

‖ϕ(k)
k ‖ ≤ ‖dk‖.‖ϕ(0)

0 ‖+
k∑

n=1

‖dn‖.‖c‖.‖ϕ(0)
k−n‖

However, by assumption d : U → U is a strict contraction map, so ‖d‖ < 1. Also,
ϕ ∈ X⊕ω and so

∑∞
i=0 ‖ϕ

(0)
i ‖2 < ∞. Therefore, we deduce that

∑∞
k=0 ‖ϕ

(k)
k ‖2 < ∞,

and hence the ‘diagonal element’

∆ϕ =





ϕ(0)
0

ϕ(1)
1

ϕ(2)
2
...




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is a member of U⊕ω. Finally, observe that

ζ =





b 0 0 · · ·
0 b 0 · · ·
0 0 b · · ·
...

...
...

. . .









ϕ(0)
0

ϕ(1)
1

ϕ(2)
2
...




+





a 0 0 · · ·
0 a 0 · · ·
0 0 a · · ·
...

...
...

. . .









ϕ(0)
0

ϕ(0)
1

ϕ(0)
2
...





and hence ζ ∈ Y ⊕ω, as required.
To show that the condition ‖d‖ < 1 is not necessary, consider the simplest possible

counterexample – the identity matrix
(

1X 0
0 1U

)
: X⊕U → X⊕U . It is immediate

that

†U (L) =





0 1X 0 0 0 . . .
0 0 1X 0 0 . . .
0 0 0 1X 0 . . .
0 0 0 0 1X . . .
...

...
...

...
...

. . .





and this is a partial isometry, a shift map in the sense of (Page 1971).
2 In this part of the proof, we use the characterisation of unitary maps as

— ‘partial isometries, with full initial and final subspaces’.

The proof using the characterisation as

— ‘Invertible, with inverse given by the matrix conjugate transpose’,

is significantly more complex; however, we refer to the supplementary materials
(Hines, Scott 2007) for this proof in the 2× 2 case.

We know from 1/ above that †U (L) exists, for all unitary L =
(

a b
c d

)
satisfying

‖d‖ < 1. We now need to show that

(a) †U (L) is a partial isometry,

(b) The initial and final subspaces of †U (L) are the whole of U ⊕ X⊕ω and Y ⊕ω

respectively.

These results may be seen as follows :

(a) We first define TermN : Y ⊕(N+1) ⊕ U ⊕X⊕ω → Y ⊕ω for all N ∈ N, by

TermN





y0

...
yN−1

u
x1

...





=





y0

...
yN

0Y

0Y

...





Clearly, TermN is a linear map, and is a partial isometry, with initial subspace
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Y ⊕(N+1) ≤ Y ⊕(N+1)⊕U⊕X⊕ω. Hence, as GN : U⊕X⊕ω → Y ⊕(N+1)⊕U⊕X⊕ω

is unitary, the composite TermNGN : U ⊕X⊕ω → Y ⊕ω is a partial isometry.
Now consider arbitrary fixed ϕ ∈ U ⊕ X⊕ω. From part 1/ above, for all ε > 0,
there exists M ∈ N such that

‖TermM (GM (ϕ))− †U (L)(ϕ)‖ < ε

So, by completeness, limN→∞TermN (GN (ϕ)) = †U (L)(ϕ), and so in the space
Hilb(U ⊕X⊕ω, Y ⊕ω), the series of partial isometries {TermNGN}∞N=1 converges
to †U (L). However, by (Andruchow, Corach 2004), the set of partial isometries
between spaces H1,H2 forms a smooth submanifold of the space Hilb(H1,H2)
(we also refer to (Andruchow, Corach 2005) for a close connection between partial
isometries and Hilbert-Schmidt maps). Therefore, we deduce that the limit †U (L)
is a partial isometry.

(b)We prove that the inital subspace is full by contradiction.

First recall that L =
(

a b
c d

)
: X ⊕ U → Y ⊕ U is a unitary map satisfy-

ing ‖d‖ < 1. Now assume there exists some u ∈ U such that b(u) = 0. Then(
a b
c d

) (
0
u

)
=

(
0

d(u)

)
. However,

∥∥∥∥

(
0
u

)∥∥∥∥ = ‖u‖, and by the assump-

tion that d is a strong contraction,
∥∥∥∥

(
0

d(u)

)∥∥∥∥ = ‖d(u)‖ < ‖u‖. This is a con-

tradiction of the unitarity of L, so we deduce that b(u) 5= 0, for all u ∈ U .

Now let χ ∈ U ⊕X⊕ω be in the complement of the inital subspace of †U (L), so
†U (L)(χ) = 0. As limn→∞Termn(Gn(ϕ)) = †U (L)(ϕ), we deduce that {χ(n) =
TermnGn(χ)}∞n=1 is a series of elements of Y ⊕ω that converges to 0. Writing these
explicitly as

χ(n) =





χ(n)
0

χ(n)
1

χ(n)
2
...





We observe from part 1. that χ(n)
n+k = χ(n)

n+2 for all k ≥ 2. Hence χ = 0 implies
that χ(n)

n+2 = 0, for all n ∈ N. However, by close inspection of diagram 12, this is
only possible when b(u) = 0, for some u ∈ U , contradicting the preliminary result
above.

We now demonstrate that the final subspace is full
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Consider arbitrary ζ ∈ Y ⊕ω, written as

ζ =





ζ0

ζ1

ζ2

...





As ζ ∈ Y ⊕ω, for all ε > 0, there exists some N ∈ N such that
∑∞

i=N ‖ζi‖ < ε.
Using the adjoint of the partial isometry TermM above, it is immediate that

Term∗
M (ζ) =





ζ0

...
ζM

0U

0X

...





and, for all M > N , ‖ζ‖ = ‖Term∗
M (ζ)‖ < ε. We now define λ(M) ∈

U ⊕ X⊕ω by λ(M) = G−1
M (Term∗

M (ζ)), where the unitary map G−1
M is given by

F−1
M F−1

M−1 . . . F−1
0 , for Fi as defined in part 1. Since G−1

M is unitary, ‖λ(M)‖ =
‖Term∗

M (ζ)‖. By taking sufficiently large M > N ∈ N, it follows that
†U (L)(λ(M) → ζ as M → ∞, and as ζ was chosen arbitrarily, the terminal sub-
space of †U (L) is exactly Y ⊕ω. This then completes our proof of unitarity.

Discussion‡‡Unitarity, Convergence, and Termination
The usual interpretation of unitarity is that a unitary map on Hilbert space is physically
reasonable – i.e. it corresponds to a valid evolution of an undisturbed quantum system.
However (based on the thought-experiment in Section 11.9) the twisted dagger is the limit
of an iterated physical process as the number of time-steps tends to infinity. The twisted
dagger, applied to a finite-dimensional unitary map L, has a physical interpretation – but
this arises from the interpretation of the intermediate steps (described by the unitary
maps Gn(L)), rather than unitarity of the limit (which has the distinctly unphysical
interpretation of the ‘result’ after an infinite number of iterated steps).

How, then, should we interpret unitarity in the limit? It can only be a strong form
of convergence, or termination of an iterated process. At any finite time K, we have a
physical interpretation (i.e. GK(L) is unitary, for unitary L). When the limit exists, we
deduce that after a suitable number T of timesteps, further iterations have a negligible
effect on the state of the system — a direct comparison may be drawn with Cauchy
sequences. However, this is simply the statement that the twisted dagger is an isometry
& unitarity is a stronger result than this. Via the characterisation of unitaries as special
cases of partial isometries, it also implies that every element of the image space arises
via such an iterated process.

‡‡ Many thanks to Sam Braunstein for the following comments on physical interpretations
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Because of this interpretation, we consider the twisted dagger of any (finite-
dimensional) unitary map to be physically motivated, even when the limit is not unitary.
Conversely, if a linear map L is not unitary, we do not consider the twisted dagger to
have a physical interpretation (at least, as an undisturbed quantum system), even when
†U (L) is itself unitary.

Note also that the traced out subspace U does not appear in the image of the twisted
dagger, although it is part of the image for all finite intermediary steps. Hence, for the
twisted dagger to be a unitary map, the projection onto this subspace must, at some
point, become and remain empty. In the finitary, or physically reasonable case, this
raises the possibility of using a measurement on this subspace as a test that a completed
computation has indeed terminated.

12.2. The twisted dagger, and the trace

In a ΣMC, there is clearly a close connection between the twisted dagger, the iterative
trace, and the Elgot dagger. Precisely, columns 1,2,3, . . . of the twisted dagger matrix
give the summands of the iterative trace, and column 0 gives the summands of the Elgot
dagger. We now study the connection between the twisted dagger and the iterative trace
in the category Hilbfd.

Theorem 12.3. Let L =
(

a b
c d

)
∈ Hilbfd(X ⊕ U, Y ⊕ U) be a linear map, where

†U (L) exists, and let ιk : X → U ⊕ (⊕ωX) be the canonical inclusion into the kth

component, ψ → (0, . . . , , 0,ψ, 0, 0, . . .) (where k > 1). Then the trace TrU
X,Y (L) : X → Y

exists, and is given by the following composite

X
ιk ""

TrU
X,Y (L)

%%

U ⊕ (⊕ωX)

†U (L)

%%
Y ⊕ωY∇

!!

for arbitrary k ≥ 1. Note this factorization lives in Hilb, not Hilbfd.

Proof.
This is immediate from the description of the twisted dagger matrix. For k = 1, observe
that





b a 0 0 0 . . .
bd bc a 0 0 . . .
bd2 bdc bc a 0 . . .
bd3 bd2c bdc bc a . . .
...

...
...

...
...

. . .









0
ψ
0
0
...




=





a(ψ)
bc(ψ)
bdc(ψ)
bd2c(ψ)

...





Composition with the codiagonal gives ∇ †U (L) ι2(ψ) = a +
∑∞

i=0 bdic = TrU
X,Y (L)(ψ)

for arbitrary ψ ∈ X, as required. The case where k > 1 follows similarly.
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Corollary 12.4. Let the shift map Shift : ⊕ωY → ⊕ωY be the partial isometry
defined by

Shift(y0, y1, y2, . . .) = (0, y0, y1, y2, . . .)

Then †U (L) ιk = Shiftk †U (L) ι1, for k > 1.

Proof. This is also immediate from the structure of the twisted dagger matrix.

Remark 12.5. The twisted dagger of a unitary matrix is the limit of an entirely unitary,
and hence reversible, process (and is, under relatively light conditions, itself unitary). The
canonical inclusion is an isometry (i.e. a partial isometry with full initial space) and is
also an information-preserving operation. Hence, we may identify the irreversibility of
the iterative trace on Hilbfd as arising from the codiagonal, which (speaking informally)
‘forgets information about the computation’. From a categorical point of view, observe
that we have specified the iterative trace on Hilbfd in terms of canonical inclusions, com-
position, and countable codiagonals, without explicit reference to notions of summation.

13. Convolved lists in Hilbert space

We have seen above how the twisted dagger of a unitary matrix L =
(

a b
c d

)
: X⊕U →

Y ⊕U may be used to produce the categorical trace TrU (L) : X → Y via an inclusion and
a (strictly information-forgetting) codiagonal. We may interpret the inclusion as either
‘preparation in a known state’, or ‘the addition of a suitable ancilla’. The physically
unreasonable part of the construction of the categorical trace is therefore the codiagonal,
due to the no-deleting theorem of (Pati, Braunstein 2001).

We now consider how close we may come to the iterative trace without using the
codiagonal — i.e. in a purely physically reasonable manner. Thus, instead of using the
twisted dagger to produce a linear map from X to Y , we consider the linear map from
X⊕ω to Y ⊕ω, given by an inclusion, followed by the twisted dagger operation. Precisely,
given a unitary map L : X ⊕ U → Y ⊕ U where †U (L) : U ⊕ X⊕ω → Y ⊕ω exists, we
consider the composite

⊕ωX
ι2 "" U ⊕ (⊕ωX)

†U (L) "" ⊕ωY

Proposition 13.1. Let L =
(

a b
c d

)
∈ Hilbfd(X ⊕ U, Y ⊕ U) be a linear map where

†U (L) ∈ Hilb(X⊕ω, Y ⊕ω) exists. Then the above composite has matrix representation
of the form

†T (L)oι2 =





r0 0 0 0 0 . . .
r1 r0 0 0 0 . . .
r2 r1 r0 0 0 . . .
r3 r2 r1 r0 0 . . .
...

...
...

...
...

. . .




: ⊕ωX → ⊕ωY
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Proof. This follows by explicit calculation, giving r0 = a, and ri = bdi−1c, for i > 0.

We now observe that matrices of this form specify a subcategory of Hilb, as follows :

Definition 13.2. We define the subcategory T Hilb of Hilb as follows:

— Objects of T Hilb are infinite direct sums of the form X⊕ω

, for finite-dimensional
Hilbert spaces X.

— The arrows T Hilb(X⊕ω, Y ⊕ω) are bounded linear maps of the form

R =





r0 0 0 0 0 . . .
r1 r0 0 0 0 . . .
r2 r1 r0 0 0 . . .
r3 r2 r1 r0 0 . . .
. . . . . . . . . . . . . . .




: ⊕ωX → ⊕ωY

— Composition of arrows is the usual composition of linear maps.

Lemma 13.3. T Hilb, as defined above, is a subcategory of (Hilb, ⊕).

Proof. The identity matrices at each object are trivially of the required form; we then
need to demonstrate that matrices of this form are closed under composition. Consider
R : ⊕ωX → ⊕ωY and S : ⊕ωY → ⊕ωZ in T Hilb, given by

R =





r0 0 0 0 0 . . .
r1 r0 0 0 0 . . .
r2 r1 r0 0 0 . . .
r3 r2 r1 r0 0 . . .
...

...
...

...
...

. . .




and S =





s0 0 0 0 0 . . .
s1 s0 0 0 0 . . .
s2 s1 s0 0 0 . . .
s3 s2 s1 s0 0 . . .
...

...
...

...
...

. . .





Then a direct calculation gives that

SR =





t0 0 0 0 0 . . .
t1 t0 0 0 0 . . .
t2 t1 t0 0 0 . . .
t3 t2 t1 t0 0 . . .
...

...
...

...
...

. . .





where tk =
∑

k=j+i sjri. Associativity is inherited from Hilb, and so our result follows.

Corollary 13.4. The category T Hilb is a representation in Hilb of (summable) lists
of linear maps, together with a convolution product..

Proof. It is immediate that arrows R : ⊕ωX → ⊕ωY and S : ⊕ωY → ⊕ωZ in
T Hilb are uniquely specified by (summable) lists of linear maps {Ri : X → Y }i∈N and
{Sj : Y → Z}j∈N. Lemma 13.3 demonstrates that the composite SR is uniquely specified
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by the list 


tk =
∑

k=j+i

SjRi : X → Y





k∈N

At this point, we wish to give a full categorical theory of convolved lists over Hilbert
space, with special emphasis on those arising from the twisted dagger of unitary maps.
However, in order to give a systematic treatment of this theory, we do it for the general
case of categories carrying PCM structures.

14. Convolution Categories

We give a general categorical construction based on convolutions of lists, applicable to
categories carrying PCM structures. The setting for this operation is the category of all
categories carrying a PCM-structure :

Definition 14.1. The category PCM-Cat is defined as follows :

— Objects The objects of PCM-Cat are categories carrying PCM-structures, as in
Definition 5.1.

— Arrows An arrow Γ ∈ PCM-Cat(C,D) is a functor from C to D that ‘respects the
summation’. That is, for all summable indexed families {fi ∈ C(X, Y )}i∈I , the family
{Γ(fi) ∈ D(Γ(X),Γ(Y ))}i∈I is also summable, and Γ

(∑
i∈I fi

)
=

∑
i∈I (Γ(fi)).

Definition 14.2. The convolution category construction
Let C be a category carrying a PCM structure. The convolution category over C,
denoted Con(C), is defined as follows:

— The objects of Con(C) are exactly the objects of C.
— An arrow F ∈ Con(C)(X, Y ) is an infinite summable list (F0, F1, F2, . . .) over

C(X, Y ). Equivalently, an arrow F : X → Y in Con(C) is simply a function
F : N → C(X, Y ) where {F (i) : X → Y }i∈N is a summable family.

— Composition of arrows is given by the convolution of lists, so

(GF )(k) =
∑

i+j=k

G(j)F (i)

Theorem 14.3. Let C be a category carrying a PCM structure (i.e. a member of
PCM-Cat). Then

1 Con(C) is well-defined as a category.
2 C is a retract of Con(C), so there exists a pair of functors σC : Con(C) → C and

ηC : C → Con(C) satisfying σCηC = IdC .
3 Con(C) carries a PCM structure.

Proof.

1 Given F ∈ Con(C)(X, Y ) and G ∈ Con(C)(Y,Z), we must show that (GF )(k) =∑
i+j=k G(j)F (i) is well-defined, i.e. we need to show that (GF )(k) exists for all
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k ∈ N, and the family {(GF )(k)}k∈N is summable. Observe that (by definition),∑∞
i=0 F (i) ∈ C(X, Y ) exists, as does

∑∞
j=0 G(j) ∈ C(Y,Z). Thus their composite

(
∑∞

j=0 G(j))(
∑∞

i=0 F (i)) =
∑

i,j G(j)F (i) exists. In particular, the doubly indexed
family {G(j)F (i)}i,j is summable .
Consider the sets Hk = {(i, j) | i + j = k}. These sets form a partition of N2, by the
usual Cantor enumeration. For each k ∈ N, the family {G(j)F (i)}(i,j)∈Hk

is a (finite)
subfamily of the summable family {G(j)F (i)}i,j and is thus summable. So by weak
partition associativity,

∑
i,j G(j)F (i) =

∑
k∈N

∑
(i,j)∈Hk

G(j)F (i) exists, as required.
The associativity of composition follows from the associativity of composition in C,
together with the associativity of the partial summation given by the Σ-structure:
(HGF )(l) =

∑
l=k+j+i H(k)G(j)F (i). Finally, the existence of identities follows from

the existence of zeros in PCMs. The identity at an object X is simply IdX(i) ={
1X i = 0
0XX i 5= 0

2 We give the functors σC : Con(C) → C and ηC : C → Con(C) explicitly. They are
both the identity on objects; on arrows,

σC(F ) =
∞∑

i=0

F (i) : X → Y ∀ F ∈ Con(C)(X, Y )

similarly,

ηC(L)(i) =
{

L i = 0
0X,Y i 5= 0

∀ L ∈ C(X, Y )

It is almost immediate that these are functors, and satisfy σCηC = IdC . Hence C is a
retract of Con(C).

3 The notion of summation is inherited in a pointwise manner. A countable indexed
family {Fα}α∈A is summable, denoted

∑
α∈A Fα exactly when, for each i ∈ N, the

sum
∑

α∈A Fα(i) exists, as does
∑

α∈A Fα(i). In this case, we define
(

∑

α∈A

Fα

)
(i) =

∑

α∈A

Fα(i)

It is almost immediate that Con(C) carries the same Σ-structure as C i.e. when C
carries (for example) a PAM structure, so does Con(C).

Corollary 14.4. Con is a functor from PCM-Cat to itself.

Proof. Let C and D objects in PCM-Cat. From Theorem 14.3, Con(C) and Con(D)
are objects in PCM-Cat. It remains to give the definition of Con on arrows of
PCM-Cat (i.e functors between categories carrying PCM structures), and check func-
toriality of Con : PCM-Cat → PCM-Cat.

Given Γ ∈ PCM-Cat(C,D) (i.e. a summation-preserving functor from C to D), we
define

Con(Γ) : Con(C)(X, Y ) → Con(D)(Γ(X),Γ(Y ))
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as follows:
Given F ∈ Con(C)(X, Y ), specified by

F : N → C(X, Y )

we define
Con(Γ)(F ) : N → D(Γ(X),Γ(Y ))

by Con(Γ)(F )(n) = Γ(F (n)). To show that this is functorial, consider ∆ ∈
PCM-Cat(D, E) (i.e. a summation-preserving functor from D to E). From the definition,

Con(∆)Con(Γ)(F )(n) = ∆Γ(F (n)) = Con(∆Γ)(F )(n)

and hence Con is functorial.

The Con functor preserves a number of interesting structures within PCM-Cat, as
follows :

Theorem 14.5. Let C be a category carrying a Σ-structure, with a (symmetric)
monoidal tensor ⊕ that is compatible with summation in the sense that, for all
families {fi}i∈I ⊆ C(X, Y ) and {gj}j∈J ⊆ C(A,B),

∑

(i,j)∈I×J

fi ⊕ gj +
(

∑

i∈I

fi

)
⊕




∑

j∈J

gj





(note the use of Kleene equality). Then
1 Con(C) is a (symmetric) monoidal category.
2 When C has quasi-projections and quasi-inclusions, so does Con(C).
3 When C has a (possibly partial) categorical trace, so does Con(C), and this trace

satisfies, for all F ∈ Con(C)(X ⊕ U, Y ⊕ U),

TrU
X,Y (F ) exists, exactly when TrU

X,Y

( ∞∑

i=0

F (i)

)
exists in C

4 The functors σC and ηC of Theorem 14.3 preserve the categorical trace.

Proof.
1 The monoidal tensor on Con(C)is defined in terms of the monoidal tensor of C :

— The object A⊕B in Con(C) exactly the object A⊕B in C.
— The tensor on arrows is defined by a convolution,

(F ⊕G)(k) =
∑

k=j+i

F (j)⊕G(i)

The assumption that the monoidal tensor is compatible with the summation, and
similar considerations to the proof of Theorem 14.3 demonstrate that this is well-
defined. To show that this is indeed a monoidal tensor, consider

K ∈ Con(C)(Y, V ) G ∈ Con(C)(B, Y )
H ∈ Con(C)(X, U) F ∈ Con(C)(A,X)
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Then (H ⊕K)(F ⊕G)(n) =
∑

x+y=n(H ⊕K)(x)(F ⊕G)(y), and by definition

(H ⊕K)(x) =
∑

a+b=x

H(a)⊕K(b) , (F ⊕G)(y) =
∑

p+q=y

F (p)⊕G(q)

Therefore,

(H ⊕K)(F ⊕G)(n) =
∑

x+y=n

(
∑

a+b=x

H(a)⊕K(b)

)(
∑

p+q=y

F (p)⊕G(q)

)

Using the distributivity of summation over composition, and rearranging indices

(H ⊕K)(F ⊕G)(n) =
∑

a+b+p+q=n

(H(a)F (p)⊕K(b)G(q))

Conversely, (HF ⊕ KG)(n) =
∑

n=α+β HF (α) ⊕ KG(β) and by the definition of
composition in Con(C),

(HF ⊕KG)(n) =
∑

n=α+β








∑

α=γ+δ

H(γ)F (δ)



⊕




∑

β=λ+µ

K(λ)G(µ)









Again using the distributivity of composition over summation and rearranging indices,

(HF ⊕KG)(n) =
∑

γ+δ+λ+µ=n

(H(γ)F (δ)⊕K(λ)G(µ))

so we deduce that (H ⊕K)(F ⊕G)(n) = (HF ⊕KG)(n), as required. The proof that
1X ⊕ 1Y = 1X⊕Y is also immediate. For the symmetry and associativity conditions,
we denote the symmetry and associativity isomorphisms of C by sX,Y and αX,Y,Z

respectively, and define

SXY = ηC(sX,Y ) ∈ Con(C)(X ⊕ Y, Y ⊕X)

TXY Z = ηC(αX,Y,Z) ∈ Con(C)(X ⊕ (Y ⊕ Z), (X ⊕ Y )⊕ Z)
As ηC is a functor, S and T also satisfy the MacLane Pentagon and Commu-
tativity Hexagon conditions (MacLane 1998). Hence, by the uniquness of canonical
isomorphisms, Con(C) is a symmetric monoidal category.

2 Given U = X ⊕ Y , the quasi-projections in Con(C) are given by ηC(πX) and ηC(πY )
respectively. Similarly for the quasi-inclusions, and it is readily verified that these
satisfy the conditions given in Definition 8.1.

3 Let F : X⊕U → Y ⊕U be an arrow in Con(C). Then, as Con(C) has quasi-projections
and quasi-inclusions, we may write

F =
(

P Q
R S

)
: X ⊕ U → Y ⊕ U

However, as the quasi-projections and quasi-inclusions at an object A ∈ Ob(Con(C))
are given in terms of the inclusion functor ηC by

ηC(πA) = (πA, 0, 0, . . .) , ηC(ιA) = (ιA, 0, 0, . . .)
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respectively, we may find the elements P,Q,R, S as follows:

— P (i) = (ηC(πY )FηC(ιX))(i) = πY F (i)ιX ∈ C(X, X)

— Q(i) = (ηC(πY )FηC(ιU ))(i) = πY F (i)ιU ∈ C(U, Y )

— R(i) = (ηC(πU )FηC(ιX))(i) = πUF (i)ιX ∈ C(X, U)

— S(i) = (ηC(πU )FηC(ιU ))(i) = πUF(i)ιU ∈ C(U,U)

Hence we may deduce that

σ(F ) =
(

σ(P ) σ(Q)
σ(R) σ(S)

)

and as C is traced,

TrU
X,Y (σ(F )) = σ(P ) +

∞∑

i=0

σ(Q)σ(S)iσ(R)

and further,

σ(TrU
X,Y (F )) = TrU

X,Y (σ(F )).

Therefore,

P +
∞∑

i=0

QSiR exists in Con(C)

4 A corollary of 3. above is that σC preserves the categorical trace. The proof that
the functor ηC : C → Con(C) also preserves the trace of ΣMCs follows immediately
from the fact that it is an embedding of C into Con(C), and from the definition of
summation in Con(C).

14.1. A monad based on Convolution

We now demonstrate that the Con functor, together with two natural transformations
that we give below, forms a monad. We refer to (Moggi 1991) for the classic work on
monads and computation, and to (Jones, Wadler 1993) for a common interpretation of
monads as implementations of input / output and other side-effects within functional
programming languages.

Lemma 14.6. The indexed family of functors

ηC : C → Con(C) ∀ C ∈ Ob(PCM-Cat)

given in Theorem 14.3, part 2., are the components of a natural transformation from the
identity functor on PCM-Cat to the convolution functor on PCM-Cat.

Proof. To demonstrate that the indexed family ηC , for C ∈ Ob(PCM-Cat) gives the
components of a natural transformation, consider objects of PCM-Cat, C,D together
with a summation-preserving functor (i.e. an arrow of PCM-Cat) Γ : C → D. By
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functoriality, it is almost immediate that the following diagram commutes

C Γ ""

ηC

%%

D
ηD

%%
Con(C)

Con(Γ)

"" Con(D)

and hence the family ηC gives the components of a natural transformation. We denote
this natural transformation by η : IPCM-Cat ! Con.

In a similar way, there is a natural transformation from the endofunctor Con(Con( ))
to the endofunctor Con( ) with components given in Theorem 14.3.

Lemma 14.7. Let us define an indexed family of functors µC , for all C in Ob(PCM-Cat),
by µC = σCon(C), where for arbitrary X ∈ Ob(PCM-Cat), the summation-preserving
functor (i.e. arrow in PCM-Cat) σX : Con(X ) → X is as defined in Theorem 14.3.
Then the family

µC : Con(Con(C)) → Con(C) ∀ C ∈ Ob(PCM-Cat)

gives the components of a natural transformation from Con(Con( )) to Con( ).

Proof. Consider arbitrary objects of PCM-Cat C,D , together with an arrow Γ ∈
PCM-Cat(C,D) (i.e. a summation-preserving functor). By functoriality, it is immediate
that the following diagram commutes :

Con(Con(C))
Con(Con(Γ)) ""

σCon(C)
=µC

%%

Con(Con(D))

µD=σCon(C)

%%
Con(C)

Con(Γ)

"" Con(D)

Hence the family µC gives the components of a natural transformation. We denote this
natural transformation by µ : Con(Con( )) → Con( ).

As may be expected, we now use Lemmas 14.6 and 14.7 above to give a monad based
on the Con functor. However, we first give a preliminary result on the structure of
ConK(C), for an category C carrying a PCM-structure.

Lemma 14.8. Let C be an object of PCM-Cat. Then

1 The objects of ConK(C) are exactly the objects of C.
2 An arrow F ∈ ConK(C)(X, Y ) is specified by an arrow

F̃ : NK → C(X, Y ) such that {F̃ (i1, i2, . . . , iK)}(i1,i2,...,iK)∈NK is summable.

Proof.

1 This is immediate, since for an category M carrying a PCM-structure, both Con(M)
and M have the same objects.
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2 Recall that an arrow G ∈ Con(C)(X, Y ) is specified by a function G : N →
C(X, Y ). Hence an arrow F ∈ ConK(C)(X, Y ) is specified by a function F : N →
ConK−1(C)(X, Y ). Extending this process by induction we have that

F : N → [N → [. . . [N → (C(X, Y )] . . .]]

By currying, we observe that F ∈ ConK(C)(X, Y ) is exactly equivalent to an arrow
F̃ : NK → C(X, Y ). Now recall that for an arbitrary arrow G ∈ Con(C)(X, Y ) speci-
fied by a function G : N → C(X, Y ), the family {G(n) ∈ C(X, Y )}n∈N is required to
be summable. Hence, for the arrow F ∈ ConK(C)(X, Y ), this is the requirement that
{F (n1) ∈ ConK−1(C)(X, Y )}n1∈N is a summable family in ConK−1(C). However, by
definition of summation in a convolution category (from Theorem 14.3), we deduce
that {F (n1)(n2) ∈ ConK−2(C)(X, Y )}n1,n2∈N must also be a summable family. Iter-
ating this process, it follows that {F (n1)(n2) . . . (nK) ∈ (C)(X, Y )}n1,n2,...,nK∈N is a
summable family, and our result holds by currying.

Remark From Lemma 14.8, we observe a close connection between multiple applications
of the Con functor, isomorphisms NK ∼= N, and partitions of N into multiple countably
infinite subsets§§. This raises the intriguing possibility of using the self-embedding tech-
niques of (Hines 1997; Hines 1999) to study the convolution construction. Unfortunately,
this is beyond the scope of this paper.

Theorem 14.9. The triplet (Con, η, µ) is a monad.

Proof. Consider an arbitrary category C carrying a PCM-structure. Then by Lemma
14.8, the following diagram commutes :

Con(C)

Con(IdC)

%%

Con(ηC)

33///////////

Con(Con(C))

µCon(C)4400000000000

Con(C)

Similarly, using the same currying technique as Lemma 14.8, the following diagram

§§ Note that such partitions require and rely on the weak partition-associativity axiom — in particular
the Higgs (I) and Higgs (II) Σ-group axioms are not strong enough to allow for such partitions
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commutes :

Con(Con(Con(C)))
µCon(C)

5511111111111111 Con(µC)

6622222222222222

Con(Con(C))

µC
6622222222222222

Con(Con(C))

µC
5511111111111111

Con(C)

Finally, by Lemma 14.6 and Lemma 14.7 above, the various ηX and µY in the above
diagrams are the components of natural transformations η : IPCM-Cat ! Con and
µ : Con(Con( )) → Con( ). Therefore, we deduce that (Con, η, µ) is a monad.

Hence, the convolution construction (which, broadly speaking, keeps track of the passage
of time within a computation), together with the above natural transformations is a
monad (i.e. the type of structure generally used to represent side-effects within functional
programming (Jones, Wadler 1993)).

We now consider the connection between the partial iterative trace in the convolution
category Con(Hilbfd), and the twisted dagger construction of Section 12.

15. Embedding Con(C) into C

Given the intuitive description of Con as ‘forming convolved lists’, it is perhaps unsur-
prising that there exists an embedding of C into Con(C), as shown in Theorem 14.3, part
2. What is less intuitive is the existence (under relatively straightforward assumptions)
of an embedding of Con(C) into C.

Definition 15.1. The rearrangement axiom
Let C,⊕ be a category carrying a PCM structure that has countably infinite monoidal
tensors and quasi-projections and quasi-injections (as in Definition 8.1).

Given an arbitrary summable family {fi : X → Y }i∈I and arbitrary families {ιi :
Y → ⊕ωY }i∈I and {πi : ⊕ωX → X}i∈I of quasi-injections and quasi-projections indexed
by the same index set I, we say that (C,⊕) satisfies the rearrangement axiom when
{ιifiπi : ⊕ωXi → ⊕ωYi}i∈I is also a summable family.

A simple consequences of the rearrangement axiom is that given a summable family
{fi : X → Y }i∈N, then the infinite monoidal tensor

⊕∞
i=0 fi :

⊕
Xω →

⊕
Y ω exists, as

does the map π0
∑∞

i=0 (ι0fiπi) :
⊕ω X → Y .

It is straightforward to check that all categories carrying PCM structures (that also
have infinite quasi-projections and quasi-injections) from Examples 6.1 and 6.3 satisfy
this axiom.

Theorem 15.2. Let C be a category carrying a PCM structure that also has countably
infinite monoidal tensors and matrix representations, and satisfies the rearrangement
axiom. Then there exists a faithful functor ΓC : Con(C) → C.
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Proof. We define ΓC as follows :

— (on objects) ΓC(X) =
⊕ω X, for all X ∈ Ob(Con(C)) = Ob(C).

— on arrows Given f ∈ Con(C)(X, Y ), as a function f : N → C(X, Y ), we define
F = ΓC(f) ∈ C(

⊕ω X,
⊕ω Y ) by the matrix

F = (Fij)i,j∈N where Fij =
{

f(j − i) j ≥ i
0 otherwise.

By the rearrangement axiom, this is the matrix representation of an arrow of C, since the
family {f(i)}i∈N is summable. Functoriality follows from the usual formula for matrix
composition : given r ∈ Con(C)(X, Y ) and s ∈ Con(C)(Y, Z), then

ΓC(r) =





r(0) 0 0 . . .
r(1) r(0) 0 . . .
r(2) r(1) r(0) . . .

...
...

...
. . .




and ΓC(s) =





s(0) 0 0 . . .
s(1) s(0) 0 . . .
s(2) s(1) s(0) . . .

...
...

...
. . .





Direct calculation gives ΓC(s)ΓC(r) =





t0 0 0 . . .
t1 t0 0 . . .
t2 t1 t0 . . .
...

...
...

. . .




where tk =

∑
k=j+i sjri.

Hence ΓC(s)ΓC(r) = ΓC(sr). The proof that ΓC(1X) = 1Lω X is then straightforward.

Corollary 15.3. The subcategory T Hilb of Definition 13.2 is the image of Con(Hilbfd)
under the functor ΓHilb.

16. Applications to quantum computation

Using the twisted dagger of a unitary matrix, we now use the interpretation as a categor-
ical trace (Section 12.3), and the flowchart interpretation of the iterative trace (Section
10) to give a notion of conditional iteration in quantum computation. As a preliminary,
we describe how such iteration works in the classical setting. Given a classical iterative
algorithm expressed in these terms, we demonstrate how to produce a quantum sub-
routine that behaves like this classical algorithm on the computational basis, and acts
linearly on superpositions of basis states.

Such subroutines are important in Grover’s search algorithm (Grover 1996), and the
canonical example of a quantum subroutine that behaves in this way is the computation
of superpositions of modular exponentials required for Shor’s algorithm (Shor 1999). Al-
though our scheme for quantum-mechanical iteration may indeed be used to calculate
such a superposition, this particular calculation is amenable to a great deal of opti-
misation before any iterative steps are required (R. van Meter, K. Itoh 2005). Instead
of going through this particular example, we present a general scheme for producing a
quantum-mechanical version of a classical reversible algorithm.

There is a slight complication in that the notion of iteration we have for quantum-
mechanical systems (i.e. the twisted dagger on unitary maps) requires an ancillary register
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that ‘keeps track of the number of iterative cycles’ in the computation. In the course of
the computation, this register becomes entangled with the result of the computation, and
hence causes decoherence (Myers 1997; Linden, Popescue 1998; Hagar, Korolev 2004). To
produce a usable quantum resource we must disentangle the result of the computation
from the ancillary space — this is achieved using techniques similar, but not identical,
to those found in (Bennett 1973).

16.1. Classical reversible iteration, via the trace

For a (classical reversible) notion of iteration provided by the particle-style trace, we
require :
— A set of k variables, {v1 , v2 , . . . , vk}, where each vj is a member of Znj .
— A reversible operation F that updates these variables.
— A set of halting conditions.
Mathematically, the complete set of variables is specified by a vector x = (v1, . . . , vn) ∈
X = Zn1 × Zn1 × . . . × Znk , and F is a bijection on this set. As X is finite, the
bijection F : X → X is trivially a computable function – for simplicity, we assume F is
defined by primitive arithmetic operations (but not primitive recursion) on the set of k
variables.

The halting conditions may be specified either by conditions on the variables x1, . . . , xk,
or (equivalently) a subset H ⊆ X that we call the halting subset. For example, setting
the halting condition “ (v1 = v2) OR (v2 = 5 AND v3 = 17) ” is equivalent to
specifying the halting subset

{(n, n) : n ≤ min(n1, n2)}× Zn3 × . . .× Znk

⋃
Zn1 × {5}× {17}× . . .× Znk

We will denote the complement of H by C, so X ∼= H)C, and write F : H)C → H)C.
The iterative trace (in the category pInj) may be used to eliminate the behaviour of F
on the subspace C, giving a partial injection TrC(F ) : H → H, and we have seen in
Proposition 9.6 that as X is a finite set, TrC(F ) is in fact a bijection.

The flowchart and algebraic semantics interpretations given in Section 10 (together
with the simplification provided by the fact that F is a bijection) may by used to give
an interpretation of TrC(F ) as the following subroutine :

Input x ∈ H;
Do {x 2→ F (x); } (While x ∈ C)
Return x ∈ H;

Note that the typing of the categorical trace forces H to act both as a starting and a
halting subset¶¶. We denote the bijection computed by this subroutine by M : H → H.

Our stated aim is then to produce a quantum-mechanical version of the subroutine,
that computes M on the computational basis, and is superposition-preserving.

¶¶ This constraint can be relaxed to give distinct starting / halting subsets S, H ⊆ X, simply by conju-
gating F by a bijection σ that interchanges S and H. We do not present this extension explicitly, but
note that in this generalisation the starting and halting subsets must be of the same size.
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16.2. Classical reversible iteration, via the twisted dagger

Classically, the modifications required in order to use the twisted dagger, rather than
the iterative trace, as a notion of iteration are straightforward. We simply need an extra
variable that keeps track of the number of iterative cycles in a computation — this allows
us to work in the convolution category Con(pInj). Given variables, {v1 , v2 , . . . , vk},
a reversible operation F updating these variables, and a set of halting conditions,
as before, a canonical inclusion followed by twisted dagger (as in Section 12.2) has the
following interpretation

Input (n, x) ∈ N×H;
Do

{x 2→ F (x);
n 2→ n + 1; } (While x ∈ C)

Return (n, x) ∈ N×H;

We thus see that the convolution construction has the simple interpretation of ‘keeping
track of the number of iterative cycles required in a computation’, so instead of simply
computing the function M : H → H given above, the twisted dagger computes the
function M ′ : N×H → N×H, given by M ′(n, h) = (n+k,M(h)) where k is the number
of steps required for the algorithm in Section 16.1 to terminate on the input h.

Finally, note that as the configuration set X is finite, not only do we have guaranteed
termination (Proposition 9.6), but there exists an upper bound K to the number of
possible iterative cycles required before termination. Although an upper bound may
be given by basic combinatorics, this will be, in most cases, a vast overestimate — the
arithmetic structure of the update function F may often be used to provide a substantially
tighter, if not exact, upper bound‖‖

17. Quantum-mechanical iteration

We now consider how the twisted dagger may be used to provide a notion of condi-
tional iteration in quantum-mechanical systems. Precisely, given a classical, reversible,
algorithm based on iteration (presented in terms of the constructions of Section 16.2
above), we demonstrate how to produce a quantum-mechanical subroutine that not only
reproduces the behaviour of this classical algorithm on the computational basis, but is
superposition-preserving. We emphasise that this is just one application of our general
notion of quantum iteration; further applications (including iterating operations with no
classical counterpart) will be considered in subsequent papers.

Also, although the twisted dagger provides a notion of iteration, recall from the discus-
sion following Theorem 12.2 that the twisted dagger is properly thought of as the limit of

‖‖ The existence of an upper bound is crucial, not only for termination, but also to allow us to disentangle
the ‘clock space’ from the result of the computation – although we only require an upper bound, not
the least upper bound or the exact number of steps to termination. This is in contrast to the approach
of (Bernstein, Vazirani 1997), where iteration (based on quantum Turing machines) is restricted to
the case where computation must terminate in a fixed number of steps, regardless of the input.
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a series of physical operations, rather than a physical operation in its own right. Because
of this, we first express the computation in terms of the twisted dagger, and then justify
using the finite iterates, rather than the twisted dagger itself.

17.1. The twisted dagger, as quantum-mechanical iteration

In the classical reversible algorithm give above, we have

— A vector x = (v1, . . . , vn) ∈ X = Zn1 × Zn1 × . . .× Znk of variables.
— An update bijection F : X → X.
— A starting / halting subset H ⊆ X, and its complement C ⊆ X.

We require complex spaces with bases indexed by the sets X, H and C respectively,
giving

— l2(X), with basis {|x〉 : x ∈ X}
— l2(H), with basis {|h〉 : h ∈ H ⊆ X}
— l2(C), with basis {|c〉 : c ∈ C ⊆ X}
(Note that l2(X) ∼= l2(H) ⊕ l2(C)). We also ‘lift’ the bijection F to a linear map,
Uf : l2(X) → l2(X) defined by Uf |x〉 = |F (x)〉 and as Uf is simply a permutation
of basis vectors, it is trivially unitary. As (by assumption) F is defined by primitive
arithmetic operations (excluding recursion), this unitary map be efficiently constructed
— although the construction of quantum-mechanical versions of arithmetic operations is
an interesting non-trivial field in its own right. We refer to (Nielsen, Chuang 1991; Vedral
et. al. 1996; van Meter et. al. 2006) for a good overview.

For the twisted dagger, we require an additional ancillary ‘clock space’ T , with or-
thonormal basis {|0〉, |1〉, |2〉, . . .}. This allows us to construct the required infinite co-
product using the distributivity isomorphism, giving

⊕ω l2(H) ∼= T ⊗ l2(H).
The twisted dagger (composed with a canonical inclusion, as in Section 12.2) then

provides a map Ψ = †l2(C)(Uf )ι : T ⊗ l2(H) → T ⊗ l2(H) that acts on the computational
basis as follows :

Ψ(|t〉|h〉) = |t + kh〉|M(h)〉
where kh is the number of steps required for the algorithm of Section 16.1 to terminate
on the input h. Finally, recall from Section 16.2 that we may set an upper bound K so
that hk < K, for all inputs.

17.2. Disentangling the clock space

In Section 17.1 above, we have produced an algorithm that implements the following
function

ΨF (|t〉|h〉) = |t + kh〉|M(h)〉
where M is the (classical) function implemented by the algorithm of Section 16.1, and
kh is the number of steps required for this algorithm to halt on the input h. However,
for a superposition of basis states of l2(H) this algorithm will, in general entangle of the
clock space with the result of the computation (see (Myers 1997; Linden, Popescue 1998;
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Hagar, Korolev 2004) for why this is undesirable for quantum algorithms). Hence, we
require a procedure to disentangle the clock space from the result of the computation.
This is done as follows :

1 For an computational basis vector |h〉 ∈ l2(H), we tensor this with the zero of the
clock space, giving |0〉|h〉 ∈ C ⊗ l2(H). We then apply the algorithm implementing
ΨF above, to give

ΨF (0〉|h〉) = |hk〉|M(h)〉
2 Using an almost identical procedure to that of Section 17.1 on the function F−1 in-

stead of F , we may produce an algorithm that implements the function ΨF−1(|t〉|h〉) =
|t+kh〉|M−1(h)〉 on computational basis vectors. We apply this to the output of step
1., to get

ΨF−1ΨF (0〉|h〉) = |2hk〉|h〉
(This ‘uncomputation’ step is a familiar part of the approach to reversible computa-
tion given in (Bennett 1973)).

3 We now apply elementary arithmetic operations to the clock space. Precisely, for
an arbitrary even number 2n < 2K (where K is an upper bound to the number of
iterative cycles required in the computation) we require a unitary map P satisfying
P (|2n〉) = |K−n〉. We refer to (Vedral et. al. 1996) for implementations of arithmetic
operations on quantum registers, and Section 16.2 for discussion of this upper bound.
Applying P to the clock space only gives

(P ⊗ 1)ΨF−1ΨF (|0〉|h〉) = |K − kh〉|h〉

4 Finally, we re-apply the algorithm implementing ΨF to the output of step 3. above,
giving

ΨF (P ⊗ 1)ΨF−1ΨF (|0〉h〉) = |K〉|M(h)〉
Note that the content of the clock space is no longer a function of h, but is instead a
constant.

Now consider performing the above steps, not with a computational basis vector, but
with an arbitrary superposition of computational basis vectors

∑
i∈I αi|hi〉. By linearity,

the above procedure acts as :

|0〉 ⊗
∑

i∈I

αi|hi〉 2→ |K〉
∑

i∈I

αi|M(hi)〉

and we observe that the clock space is no longer entangled with the result of the com-
putation. Hence we may measure (or simply ignore) the contents of the clock space, and
are left with the required superposition

∑
i∈I αi|M(hi)〉.

17.3. Approximations to the twisted dagger, in finite time & finite-dimensional space

We now consider how the above computations (In particular those of Section 17.1 and
17.2) may be performed in finite time, using finite resources.
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Recall the interpretation of the twisted dagger as the limit of an infinite series of
applications of unitary maps given in Theorem 12.2. We write the unitary map Uf above
in matrix form as

Uf =
(

p q
r s

)
: l2(H)⊕ l2(C) → l2(H)⊕ l2(C)

It is shown in Theorem 12.2 how the twisted dagger of a unitary map arises as the
limit of a series of applications of unitary matrices, F0, F1, F2, . . ., where these matrices
have distinct infinite-dimensional spaces as their sources / targets. This is physically
unreasonable in that we cannot apply an infinite number of unitary operations in a finite
time. Also, to conform with the traditional approach to quantum computation, we wish
to work within a finite-dimensional space.

What makes this a physically reasonable quantum-computational procedure is the
existence of an upper bound K to the number of steps before termination (from Section
16.2). Hence, for an input |0〉|x〉 (we assume that |x〉 is a computational basis vector, for
simplicity – the general case follows by linearity), there exists some hx < K such that

FhkFhk−1 . . . F0(|0〉|x〉) = |hk〉|M(x)〉

where M is the function computed by the iterative procedure of Section 16.2, and this
is unchanged (up to trivial permutations of the basis states of the form
(

i⊕
H

)
⊕ C ⊕

(
j⊕

H

)
∼=

(
a⊕

H

)
⊕ C ⊕

(
b⊕

H

)
where i + j = K = a + b

i.e. simply shifting the postion of the non-halting subspace) by applications of FN for all
N > K.

The key point now is that, since the solution is reached within some finite time ≤
K, we do not require a countable infinite clock space — a ‘limited’ version TK with
computational basis {|0〉|1〉, . . . , |K〉} is sufficient for the procedure described in Section
17.1. We also only require a finite series of unitary maps that are the finitary analogues
of F0, . . . , FK . Finally for the ‘disentangling’ procedure (including unitary arithmetic) of
Section 17.2, we require a larger space of dimension 2K — and this is simply given by
tensoring TK with one additional qubit.

18. Conclusions and Discussion

18.1. Summary

The main results of this paper may be summarised as follows:

— The particle-style trace (a categorical trace based on conditional iteration) trace is
applicable in a wider setting than the UDCs of (Haghverdi 2000); this setting includes
categories where the summation on hom-sets does not satisfy the positivity property
— including categories of Hilbert spaces and linear maps.

— Although linear maps representing isolated physical operations (unitary maps) have
an iterative trace within the category of Hilbert spaces, this is not a physical operation



Conditional quantum iteration from categorical traces 71

— not only does it not correspond to usual notions of conditional iteration, but the
result is neither unitary (describing isolated time-evolution) nor Hermitian (specifying
measurement outcomes).

— We may factor the iterative trace on (finite-dimensional) Hilbert spaces into three
parts: a canonical inclusion, a (possibly non-terminating) series of unitary opera-
tions (the ‘twisted dagger’), and a codiagonal. We identify the irreversibility (or
non-physicality) of the iterative trace with the ‘forgetful’ codiagonal, rather than
the interpretation as conditional iteration. The (unitary) twisted dagger thus arises
as the infinite product of local unitary operations.

— There exists an embedding into Hilb of a traced monoidal category based on con-
volved lists (over Hilbfd). Under this embedding the trace becomes the canonical
inclusion followed by the twisted dagger. These are the two physically reasonable
parts of the factorization above. This arises from a general construction on categories
carrying a Σ-structure that we call the Convolution Category Construction.

— Using the close connection between the iterative trace and algebraic program seman-
tics for conditional iteration, we are able to give algorithms based on conditional
iteration. In the example given, we demonstrate that an arbitrary reversible algo-
rithm based on conditional iteration has a quantum-mechanical analogue that is i/
superposition-preserving, and ii/ behaves like the classical algorithm on the compu-
tational basis.

18.2. Future directions

There are many possible future directions for this work. Quantum-physically, the natural
step is to consider a full Fock-space treatment of the thought experiments of Section
11, and use these to motivate a more physically sophisticated treatment of conditional
iteration. Also, although necessary conditions for unitarity of the twisted dagger are
given, these are not also sufficient conditions — whether sufficient conditions can be
given explicitly remains open.

Categorically, there remain many questions to be answered — the Convolution con-
struction may well provide a Kleisli or Eilenberg-Moore category. However, the natural
numbers seem to play too large a role in this construction, and (subject to minor re-
strictions) may be replaced with an arbitrary abelian monoid (particularly interesting
examples begin the finite cyclic monoids Zp). A full theory would take this generality into
account. Computationally, we have also only given a restricted case — the next natural
step is to consider iterating unitary matrices that are not definable in terms of a classical
bijection on some orthonormal basis. In this case, convergence could not be established
as simply as the combinatorics of Section 16, and the analytic results of Section 12 would
become more important.

Finally, the subtleties of the tensor product of Σ-structures and the associated theory
of enrichment appears to be of considerable interest. We are currently examining such
notions in joint work with Tim Porter.
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Appendix A: Minimal conditions for the particle-style trace

For completeness we analyse the proof, presented in (Haghverdi 2000), that the iterative
trace formula is indeed a categorical trace, in the sense of (Joyal et. al. 1996). We demon-
strate that this proof does not require all the axioms for a unique decomposition category
– in particular, it holds for categories carrying a Σ structure with matrix representations
(and hence UDCs, PACs, & c.).

Theorem 19.1. Let (C,⊕,Σ) be a Σ matrix category, such that for all F =
(

a b
c d

)
:

X ⊕ U → Y ⊕ U , the sum

a +
∞∑

i=0

bdic : X → Y exists

Then (C,⊕,Σ) is a traced monoidal category, with TrU
X,Y (F ) : X → Y given by the

above summation.

Proof. Note that, as (C,⊕,Σ) has matrix representations, the monoidal tensor F ⊕G

is given by the matrix
(

F 0
0 G

)
. We now consider the axioms for a categorical trace:

— Naturality in X: TrU
X,Y (F )G = TrU

X′,Y (F (G⊕ 1U ))

We write F in matrix form as
(

a b
c d

)
. Then, as (C,⊕) has matrix representations

G⊕ 1U =
(

G 0
0 1U

)
. Then by definition,

TrU
X′,Y (F (G⊕ 1U )) = TrU

X′,Y

(
ag b
cg d

)
= ag +

∞∑

i=0

bdicg

By assumption, the trace formula converges, so TrU
X,U (F ) = a +

∑∞
i=0 bdic ex-

ists, and by the distributivity of composition over summation, TrU
X,U (F )G = (a +∑∞

i=0 bdic)G = TrU
X′,Y (F (G⊕ 1)).

— Naturality in Y : hHTrU
X,Y (F ) = TrU

X,Y ′((H ⊕ 1U )F )
This follows by the dual calculation, using left-distributivity, rather than right-
distributivity. Again, the only assumptions needed are the Σ-structure on hom-sets,
distributivity, and matrix representations.

— Dinaturality in U : TrU
X,Y ((1Y ⊕G)F ) = TrU ′

(F (1X ⊕G))

Using matrix representations, write F =
(

a b
c d

)
, 1Y ⊕ G =

(
1Y 0
0 G

)
, and
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similarly 1X ⊕G =
(

1X 0
0 G

)
. Then

TrU
X,Y ((1Y ⊕G)F ) = TrU

X,Y

(
a b

Gc Gd

)
= a +

∞∑

i=0

b(Gd)iGc

and

TrU ′

X,Y (f(1X ⊕G)) = TrU ′

X,Y

(
a Gb
c Gd

)
= a +

∞∑

i=0

(bG)(dG)ic

and by the distributivity of composition over summation, these are the same.
— Vanishing I TrI

X,Y (ρ−1
Y FρX) = F

By definition of the units arrows, and the existence of zero morphisms,

TrI
X,Y (ρ−1

Y FρX) = TrI
X,Y

(
F 0I,Y

0X,I 1I

)
= F +

∞∑

i=0

0IY 1i
I0XI = F

— Vanishing II TrU⊕V
X,Y (F ) = TrU

X,Y (TrV
X⊕U,Y⊕U (F ))

We write F : X ⊕ U ⊕ V → Y ⊕ U ⊕ V in matrix form as

F =




a b c
d e f
g h k





so

TrV
X⊕U,Y⊕U (F ) =

(
a b
d e

)
+

∞∑

i=0

(
c
f

)
ki

(
g h

)

=
(

a +
∑∞

i=0 ckig b +
∑∞

i=0 kih
p +

∑∞
i=0 fkig e +

∑∞
i=0 fkih

)

Therefore, by direct calculation,

TrU
X,Y (TrV

X⊕U,Y⊕U (F )) = a+
∞∑

i=0

ckig+(b+
∞∑

i=0

ckih)(
∞∑

j=0

(e+
∞∑

i=0

fkih)j)(d+
∞∑

i=0

fkig)

However,

TrU⊕V
X,Y (F ) = a +

∞∑

i=0

(
b c

) (
e f
h k

)i (
d
g

)

and straightforward calculations (given explicitly in (Haghverdi 2000)) will demon-
strate that these infinite sums are equal. It may also be checked that these calculations
only require matrix manipulations and the distributivity of composition over (infinite)
sums.
However, equality may also be established using a graphical notation. Let us draw F
as in Figure 13 :
We may calculate TrV (F ) by introducing a feedback loop, as in Figure 14
We calculate TrV (F ) by summing over all paths from X to Y , X to U , etc., to get a
digraph representation for the matrix of TrV (F ) : X ⊕ U → Y ⊕ U , as in Figure 15
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Fig. 13. The matrix of F as a digraph
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Fig. 14. The matrix of F , with a feedback loop
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Finally, to calculate TrU (TrV (F )), we may take the digraph in Figure 15, and intro-
duce a feedback loop, to get the digraph shown in Figure 16. We then sum over all
paths from X to Y , to give TrV (TrU (F )) = p +

∑∞
j=0 qsjr.

We now use the same formalism to calculate TrU⊕V (F ). Let us draw F : X ⊕ (U ⊕
V ) → Y ⊕ (U ⊕ V ) (together with the appropriate feedback loop) as in Figure 17.
We may then sum over all paths from X to Y , in order to calculate TrU⊕V (F ).
However, as a simplification, we may first replace all matrix-labelled arrows in Figure
17 by the appropriate digraphs, giving the digraph shown in Figure 18.
We then sum over all paths from X to Y , giving an explicit formula for TrU⊕V (F ), and
it follows, either by graphical manipulations or explicitly writing out the appropriate
sums, that TrU (TrV (F )) = TrU⊕V (F ).

— Superposing G⊕ TrU
X,Y (F ) = TrU

W⊕X,Z⊕Y (G⊕ F )

Writing F =
(

a b
c d

)
, and using the characterisation of the monoidal tensor in
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Fig. 15. The digraph of TrV (F )
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Fig. 16. Calculating TrU (TrV (F ))
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where p, q, r, s are as in Figure 15.

terms of matrices, gives G⊕ F =




G 0 0
0 a b
0 c d



 and so

TrU
W⊕X,Z⊕Y (F ) =

(
G 0
0 a

)
+

∞∑

i=0

(
0
b

)
di

(
0 c

)

By the formulæ for matrix composition, and the matrix characterisation of the
monoidal tensor,

TrU
W⊕X,Z⊕Y (F ) =

(
G 0
0 a +

∑∞
i=0 bdic

)
=

(
G 0
0 TrU

X,Y (F )

)
= G⊕ TrU

X,Y (F )

— Yanking: TrU
U,U (sU,U ) = 1U

As C has matrix representations, IdU⊕U =
(

1U 0
0 1U

)
, and so

(
0 1U

1U 0

)
satis-

fies the axioms for the commutativity isomorphism. It is then trivial that the trace
of this is 1U .

Observe that the only requirements for this proof to hold are the following:

— (C,⊕) has matrix representations, with monoidal tensor is given by f⊕g =
(

f 0
0 g

)
.

— There exists a partial (associative commutative) summation, where composition dis-
tributes over summation.

— If a family of arrows is summable, then so are all its subfamilies — this is required for
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Fig. 17. Calculating TrU⊕V (F )
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Fig. 18. The matrix of F , with a double feedback loop
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the proof of Vanishing II, and is implied by the ‘summable subfamilies’ property of
both Σ-monoids and Σ structures (By contrast, the weak Higgs I axiom of Definition
3.6. only allows for the summability of finite subfamilies).

— The trace formula converges.

Hence the iterative trace formalism is equally applicable to PACs, UDCs, Σ-matrix
categories, strong GDCs, &c.

Appendix B : The existence of partial traces in arbitrary ΣMCs

We now demonstrate that every ΣMC has a partial trace, provided by the iterative trace
formula. Note that this is not a triviality satisfied by some condition such as ‘the class
of trace-class arrows is empty’, since the axioms for a partial trace require the existence
of certain tracable arrows (the Vanishing I, and Yanking axioms).
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Theorem 19.2. Let (C,⊕,Σ) be a Σ-Matrix category. Then the iterative trace formula
defines a partial trace on (C,⊕,Σ).

Proof. We demonstrate that the iterative trace formula satisfies the axioms given in
Definition 9.4.

1 (Naturality) (We give a proof for naturality in X. The proof for naturality in Y
follows similarly.

Given f =
(

a b
c d

)
and g : X ′ → X, then g ⊕ 1U =

(
g 0
0 1U

)
, and :

(⇒) existence Let us assume that TrU (f)g exists. The iterative trace formula gives
TrU (f(g ⊕ 1U )) = ag +

∑∞
i=0 bdicg. However, this is just TrU (f)g, which exists by

assumption.

(⇐) existence Let us assume that TrU (f(g⊕1U )) exists. The iterative trace formula
gives TrU (f(g ⊕ 1U )) = ag +

∑∞
i=0 bdicg. However, we have already seen that this is

just TrU (f)g.

(Equality) It is immediate that these two expressions are equal.

2 (Dinaturality) Given f =
(

a b
c d

)
: X ⊕ U → Y ⊕ U and g : U ′ → U , then :

(⇒) existence Let us assume that TrU ((1Y ⊕ g)f) = TrU

(
a b
gc gd

)
= a +

∑∞
i=0 b(gd)igc exists. The particle-style trace formula gives

TrU ′
(f(1X ⊕ g)) = TrU ′

(
a gb
c gd

)
= a +

∞∑

i=0

(bg)(dg)ic

However, rebracketing gives

TrU ′
(f(1X ⊕ g)) = a +

∞∑

i=0

b(gd)igc

and this is just TrU (1Y ⊕ g)f), which exists by assumption.

The ⇐ proof of existence, and equality, then follow trivially.
3 (Vanishing I) Given f : X → Y , then by definition

ρ−1fρ =
(

f 0IY

0XI 1I

)

From the iterative trace formula,

TrI(ρ−1fρ) = f +
∞∑

j=0

0IY 1j
I0XI = f + 0XY = f

as required. (Note that similar reasoning gives that, for arbitrary f : X → Y and
g : U → U , TrU (f ⊕ g) exists, and is equal to f).
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4 (Vanishing II)
Consider an arrow f : X ⊕ U ⊕ V → Y ⊕ U ⊕ V written in matrix form as

f =




a b c
d e f
g h k



 : X ⊕ U ⊕ V → Y ⊕ U ⊕ V

From Appendix A, if both TrU (TrV (f)) : X → Y and TrU⊕V (f) : X → Y exist,
then they are equal. Without assuming existence, let us compare these formulæ:

TrU⊕V (f) = a +
∞∑

l=0

(
b c

) (
e f
g h

)l (
d
g

)

This may also be written explicitly as

TrU⊕V (f) = a +
(

b c
) (

p q
r s

) (
d
g

)

where the components p, q, r, s are indexed sums given explicitly in (Haghverdi 2000)
(Lemma 4.0.1).
Conversely

TrV (f) =
(

a b
d e

)
+

∞∑

i=0

(
c
f

)
ki

(
g h

)

=
(

a b
d e

)
+

∞∑

i=0

(
ckig ckih
fkig fkih

)
=

(
a +

∑∞
i=0 ckig b +

∑∞
i=0 ckih

d +
∑∞

i=0 fkig e +
∑∞

i=0 fkih

)

and

TrU (TrV (f)) = t +
∞∑

j=0

uvjw

where
t = a +

∑∞
i=0 ckig u = b +

∑∞
i=0 ckih

v = d +
∑∞

i=0 fkig w = e +
∑∞

i=0 fkih

The question now is : What is the relationship between the doubly-indexed sum
(indexed by i, j ∈ N×N, and given explicitly by summing over all paths in Figure 16)
in the calculation of TrU (TrV (f)), and the singly-indexed sum (indexed by l ∈ N,
and given explicitly by summing over all paths in Figure 17) in the calculation of
TrU⊕V (f) ?
Writing out the summands explicitly in both cases demonstrates that the singly-
indexed sum (indexed by l ∈ N) arises from taking a partition of the doubly-indexed
sum N × N =

⊎∞
l=0 Nl (where Nl

∼= N, for all l = 0 . . .∞), and summing over each
n ∈ Nl, leaving a singly-indexed sum.
Hence, by the weak partition-associativity axiom, the existence of the single-indexed
sum TrU⊕V (f) is implied by the existence of the doubly-indexed sum TrU (TrV (f)).
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However, the converse implication does not hold, as we only assume the weak
partition-associativity axiom.

5 (Superposing)

Given g : W → Z and f =
(

a b
c d

)
: X ⊕ U → Y ⊕ U , then :

(⇒ existence) Let us assume that TrU
W⊕X,Z⊕Y (g ⊕ f) exists. From the iterative

trace formula,

TrU (g ⊕ f) =
(

g 0
0 a

)
+

∞∑

i=0

(
0
b

)
di

(
0 c

)
=

(
g 0
0 a +

∑∞
i=0 bdic

)

However, each matrix component is also an arrow in C, so TrU (f) = a +
∑∞

i=0 bdic
exists.

(⇐ existence) Let us assume that TrU
X,Y (f) exists. Then from the iterative trace

formula,

TrU (g ⊕ f) =
(

g 0
0 a +

∑∞
i=0 bdic

)

and so TrU
W⊕X,Z⊕Y (g ⊕ f) = g ⊕ TrU

X,Y (f), which exists, since TrU
X,Y (f) exists.

(Equality) It is immediate that these two expressions are equal.

6 Yanking) By definition, sU,U =
(

0 1U

1U 0

)
. From the iterative trace formula,

TrU (sU,U ) = 0U +
∞∑

i=0

1U .0i
U .1U

However, 1U .0i
U .1U = 0U for all i 5= 0, so the only non-zero summand is 1U , and

hence this sum exists, giving TrU
U,U (sU,U ) = 1U as required.


