
Math. Struct. in Comp. Science (2001), vol. 11, pp. 207–260. Printed in the United Kingdom
c� 2001 Cambridge University Press

Control Categories and Duality: on the Categorical
Semantics of the Lambda-Mu Calculus
PETER SEL INGER

Department of Mathematics,
University of Michigan,
Ann Arbor, MI 48109-1109, U.S.A.
Email: selinger@umich.edu

Received 12 September 1998; revised 2 November 1999

We give a categorical semantics to the call-by-name and call-by-value versions of Parigot’s
�µ-calculus with disjunction types. We introduce the class of control categories, which combine a
cartesian-closed structure with a premonoidal structure in the sense of Power and Robinson. We
prove, via a categorical structure theorem, that the categorical semantics is equivalent to a CPS
semantics in the style of Hofmann and Streicher. We show that the call-by-name �µ-calculus forms
an internal language for control categories, and that the call-by-value �µ-calculus forms an internal
language for the dual co-control categories. As a corollary, we obtain a syntactic duality result: there
exist syntactic translations between call-by-name and call-by-value which are mutually inverse and
which preserve the operational semantics. This answers a question of Streicher and Reus.

1. Introduction

The discussion about the relative advantages and disadvantages of the two parameter passing
techniques, call-by-name and call-by-value, is almost as old as the theory of programming lan-
guages itself. While many modern functional programming languages use the call-by-value
paradigm, which is easy to implement and semantically intuitive, Felleisen and Hieb write in
their “Revised report on the syntactic theories of sequential control and state” that there is “no
theoretical reason for choosing one over the other, even in the presence of control operators and
assignments” (Felleisen and Hieb 1992).
In this paper, we study the relationship between the call-by-name and call-by-value paradigms

for Parigot’s �µ-calculus. The �µ-calculus is an extension of the simply-typed lambda calculus
with certain sequential control operators. We show that, in the presence of product and disjunc-
tion types, the call-by-name and call-by-value �µ-calculi are isomorphic to each other, in the
sense that there exist syntactic translations between them that preserve the operational semantics
and that are mutually inverse up to isomorphism of types. These translations take the form of a
duality: they turn argument-driven computation into demand-driven computation by exchanging
input and output throughout, turning terms “inside out”. The presence of disjunction types makes
this possible: we can regard a termM : A1 ^ . . .^An ! B1 _ . . ._Bm as a function in n argu-
ments with m possible result types. Under the duality between call-by-value and call-by-name,

Peter Selinger 2

M is mapped to a function inm arguments with n possible result types. The existence of such a
duality in the context of the �µ-calculus was conjectured by Streicher and Reus (1998).
An interesting aspect of this duality is that it exchanges functional and imperative features.

For instance, a purely functional call-by-value term is mapped to a call-by-name term that relies
almost exclusively on control operators, and vice versa. This observation suggests that, from
a practical point of view, certain algorithms are more naturally formulated in a call-by-value
paradigm, and others in call-by-name. It is interesting to compare this with Filinski’s work, in
which he obtains a duality result by working with a larger and more symmetric syntax, in which
the dual of a term is essentially its mirror image (Filinski 1989).
The main contribution of this paper, and the basis for the above-mentioned duality result, is

a sound and complete categorical semantics for both the call-by-name and call-by-value �µ-
calculus. We introduce the class of control categories, in which the call-by-name �µ-calculus
can be interpreted in much the same way as the simply-typed lambda calculus is interpreted in a
cartesian-closed category. We prove a categorical structure theorem that shows that every control
category is equivalent to a “category of continuations”, in the sense of Hofmann and Streicher
(1997). This structure theorem implies the soundness and completeness of the categorical inter-
pretation of the �µ-calculus with respect to a natural CPS semantics. But more is true: we show
that the call-by-name �µ-calculus forms an internal language for the class of control categories.
We then repeat this process for the call-by-value calculus. We show that the call-by-value

�µ-calculus forms an internal language for the class of co-control categories, which are simply
the categorical duals of control categories. The syntactic duality result is then a corollary of the
syntax-free categorical duality.
It should be stressed that the results of this paper are not particular to the �µ-calculus. They

apply equally well to other, more traditional languages with continuation-like control constructs,
such as call/cc in ML or Scheme, or Felleisen’s C operator (Felleisen 1986). Operationally, all
these calculi are equivalent; for instance, the equivalence between the �µ-calculus and a call-by-
name version of Felleisen’s C was shown by De Groote (1994b). One of the reasons that we have
chosen the �µ-calculus as the basis for the semantics in this paper is because it is technically
convenient to work with two separate name spaces, and thus with two-sided sequents, rather than
with explicit negation types. This two-sidedness also facilitates our statement of duality.

Related Work

This work draws on several recent developments in the categorical semantics of control operators.
The starting point of our work is Hofmann and Streicher’s categorical semantics of the call-by-
name �µ-calculus in terms of categorical continuation models (Hofmann and Streicher 1997).
Our control categories are an abstraction of these models. Unlike categories of continuations,
control categories are defined as categories with algebraic structure, and they allow a covariant
interpretation of the �µ-calculus without any explicit reference to continuations. The crucial
ingredient in defining the structure of a control category is the realization that disjunction is not
bifunctorial, but that it forms a premonoidal structure in the sense of Power and Robinson (1997).
Our structure theorem relates this abstract approach to Hofmann and Streicher’s more concrete
semantics by showing that any control category is equivalent to a category of continuations.
In the call-by-value case, our model is almost identical to Thielecke’s interpretation in a ⌦¬-

Control Categories and Duality 3

category (Thielecke 1997). Indeed, a co-control category is a⌦¬-category with additional struc-
ture. Thielecke’s semantics does not include disjunction types, maybe because they are not cen-
tral to the computational phenomena and real-life programming languages that he is interested
in modeling. However, for this present work, the disjunction types are crucial, because they are
indispensable for the statement of duality. In particular, our call-by-name semantics is strictly
different from that of Thielecke, and cannot be expressed purely in terms of ⌦¬-categories.
Also, the presence of disjunction types reveals the nature of Thielecke’s “self-adjointness” prop-
erty, which becomes a special instance of a co-cartesian-closed structure. A structure theorem
similar to ours was shown independently by Führmann (1998) for the case of ⌦¬-categories.
Also, in a more recent development, Führmann has given a more general account of the relation-
ship between direct and monadic models, which generalizes some aspects of the present work to
arbitrary computational effects in place of continuations (Führmann 1999).
A different class of models for the call-by-name �µ-calculus, based on fibrations, was defined

by Ong and Ritter and later generalized to the disjunctive case by Pym and Ritter (Ong 1996;
Pym and Ritter 1998). The focus of these models is different from ours, as they stress the fibered
nature of the �µ-calculus with respect to control contexts, and thus they are, in a sense, higher-
order. However, these models are rich in algebraic structure, and indeed, the �µ-calculus forms
an internal language for them, in the suitable fibered sense. One may go back and forth between
Ong/Ritter models and control categories by identifying the object A at the fiber � with the
object A � in a control category. This appears to be an instance of a more general construction
of obtaining a fibration from a premonoidal structure, see also (Power and Robinson 1997).
Sometimes the question is raised what, if anything, is the computational significance of the

disjunction types in the �µ-calculus. The question arises because these types are originally moti-
vated mainly by logical and categorical concerns, and not by computational considerations. But
it turns out that the disjunction types do indeed have a computational interpretation, in terms of
certain manipulations with stacks. This is best seen in an abstract machine model. From the CPS
semantics of this paper, one can derive a Krivine-style abstract machine, as was done for the
fragment without disjunction in (Streicher and Reus 1998). The abstract machine model for the
disjunctive call-by-name �µ-calculus, and an implementation, is described in detail in a sepa-
rate paper (Selinger 1998). For the purposes of this present paper, we emphasize the logical and
categorical perspective.

Outline

In Sections 2 through 4, we introduce control categories and exhibit their basic structure. In
Sections 5 through 7, we discuss the interpretation of the call-by-name and call-by-value �µ-
calculi. In Section 8, we discuss duality. Some technical proofs from Section 3 are given in the
Appendix.

2. Control categories

In a cartesian-closed category, we use the notation 3A : A ! 1 for the terminal arrow, ⇡1, ⇡2

for the first and second projections, hf, gi for pairing, ✏A,B : B

A ⇥ A ! B for application, and
f

? : B ! C

A for the curry of a map f : B ⇥ A ! C. We also use the internal language of a

Peter Selinger 4

ccc to denote morphisms: thus a morphism f : A ! B will be denoted by a typing judgment
x:A ⇤ M : B in the usual way. Obvious subscripts are often omitted. Sometimes, we use the
notation ccc��! to label evident ccc isomorphisms.

2.1. Premonoidal categories

Premonoidal categories were introduced by Power and Robinson (1997). We summarize the
definition here. A premonoidal category is similar to a monoidal category, except that the tensor
product is only assumed to be functorial in each argument separately, but not necessarily jointly.
Thus, the tensor product in a premonoidal category is not in general bifunctorial; for lack of a
better term we call such an operation a binoidal functor. The formal definition follows, where
|A| denotes the class of objects of a categoryA, regarded as a discrete subcategory.

Definition 2.1. LetA,B, andC be categories. A binoidal functor F : A⌦B ! C is given by
two bifunctors F0 : A⇥ |B|! C and F1 : |A|⇥B ! C, such that F0(A,B) = F1(A,B) for
all pairs of objects A,B.

Since F0 and F1 agree where they are both defined (namely on objects), there is no harm in
denoting both of them by F and thus writing F (A,B), F (f,B), and F (A, g), where A,B are
objects and f, g are morphisms. However, it does not in general make sense to write F (f, g),
because the two composites F (f,B

0) � F (A, g) and F (A0, g) � F (f,B) may not coincide. A
bifunctor is just a binoidal functor where the latter two compositions are equal.
The notation F : A ⌦ B ! C is justified because the following pushout defines a tensor

product in Cat:
|A|⇥ |B| //

✏✏

A⇥ |B|

✏✏
|A|⇥B // A⌦B

Thus, a binoidal functor can be regarded as a functor from A⌦B to C. An explicit description
of the category A ⌦ B is given in (Power and Robinson 1997). More generally, we can define
n-oidal functors F : A1 ⌦ . . .⌦An ! C for every n.
When we speak of natural transformations between binoidal functors, we always mean trans-

formations that are natural in each component separately. For bifunctors, this coincides with the
usual definition.

Definition 2.2. A binoidal category is a category P together with a binoidal functor : P ⌦
P ! P. We use the usual infix notation A B. A morphism f : A ! A

0 in a binoidal category
is central if for every morphism g : B ! B

0, the two composites (f B

0) � (A g) and
(A0 g) � (f B) agree, and the two composites (B0

f) � (g A) and (g A

0) � (B f)
agree. In this case, we also use the notation f g, respectively, g f .

Premonoidal categories are defined by analogy with monoidal categories. Notice that the struc-
tural isomorphisms are required to be central.

Definition 2.3. A premonoidal category is a binoidal categoryP, together with an object? and
central natural isomorphisms aA,B,C : (A B) C ! A (B C), lA : A ! A ?, and

Control Categories and Duality 5

rA : A ! ? A, subject to the usual coherence conditions:

((A B) C) D

a //

a D ""F
FF

FF
FF

F
(A B) (C D) a //

A (B (C D))

(A (B C)) D

a //
A ((B C) D),

A a

<<xxxxxxxx

A B

l B

����
��
��
�

A r

��=
==

==
==

(A ?) B

a //
A (? B).

A symmetric premonoidal category has in addition a family of central natural isomorphisms
cA,B : A B ! B A, satisfying c � c = id and coherence:

(A B) C

a //

c C

✏✏

A (B C) c // (B C) A

a
✏✏

(B A) C

a //
B (A C) B c //

B (C A),

A

l

����
��
��
�

r

��>
>>

>>
>>

A ? c // ? A.

The operation is also called a (symmetric) pretensor.

The central morphisms of a premonoidal category P form a monoidal subcategory, called
the center of P, and denoted by P•. Clearly, the center is the largest subcategory on which
restricts to a proper (bifunctorial) tensor product. Coherence for premonoidal categories follows
easily from Mac Lane’s result for monoidal categories (Mac Lane 1963; Kelly 1964), since all
the relevant coherence diagrams are contained in the center.
Premonoidal categories share many properties of monoidal categories, but some special care

is necessary when manipulating them. For instance, one should keep in mind that there are
innocent-looking expressions, such as A A, that are not functorial. Also notice that if f :
A ! A

0 is a morphism, then the induced family of arrows A B ! A

0
B is not in general

natural in B. We say that a family of maps ⌘B : F (B) ! G(B) is natural in central B if it is
natural with respect to central g : B ! B

0, and analogously for dinaturality.
A remark on the choice of symbols: I originally chose the upside-down ampersand “ ” be-

cause it suggests a tensor product with a disjunctive flavor. I did not intend to imply a connection
to linear logic by this choice. However, in recent work with O. Laurent and L. Regnier, it turned
out that control categories are a model of proof-nets for polarized linear logic, and, to my sur-
prise, the connective “ ” indeed corresponds to the “par” of linear logic under this interpretation.
A more detailed account of this connection will appear elsewhere.

2.2. Codiagonals and focus

Definition 2.4. Let P be a symmetric premonoidal category. A symmetric monoid in P is given
by an object A, together with two central morphisms iA : ? ! A and rA : A A ! A,

Peter Selinger 6

satisfying the usual equations:

A ? A i //

l�1
$$JJ

JJJ
JJJ

JJ
A A

r
✏✏

? A

i Aoo

r�1
zzttt

ttt
ttt

t

A,

(A A) A

r A //

a

✏✏

A A r
((QQ

QQQ
Q

A,

A (A A) A r //
A A

r

66mmmmmm

A A r
))SSS

SSS

c
✏✏

A.

A A

r

55kkkkkk

A symmetric premonoidal category has codiagonals if there is a chosen symmetric monoid
hA, iA,rAi for each object A, compatible with the premonoidal structure in the following sense:

i? = id? : ? ! ?,

? iA B

))TTT
TTTT

T

l=r

✏✏
A B,

? ? iA iB

55jjjjjj

A B A B

A c B

✏✏

rA B

,,YYYYYY
YYYY

A B.

A A B B

rA rB

22eeeeeeeeee

In the last diagram, some obvious associativity isomorphisms have been omitted. Since every
premonoidal category can be shown to be equivalent to a strict one (Power and Robinson 1997),
we will henceforth and without loss of generality treat associativity as if it were an identity map.
Notice we do not require that the families of maps iA : ? ! A and rA : A A ! A are

natural in A; in fact, it is not even obvious how one would state the naturality ofrA. Instead, we
will call a central morphism f : A ! B discardable if

?
iA

⌅⌅⌦⌦
⌦⌦
⌦⌦ iB

⇢⇢4
44

44
4

A

f //
B,

and copyable if
A A

f f //

rA

✏✏

B B

rB

✏✏
A

f //
B.

This terminology is taken from (Thielecke 1997). Strictly speaking, we should use the terms
co-discardable and co-copyable, but this would be cumbersome. Discardability and copyability,
like centrality, are notions of “well-behavedness”.

Definition 2.5. A morphism is called focal if it is central, discardable, and copyable.

Remark 2.6. The focal morphisms form a subcategory of P, called the focus of P, which we
denote by P]. The focus is contained in the center. It is closed under . All the structural maps
(a, l, r, c, i, and r) are focal, and so are the left and right weakening maps defined by

wlA,B = A

l�! A ? A iB���! A B,

wrA,B = B

r�! ? B

iA B���! A B.

Sometimes, we denote either of these maps by w. The focus has a canonical finite coproduct
structure:

Control Categories and Duality 7

Lemma 2.7. In P], the object ? is initial, and is a coproduct with the following injections
and co-pairing:

inl = A

wl�! A B,

inr = B

wr�! A B,

[f, g] = A B

f g���! C C

rC��! C.

In fact, P] is the largest subcategory of P on which restricts to a coproduct.

Remark 2.8. One hasP] ✓ P• ✓ P. In general, the focus of a symmetric premonoidal category
with codiagonals is strictly contained in the center: for instance, if P is a monoidal category
where the tensor is not given by a coproduct, then the the center is all of P, whereas the focus is
not. However, in the case of a control category, to be defined shortly, we will see that the center
and the focus always coincide.

2.3. Distributivity

Definition 2.9. SupposeP is a symmetric premonoidal category with codiagonals. Suppose that
P also has finite products. We say that P is distributive if the projections ⇡1 : A⇥ B ! A and
⇡2 : A⇥B ! B are focal, and if for all objects C, the functor � C preserves finite products.

Note that the functor� C preserves finite products iff for all objectsA,B, andC, the natural
maps

(A⇥B) C

h⇡1 C,⇡2 Ci���������! (A C)⇥ (B C) and 1 C

3�! 1

are isomorphisms. We denote the inverse of the first map by dA,B,C : (A C) ⇥ (B C) !
(A⇥B) C.

Lemma 2.10. If P is a distributive, symmetric premonoidal category with codiagonals, then the
focus of P is closed under the finite product structure.

Proof. First, it is trivial to see that 3A : A ! 1 is focal. Second, whenever f : C ! A and
g : C ! B are central and h : D ! E, then

C D

hf D,g Di //

C h

✏✏

(A D)⇥ (B D) d //

(A h)⇥(B h)

✏✏

(A⇥B) D

(A⇥B) h

✏✏
C E

hf E,g Ei // (A E)⇥ (B E) d // (A⇥B) E.

The left square commutes by hypothesis, the right one by naturality of d. It follows from the
definition of d that the map along the top is hf, gi D, and similarly along the bottom. Thus,
the perimeter of the diagram shows that hf, gi is central. Next, assume that f and g are also
discardable and copyable. The commutativity of the following two diagrams follows by post-
composing each of them with ⇡1 and with ⇡2, and by using the fact that ⇡1 and ⇡2 are focal.

Peter Selinger 8

Thus, hf, gi is discardable and copyable as well.

?
iC

}}{{
{{

{{
{{ iA⇥B

!!C
CC

CC
CC

C

C

hf,gi //
A⇥B

C C

hf,gi hf,gi //

rC

✏✏

(A⇥B) (A⇥B)

rA⇥B

✏✏
C

hf,gi //
A⇥B.

Notice that since d�1 was defined in terms of pairing, the lemma also implies that d�1, and
thus d, is focal.

2.4. Control categories

To the structure that we have considered so far, we now add cartesian-closedness, along with
some conditions that relate the cartesian-closed structure and the premonoidal structure.

Definition 2.11. Suppose P is a distributive symmetric premonoidal category with codiagonals.
Suppose P is also cartesian-closed. Let sA,B,C : B

A
C ! (B C)A be the canonical

morphism obtained by currying

✏̂A,B,C : (BA
C)⇥A

(BA C)⇥w�������! (BA
C)⇥ (A C) d�! (BA ⇥A) C

✏ C���! B C.

The category P is called a control category if sA,B,C : B

A
C ! (B C)A is a natural

isomorphism in A, B, and C, satisfying the following coherence conditions:

1. The following diagram commutes, where s0A,B,C = B C

A c�! C

A
B

sA,C,B����! (C B)A cA�!
(B C)A,

B

A
C

D s0 //

s
✏✏

(BA
C)D

sD

✏✏
(B C

D)A s0A // ((B C)D)A ccc // ((B C)A)D
.

2. The following two diagrams commute, where �A : A ! A⇥A is hidA, idAi:

B

A
B

A s0 //

rBA &&NN
NNN

NNN
NNN

N (BA
B)A sA // (B B)A⇥A

rB
�A

wwooo
ooo

ooo
ooo

B

A
,

? ccc //

iBA ⇢⇢5
55

55
5 ?1

(iB)3A

⌅⌅

B

A
.

Remark 2.12. While it automatically follows from the definition of sA,B,C that it is natural in
A and B, the requirement that it is natural in C is needed as a separate axiom.

The isomorphism sA,B,C : B

A
C ! (B C)A is called exponential strength. The require-

ment that s is an isomorphism is equivalent to the requirement that for every f : D⇥A ! B C,

Control Categories and Duality 9

there exists a unique f

? : D ! B

A
C such that

(BA
C)⇥A

✏̂ //
B C.

D ⇥A

f?⇥A

OO

f

77oooooooooooo

Thus, one has a natural isomorphism of hom-sets (D ⇥A,B C) ⇠= (D,B

A
C), giving rise

to a fibered ccc-structure on P.

Remark 2.13. So far, all the structural maps (of the premonoidal structure, the codiagonals, and
the finite product structure) have been focal. However, we do not require the application map
✏ : B

A ⇥ A ! B to be focal, nor for the focus to be closed under currying. On the other hand,
the exponential strength sA,B,C : B

A
C ! (B C)A turns out to be focal, as we will show

in Lemma 3.5 below.

2.5. Example: Categories of continuations

As an example of a control category, we consider a category of continuations in the style of
Hofmann and Streicher (1997). We begin with a category C with distributive finite products
and coproducts, and with a distinguished object R, such that for all objects A, an exponential
R

A exists. For example, one may take C to be a bicartesian closed category (Lambek and Scott
1986), although in general, we do not require arbitrary exponentials to exist. We say that C
satisfies the mono requirement if the canonical morphism @A : A ! R

RA is monic for all A. In
this case, we call the category C a response category, and the object R its object of responses.
This terminology is borrowed from continuation semantics. For simplicity and without loss of
generality, we assume that the exponentials are chosen such that A 6= B implies R

A 6= R

B .
Given a response category C, we define its category of continuations, denoted R

C, to be the
full subcategory of C consisting of the objects of the form R

A. The crucial observation under-
lying continuation semantics is that the category R

C is cartesian-closed (Agapiev and Moggi
1991; Lafont, Reus, and Streicher 1993). Indeed, in C, one has

1 ⇠= R

0
, R

A ⇥R

B ⇠= R

A+B
, (RB)RA ⇠= R

B⇥RA

,

and, being a full subcategory, RC inherits this structure fromC. Moreover, the category R

C has
a canonical premonoidal structure, given on objects by

? := R

1 ⇠= R, R

A
R

B := R

A⇥B
.

The operation is functorial in the first argument via R

A⇥B ⇠= (RA)B , and in the second
argument via R

A⇥B ⇠= (RB)A. Notice that the operation is not functorial in both arguments
jointly. All maps of the form R

f are focal. The structural maps a, l, r, c, i, and r are defined in
the obvious way.

Lemma 2.14. The category of continuations R

C is a control category.

Proof. The axioms are easily checked. For instance, exponential strength holds because

(RB)RA

R

C ⇠= R

B⇥RA⇥C ⇠= (RB
R

C)RA

.

Peter Selinger 10

A converse is also true: in Section 3.9, we will prove the main theorem about control cate-
gories: every control category is equivalent to a category of continuations.

3. The structure of a control category

3.1. Coherence

Lemma 3.1. The following hold in a control category:

(1)
B

A
C D

sA,B,C D

✏✏

sA,B,C D

((RR
RRR

RRR
RRR

R

(B C)A
D

sA,B C,D//(B C D)A
.

(2)
B

A

lBA

✏✏

(lB)A

&&MM
MMM

MMM
MMM

B

A ?
sA,B,?//(B ?)A

.

(3)
B C

A
D

B sA,C,D//

s0A,B,C D

✏✏

B (C D)A

s0A,B,C D

✏✏
(B C)A

D

sA,B C,D//(B C D)A
.

(4) B C

ccc

✏✏

ccc

&&MM
MMM

MMM
M

B

1
C

s1,B,C //(B C)1.

(5) (BA)A0
C

sA0,BA,C //

ccc

✏✏

(BA
C)A0

(sA,B,C)A0

//((B C)A)A0

ccc

✏✏
B

A⇥A0
C

sA⇥A0,B,C //(B C)A⇥A0
.

Proof. See appendix.

3.2. Centrality and discardability

We show here that any central map is discardable. In Section 3.6, we will be able to show that
any central map is also copyable, and thus the center and the focus coincide in a control category.

Lemma 3.2. In a control category, any central morphism is discardable.

Proof. Let f : A ! B be central. Let id? : 1 ! ?? be the curry of the identity map. Then the
first of the following three diagrams commutes by centrality. The second diagram is the same as
the first one up to coherent isomorphisms, and thus it also commutes. Finally, the third diagram
is obtained by uncurrying. Thus, f is discardable.

1 A

id? A //

1 f

✏✏

?? A

?? f

✏✏
1 B

id? B // ?? B

)
1

i?A //

id
✏✏

A

?

f?

✏✏
1

i?B //
B

?

)
?

iA //

iB ��@
@@

@@
@@

A

f

✏✏
B

Control Categories and Duality 11

3.3. Some focal structural maps

Lemma 3.3. In a control category, any morphism of the form C

f : C

B ! C

A is focal, where
f : A ! B.

Proof. The commutativity of the two diagrams

C

B
D

Cf D //

CB g

✏✏

C

A
D

CA g

✏✏
C

B
E

Cf E //
C

A
E

and
C

B
C

B Cf Cf
//

rCB

✏✏

C

A
C

A

rCA

✏✏
C

B Cf
//
C

A

follows from that of

(C D)B
(C D)f

//

(C g)B

✏✏

(C D)A

(C g)A

✏✏
(C E)B

(C E)f

// (C E)A

and
(C C)B⇥B

(C C)f⇥f

//

rC
�B

✏✏

(C C)A⇥A

rC
�A

✏✏
C

B Cf
//
C

A

respectively, by naturality of CB
D

⇠= (C D)B and of CB
C

B ⇠= (C C)B⇥B .

Lemma 3.4. In a control category, the natural ccc isomorphisms B

1 ⇠= B and (BA)A0 ⇠=
B

A⇥A0 are focal.

Proof. This follows from Lemma 3.1(4) and (5).

Lemma 3.5. In a control category, the exponential strength sA,B,C : B

A
C ! (B C)A is

focal.

Proof. To see that it is central, consider the diagram

B

A
C D

(sA,B,C) D //

BA C h

✏✏

(B C)A
D

sA,B C,D //

(B C)A h

✏✏

(B C D)A

(B C h)A

✏✏
B

A
C E

(sA,B,C) E // (B C)A
E

sA,B C,E // (B C E)A
.

By coherence, the morphism along the top is equal to sA,B,C D, and similarly along the bottom.
The right square commutes by naturality of strength, and so does the perimeter. The left square,
then, implies that sA,B,C is central. Showing that sA,B,C is copyable comes down, modulo co-
herence, to showing that

(B B)A⇥A
C C

s //

r� r
✏✏

(B B C C)A⇥A

(r r)�

✏✏
B

A
C

s // (B C)A
,

which follows by naturality of s.

Peter Selinger 12

Lemma 3.6. For all A,B,C, the canonical morphism pA,B,C : B

A ! (C B)C A, which is
obtained by currying

✏̃A,B,C : B

A ⇥ (C A)
w⇥(C A)������! (C B

A)⇥ (C A) d�! C (BA ⇥A) C ✏���! C B,

is focal. Moreover, p is natural in A,B and dinatural in central C, and it satisfies the following
coherence properties:

(1)
B

A
p //

p
((PP

PPP
PPP

PPP
PP (C B)C A

p
✏✏

(D C B)D C A
.

(2)
B

A
D

p D //

s
✏✏

(C B)C A
D

s
✏✏

(B D)A
p //(C B D)C A

.

(3)
B

A
p //

f⇤�g.�c.f(gc)
&&MM

MMM
MMM

MMM
(?C

B)?
C A

⇠=
✏✏

(BC)AC
.

(4) 1
id?

A //

id?
B A %%JJ

JJ
JJ

JJ
JJ A

A

p
✏✏

(B A)B A
.

Proof. See appendix.

3.4. A remark on consistency

One may ask whether it is consistent to trivialize the structure of , i.e. to assume that is
bifunctorial. It turns out that any control category in which is bifunctorial is equivalent to a
boolean algebra. The reader may find it instructive to compare the following lemma to the fact,
proved in (Lambek and Scott 1986, p.67), that in a bicartesian closed category, there is no arrow
A ! 0 unless A

⇠= 0.

Lemma 3.7. There is no central morphism f : 1 ! A, unless A

⇠= 1.

Proof. First, we claim that if f, g : 1 ! A and f is central, then f = g. Consider the diagram

1 1
f 1 //

1 g

✏✏

A 1

A g

✏✏

1wloo

g

✏✏
1 A

f A //
A A

r

##G
GG

GG
GG

GG
A

wloo

id
✏✏

1

wr
OO

f //
A

wr
OO

id //
A.

All cells commute, and the morphisms along the top and left sides are isomorphisms. Hence it
follows that f = g, proving the first claim. Now suppose that f : 1 ! A is central, and let B be
any object. Then f

3 : 1 ⇠= 11 ! A

B is central by Lemma 3.3. By our first claim, the hom-set
(1, A

B) ⇠= 1, and hence (B,A) ⇠= 1, showing that A is terminal.

Corollary 3.8. A control category in which is bifunctorial is equivalent to a boolean algebra.

Control Categories and Duality 13

Proof. If is bifunctorial, then all morphisms are central. Thus, any hom-set (B,A) ⇠=
(1, A

B) has at most one element by Lemma 3.7. It follows that the category is equivalent to
a poset, and the control category structure trivializes to a boolean algebra structure.

3.5. Classical features: excluded middle and double negation

It is well-known that lambda calculi with control operators, such as the �µ-calculus, correspond
to classical logic under a propositions-as-types correspondence. This fact was first discovered
by Griffin (1990). Since control categories are going to be models for such calculi, it should
therefore not be surprising that control categories are models of propositional classical logic.
Objects correspond to propositions, and arrows correspond to proofs. The operation models
disjunction. Note that all the axioms of control categories are intuitionistically valid, except for
the existence of an inverse to the map s : B

A
C ! (B C)A. The latter makes the logic

classical. We can define arrows for excluded middle and double negation:

tndA : 1
r?A�! (? A)A s�1

��! ?A
A (excluded middle)

@A : A

✏?

�! ??A (double negation introduction)

✓A : ??A p�! (A ?)A ?A ⇠=�! A

A ?A Atnd

��! A (double negation elimination)

Of course, @A is just the natural map that can be defined in any ccc.

Lemma 3.9. In a non-trivial control category:

(1) ✓?A = ?@A : ???
A

! ?A.
(2) ✓A � @A = idA : A ! A.
(3) tndA is dinatural in A, but not in general central.
(4) @A is natural in A, but not in general central.
(5) ✓A is focal, but not natural in A. However, ✓A is natural in central A.

Proof. (1): This follows from Lemma 3.6(3). (2): An easy diagram chase. (3): Dinaturality
follows from naturality of r and s. Notice that by Lemma 3.7, tndA is not central unless?A

A

⇠=
1. (4): The map @A is natural in any ccc. If @A : A ! ??A is central, then any map f : A ! B

is central, because f = ✓B � @B � f = ✓B � ??f � @A by (2), which is central by (5) and
Lemma 3.3. (5): ✓A is focal by its definition, because p is focal by Lemma 3.6 and A

tnd is focal
by Lemma 3.3. The naturality of ✓A in central A follows from the dinaturality of tnd and p in
central A.

The central morphisms are characterized by the fact that ✓A is natural in central A:

Lemma 3.10. A morphism f : A ! B is central if and only if f � ✓A = ✓B � ??
f .

Peter Selinger 14

Proof. “Only if” follows from Lemma 3.9. For “if”, suppose f � ✓A = ✓B � ??f , and let
g : C ! D. Consider the following cube:

A C

f C //

A g

✏✏

B C

B g

✏✏

??A
C

??
f

C //

??
A

g

✏✏

✓A C
99rrrrrrrrrr

??B
C

??
B

g

✏✏

✓B C

88rrrrrrrrrr

A D

f D //
B D.

??A
D

??
f

D //

✓A D
99rrrrrrrrrr

??B
D

✓B D

88rrrrrrrrrr

The top and bottom faces commute by assumption. The left, right, and front faces commute
because ✓A, ✓B , and ??

f are central. Moreover, the top left arrow ✓A C is a split epic by
Lemma 3.9(2), and thus the back face commutes, showing that f is central.

3.6. The center and the focus coincide

From Lemma 3.2, we know that any central map is discardable. We can now show that in a
control category, the center and the focus coincide:

Lemma 3.11. In a control category, any central morphism is copyable.

Proof. The proof is adopted from Thielecke (1997). Suppose f : A ! B is central. Consider
the following cube:

A A

f f //

r

✏✏

B B

r

✏✏

??A ??A ??
f

??
f

//

r

✏✏

✓A ✓A

88qqqqqqqqqqq
??B ??B

r

✏✏

✓B ✓B

88pppppppppp

A

f //
B.

??A ??
f

//

✓A

88qqqqqqqqqqqq
??B

✓B

88pppppppppppp

The front face and the two sides commute because??f , ✓A, and ✓B are copyable by Lemmas 3.3
and 3.9. The top and bottom faces commute because ✓A is natural in central A by Lemma 3.9.
Moreover, the top left arrow ✓A ✓A is a split epic with right inverse (@A ??A

) � (A @A).
Thus, it follows that the back face commutes, showing that f is copyable.

Control Categories and Duality 15

3.7. The basic adjunctions of the center

Let P be a control category. Recall that the center of P was denoted by P•. We use the usual
notation for hom-sets. Thus, P(A,B) is the set of all morphisms, and P•(A,B) is the set of
central morphisms from A to B.

Lemma 3.12. P(1, B A) ⇠= P•(?A
, B), naturally in A and central B.

Proof. Writing pA,B for ?A pA,?,B����! (B ?)B A ⇠=�! B

B A, we define �A,B : P(1, B

A) ! P•(?A
, B) and A,B : P•(?A

, B) ! P(1, B A) by

�A,B(f) = ?A
pA,B���! B

B A Bf

��! B

1 ccc��! B,

 A,B(g) = 1 tndA���! ?A
A

g A���! B A.

Notice that �(f) is indeed central by Lemmas 3.3, 3.4, and 3.6. is clearly natural in central
B. The naturality of � in A follows from that of pA,B . To see that (�(f)) = f holds for all
f : 1 ! B A, consider the following diagram:

1 tnd //

id?

&&LL
LLL

LLL
LLL

LL ?A
A

p A //

s
✏✏

B

B A
A

Bf A //

s
✏✏

B

1
A

ccc //

s
✏✏

B A.

A

A
p // (B A)B A

(B A)f

// (B A)1
ccc

77nnnnnnnnnnnn

The diagram commutes, from left to right, by definition of tnd, Lemma 3.6(2), naturality of s, and
Lemma 3.1(4), respectively. The composition along the top is (�(f)). The composition along
the bottom is f by Lemma 3.6(4) and standard ccc manipulations. To show that �((g)) = g

holds for central g, consider

B

B A Bg A
//
B

?A A
Btnd

//
B

1 ccc //
B.

?A

p

OO

p //

f⇤�g.�a.f(ga) &&NN
NNN

NNN
NNN

N (?A)?
A A

(?A)tnd //

g?
A A

OO

(?A)1 ccc //

g1

OO

?A

g

OO

(?A)AA

(?A)id
?

88ppppppppppp
(?A)s

OO

The leftmost square commutes by dinaturality of p in central g. The leftmost triangle commutes
by Lemma 3.6. The other parts commute by definition of tnd and by ccc calculations. Clockwise
along the top, we have �((g)), and counterclockwise along the bottom, we have g.

Lemma 3.13. P(A,B) ⇠= P•(?B
,?A) ⇠= P•(??A

, B). The first isomorphism is natural in A

and B, and the second isomorphism is natural in A in central B.

Proof. Define

�A,B : P(A,B) ! P•(?B
,?A) by �(f) = ?B ?f

��! ?A
,

 A,B : P•(?B
,?A)! P•(??A

, B) by (g) = ??A ?g

��! ??B ✓B��! B,

#A,B : P•(??A
, B)! P(A,B) by #(h) = A

@A��! ??A h�! B.

Peter Selinger 16

Notice that �(f) and (g) are indeed central, by Lemmas 3.3 and 3.9(5). Clearly, � is natural in
A and B. Moreover, is natural in A and in central B because ✓B is. We need to show that all
three maps are isomorphisms:

#((�(f))) = A

@A //

f
 A

AA
AA

AA
A ??A ??

f

//??B ✓B //
B,

B

@B

<<yyyyyyyy idB

66mmmmmmmmmmmmmmmmm

�(#((g))) = ?B ?✓B //

id
))RRR

RRR
RRR

RRR
RRR

RRR ???
B ??

g

//

?@B

##G
GG

GG
GG

G
???

A ?@A //?A
,

?B

g

<<yyyyyyyy

 (�(#(h))) = ??A ??
@A

//

id
))SSS

SSSS
SSSS

SSSS
SSS ???

?A ??
h

//

✓
??A

##F
FF

FF
FF

F
??B ✓B //

B.

??A

h

??~~~~~~~~

The commutativity of these diagrams follows from Lemma 3.9.

Putting the last two lemmas together, we immediately get:

Corollary 3.14. P•(??, B A) ⇠= P(1, B A) ⇠= P•(?A
, B), naturally in central A and

central B.

3.8. Functors and equivalences of control categories

Let P and P0 be control categories. A strict functor of control categories F : P ! P0 is a
functor that preserves chosen structure, i.e., it preserves chosen binary products, , 1, ?, and
exponentials, as well as the chosen morphisms associated with that structure. Notice that it fol-
lows from Lemma 3.10 that such a functor preserves central maps; thus, we do not need this as a
special requirement.
In practice, we are usually more interested in functors that preserve the structure up to isomor-

phism. In the context of control categories, it is sensible to require the structure to be preserved
up to central isomorphism, as expressed in the following definition:

Definition 3.15. A (weak) functor of control categories is a functor F : P ! P0, together with
central natural isomorphisms

⌘

⇥
A,B : FA⇥ FB

⇠=�! F (A⇥B)
⌘A,B : FA FB

⇠=�! F (A B)
⌘

1 : 1 ⇠=�! F1
⌘

? : ? ⇠=�! F?
⌘

exp
A,B : FB

FA ⇠=�! F (BA),

Control Categories and Duality 17

commuting with the morphism structure in all the evident ways, for instance:

FA⇥ FB

⌘⇥ //

⇡1
&&NN

NNN
NNN

NNN
N F (A⇥B)

F⇡1

✏✏
FA,

FA ?
FA ⌘?//

FA F?

⌘
✏✏

FA

l

OO

F l
//
F (A ?).

It follows from Lemma 3.10 that weak functors of control categories preserve the center. Note
that this in particular implies that weak functors of control categories can be composed.
We will also need a notion of equivalence of control categories. Here, too, it is appropriate to

modify the standard definition to take into account the concept of centrality.

Definition 3.16. An equivalence of control categories P and P0 is given by a pair of weak
functors of control categories, F : P ! P0 and G : P0 ! P, together with two central natural
isomorphisms G � F

⇠= idP and F � G

⇠= idP0 . If two control categories are equivalent in this
sense, we also write P ' P0.

We say that a functor F : P ! P0 is centrally essentially onto objects if for each B 2 |P0|,
there exists an A 2 |P| and a central isomorphism B

⇠= FA.

Lemma 3.17. Assuming the axiom of choice, a weak functor of control categories F : P ! P0

is part of an equivalence if and only if F is full, faithful, and centrally essentially onto objects.

Proof. A very slight modification of the usual argument for categories with structure.

3.9. The structure theorem for control categories

The fundamental theorem about control categories is the following structure theorem:

Theorem 3.18 (Structure Theorem). Any control category P is equivalent to a category of
continuations R

C.

Suppose P is a control category. Let C = (P•)op be the dual of the center of P. Thus, the
objects ofC are those of P, and a morphism inC from A to B is a central morphism from B to
A in P. To avoid confusion, we will write b

A for the object A, when considered as an object of
C. Similarly, we will write b

f : b
A ! b

B for a central morphism f : B ! A, when considered as
a morphism of C.

Lemma 3.19. The category C has distributive finite products and coproducts.

Proof. The center P• is closed under finite products by Lemma 2.10. Moreover, since center
and focus coincide, the premonoidal structure ofP restricts to a finite-coproduct structure onP•

by Lemma 2.7. Thus,C has finite products and coproducts. The distributivity ofC follows from
that of P.

In C, define an object of responses R := d??.

Lemma 3.20. The category C has exponentials of the form R

bA for every object b
A. Moreover,

the canonical morphism @ bA : b
A ! R

R
bA is monic. Thus, C is a response category.

Peter Selinger 18

Proof. Using the natural equivalence of Corollary 3.14, we have

C(b
B ⇥ b

A,R) ⇠= P•(??, B A) ⇠= P•(?A
, B) ⇠= C(b

B,

c?A),

naturally in b
A, b

B. Thus, we can define R

bA := c?A inC. Moreover, @ bA : b
A ! R

R
bA is c

✓A : b
A !

[??A , which is monic because ✓A is a split epic in P by Lemma 3.9(2).

Proof of Theorem 3.18. It remains to be shown that the category of continuations R

C is
equivalent to P as a control category. By Lemma 3.13, we know that the contravariant functor
F : P ! P• given by F (A) = ?A and F (f) = ?f is full and faithful. Thus, F op : P ! C is a
full and faithful covariant functor. Moreover, the objects in the image of F op are precisely those
of the form c?A = R

bA. Thus, F op restricts to an equivalence of categories P ! R

C. We must
show that it preserves control category structure. Being an equivalence, F

op clearly preserves
finite products and exponentials. We calculate that it preserves the premonoidal structure:

F

op(A B) = \?A B = R

bA⇥ bB = R

bA
R

bB = c?A d?B = F

op(A) F

op(B),
F

op(?) = d?? = R = ?.

One must also check that for f : B ! B

0 in P, one has F

op(A f) = F

op(A) F

op(f), i.e.,
\?A f = c?f bA : R

bA⇥ bB ! R

bA⇥cB0 . Unwinding the definition of exponentiation in C, one finds
that this holds if the following commutes:

P•(?A B
, C)

⇠= //

P•(?A f ,C)

✏✏

P(1, C A B)
⇠= // P•(?B

, C A)

P•(?f ,C A)

✏✏
P•(?A B0

, C)
⇠= // P(1, C A B

0)
⇠= // P•(?B0

, C A)

But the isomorphisms, from Lemma 3.12, are natural in B, and thus this commutes. Finally, it
is routine to check that F

op preserves the structural maps a, l, r, c, i, and r. This proves the
theorem.

4. More on the structure of a control category

In this section, we examine the structure of control categories further. The material of Subsec-
tions 4.1 and 4.2 is needed in preparation for the interpretation of the call-by-value �µ-calculus;
the rest of this section may be skipped in the first reading.

4.1. The weak co-closed structure of a control category

By combining the cartesian-closed structure with Lemma 3.12, we get the following sequence of
isomorphisms:

P(B,C A) ⇠= P(1, (C A)B) ⇠= P(1, C A

B) ⇠= P•(?AB

, C),

naturally in A, B, and central C. Thus, for any object A, the functor F : P• ! P given by
F (C) = C A has a left adjoint G : P ! P•, given by G(B) = ?AB . The unit of this

Control Categories and Duality 19

adjunction is

coapp : B

@�! A

AB ⇠=�! ?AB

A.

We denote the image of a map f : B ! C A under the adjunction by cocurry(f) : ?AB ! C.
The maps coapp and cocurry do neither define a co-closed structure on P, nor on P•. However,
from the adjunction, one has

B

coapp //

f $$H
HH

HH
HH

HH
H ?AB

A

cocurry(f) A

✏✏
C A

for all f : B ! C A, and moreover cocurry(f) is the unique central morphism making this
diagram commute. Thus, ?AB defines a weak co-closed structure on P, and we write

B ��A := ?AB

.

4.2. Co-control categories and ⌦¬-categories

For the interpretation of the call-by-value �µ-calculus, it will be convenient to dualize the notion
of a control category. A co-control category is the categorical dual of a control category. In
particular, it has finite coproducts A + B with initial object 0, co-exponentials which we write
as BA, a pretensor A⌦B with unit I , and a weak closed structure A �� B. The following table
lists some notation that we are going to use for objects and morphisms of a co-control category:

On objects
Control Co-control

1 0
A⇥B A + B

? I

A B A⌦B

B

A
BA

B ��A A �� B

On morphisms
Control categories Co-control categories

3 : A ! 1 2 : 0 ! A

i : ? ! A t : A ! I

r : A A ! A � : A ! A⌦A

✏ : B

A ⇥A ! B �: B ! BA + A

f

? : C ! B

A ?
f : BA ! C

coapp : B ! (B ��A) A app : (A �� B)⌦A ! B

cocurry(f) : (B ��A) ! C curry(f) : C ! (A �� B)

We use the usual notation for coproducts. Following Thielecke (1997), the dual of the map ✓
is called thunk, and the dual of @ is called force. The remaining structural maps keep the same
names as their duals.
Every co-control category is a ⌦¬-category in the sense of Thielecke (1997), where ¬A is

defined as IA
⇠= A �� 0. Notice that one has BA

⇠= (¬A) ⌦ B and A �� B

⇠= ¬(A ⌦ ¬B);
thus each two of the constructs BA, A �� B, and ¬A can be defined in terms of the third.
Conversely, one can show that every ⌦¬-category can be fully and faithfully embedded in a co-
control category. Thus, co-control categories can be seen as a natural extension of⌦¬-categories
with finite coproducts. The presence of finite coproducts is important for the duality result in
Section 8.

Peter Selinger 20

Table 1. The signature of control categories

Nullary morphism constructors:

id : A ! A

3 : A ! 1
⇡1 : A⇥B ! A

⇡2 : A⇥B ! B

✏ : B

A ⇥A ! B

a : (A B) C ! A (B C)
l : A ! A ?
c : A B ! B A

i : ? ! A

r : A A ! A

d : (A C)⇥ (B C) ! (A⇥B) C

s�1 : (B C)A ! B

A
C

Object constructors:

1 ? A⇥B A ! B A B

Binary and unary morphism constructors:

f : A ! B g : B ! C

g � f : A ! C

f : A ! B g : A ! C

hf, gi : A ! B ⇥ C

f : A⇥B ! C

f

? : A ! C

B

f : A ! B

f C : A C ! B C

4.3. Control categories as algebras

The structure of control categories, like that of cartesian-closed categories, is equational in the
sense of Lambek and Scott (1986). This means that the structure can be given by object construc-
tors, morphism constructors, and universally quantified equations on hom-sets. Any categorical
structure that is given in this way enjoys good properties, because the usual algebraic construc-
tions, such as constructing a free algebra or a quotient, have categorical equivalents. Thus, it
makes sense to speak of a congruence relation on a control category, to take a quotient, or to
freely adjoin a class of arrows.
The object and morphism constructors of control categories are shown in Table 1. Here, it is

understood that each given morphism constructor actually stands for a family of constructors,
indexed by objects. Some constructors that appear in our definition of control categories are not
shown here; they are definable in terms of the remaining ones, and are thus redundant.
The structure of control categories is given by type-indexed equations (with variables) on hom-

sets over this signature. These equations can be found in the definitions in Sections 2.1 through
2.4, and we do not repeat them here. For illustration, let us only point out that the requirement
that a certain morphism is focal can indeed be expressed equationally. For instance, the focality
of ⇡1 : A⇥B ! A is expressed by the following three equations:

⇡1 � iA⇥B = iA,

⇡1 � rA⇥B = rA � (A ⇡1) � (⇡1 (A⇥B)),
(⇡1 D) � ((A⇥B) g) = (A g) � (⇡1 C), for all g : C ! D.

4.4. The center of a category of continuations

We have remarked in Section 2.5 that in a category of continuations R

C, any morphism of the
form R

g : R

A ! R

B , for g : B ! A in C, is central. As Führmann has shown, the converse is
true iff C satisfies Moggi’s equalizing requirement (Moggi 1988; Führmann 1999). We say that
an objectA 2 |C| satisfies the equalizing requirement if the canonical morphism @A : A ! R

RA

Control Categories and Duality 21

is an equalizer in the following diagram:

A

@A //
R

RA

@
RRA

//

RR@A

//
R

RRRA

.

We say that C satisfies the equalizing requirement if all of its objects do.

Remark 4.1. The equalizing requirement is satisfied if @A is a split monic, which is the case,
for instance, if C is the category of non-empty sets and |R| � 2.

Lemma 4.2. Let RC be a category of continuations. For any object A 2 |C|, the following are
equivalent:
(1) Every central morphism f : R

A ! R

B is of the form R

g , for some g : B ! A.
(2) The object A satisfies the equalizing requirement.

Proof. Denote by f

?
? : B ! R

RA the curry and uncurry of a map f : R

A ! R

B . Notice that
if g : B ! A, then f = R

g if and only if f

?
? = @A � g. Also note that such g is necessarily

unique, since we have assumed, in the definition of a response category, that @A is monic. By
Lemma 3.10, f is central if and only if f � ✓RA = ✓RB �R

Rf . In a category of continuations, we
have ✓RA = R

@A , and by ccc manipulations, it follows that f is central if and only if @RRA �f?
? =

R

R@A � f

?
? . It follows that every central morphism f : R

A ! R

B is of the form R

g , for some g,
if and only if for every f , it is the case that @RRA � f

?
? = R

R@A � f

?
? implies f

?
? = @A � g, for

some g, if and only if A satisfies the equalizing requirement.

Remark 4.3. Not every response category satisfies the equalizing requirement. For a trivial
counterexample, let C be the full sub-ccc {0, 1} of the category of sets. Let R = 1 be the
terminal object. Notice that, since C is a poset, @A is monic for all A. However, A = 0 does not
satisfy the equalizing requirement. Indeed, the unique map f : R

0 ! R

1 is central, but not of
the form R

g for g : 1 ! 0.

4.5. On explicitly chosen value categories

In our definition of control categories, the center is a derived notion: a morphism is central if it
satisfies certain equations. Thus, the center is not an explicitly given part of the structure. Com-
putationally, the central morphisms are used to model effect-free computations, or values, as we
will see in our interpretation of the call-by-value �µ-calculus in Section 7. Some authors, such as
Jeffrey (1997), prefer to present premonoidal categories together with an explicitly chosen value
category, which is a fixed subcategory of the center. In the context of premonoidal categories,
there is a clear advantage in working with chosen value categories, because functors that pre-
serve the algebraic structure of premonoidal categories do not in general preserve centrality; but
by making values part of the given structure, one can require functors to preserve them. Since,
on the other hand, functors of control categories automatically preserve the center, the need for
value categories is not so clear in this context. Still, it is possible to accommodate this point of
view if desired, and in this section we will show that this leads to a slightly improved statement
of the Structure Theorem.

Peter Selinger 22

Definition 4.4. Let P be a control category. A subcategory V is called a value category if
|P| ✓ V ✓ P•, and ifV is closed under all the structural operations of control categories (shown
in Table 1), except ✏ and currying. We further require that V contains the maps sA,B,C and
pA,B,C , and all maps of the form A

f . IfV is a chosen value category of P, then the morphisms
ofV are called values.
Suppose P and P0 are control categories with respective chosen value categories V and V0.

We say that a (weak) functor of control categories F : P ! P0 preserves values if it restricts
to a functor from V to V0, i.e., if f 2 V implies F (f) 2 V0. In this case, we also write F :
(P,V) ! (P0

,V0). We say that an equivalence F : P ! P0, G : P0 ! P of control categories
respects values if it restricts to an equivalence of the categories V and V0. This means not only
that both F and G preserve values, but also that each component of the natural isomorphisms
G �F

⇠= idP and F �G

⇠= idP0 is a value. IfP andP0 are equivalent in this sense, we also write
(P,V) ' (P0

,V0).

If R

C is a category of continuations, let RC
v be the subcategory consisting of morphisms of

the form R

f . Then R

C
v is a value category of R

C, and we call it the canonical value category.
Note that in Remark 4.3, we gave an example of a category of continuations whose canonical
value category was strictly contained in the center. Since the center of any control category is
itself a value category, this shows that value categories are not in general unique. However, the
following lemma shows that at certain types, the values are uniquely determined.

Lemma 4.5. If P is a control category with chosen value category V, then V(?A
, B) =

P•(?A
, B).

Proof. By the proof of Lemma 3.12, any central map f : ?A ! B is of the form B

g � p, and
hence a value.

Notice that this implies that in a co-control category, the values at the call-by-value function
type A �� B = ¬(AB) are uniquely determined. The values f : C ! (A �� B) are precisely
the maps of the form f = curry(g). Under our interpretation of the �µ-calculus in Section 7,
these maps are precisely the lambda abstractions.
In the context of chosen value categories, we can give an improved version of the Structure

Theorem. In Theorem 3.18, we have shown that every control category P is equivalent to a cat-
egory of continuations R

C. However,C is not in general uniquely determined by P. It turns out
that with respect to a chosen value categoryV of P, the categoryC is unique up to equivalence.
This is made precise in the following theorem:

Theorem 4.6 (Second Structure Theorem). Let P be a control category with chosen value
categoryV. Then there is a response categoryC such that (P,V) ' (RC

, R

C
v). Moreover,C is

unique up to equivalence of response categories.

Proof. Existence: LetC = Vop. One provesP ' R

C exactly as in the proof of Theorem 3.18,
takingV in place ofP•. Lemma 4.5 serves to ensure thatV has all the properties ofP• that were
relevant to the proof. Moreover, under the equivalence, the images of values f 2 V are precisely
the values R

bf 2 R

C
v . Uniqueness: First, observe that any response category D is equivalent to

the dual ofRD
v via the contravariant functor that mapsA toR

A and f toR

f . Clearly, this functor
is full and onto objects; it is also faithful since D satisfies the mono requirement. Now suppose

Control Categories and Duality 23

Table 2. The typing rules for the �µ-calculus

(var)
� ` x : A | �

if x:A 2 �

(const)
� ` c

A : A | �

(⇤)
� ` ⇤ : > | �

(pair) � ` M : A | � � ` N : B | �
� ` hM, Ni : A ^B | �

(⇡1)
� ` M : A ^B | �
� ` ⇡1M : A | �

(⇡2)
� ` M : A ^B | �
� ` ⇡2M : B | �

(app) � ` M : A ! B | � � ` N : A | �
� ` MN : B | �

(abs) �, x:A ` M : B | �
� ` �x

A
.M : A ! B | �

(name) � ` M : A | �
� ` [↵]M : ? | �

if ↵:A 2 �

(µ) � ` M : ? | ↵:A, �
� ` µ↵

A
.M : A | �

(weaken) � ` M : A | �
�0 ` M : A | �0

if � ✓ �0, � ✓ �0

(P,V) ' (RD
, R

D
v). Then we have D ' (RD

v)op ' Vop = C; moreover, this equivalence
identifies the response object R 2 D with R = d?? 2 C. Thus, D and C are equivalent as
response categories.

5. The �µ-calculus

5.1. The syntax of the �µ-calculus

We will show how to interpret Parigot’s �µ-calculus (Parigot 1992) in a control category. We
begin by reviewing the syntax of the �µ-calculus with finite products. Let �, ⌧, . . . range over a
set B of type constants. Types, ranged over by A,B, . . ., are constructed by the grammar:

A ::= � > A ^B A ! B ?

Let V andN be two given, infinite, disjoint sets of object variables x, y, . . . and control variables
↵, �, . . ., respectively. Control variables are also called names. Let K be a set of typed object
constants c

A
, d

B
, The pair (B,K) is called a signature of the �µ-calculus, and sometimes

denoted by ⌃. Raw termsM,N, . . . are constructed by the grammar:

M ::= x c

A ⇤ hM,Ni ⇡1M ⇡2M MN �x

A
.M [↵]M µ↵

A
.M

A term of the form µ↵

A
.M is called a µ-abstraction, and a term of the form [↵]M is called a

named term. In the terms �x

A
.M and µ↵

A
.M , the object variable x, respectively the control

variable ↵, is bound. As usual, we identify raw terms up to renaming of bound object and control
variables.
The typing of the �µ-calculus is defined as follows. An object context is a finite, possibly

empty sequence � = x1:B1, x2:B2, . . . , xn:Bn of pairs of an object variable and a type, such
that xi 6= xj for all i 6= j. We write � ✓ �0 if � is contained in �0 as a set. A control context
� = ↵1:A1,↵2:A2, . . . ,↵m:Am is defined analogously. A typing judgment is an expression
of the form � ` M : A | �, i.e., a quadruple consisting of an object context, a term, a type,
and a control context. In the logical interpretation of a sequent, the symbol “`” stands for an
implication, and the symbol “ | ” stands for a disjunction. Valid typing judgments are derived by

Peter Selinger 24

the rules in Table 2. An equation is an expression of the form � ` M = N : A | �, where
� ` M : A | � and � ` N : A | � are valid typing judgments.

5.2. An informal description of the semantics of the �µ-calculus

To motivate the constructs of the �µ-calculus, we first give an informal discussion of the intended
semantics. A formal semantics will be given by means of CPS translations in Sections 6 and 7.
The µ-abstractions and named terms of the �µ-calculus are operators that influence the se-

quential flow of control during the evaluation of a term. Informally, when a subterm is evaluated,
one of two things could happen: it could return a value to its environment, or it could cause the
control flow to jump to some other part of the program. A term that contains such a jump may
never return a value to its environment at all, in which case it can be given the type ?, which is
the “empty type” of which there are no values.
In the �µ-calculus, a prototypical term of type? is the term [↵]M . It does not return anything,

but passes the value ofM to a control variable named ↵ instead. One can think of ↵ as a named
channel, and of the value ofM as being sent along this channel. One also says thatM is thrown
to ↵. Channels are typed: if ↵ has type A, then this means that values of type A can be thrown to
↵.
We also need a binding construct for channels. The µ-abstraction N = µ↵

A
.M creates a

named channel ↵ and then begins to evaluate M . If in the process of evaluating M , some value
gets thrown to ↵, then this value immediately becomes the value of the whole expressionN . The
evaluation ofM is not continued in this case. Thus, since ↵ is declared to be of type A, the term
N must have type A as well. What should the type ofM be? In the �µ-calculus, the bodyM of
a µ-abstraction has type ?. Thus, the question of what to do when M returns a value does not
arise. However, this is not a serious restriction: one can easily deal with terms M of arbitrary
type by using the idiom µ↵

A
.[�]M , or even µ↵

A
.[↵]M whenM has type A.

A typing judgment x1:B1, . . . , xn:Bn ` M : A | ↵1:A1, . . . ,↵m:Am means that M is a
well-typed term with at most n free typed object variables and at most m free typed control
variables. One can think of M as a function in n arguments which has m + 1 possible result
channels: it may return an ordinary value of type A, or it may return an exceptional value of type
Ai on some channel ↵i.
On the surface, there is a certain similarity between the control constructs of the �µ-calculus

and the exception handling mechanism of ML. As a first approximation, one may think of throw-
ing a value V to ↵ as raising an exception ↵ with value V . Similarly, one may think of the term
µ↵

A
.M as providing a handler for the exception ↵. However, this analogy is only superficial,

and there is an important difference between ML exception handling and the �µ-calculus: the
latter is statically scoped. This means, the term N = µ↵

A
.M binds those occurrences of ↵ in

M in its syntactic scope. Occurrences of ↵ that are substituted intoM (for instance as the result
of reducing a �-redex) are not bound in N . On the other hand, ML exceptions are dynamically
scoped, which allows a function, among other things, to handle an exception that one of its ar-
guments throws. Because of its static scoping, the �µ-calculus is a calculus of continuations,
not exceptions, and the µ-abstraction mechanism is closely related to control operators such as
callcc in Scheme, or Felleisen’s C.

Control Categories and Duality 25

5.3. Adding classical disjunction to the �µ-calculus

The �µ-calculus can be regarded, and was originally conceived, as a term calculus for multi-
conclusioned classical sequent calculus proofs. This connection to logic suggests that one should
be able to extend the calculus to include a disjunction type constructor. Indeed, there is a standard
way of adding disjoint sum types to the lambda calculus via left and right injections and a case
construct. However, the proof theory of disjunction in classical logic is quite different from that in
intuitionistic logic, and Pym and Ritter (1998) show how to add a different, classical, disjunction
type to the �µ-calculus. They also show that these classical disjunction types are strictly different
from the disjoint sum type under the call-by-name semantics. On the other hand, we shall see
that under call-by-value, the two disjunction types coincide.
In the following, we essentially adopt Pym and Ritter’s classical disjunction type, although we

use a slightly different, more symmetric syntax for terms. Formally, we add one type constructor
and two term constructors to the �µ-calculus:

A ::= . . . A _B

M ::= . . . [↵, �]M µ(↵A
,�

B).M

The two new term constructors are generalizations of µ-abstraction and naming that deal with
two control variables, rather than one. Informally, one may think of a value of type A _ B as
being either a value of type A or a value of type B. Depending on which is the case, the term
[↵, �]M will throw the value of M to ↵ or �. Similarly, the term µ(↵A

,�

B).M catches any
value that is thrown to ↵ or �, and synthesizes it to a value of type A _ B. The typing rules for
disjunction are:

(name0) � ` M : A _B | �
� ` [↵, �]M : ? | �

if ↵:A,�:B 2 �,

(µ0) � ` M : ? | ↵:A,�:B,�
� ` µ(↵A

,�

B).M : A _B | �
.

Notice that the typing rules imply that in the pattern µ(↵A
,�

B).M , the variables ↵ and � are
different. When writing terms in the disjunctive �µ-calculus, we will sometimes use a more
generous syntax for µ-abstractions and named terms. For instance, µ(↵A

, (�B
, �

C)).M is an
abbreviation for µ(↵A

, �

B_C).[�]µ(�B
, �

C).M , and similarly [↵, [�, �]]M is syntactic sugar for
the term [�, �]µ�B_C

.[↵, �]M .
The disjunction A _B is classical. For instance,

M = µ(↵A
,�

A!?).[�]�x

A
.[↵]x

is a closed term of type A _ (A ! ?). It is instructive to examine the behavior of this term,
because it is an illustration of how the static scoping works. Informally, when the term M is
initially evaluated, it will return a closure �x

A
.[↵]x of type A ! ? to its environment. Should

the environment ever attempt to apply this closure to some value v of type A, then the control
flow will jump back to the term M in the environment in which it was originally called. At that
point,M will evaluate to v.

Peter Selinger 26

6. The call-by-name interpretation of the �µ-calculus

The �µ-calculus was originally introduced as a call-by-name language (Parigot 1992; Ong 1996),
although Ong and Steward have later given it a call-by-value interpretation (Ong and Stewart
1997). We will first consider the call-by-name semantics, and leave the call-by-value semantics
for the next section.
The operational semantics of the call-by-name �µ-calculus can be given in several different

familiar styles. Parigot gave a strongly normalizing system of reductions for his original calculus,
an approach that was generalized to the extensional and disjunctive case by Pym and Ritter
(1998). However, the reduction rules for the control operators are less than intuitive, and they
involve complex substitution operations and permutations of contexts.
For our purposes, it is more convenient to consider a continuation passing style (CPS) se-

mantics. One such semantics, based on Plotkin’s original call-by-name semantics for the simply-
typed lambda calculus (Plotkin 1975), was given by De Groote (1994a). We adopt a different
CPS translation which was given by Hofmann and Streicher (1997) and which takes advantage
of a richer target language with finite sums and products. Streicher and Reus (1998) demon-
strated that such a CPS translation can serve as the basis for an abstract machine model, yielding
a stack-based Krivine machine for the call-by-name �µ-calculus. We extend the CPS translation
to include disjunction types, and take it as the basis for our categorical interpretation of the call-
by-name disjunctive �µ-calculus in a control category. It is also possible to systematically extend
the Krivine machine semantics to account for disjunction types. This is carried out in (Selinger
1998).

6.1. The call-by-name CPS translation

Consider the disjunctive �µ-calculus over some signature (B,K). We will give the call-by-name
semantics of this calculus by a CPS translation. The target language of the translation is a lambda
calculus �R⇥+ with sum, products, and a distinguished type R of responses. Function types are
restricted to the case A ! R, and consequently, lambda abstractions �x.M occur only when
M has type R. Let =�⌘ denote the usual �⌘-equivalence of �R⇥+, with surjective pairing and
exhaustive sums.
To keep the notation brief, we use various forms of syntactic sugar for the sums and products of

the target calculus. We use patterned lambda abstraction �hx, yiA⇥B
.M , which is customarily

defined as an abbreviation for �z

A⇥B
.M [⇡1z/x,⇡2z/y]. We also use the co-pairing notation

[M,N] as a shorthand for the expression (�k

A+B
.case k of inl k1) Mk1 | inr k2) Nk2).

Notice that [M,N] is the term that corresponds to hM,Ni under the canonical isomorphism
(A+B ! R) ⇠= (A ! R)⇥ (B ! R). We also use lambda abstraction patterns for co-pairing;
thus �[x, y]A+B!R

.M is a shorthand for �z

A+B!R
.M [�a

A
.z(inl a)/x,�b

B
.z(inr b)/y]. The

initial type 0 is equipped with a type cast operator: If M has type 0, then 2AM has type A. By
⇤, we denote the canonical term of the unit type 1.

Definition 6.1 (Call-by-name CPS translation). We assume that the target calculus has a type
constant �̃ for each type constant � 2 B of �µ. For each type A of the �µ-calculus, we define
a pair of types KA and CA of the target calculus, called, respectively, the type of continuations

Control Categories and Duality 27

Table 3. The CPS translation of the call-by-name �µ-calculus

x = �k

KA
.x̃k where x : A

c

A = �k

KA
.c̃k

⇤ = �k

K>
.2Rk

hM, Ni = �k

KA^B
.[M, N]k whereM : A,N : B

⇡1M = �k

KA
.M(inl k) whereM : A ^B

⇡2M = �k

KB
.M(inr k) whereM : A ^B

MN = �k

KB
.MhN, ki whereM : A ! B,N : A

�x

A
.M = �hx̃, kiKA!B

.Mk whereM : B

[↵]M = �k

K?
.M ↵̃ whereM : A

µ↵

A
.M = �↵̃

KA
.M⇤ whereM : ?

[↵, �]M = �k

K?
.Mh↵̃, �̃i whereM : A _B

µ(↵A
, �

B).M = �h↵̃, �̃iKA_B
.M⇤ whereM : ?

and of computations of type A:

K� = �̃, where � is a type constant,
K> = 0,

KA^B = KA + KB ,

KA!B = CA ⇥KB ,

K? = 1,

KA_B = KA ⇥KB ,

CA = KA ! R.

For each object constant c

A 2 K of the �µ-calculus, we assume that the target calculus has a
constant c̃ of type CA. Moreover, for each object variable x and each control variable ↵ of the
�µ-calculus, we assume a distinct variable x̃, respectively ↵̃, of the target calculus. The call-by-
name CPS translation M of a typed term M is given in Table 3. It respects the typing in the
following sense:

x1:B1, . . . , xn:Bn ` M : A | ↵1:A1, . . . ,↵m:Am

x̃1:CB1 , . . . , x̃n:CBn , ↵̃1:KA1 , . . . , ↵̃m:KAm ` M : CA

. (1)

We also write � ` M : A | � for the translation of a typing judgment, and similarly for equa-
tions.

This particular CPS translation, for the fragment without products and disjunction, was discov-
ered by Hofmann and Streicher (1997). It differs from Plotkin’s original call-by-name translation
(Plotkin 1975) by introducing one less double negation at function types, thus taking advantage
of the richer target language. We compare the two translations in detail in Section 6.5.
Notice that the translation of the control operators is straightforward: they simply exchange

current continuations. Thus, the translation reveals the nature of the control variables of the �µ-
calculus: they are essentially variables of the target language, to which the user of the source
language has limited access. One could take this idea further and allow arbitrary expressions e

of the target calculus to appear in the construct [e]M of the source calculus. A similar extension
was proposed by Streicher and Reus (1998). Such an extension would be in the spirit of Filinski’s
symmetric lambda calculus (Filinski 1989), as it would put terms and continuations on equal

Peter Selinger 28

footing. However, such extensions also lead to an incomprehensible programming style, and
since they do not add any expressive power to the language, we do not consider them further.

Definition 6.2. Let M and N be terms of the �µ-calculus such that � ` M : A | � and
� ` N : A | �. We say that M and N are call-by-name equivalent, in symbols M =n N , if
M =�⌘ N . More generally, if T is a theory of the �R⇥+-calculus, we define the call-by-name
�µ-theory generated by T to be the set of equations {E | E 2 T }.

Note that the class of call-by-name �µ-theories is closed under arbitrary intersections. As a
matter of fact, it has a finite equational axiomatization. For the fragment without products and
disjunction, this follows from Hofmann and Streicher’s result (Hofmann and Streicher 1997).
We will show how to obtain a finite axiomatization of the theories of the full calculus as a
consequence of the Structure Theorem, after discussing the interpretation of the call-by-name
�µ-calculus in a control category.

6.2. The interpretation of the call-by-name �µ-calculus in a control category

The target calculus �R⇥+ of our CPS translation can be interpreted directly in a response category
C. Recall that this was a category with distributive finite products and coproducts, a distinguished
object R, and exponentials of the form R

A. Let us momentarily identify the types KA and CA

with their interpretation in C. Then by Property (1), the CPS translation of a typing judgment
x1:B1, . . . , xn:Bn ` M : A | ↵1:A1, . . . ,↵m:Am gives rise to a morphism in C:

CB1 ⇥ . . .⇥ CBn ⇥KA1 ⇥ . . .⇥KAm ! CA.

Using CA = R

KA and currying, this amounts to a morphism

CB1 ⇥ . . .⇥ CBn ! R

KA⇥KA1⇥...⇥KAm
,

which lies within the continuation category R

C. Thus, we can use the standard premonoidal
structure on R

C to write

CB1 ⇥ . . .⇥ CBn ! CA CA1 . . . CAm .

We have thus eliminated any reference to the continuation typesKA from the interpretation of a
typing judgment. Indeed, one can interpret the call-by-name �µ-calculus in a control categoryP
directly, without explicitly mentioning continuations. The interpretation is very natural:

Definition 6.3 (Categorical call-by-name interpretation). Let P be a control category. To in-
terpret the �µ-calculus with signature (B,K), assume a choice of an object �̃ for every type
constant � 2 B. Each type constructor is interpreted by the corresponding object constructor of
control categories:

[[�]]n = �̃, where � is a type constant,
[[>]]n = 1,

[[A ^B]]n = [[A]]n ⇥ [[B]]n,

[[A ! B]]n = [[B]]n
[[A]]n

,

[[?]]n = ?,

[[A _B]]n = [[A]]n [[B]]n.

Control Categories and Duality 29

Table 4. The interpretation of the call-by-name �µ-calculus in a control category

[[� ` xi : Bi | �]]n = �
⇡i��! Bi

w�! Bi �

[[� ` c

A : A | �]]n = �
3�! 1

c̃�! A

w�! A �

[[� ` ⇤ : > | �]]n = �
3�! 1

⇠=�! 1 �

[[� ` hM, Ni : A ^B | �]]n = �
h[[M]]n,[[N]]ni���������! (A �)⇥(B �)

d�! (A⇥B) �

[[� ` ⇡1M : A | �]]n = �
[[M]]n����! (A⇥B) �

⇡1 �����! A �

[[� ` ⇡2M : B | �]]n = �
[[M]]n����! (A⇥B) �

⇡2 �����! B �

[[� ` MN : B | �]]n = �
h[[M]]n,[[N]]ni���������! (BA �)⇥(A �)

d�! (BA⇥A) �
✏ ����! B �

[[� ` �x

A
.M : A ! B | �]]n = �

[[M]]?n����! (B �)A s�1
��! B

A �

[[� ` [↵i]M : ? | �]]n = �
[[M]]n����! Ai �

wi �����! � �
r�! �

⇠=�! ? �

[[� ` µ↵

A
.M : A | �]]n = �

[[M]]n����! ? A �
⇠=�! A �

[[� ` [↵i, ↵j]M : ? | �]]n = �
[[M]]n����! Ai Aj �

wi wj �
�������! � � �

r �;r�����! �
⇠=�! ? �

[[� ` µ(↵A
, �

B).M : A _B | �]]n = �
[[M]]n����! ? A B �

⇠=�! (A B) �

If � = x1:B1, . . . , xn:Bn is an object context, we write [[�]]n := [[B1]]n ⇥ . . .⇥ [[Bn]]n, and we
denote the ith projection map by ⇡i : [[�]]n ! [[Bi]]n. Similarly, if � = ↵1:A1, . . . ,↵m:Am is a
control context, we write [[�]]n := [[A1]]n . . . [[Am]]n, and we use the notation wj : [[Ai]]n !
[[�]]n for the jth weakening map. Typing judgments are interpreted relative to a choice of a
morphism c̃ : 1 ! [[A]]n for each object constant cA 2 K. A typing judgment � ` M : A | � is
interpreted as a morphism

[[� ` M : A | �]]n : [[�]]n ! [[A]]n [[�]]n,

which is also abbreviated to [[M]]n. The interpretation is defined by recursion on the structure of
M , as shown in Table 4. To keep the notation reasonable, we have omitted the semantic brackets
from the interpretation of types, hoping that no confusion will arise.

Lemma 6.4. If P = R

C is a category of continuations, then the call-by-name categorical
interpretation of the �µ-calculus in P coincides with the interpretation of the call-by-name CPS
translation in R

C.

From the Lemma, which is easily checked by induction on terms, together with the Structure
Theorem 3.18, one immediately gets soundness and completeness for theories:

Proposition 6.5 (Soundness and Completeness). The theories induced on the �µ-calculus by
the call-by-name categorical interpretation are precisely the theories induced by the call-by-
name CPS translation.

6.3. The call-by-name �µ-calculus is an internal language for control categories

Recall from Section 4.3 that the structure of a control category is given by operations on objects
and morphisms, and equations on hom-sets. On the image of any given call-by-name interpre-
tation of the �µ-calculus in a control category, all these structural operations, as they appear in
Table 1, are in fact definable by operations on types and typing judgments.

Peter Selinger 30

Table 5. Control category operations on typing judgments

Nullary operations:

id = x:A ` x : A

3 = x:A ` ⇤ : >
⇡1 = x:A ^B ` ⇡1x : A

⇡2 = x:A ^B ` ⇡2x : B

✏ = x:(A ! B) ^A ` (⇡1x)(⇡2x) : B

a = x:(A _B) _ C ` µ(↵A
, (�B

, �

C)).[[↵, �], �]x : A _ (B _ C)
l = x:A ` µ(↵A

, �

?).[↵]x : A _ ?
c = x:A _B ` µ(�B

, ↵

A).[↵, �]x : B _A

i = x:? ` µ↵

A
.x : A

r = x:A _A ` µ↵

A
.[↵, ↵]x : A

d = x:(A _ C) ^ (B _ C) ` µ(�A^B
, �

C).[�]hµ↵

A
.[↵, �]⇡1x, µ�

B
.[�, �]⇡2xi : (A ^B) _ C

s�1 = x:A ! (B _ C) ` µ(�A!B
, �

C).[�]�z

A
.µ�

B
.[�, �]xz : (A ! B) _ C

Binary and unary operations:

f = x:A ` M : B g = x:B ` N : C

g � f = x:A ` (�x

B
.N)M : C

f = x:A ` M : B g = x:A ` N : C

hf, gi = x:A ` hM, Ni : B ^ C

f = x:A ^B ` M : C

f

? = x:A ` �y

B
.(�x

A^B
.M)hx, yi : B ! C

f = x:A ` M : B

f C = x:A _ C ` µ(�B
, �

C).[�](�x

A
.M)µ↵

A
.[↵, �]x : B _ C

Let x be a fixed object variable. We say that a typing judgment is in standard form if the
object context declares exactly the one variable x, and the control context is empty. We abbreviate
standard form typing judgments to x:B ` M : A, i.e., we omit the empty object context. Note
that every typing judgment x1:B1, . . . , xn:Bn ` M : A | ↵1:A1, . . . ,↵m:Am is equivalent to a
standard form

x:B1 ^ . . . ^Bn ` µ(↵,↵1, . . . ,↵m).[↵](�x1 . . . xn.M)(⇡1x) . . . (⇡nx) : A _A1 _ . . . _Am,

in the sense that the two denote the same morphism under any interpretation in a control category.
Table 5 defines the syntactic operations on standard form typing judgments which correspond to
the structural operations of control categories.

Lemma 6.6. Under the call-by-name interpretation, the structural operations of control cate-
gories are defined by the operations on typing judgments that are shown in Table 5.

Proof. It is easy to check this case by case. For instance, if the interpretation of x:A ` N : B

is f : [[A]]n ! [[B]]n and the interpretation of x:B ` M : C is g : [[B]]n ! [[C]]n, then the
interpretation of x:A ` (�x

B
.M)N : C is

[[A]]n
g?⇥f���! [[C]][[B]]n

n ⇥ [[B]]n
✏�! [[C]]n,

which is indeed g � f : [[A]]n ! [[C]]n.

Definition 6.7 (Syntactic control category). For a given �µ-signature ⌃ and a call-by-name

Control Categories and Duality 31

theory T , we can construct the syntactic control category Pn
⌃,T as follows: The objects of

Pn
⌃,T are the types of the language, with the object constructors given by the corresponding

type constructors. Morphisms from A to B are named by valid standard form typing judgments
x:A ` M : B. Two typing judgments x:A ` M : B and x:A ` N : B name the same morphism
if (x:A ` M = N : B) 2 T . The operations of a control category on morphisms are defined as
in Table 5.

Lemma 6.8. Pn
⌃,T is a well-defined control category.

Proof. We must show that Pn
⌃,T satisfies all the defining equations of a control category, i.e.,

that the corresponding equations between typing judgments hold in T . By the fact that T is a
theory, together with the completeness of the categorical interpretation, there is a control category
P together with a call-by-name interpretation [[�]]n, such that (x:A ` M = N : B) 2 T iff
[[x:A ` M : B]]n = [[x:A ` N : B]]n. By Lemma 6.6, the required equations hold in P, thus in
T .

There is a canonical call-by-name interpretation [[�]]0n of the �µ-calculus with signature ⌃ in
Pn

⌃,T , defined by �̃ := � and c̃ := x:> ` c : A. It has the property that the interpretation of
each typing judgment is call-by-name equivalent to its standard form. The pair (Pn

⌃,T , [[�]]0n) is
determined up to isomorphism by the following universal property: For each T -respecting call-
by-name interpretation [[�]]n in a control category P, there is a unique strict functor of control
categories F : Pn

⌃,T ! P such that F [[A]]0n = [[A]]n for all typesA, and F [[� ` M : A | �]]0n =
[[� ` M : A | �]]n for all valid typing judgments � ` M : A | �.
The construction of Pn

⌃,T allows us to pass from theories to categories. The opposite is also
possible:

Definition 6.9 (The internal language of a control category). Given a small control category
P, we can construct from it a signature ⌃ and a call-by-name theory T as follows: ⌃ has the
objects ofP as its type constants, and one object constant cf

A!B for each morphism f : A ! B.
Consider the canonical interpretation of this language in P, namely the one that interprets each
type constants by itself and each object constant cf

A!B by f

? : 1 ! B

A. Let T by the call-
by-name theory induced by this interpretation. We call the pair (⌃, T) the internal call-by-name
language of P.

Lemma 6.10. If (⌃, T) is the internal call-by-name language of a control category P, then
Pn

⌃,T ' P.

Proof. Clearly, the canonical interpretation of the internal language in P is onto objects and
morphisms, as each morphism f : A ! B is the denotation of x:A ` cfx : B. Thus, the
canonical functor of control categories Pn

⌃,T ! P, given by the universal property of Pn
⌃,T , is

full and onto objects. It is faithful by definition of T . Thus, Pn
⌃,T ' P by Lemma 3.17.

6.4. An axiomatization of the call-by-name �µ-theories

We obtained soundness and completeness of the categorical call-by-name interpretation almost
“for free”, because of the way theories were defined; namely, in terms of a CPS translation, which

Peter Selinger 32

Table 6. Axioms of the call-by-name �µ-calculus

Axioms for the lambda calculus with products:
(�!) (�x

A
.M)N = M [N/x] : B

(⌘!) �x

A
.Mx = M : B if x 62 FV(M)

(�^) ⇡ihM1, M2i = Mi : Ai

(⌘^) h⇡1M, ⇡2Mi = M : A ^B

(⌘>) ⇤ = M : >

Axioms for �µ and disjunction:
(⇣!) (µ↵

A!B
.M)N = µ�

B
.M [�

N/[↵](�)] : B if � 62 FN(M, N)
(⇣^) ⇡i(µ↵

A1⇥A2
.M) = µ�

Ai
.M [[�]⇡i(�)

/[↵](�)] : Ai if � 62 FN(M)
(⇣_) [↵, �]µ�

A_B
.M = M [[↵, �](�)

/�] : ?

(�µ) [↵0]µ↵

A
.M = M [↵0/↵] : ?

(⌘µ) µ↵

A
.[↵]M = M : A if ↵ 62 FN(M)

(�_) [↵0, �0]µ(↵A
, �

B).M = M [↵0/↵, �

0
/�] : ?

(⌘_) µ(↵A
, �

B).[↵, �]M = M : A _B if ↵, � 62 FN(M)
(�?) [⇠?]M = M : ?

is already very close to the categorical semantics. Sometimes it is more convenient to have an
equational description of theories, for instance, as the basis of a rewrite semantics.
Having shown that the call-by-name �µ-calculus forms an internal language for control cate-

gories, we can characterize the call-by-name theories as follows:

Proposition 6.11. Fix a signature ⌃. Then a congruence relation T on typing judgments is a
call-by-name �µ-theory if and only if all of the following hold:

1. An equation is in T if and only if its standard form is in T .
2. Pn

⌃,T , as constructed in Lemma 6.8, is a well-defined control category.
3. The canonical interpretation [[�]]0n : �µ ! Pn

⌃,T interprets each typing judgment by its own
standard form.

Proof. If T is a theory, then the three conditions hold by the results of the previous section.
Conversely, assume the conditions hold. Then [[�]]0n : �µ ! Pn

⌃,T is an interpretation in a
control category, and it validates exactly the equations in T . Thus T is a call-by-name �µ-
theory.

One can use this characterization to give a sound and complete axiom axiomatization of the
call-by-name �µ-theories as follows. We write FV(M), respectively FN(M), for the free object
and control variables of a term M . As before, we identify terms up to ↵-equivalence, renaming
bound variables as necessary to avoid captures. We consider three kinds of substitution. We write
M [N/x] for the usual substitution of a termN for an object variable x inM . We writeM [↵0/↵]
for the substitution of the context variable ↵0 for the context variable ↵ inM , andM [↵0/↵, �

0
/�]

for two such substitutions performed simultaneously. Finally, we consider the so-called mixed
substitution: If M is a term, C

(�) is a context, and ↵ a name, then the mixed substitution
M [C(�)

/[↵](�)] is the result of recursively replacing in M any subterm of the form [↵](�) by
C

(�), and any subterm of the form [↵1,↵2](�), where ↵ 2 {↵1,↵2}, by C(µ↵A
.[↵1,↵2](�)).

Control Categories and Duality 33

More formally,M [C(�)
/[↵](�)] is defined by recursion onM . The two important clauses are

([↵]M)[C(�)
/[↵](�)] = C(M [C(�)

/[↵](�)]),
([↵1,↵2]M)[C(�)

/[↵](�)] = C(µ↵A
.[↵1,↵2]M [C(�)

/[↵](�)]) if ↵ 2 {↵1,↵2}.

Mixed substitution commutes with all other term forming operations, avoiding captures as nec-
essary.
An axiomatization of the call-by-name �µ-theories is shown in Table 6. To make the axioms

more readable, we have not shown the typing contexts explicitly; we assume each equation to
be placed in a typing context which makes the left-hand side and right-hand side well-typed.
By a congruence relation on terms we mean a set of equations which is reflexive, symmetric,
transitive, and closed under the term formation rules (⇠-rules) and under weakening.

Theorem 6.12 (Axiomatization of call-by-name �µ-theories). Let T be a set of equations of
the disjunctive �µ-calculus over some fixed signature. Then T is a call-by-name theory if and
only if it is a congruence relation on terms that satisfies the equations in Table 6.

Proof. Soundness is easily verified, for instance via the CPS translation and Proposition 6.5,
together with appropriate substitution lemmas. The proof of completeness is a long and tedious
verification of the properties in Proposition 6.11.

Remark 6.13. Pym and Ritter (1998) have given a strongly normalizing, confluent reduction
semantics to the call-by-name disjunctive �µ-calculus based on a similar set of axioms, using a
slightly different syntax.

6.5. Comparison with the Plotkin call-by-name translation

Our call-by-name CPS translation is based on that of Hofmann and Streicher (1997). It dif-
fers from Plotkin’s original call-by-name CPS translation for the simply-typed lambda calculus
(Plotkin 1975) by introducing fewer double negations. To obtain Plotkin’s call-by-name transla-
tion from ours, change the definition ofKA!B to

KA!B = (CA ! CB) ! R.

Notice that this is isomorphic to ((CA ⇥ KB) ! R) ! R, and thus to the double negation
of our definition of KA!B . One can regard this as a way of working around the absence of
products in the target language. In the definition of the CPS translation, one changes the clauses
for application and lambda abstraction accordingly:

MN = �k

KB
.M(�m

CA!CB
.mNk) whereM : A ! B, N : A,

�x

A
.M = �k

KA!B
.k(�x

CA
.M) whereM : B.

This is precisely Plotkin’s 1975 call-by-name translation of the simply-typed lambda calculus.
Notice that it induces a different semantics than the Hofmann/Streicher translation: for instance,
Plotkin’s translation does not validate the full ⌘ law, whereas the Hofmann/Streicher translation
does.
Plotkin’s translation, too, can be formulated categorically. The Plotkin call-by-name interpre-

tation [[�]]p of the �µ-calculus in a control category is defined just like the standard one, except

Peter Selinger 34

Table 7. The CPS translation of the call-by-value �µ-calculus

x = �k

KA
.kx̃ where x : A

c

A = �k

KA
.kc̃

⇤ = �k

K>
.k⇤

hM, Ni = �k

KA^B
.M(�m

VA
.N(�n

VB
.khm, ni)) whereM : A,N : B

⇡1M = �k

KA
.M(�m

VA^B
.k⇡1m) whereM : A ^B

⇡2M = �k

KB
.M(�m

VA^B
.k⇡2m) whereM : A ^B

MN = �k

KB
.M(�m

VA!B
.N(�n

VA
.mhn, ki)) whereM : A ! B,N : A

�x

A
.M = �k

KA!B
.k(�hx̃, ciVA⇥KB

.Mc) whereM : B

[↵]M = �k

K?
.M ↵̃ whereM : A

µ↵

A
.M = �↵̃

KA
.M⇤ whereM : ?

[↵, �]M = �k

K?
.M [↵̃, �̃] whereM : A _B

µ(↵A
, �

B).M = �[↵̃, �̃]KA_B
.M⇤ whereM : A

for the following changes: the interpretation of the function type is changed to

[[A ! B]]p = ??[[B]]
[[A]]p
p

,

and the interpretation of application and abstraction are changed to

[[� ` MN : B | �]]p = �
h[[M]]p,[[N]]pi��������! (??BA

�)⇥(A �)
(✓BA �)⇥(A �)
������������!

(BA �)⇥(A �) d�! (BA⇥A) � ✏ ����! B �,

[[� ` �x

A
.M : A ! B | �]]p = �

[[M]]?p���! (B �)A s�1

��! B

A �
@BA �
�����! ??BA

�.

One easily checks that the categorical definition coincides with the syntactic one. Thus, the
Plotkin call-by-name semantics can be seen to introduce “one extra thunk” for functional clo-
sures.
We remark that the �µ-calculus with Plotkin’s call-by-name semantics does not form an inter-

nal language for control categories; in particular, the interpretation of the object constructors is
not sufficient to span the category.

7. The call-by-value interpretation of the �µ-calculus

7.1. The call-by-value CPS translation

Using the same target calculus as before, we define a CPS translation for the call-by-value �µ-
calculus over a signature (B,K).

Definition 7.1 (Call-by-value CPS translation). As before, we assume that the target calculus
has a type constant �̃ for each type constant � 2 B of �µ. For each typeA of the �µ-calculus, we
define three types VA, KA, and CA of the target calculus, called respectively the type of values,

Control Categories and Duality 35

continuations, and computations of type A:

V� = �̃, where � is a type constant,
V> = 1,

VA^B = VA ⇥VB ,

VA!B = VA ⇥KB ! R,

V? = 0,

VA_B = VA + VB ,

KA = VA ! R,

CA = KA ! R.

Again, we assume that for each object variable x and control variable ↵ of the �µ-calculus, there
is a distinct variable x̃ or ↵̃ of the target calculus. Further, we assume that the target calculus has
a constant c̃ of type VA for each object constant cA of �µ. The call-by-value CPS translationM

of a typed termM is given in Table 7. It respects types in the following sense:

x1:B1, . . . , xn:Bn ` M : A | ↵1:A1, . . . ,↵m:Am

x̃1:VB1 , . . . , x̃n:VBn , ↵̃1:KA1 , . . . , ↵̃m:KAm ` M : CA

. (2)

The difference between the call-by-name and call-by-value interpretations is that in the latter,
object variables are interpreted as values, and not as computations. We also write � ` M : A | �
for the translation of a typing judgment, and similarly for equations.

Notice that in the call-by-value CPS translation, the clauses for the control operators are identi-
cal to the ones for call-by-name, modulo the identification of [↵, �] with h↵, �i under the canon-
ical isomorphism (A + B ! R) ⇠= (A ! R) ⇥ (B ! R). The clauses for the pure lambda
calculus part are essentially Plotkin’s original ones for call-by-value (Plotkin 1975), except that
Plotkin did not use a target calculus with pairs and would have defined VA!B = VA ! CB .
However, unlike in the call-by-name case, our call-by-value translation coincides with Plotkin’s
up to isomorphism of types.
As usual, the clauses for pairing and application fix a particular evaluation order for M and

N , and in each case, the opposite choice would have been equally plausible.

Definition 7.2. Let M and N be terms of the �µ-calculus such that � ` M : A | � and
� ` N : A | �. We say that M and N are call-by-value equivalent, in symbols M =v N , if
M =�⌘ N . More generally, if T is a theory of the �R⇥+-calculus, we define the call-by-value
�µ-theory generated by T to be the set of equations {E | E 2 T }.

Remark 7.3. This notion of a call-by-value theory corresponds to Moggi’s �c-calculus more
closely than to Plotkin’s �v-calculus (Moggi 1988; Plotkin 1975). It is well-known that the �c-
calculus derives more equations than the �v-calculus; for instance, the equation (�x.x)M = M

is validated by the �c-calculus and by the CPS translation, but it is not derivable in the �v-calculus
(Moggi 1988, Rem. 4.1). See also the axiomatization in Section 7.4

7.2. The interpretation of the call-by-value �µ-calculus in a co-control category

As before, we can interpret the target calculus �R⇥+ of the CPS translation in a response category
C. By Property (2), the interpretation of a typing judgment x1:B1, . . . , xn:Bn ` M : A |

Peter Selinger 36

Table 8. The interpretation of the call-by-value �µ-calculus in a co-control category

[[� ` xi : Bi | �]]v = �
w�! Bi

inl�! Bi+�

[[� ` c : A | �]]v = �
t�! I

c̃�! A

inl�! A+�

[[� ` ⇤ : > | �]]v = �
t�! I

inl�! I+�

?[[� ` hM, Ni : A ^B | �]]v = ��
��! �� ⌦ ��

?[[M]]v⌦id�������! A⌦ ��
id⌦?[[N]]v������! A⌦B

[[� ` ⇡1M : A | �]]v = �
[[M]]v����! (A⌦B)+�

w+id���! A+�

[[� ` ⇡2M : B | �]]v = �
[[M]]v����! (A⌦B)+�

w+id���! B+�

?[[� ` MN : B | �]]v = ��
��! �� ⌦ ��

(?[[M]]v⌦id) ; (id⌦?[[N]]v)����������������! (A �� B)⌦A

app��! B

?[[� ` �x

A
.M : A ! B | �]]v = ��

curry(f)�����! A �� B, where f = �� ⌦A

⇠=�! (�⌦A)�
?[[M]]v����! B

[[� ` [↵i]M : ? | �]]v = �
[[M]]v����! Ai+�

ini+�����! �+�
r�! �

⇠=�! 0+�

[[� ` µ↵

A
.M : A | �]]v = �

[[M]]v����! 0+A+�
⇠=�! A+�

[[� ` [↵i, ↵j]M : ? | �]]v = �
[[M]]v����! Ai+Aj+�

ini+inj+�
�������! �+�+�

r+� ;r������! �
⇠=�! 0+�

[[� ` µ(↵A
, �

B).M : A _B | �]]v = �
[[M]]v����! 0+A+B+�

⇠=�! (A+B)+�

↵1:A1, . . . ,↵m:Am is a morphism

VB1 ⇥ . . .⇥VBn ⇥KA1 ⇥ . . .⇥KAm ! CA.

By currying, and using CA = R

KA , one gets

KA ⇥KA1 ⇥ . . .⇥KAm ! R

VB1⇥...⇥VBn
,

which is a morphism in R

C. Using the premonoidal structure, one can rewrite this to

KA ⇥KA1 ⇥ . . .⇥KAm ! KB1 . . . KBn .

Thus, we have eliminated the types VA and CA from the interpretation. Just as for call-by-name,
it is now possible to give a direct categorical interpretation of the call-by-value �µ-calculus in
a control category. However, since the arrows go “the wrong way”, it is more natural to state
the interpretation in terms of co-control categories. Thus, the above typing judgment will be
interpreted as a morphism is a co-control category:

KB1 ⌦ . . .⌦KBn ! KA + KA1 + . . . + KAm .

Recall from Sections 4.1 and 4.2 the weak closed structure on a co-control category, which
is given by the operation A �� B and the maps app : (A �� B) ⌦ A ! B and curry :
(C ⌦ A,B) ! (C,A �� B). This structure is used to interpret the call-by-value function
type. Notice that it satisfies some of the laws that one would typically expect for call-by-value
function spaces, for instance I �� A

⇠= (A �� 0) �� 0) 6⇠= A, A �� B

⇠= (A⌦ (B �� 0)) �� 0,
I

⇠= 0 �� 0, etc.

Definition 7.4 (Categorical interpretation: call-by-value). LetP be a co-control category. The
interpretation of the �µ-calculus with signature (B,K) proceeds relative to a choice of an object
�̃ for every type constant � 2 B. Each type constructor is interpreted by the corresponding object

Control Categories and Duality 37

constructor of co-control categories:

[[�]]v = �̃, where � is a type constant,
[[>]]v = I,

[[A ^B]]v = [[A]]v ⌦ [[B]]v,

[[A ! B]]v = [[A]]v �� [[B]]v,

[[?]]v = 0,

[[A _B]]v = [[A]]v + [[B]]v.

For an object context � = x1:B1, . . . , xn:Bn, we write [[�]]v = [[B1]]v ⌦ . . . ⌦ [[Bn]]v , and wi

for the ith weakening map. For a control context � = ↵1:A1, . . . ,↵m:Am, we write [[�]]v =
[[A1]]v + . . .+[[Am]]v , and inj for the jth injection. Typing judgments are interpreted relative to a
choice of a central morphism c̃ : I ! [[A]]v for each object constant cA 2 K. The interpretation
of a typing judgment � ` M : A | � is a morphism

[[� ` M : A | �]]v : [[�]]v ! [[A]]v + [[�]]v,

defined by recursion on M as shown in Table 8. In the clauses in Table 8, ?[[M]]v : �� ! A

refers to the co-curried form of [[M]]v : � ! A + �.

Notice how in the clauses for application and pairing, the premonoidal structure forces us to
choose an evaluation order. In these clauses,M is evaluated before N .

Lemma 7.5. If P = R

C is a category of continuations, then the call-by-value categorical
interpretation of the �µ-calculus in Pop coincides with the interpretation of the call-by-value
CPS translation in R

C.

Again, it is easy to check the Lemma by induction on terms. The Structure Theorem 3.18 then
immediately yields soundness and completeness for theories:

Proposition 7.6 (Soundness and Completeness). The theories induced on the �µ-calculus by
the call-by-value categorical interpretation are precisely the theories induced by the call-by-
value CPS translation.

We remark that the use of co-currying in the clauses for pairing, application, and �-abstraction
is essential, even though it looks innocuous. The reader is invited to check, for instance, that
[[� ` hM,Ni : A ^B | �]]v is not equal to

� ��! �⌦ �
[[M]]v⌦id�����! (A+�)⌦ �

id⌦[[N]]v�����! (A+�)⌦ (B+�) f�! (A⌦B) + �,

no matter which of the natural maps f : (A+�) ⌦ (B+�) ! (A ⌦ B) + � one chooses
(there are two such maps). Also notice the use of the co-curried form of the interpretation in the
following lemma.

Definition 7.7. A value of the call-by-value �µ-calculus is a term in the grammar

V ::= x c

A ⇤ hV, V

0i ⇡1V ⇡2V �x

A
.M µ(↵A

,�

B).[↵]V µ(↵A
,�

B).[�]V ,

where in the last two cases, neither ↵ nor � occurs freely in V .

Lemma 7.8. If V is a value, then ?[[� ` V : A | �]]v : �� ! A is central.

Peter Selinger 38

Table 9. Co-control category operations on typing judgments

Nullary operations:

id = x:A ` x : A

2 = x:? ` µ↵

A
.x : A

inl = x:A ` µ(↵A
, �

B).[↵]x : A _B

inr = x:B ` µ(↵A
, �

B).[�]x : A _B

� = x:B ` µ(�(A!?)^B
, ↵

A).[�]h�y

A
.[↵]y, xi : ((A ! ?) ^B) _A

a = x:A ^ (B ^ C) ` hh⇡1x, ⇡1⇡2xi, ⇡2⇡2xi : (A ^B) ^ C

l = x:A ^ > ` ⇡1x : A

c = x:B ^A ` h⇡2x, ⇡1xi : A ^B

t = x:A ` ⇤ : >
� = x:A ` hx, xi : A ^A

d = x:(A _B) ^ C ` µ(�A^C
, ⌘

B^C).[�]hµ↵

A
.[⌘]hµ�

B
.[↵, �]⇡1x, ⇡2xi, ⇡2xi :

(A ^ C) _ (B ^ C)
s�1 = x:((A ! ?) ^B) ^ C ` h⇡1⇡1x, h⇡2⇡1x, ⇡2xii : (A ! ?) ^ (B ^ C)

Binary and unary operations:

f = x:A ` M : B g = x:B ` N : C

g � f = x:A ` (�x

B
.N)M : C

f = x:B ` M : A g = x:C ` N : A

[f, g] = x:B _ C ` µ↵

A
.[↵](�x

B
.M)(µ�

B
.[↵](�x

C
.N)(µ�

C
.[�, �]x)) : A

f = x:B ` M : C _A

?
f = x:(A ! ?) ^B ` µ�

C
.(⇡1x)(µ↵

A
.[�, ↵](�x

B
.M)(⇡2x)) : C

f = x:A ` M : B

f ⌦ C = x:A ^ C ` h(�x

A
.M)(⇡1x), ⇡2xi : B ^ C

Proof. Recall from Section 4.1 that curry(f) is always central. This settles the case where V

is a lambda abstraction. The other cases are equally obvious.

Remark 7.9. Since we are interested in equational theories, and not in reduction semantics, we
are more liberal with the definition of a value than one would otherwise be. Our notion of value
corresponds to the existence predicate of the �c-calculus in (Moggi 1988), and it includes terms,
such as ⇡1hV, V

0i, that are not in normal form.

7.3. The call-by-value �µ-calculus is an internal language for co-control categories

The results in this section are analogous to those for the call-by-name calculus in Section 6.3.
Just as we were able to define the structural operations of a control category syntactically by
operations on typing judgments under the call-by-name interpretation, we can do the same for
the structural operations of a co-control category under the call-by-value interpretation. The op-
erations on typing judgments are shown in Table 9.

Lemma 7.10. The operations on typing judgments in Table 9 define the corresponding struc-
tural operations on a co-control category under the call-by-value interpretation, up to natural
isomorphism of objects.

Definition 7.11 (Syntactic co-control category). For a �µ-signature ⌃ and a call-by-value the-
ory T , we construct the syntactic co-control categoryPv

⌃,T as follows: The objects ofPv
⌃,T are

Control Categories and Duality 39

the types of the language. The object constructors are given by the corresponding type construc-
tors, whereBA is defined as (A ! ?)^B. Morphisms fromA toB are named by valid standard
form typing judgments x:A ` M : B. Two typing judgments x:A ` M : B and x:A ` N : B

name the same morphism if (x:A ` M = N : B) 2 T . The operations of a co-control category
on morphisms are defined as in Table 9.

Lemma 7.12. Pv
⌃,T is a well-defined co-control category.

The canonical call-by-value interpretation [[�]]0v of the �µ-calculus with signature ⌃ in Pv
⌃,T

is defined by �̃ := � and c̃ := x:> ` c : A. The interpretation of each typing judgment is call-by-
value equivalent to its standard form. The pair (Pv

⌃,T , [[�]]0v) is determined up to isomorphism by
the universal property: For each T -respecting call-by-value interpretation [[�]]v in a co-control
category P, there is a unique strict functor of co-control categories F : Pv

⌃,T ! P such that
F [[A]]0v = [[A]]v for all A and F [[� ` M : A | �]]0v = [[� ` M : A | �]]v for all valid typing
judgments � ` M : A | �.

Definition 7.13 (The internal language of a co-control category). Given a small co-control
category P, we construct from it a signature ⌃ and a call-by-name theory T . The type constants
are again the objects of P, and we take one object constant cf

A!B for each morphism f : A !
B. Consider the canonical interpretation of this language in P that interprets type constants by
themselves and object constants cf

A!B by curry(f) : I ! (A �� B). Recall from Section 4
that curry(f) is always central, and thus this interpretation is well-defined. Let T by the induced
call-by-value theory. The pair (⌃, T) is called the internal call-by-value language of P.

Lemma 7.14. If (⌃, T) is the internal call-by-value language of a co-control category P, then
Pv

⌃,T ' P.

Proof. Each morphism f : A ! B is the denotation of x:A ` cfx : B. Thus, the canonical
interpretation of the internal language in P is onto objects and morphisms, and hence the canon-
ical functor of co-control categories Pv

⌃,T ! P, which exists by the universal property, is full
and onto objects. It is faithful by definition of T . Thus, Pv

⌃,T ' P by Lemma 3.17.

7.4. An axiomatization of the call-by-value �µ-theories

An analogue of Proposition 6.11 holds for call-by-value theories:

Proposition 7.15. Fix a signature ⌃. Then a congruence relation T on typing judgments is a
call-by-value �µ-theory if and only if all of the following hold:
1. An equation is in T if and only if its standard form is in T .
2. Pv

⌃,T , as constructed in Lemma 7.12, is a well-defined co-control category.
3. For every object constant c, the morphism x:> ` c : A is central in Pv

⌃,T .
4. The canonical interpretation [[�]]0v : �µ ! Pv

⌃,T interprets each typing judgment by its own
standard form, up to natural isomorphism of types.

As in the call-by-name case, we use this characterization to give a complete axiomatization
of the call-by-value �µ-theories. The axioms are shown in Table 10. As before, we have omitted

Peter Selinger 40

Table 10. Axioms of the call-by-value �µ-calculus

Axioms for the lambda calculus with products:
(�!) let xA = V inM = M [V/x] : B

(⌘!) �x

A
.V x = V : B if x 62 FV(V)

(�^) ⇡ihV1, V2i = Vi : Ai

(⌘^) h⇡1V, ⇡2V i = V : A ^B

(⌘>) ⇤ = V : >

(id) let xA = M in x = M : A

(comp) let yB = (let xA = M inN) in P = let xA = M in let yB = N in P : C if x 62 FV(P)
(letapp) MN = let xA!B = M in let yA = N in xy : B if x 62 FV(N)
(letpair) hM, Ni = let xA = M in let yB = N in hx, yi : A ^B if x 62 FV(N)
(let⇡) ⇡iM = let xA1^A2 = M in ⇡ix : Ai

Axioms for �µ and disjunction:
(⇣) let xA = µ↵

A
.M inN = µ�

B
.M [let xA = (�) in [�]N/[↵](�)] : B if � 62 FN(M, N)

(�µ) [↵0]µ↵

A
.M = M [↵0/↵] : ?

(⌘µ) µ↵

A
.[↵]M = M : A if ↵ 62 FN(M)

(�_) [↵0, �0]µ(↵A
, �

B).M = M [↵0/↵, �

0
/�] : ?

(⌘_) µ(↵A
, �

B).[↵, �]M = M : A _B if ↵, � 62 FN(M)
(�?) [⇠?]M = M : ?

(letname) [↵]M = let xA = M in [↵]x : A

(letname0) [↵, �]M = let xA = M in [↵, �]x : A

the typing contexts. We also use the customary notation (let xA = M in N) to denote the term
(�x

A
.N)M . The letters V , V1, and V2 denote values, as defined in Definition 7.7.

Theorem 7.16 (Axiomatization of call-by-value �µ-theories). Let T be a set of equations of
the disjunctive �µ-calculus over some fixed signature. Then T is a call-by-value theory if and
only if it is a congruence relation on terms, satisfying the equations in Table 10.

Proof. Soundness is again easy. Completeness is proved by verifying the conditions of Propo-
sition 7.15.

Remark 7.17. The above axiomatization combines Moggi’s axioms for the computational lamb-
da calculus, some of Ong and Stewart’s axioms for the call-by-value �µ-calculus, and the obvious
axioms for disjunction. The reader will easily verify that certain other axioms, which are not
included in our list, are derivable from it, for instance the following two equations, which each
assert the emptiness of the type ?:

(empty) �, x:? ` M = N : A | �
(?) � ` (let x? = M in N) = µ↵

A
.M : A | � if ↵ 62 FV(M)

8. Filinski duality for the �µ-calculus

We have shown that the call-by-name �µ-calculus is an internal language for control categories,
and the call-by-value �µ-calculus is an internal language for co-control categories. An immediate
but surprising consequence is that the call-by-name and call-by-value calculi are syntactically

Control Categories and Duality 41

Table 11. The syntactic translation from call-by-value to call-by-name

On types:

L�M = �, where � is a type constant
L>M = ?
LA ^BM = LAM _ LBM
L?M = >
LA _BM = LAM ^ LBM
LA ! BM = (LBM ! LAM) ! ?

On terms:

LxM = �

LAM
.[x]

LcAM = �

LAM
.[cLAM]

L⇤M = �

L>M
.

LhM, NiM = �

LA^BM
.LMM(µx

LAM
.LNM(µy

LBM
.[x, y]))

L⇡1MM = �

LAM
.LMM(µ(xLAM

, y

LBM).[x])
L⇡2MM = �

LBM
.LMM(µ(xLAM

, y

LBM).[y])
L�x

A
.MM = �

LA!BM
.(��

B
.µx

A
.LMM�)

LMNM = �

LBM
.LMM(��

LBM!LAM
.LNM(�))

L[↵]MM = �

L?M
.LMM↵

L[%A]MM = �

L?M
.LMM%LAM

Lµ↵

A
.MM = �

LAM
.(�↵

LAM
.LMM⇤)

L[↵, �]MM = �

L?M
.LMMh↵, �i

Lµ(↵A
, �

B).MM = �

LA_BM
.(�↵

A
.��

B
.LMM⇤)(⇡1)(⇡2)

isomorphic to each other. More precisely, there are syntactic translations from call-by-value to
call-by-name and vice versa, which are mutually inverse up to natural isomorphism of types and
equivalence of terms.
Such a duality between call-by-value and call-by-name equational theories was first discov-

ered by Filinski (1989) in his work on the symmetric lambda calculus. Filinski’s calculus treats
continuations as first-class objects and it has a special syntax that stresses the symmetry between
continuations and values. Unlike Filinski, we are not working with a custom-made language.
However, the categorical semantics reveals a close connection: it is not difficult to see that Fil-
inski’s symmetric lambda calculus forms another internal language for control categories, and
thus that its expressive power equals that of the disjunctive �µ-calculus. Thus, the categorical
semantics provides a unified framework in which such dualities can be explained in a way that is
independent of any particular syntax.
Computationally, the duality between call-by-name and call-by-value can be understood as

a duality between demand-driven and data-driven computation, which reverses the direction of
data. Proof-theoretically, it is an extension of De Morgan duality from formulas to proofs.
Formally, the translation of a call-by-name language (⌃, T) into a call-by-value language can

be achieved by forming the syntactic control category Pn
⌃,T , and then considering the internal

call-by-value language of (Pn
⌃,T)op. Similarly, one gets a translation from call-by-value to call-

by-name. However these translations are not optimal, because they introduce a lot of unnecessary
constants.
It is possible to optimize the translations in such a way that no additional constants are intro-

duced. To do this, we need to extend the syntax of the �µ-calculus just slightly and allow a set

Peter Selinger 42

Table 12. The syntactic translation from call-by-name to call-by-value

On types:

h|�|i = �, where � is a type constant
h|>|i = ?
h|A ^B|i = h|A|i _ h|B|i
h|?|i = >
h|A _B|i = h|A|i ^ h|B|i
h|A ! B|i = (h|A|i ! ?) ^ h|B|i

On terms:

h|x|i = �

h|A|i
.[x]

h|cA|i = �

h|A|i
.[ch|A|i]

h|⇤|i = �

h|>|i
.

h|hM, Ni|i = �

h|A^B|i
.h|M |i(µx

h|A|i
.h|N |i(µy

h|B|i
.[x, y]))

h|⇡1M |i = �

h|A|i
.h|M |i(µ(xh|A|i

, y

h|B|i).[x])
h|⇡2M |i = �

h|B|i
.h|M |i(µ(xh|A|i

, y

h|B|i).[y])
h|�x

A
.M |i = �

h|A!B|i
.(⇡1)(µx

h|A|i
.h|M |i(⇡2))

h|MN |i = �

h|B|i
.h|M |ihh|N |i, i

h|[↵]M |i = �

h|?|i
.h|M |i↵

h|[%A]M |i = �

h|?|i
.h|M |i%h|A|i

h|µ↵

A
.M |i = �

h|A|i
.(�↵

h|A|i
.h|M |i⇤)

h|[↵, �]M |i = �

h|?|i
.h|M |ih↵, �i

h|µ(↵A
, �

B).M |i = �

h|A_B|i
.(�↵

A
.��

B
.h|M |i⇤)(⇡1)(⇡2)

K0 of typed control constants, in addition to the usual object constants. Thus, a signature for the
extended language is a triple (B,K,K0). We extend the definition of named terms to the case
[%A]M , where %A is a control constant. The semantics generalizes effortlessly to this extension.
The translation between the call-by-value and call-by-name calculi exchanges object and con-

trol constants. It also exchanges object and control variables, and it reverses typing judgments,
turning terms “inside out”. Thus, a call-by-value function of n arguments withm possible return
addresses gets translated into a call-by-name function of m arguments with n return addresses.
More precisely, the translations preserves typing in the following sense:

x1:B1, . . . , xn:Bn ` M : A | ↵1:A1, . . . ,↵m:Am

↵1:LA1M, . . . ,↵m:LAmM, •:A ` LMM• : ? | x1:LB1M, . . . , xn:LBnM
.

Because terms are turned “inside out”, a special variable • appears in the translation that rep-
resents the “outside” of a term. The variable • plays a similar role as the current continuation
in a CPS transform. The two translations are shown in Tables 11 and 12. Notice that they are
identical, except for the translations of function types, lambda abstraction, and application.

Proposition 8.1. Both translations preserve CPS transforms, and thus the categorical semantics,
up to natural isomorphism of types. It follows that the two translations are mutually inverse, in
the sense that

M =n µ↵.Lh|M |i↵M⇤ and M =v µ↵.h|LMM↵|i⇤,
up to natural isomorphisms of types.

Note that, because the translations preserve CPS transforms, a term and its translation evaluate

Control Categories and Duality 43

in precisely the same manner. Thus, the translations do not just preserve equational theories, but
in fact, the operational semantics as well. In particular, given appropriate notions of observation,
they also preserve observational equivalence.

Remark 8.2. The fact that the tensor product in a co-control category is premonoidal, and not
monoidal, is reflected by the well-known fact that in the call-by-value calculus, the following
two terms are not equivalent in the presence of side-effects (Thielecke 1997):

let xA = M in let yB = N in P ,

let yB = N in let xA = M in P .

On the other hand, in call-by-name, these two terms are equivalent. The dual of this phenomenon
is given by the following two terms, which are equivalent in call-by-value, but not in call-by-
name.

let xA = µ↵

A
.(let yB = µ�

B
.P in N) inM,

let yB = µ�

B
.(let xA = µ↵

A
.P inM) in N.

Appendix A. Some proofs from Section 3

In this Appendix, we give some technical proofs that were omitted from Section 3. These are
included for completeness and reference, and need not be consumed in the first reading. Most of
these proofs are diagram chases that are more easily done by hand than typeset.
For any objects A, B, and C, let wdA,B,C : (A B)⇥ C ! (A⇥ C) B be the map given

by

wdA,B,C = (A B)⇥ C

(A B)⇥w������! (A B)⇥ (C B) d�! (A⇥ C) B.

Then wdA,B,C is natural in A and C, and natural in discardable B, because w and d are. More-
over, wd satisfies coherence:

(A B C)⇥D

wd
✏✏

wd

**TTT
TTTT

TTTT
TTTT

((A B)⇥D) C) wd C // (A⇥D) B C,

A⇥B

l

((QQ
QQQ

QQQ
QQQ

Q

l⇥B

✏✏
(A ?)⇥B

wd // (A⇥B) ?,

(A B)⇥ C ⇥D

wd

))TTT
TTTT

TTTT
TTTT

wd⇥D

✏✏
((A⇥ C) B)⇥D

wd // (A⇥ C ⇥D) B.

These follow from naturality and coherence of d and w, which in turns follow immediately from
their respective definitions. Symmetrically, define

wd0A,B,C = A⇥ (B C)
w⇥(B C)������! (B A)⇥ (B C) d�! B (A⇥ C),

wd00A,B,C = (A B)⇥ C

(A B)⇥w������! (A B)⇥ (A C) d�! A (B ⇥ C).

Peter Selinger 44

These arrows satisfy similar coherence conditions, and the following joint coherence conditions:

(A B)⇥ (C D) wd //

wd0

✏✏

(A⇥ (C D)) B

wd0 B
✏✏

C ((A B)⇥D) C wd //
C (A⇥D) B

and

(A B C)⇥D

wd00 //

wd
✏✏

A ((B C)⇥D)

A wd
✏✏

((A B)⇥D) C

wd00 C //
A (B ⇥D) C.

This follows again from naturality of d and coherence for w and d.

Proof of Lemma 3.1(1). Consider

(BA
C D)⇥A

wd //

(s D)⇥A

✏✏

((BA
C)⇥A) D

wd D //

(s⇥A) D

✏✏

(BA ⇥A) C D

✏ C D

✏✏
((B C)A

D)⇥A

wd // ((B C)A ⇥A) D

✏ D //
B C D.

The left square commutes by naturality of wd. The right square commutes by definition of s.
Currying along the top and right, one gets sA,B,C D. Currying along the left and bottom, one
gets sA,B C,D � (sA,B,C D).

Proof of Lemma 3.1(2). Consider

B

A ⇥A

✏ //

l
✏✏

l⇥A

vvmmm
mmm

mmm
mmm

m
B

l
✏✏

(BA ?)⇥A

wd // (BA ⇥A) ? ✏ ? //
B ?.

The triangle commutes by coherence of wd, the square by naturality of l. Currying clockwise,
one gets (lB)A, currying counterclockwise, one gets sA,B,? � lBA .

Control Categories and Duality 45

Proof of Lemma 3.1(3). Consider

((B C)A
D)⇥A

wd

✏✏

(B C

A
D)⇥A

(s0 D)⇥Aoo (B s)⇥A //

wd

yysss
ss

ss
ss wd00

%%KK
KK

KK
KK

K
(B (C D)A)⇥A

wd00

✏✏

((B C

A)⇥A) D

(s0⇥A) Dyyrrr
rrr

rrr
r

wd00 D

%%KK
KK

KK
KK

K
B ((CA

D)⇥A)
B wd

yysss
ss

ss
ss

B (s⇥A) %%LL
LLL

LLL
LL

((B C)A ⇥A) D

✏ D **VVVV
VVVV

VVVV
VVVV

VV
B (CA ⇥A) D

B ✏ D

✏✏

B ((C D)A ⇥A)

B ✏tthhhh
hhhh

hhhh
hhhh

h

B C D.

This commutes. Currying clockwise, one gets s0A,B,C D � (B sA,B,C). Currying counterclock-
wise, one gets sA,B C,D � (s0A,B,C D).

Proof of Lemma 3.1(4). Consider

(B1
C)⇥ 1 ccc //

⇡1

((PP
PPP

PPP
PPP

PP

w
✏✏

(B C)⇥ 1

⇡1

✏✏

(B1
C)⇥ (1 C)

⇡1 //

d
✏✏

B

1
C

ccc

&&MM
MMM

MMM
MMM

M

(B1 ⇥ 1) C

⇡1 C
66nnnnnnnnnnnnn

✏ C //
B C.

Clearly this commutes. Currying clockwise, one gets the natural ccc isomorphism, and currying
counterclockwise, one gets s1,B,C .

Proof of Lemma 3.1(5). Consider

((B C)A)A0⇥A

0⇥A

✏⇥A

✏✏
(B C)A⇥A

✏

✏✏
B C

(BA
C)A0⇥A

0⇥A

✏⇥A

✏✏

sA
0
⇥A0⇥A//

(BA
C)⇥A

wd
✏✏

s⇥A
//

(BA⇥A) C

✏ C
**UUU

UUUU
UUUU

UUUU
UUUU

((BA)A0
C)⇥A

0⇥A

wd⇥A

✏✏

s⇥A0⇥A //

(((BA)A0⇥A

0) C)⇥A

wd
✏✏

(✏ C)⇥A
//

((BA)A0⇥A

0⇥A) C

ccc

✏✏

(✏⇥A) C
//

(BA0⇥A⇥A

0⇥A) C.

✏ C
//

This commutes; currying counterclockwise, we get sA0⇥A,B,C , whereas currying clockwise, we
get (sA,B,C)A0 � sA0,BA,C .

Peter Selinger 46

Proof of Lemma 3.6(1). Consider

B

A ⇥ (D C A) wd0 //

p⇥(D C A)

✏✏

D (BA ⇥ (C A)) D wd0 //

D (p⇥(C A))

✏✏

D C (BA ⇥A)

D C ✏

✏✏
(C B)C A ⇥ (D C A) wd0 //

D ((C B)C A ⇥ (C A)) D ✏ //
D C B.

The left square commutes by naturality of wd0. The right square commutes by definition of p.
Currying along the top and right, one gets pA,B,D C . Currying along the left and bottom, one
gets pC A,C B,D � pA,B,C .

Proof of Lemma 3.6(2). Consider

(BA
D)⇥(C A)

s⇥(C A)

uujjjj
jjjj

jjjj
jjj (p D)⇥(C A)

**UUU
UUUU

UUUU
UUUU

UU

wd0

⌅⌅��
��
��
��
��
��
��
��
�

wd

⇢⇢6
66

66
66

66
66

66
66

66

(B D)A⇥(C A)

wd0

✏✏

((C B)C A
D)⇥(C A)

wd

✏✏

C ((BA
D)⇥A)

C (s⇥A)zzvvv
vv

vv
vv C wd

$$H
HH

HH
HH

HH
(BA⇥(C A)) D

wd0 D

zzvvv
vv

vv
vv

(p⇥(C A)) D ''NN
NNN

NNN
NNN

C ((B D)A⇥A)

C ✏ **TTT
TTTT

TTTT
TTTT

T
C (BA⇥A) D

C ✏ D

✏✏

((C B)C A⇥(C A)) D

✏ Dtthhhhh
hhhh

hhhh
hhhh

h

C B D.

The three upper parts commute by naturality and coherence of wd and wd0. The lower left com-
mutes by definition of s, and the lower right by definition of p. Currying along the left, one gets
pA,B D,C � sA,B,D. Currying along the right, one gets sC A,C B,D � (pA,B,C D).

Proof of Lemma 3.6(3). First, for any A,B, and C, let p?
? : C A ! (C B)BA be the curry

and uncurry of p : B

A ! (C B)C A. Notice that

B

A ⇥ (C A)

wd0 ((RR
RRR

RRR
RRR

RR

c

✏✏

p? //
C B

C (BA ⇥A)

C ✏

55kkkkkkkkkkkkkkk

C c
✏✏

(C A)⇥B

A wd00 //

(C @)⇥BA
((QQ

QQQ
QQQ

QQQ
QQ

C (A⇥B

A)
C (@⇥BA)//

C (BBA ⇥B

A)

C ✏

OO

(C B

BA
)⇥B

A
,

wd00
55lllllllllllll

Control Categories and Duality 47

and thus, by currying and by definition of s0,

p?
? = C A

C @���! C B

BA s0�! (C B)BA

.

To show the claim, it suffices to show that

?C
A

p?
? // (?C

B)BA

⇠=
✏✏

A

C

⇠=

OO

g⇤�f.�c.f(gc) // (BC)BA
.

Now consider

?C
A

?C @ // ?C
B

BA s0 // (?C
B)BA

s
✏✏

(? A)C

s�1

OO

(? @)C

// (? B

BA
)C

s�1

OO

s0 // ((? B)BA
)C ccc // ((? B)C)BA

⇠=
✏✏

A

C @C
//

⇠=

OO

(BBA
)C ccc //

⇠=

OO

⇠=

77nnnnnnnnnnnn
(BC)BA

.

This commutes by naturality of s, by the first commutative diagram in Definition 2.11, and by
Lemma 3.1(2). Along the top, we have p?

?, and along the bottom, g ⇤ �f.�c.f(gc).

Proof of Lemma 3.6(4). Consider

1⇥ (B A) wd0 //

id?⇥(B A)

✏✏

B (1⇥A)
B ⇡2

''NN
NNN

NNN
NNN

N

B (id?⇥A)

✏✏
A

A ⇥ (B A) wd0 //
B (AA ⇥A) ✏ //

B A.

The square commutes by naturality of wd0. The triangle commutes by cartesian-closed structure.
Currying along the left and bottom, one gets pA,A,B � id

?
A. The arrow along the top is just ⇡2, so

by currying one gets id?
B A.

Proof of Lemma 3.6 (p is natural in A,B, dinatural in central C). Clearly, the family of maps

B

A ⇥ (C A

0)
w⇥(C A0)�������! (C B

A)⇥ (C A

0) d�! C (BA ⇥A

0)

is natural in A, A0, B, and central C. Moreover,

C (BA ⇥A) C ✏���! C B

is dinatural in A and natural in B and central C. Thus, it follows that ✏̃A,B,C is dinatural in A

and natural in B and central C, and thus p is natural in A and B and dinatural in central C.

Lemma A.1. ✏ : B

A ⇥A ! B is discardable.

Peter Selinger 48

Proof. The axioms say that ⇡1 and ⇡2 are discardable, and that iBA = (iB)3A . From these
two facts, it follows that iBA⇥A = (iB)3A ⇥ iA. Now one has

?
(iB)3A⇥iA //

hid,iAi
✏✏

B

A ⇥A

✏

✏✏
?⇥A

iB⇥3A//
B ⇥ 1

⇡1 //
B.

Clearly, the counterclockwise arrow is iB .

Lemma A.2. Let ssA,B,C,D and wsA,B,C,D be the maps

ssA,B,C,D = A

C
B

D s�! (A B

D)C s0C��! ((A B)D)C
,

wsA,B,C,D = (A B)⇥ C ⇥D

wd⇥D����! ((A⇥ C) B)⇥D

wd00��! (A⇥ C) (B ⇥D).

Then the (double) uncurry of ss is

ss?? = (AC
B

D)⇥ C ⇥D

wsAC ,BD,C,D���������! (AC ⇥ C) (BD ⇥D)
✏ (�)����! A (BD ⇥D) A ✏���! A B.

Proof. Consider

(AC
B

D)⇥ C ⇥D

s⇥C⇥D //

wd⇥D

✏✏

(A B

D)C ⇥ C ⇥D

s0C⇥C⇥D//

✏⇥D

✏✏

((A B)D)C ⇥ C ⇥D

✏⇥D

✏✏
((AC ⇥ C) B

D)⇥D

(✏ BD)⇥D//

wd00

✏✏

(A B

D)⇥D

s0⇥D //

wd00

✏✏

(A B)D ⇥D

✏

✏✏
(AC ⇥ C) (BD ⇥D)

✏ (�) //
A (BD ⇥D) A ✏ //

A B.

The top left square commutes by definition of s. The top right square commutes by naturality of
✏. The bottom left square commutes by naturality of wd00A,B,C in discardable A, and because ✏ is
discardable by Lemma A.1. The bottom right square commutes by definition of s0.

Lemma A.3. The following two diagrams commute:

(B B)⇥ (C A) �⇥� //

wd0

✏✏

(B B)⇥ (C A)⇥ (C A)

�⇥(wd00;C wd0)
✏✏

C ((B B)⇥A)

C ((B B)⇥�)

✏✏

(B B)⇥ (C C (A⇥A))

wd0

✏✏
C ((B B)⇥A⇥A) C C ((B B)⇥A⇥A)r �oo

Control Categories and Duality 49

(B B)⇥ (C A)⇥ (C A) ws //

�⇥(wd00;C wd0)
✏✏

(B ⇥ (C A)) (B ⇥ (C A))

wd0 wd0

✏✏
(B B)⇥ (C C (A⇥A))

wd0

✏✏

C (B ⇥A) C (B ⇥A)

� c �
✏✏

C C ((B B)⇥A⇥A) � ws //
C C (B ⇥A) (B ⇥A).

Proof. Two straightforward diagram chases from the definitions.

Proof of Lemma 3.6 (p is central). Let f : D ! E. Consider the following cube:

(B D)A
p //

(B f)A

✏✏

(C B D)C A

(C B f)C A

✏✏

B

A
D

p D //

BA f

✏✏

s
99rrrrrrrrrr

(C B)C A
D

(C B)C A f

✏✏

s

99rrrrrrrrrr

(B E)A
p // (C B E)C A

B

A
E

p E //

s
99rrrrrrrrrr

(C B)C A
E

s

99rrrrrrrrrr

The top and bottom faces commute by Lemma 3.6(2). The left and right faces commute by
naturality of s. The back face commutes by naturality of p. Thus, the front commutes, which
shows that p is central.

Proof of Lemma 3.6 (p is copyable). Consider the following diagram, where CA abbreviates

Peter Selinger 50

(C A).

((C B)CA (C B)CA)⇥ CA

ss⇥�
++XXXX

XXXXX
XXXX

�⇥�

✏✏

(BA
B

A)⇥ CA

(p p)⇥�
44hhhhhhhhhhh

�⇥�

✏✏

((C B C B)CA)CA ⇥ CA

�⇥�

✏✏

((C B)CA (C B)CA)⇥ CA⇥ CA

ss⇥�
++XXXX

XXXXX
XXXX

ws

✏✏

(BA
B

A)⇥ CA⇥ CA

(p p)⇥�
44hhhhhhhhhhh

ws

✏✏

((C B C B)CA)CA ⇥ CA⇥ CA

✏⇥�;✏

✏✏

((C B)CA ⇥ CA) ((C B)CA ⇥ CA)
✏⇥�;�⇥✏

++XXXX
XXXXX

XXXXX
X

(BA ⇥ CA) (BA ⇥ CA)

(p⇥�) (p⇥�)
44hhhhhhhhhhh

wd0 wd0 **VVVV
VVVVV

VV
C B C B

C c B

✏✏

C (BA ⇥A) C (BA ⇥A)

C c �

✏✏

(C ✏) �;� (C ✏)

33ggggggggggggggg

C C B B

r r

✏✏

C C (BA ⇥A) (BA ⇥A)
� ✏ �;� � ✏

33ffffffffffffff

C B.

The two top squares commute trivially. The next square commutes by naturality of ws and the
fact that p is central. The next square commutes by Lemma A.2. The big triangle commutes by
definition and centrality of p. The parallelogram commutes by naturality of c. Clockwise, one
has the curry of (p p);r, which can be seen with a few simple ccc manipulations. Along the

Control Categories and Duality 51

counterclockwise arrow, we continue with the diagram

(BA
B

A)⇥ (C A)⇥ (C A)
ws

,,YYYYY
YYYY

�⇥(wd00;C wd0)✏✏

(BA
B

A)⇥ (C A)

�⇥� 33ffffffff

wd0

✏✏

(BA ⇥ (C A)) (BA ⇥ (C A))

wd0 wd0

✏✏

(BA
B

A)⇥ (C C (A⇥A))

wd0

✏✏

C ((BA
B

A)⇥A)

C (�⇥�)

✏✏

C (BA ⇥A) C (BA ⇥A)

C c �

✏✏

C C ((BA
B

A)⇥A⇥A)
� ws

,,YYYYY
YYYYr �

ssffffff
ff

C ((BA
B

A)⇥A⇥A)
� ws

++XXXXX
XXX

C (ss⇥�)

✏✏

C C (BA ⇥A) (BA ⇥A)
r �
rreeeeee

eee

� ✏ �;� � ✏

✏✏

C (BA ⇥A) (BA ⇥A)

� ✏ �;� � ✏

✏✏

C (((B B)A)A ⇥A⇥A)

C (✏⇥A;✏) ,,XXXXX
XXXXX

C C B B

r r

✏✏

r �
rreeeeee

eeeeee
e

C B B

C r ,,ZZZZZZZ
ZZZZZZZ

ZZZ

C B.

The two top cells commute by Lemma A.3. The rest commutes by the fact that r is central, and
by Lemma A.2. Along the counterclockwise arrow, we continue with the diagram

C ((BA
B

A)⇥A)
C (�⇥�)

++XXXXX
XXX

C (ss⇥�)

✏✏

(BA
B

A)⇥ (C A)

wd0 33gggggggg

ss⇥�

✏✏

C ((BA
B

A)⇥A⇥A)

C (ss⇥�)

✏✏

C (((B B)A)A ⇥A)
C (�⇥�)

++XXXXX
XXX

⇠=

✏✏

((B B)A)A ⇥ (C A)

wd0 33gggggggg

⇠=

✏✏

C (((B B)A)A ⇥A⇥A)

⇠=

✏✏ C (✏⇥A;✏)

⇢⇢4
44

44
44

44
44

44
44

C ((B B)A⇥A ⇥A)
C (�⇥�)

++XXXXX
XXX

C (r�⇥A)

✏✏

(B B)A⇥A ⇥ (C A)

wd0 33gggggggg

r�⇥�

✏✏

C ((B B)A⇥A ⇥A⇥A)
C ✏

**UUUU
UUUU

C (BA ⇥A)
C ✏

++XXXXX
XXXXXX

XX
C B B

C rttiiiii
iiii

i

B

A ⇥ (C A)

wd0 33gggggggg

p⇥� ++WWWWW
WWW

C B.

(C B)C A ⇥ (C A)
✏

33ffffffffffff

The three left squares commute by naturality of wd0. The bottom triangle commutes by definition
of p; everything else commutes by ccc operations. Finally, currying counterclockwise, we get

B

A
B

A r�! B

A p�! (C B)C A
.

Peter Selinger 52

Thus, the last three diagrams show that (p p);r = r; p, and thus that p is copyable.

Acknowledgments

Most of this research was done in the spring of 1998 while I was visiting BRICS, Basic Research
in Computer Science, the Centre of the Danish National Research Foundation. I thank my hosts
at BRICS for a productive semester. I am indebted to John Power for his encouragement in an
early phase of this work. I thank Olivier Danvy for pointing me to Filinski’s work and for offering
helpful advice. Thanks to Hayo Thielecke for his explanations on the nature of continuations, and
to Carsten Führmann, Alan Jeffrey, and Paul Levy, who have contributed to this work through
stimulating discussions.

References

B. Agapiev and E. Moggi. Declarative continuations and monads. Unpublished draft, 1991.
P. De Groote. A CPS-translation of the �µ-calculus. In Proceedings of the 19th International Colloquium on
Trees in Algebra and Programming – CAAP ’94, Springer LNCS 787, pages 85–99, Edinburgh, 1994a.

P. De Groote. On the relation between the �µ-calculus and the syntactic theory of sequential control.
Springer LNCS 822, 1994b.

M. Felleisen. The calculi of �v-conversion: A syntactic theory of control and state in imperative higher
order programming languages. PhD thesis, Indiana University, 1986.

M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and state.
Theoretical Computer Science, 103:235–271, 1992.

A. Filinski. Declarative continuations and categorical duality. Master’s thesis, DIKU, Computer Science
Department, University of Copenhagen, Aug. 1989. DIKU Report 89/11.

C. Führmann. Direct-style and continuation-passing style models of control.
Available from http://www.dcs.ed.ac.uk/home/car/research.htm, November 1998.

C. Führmann. Direct models of the computational lambda-calculus. In Proceedings MFPS XV, Electronic
Notes in Theoretical Computer Science 20, 1999.

T. G. Griffin. A formulae-as-types notion of control. In POPL ’90: Proceedings of the 17th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1990.

M. Hofmann and T. Streicher. Continuation models are universal for �µ-calculus. In Proceedings of the
Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 387–397, 1997.

A. Jeffrey. Premonoidal categories and a graphical view of programs. Preprint, Dec. 1997.
G. M. Kelly. On Mac Lane’s conditions for coherence of natural associativities, commutativities, etc. J.
Algebra, 1:397–402, 1964.

Y. Lafont, B. Reus, and T. Streicher. Continuations semantics or expressing implication by negation. Tech-
nical Report 93-21, University of Munich, 1993.

J. Lambek and P. J. Scott. An Introduction to Higher Order Categorical Logic. Cambridge Studies in
Advanced Mathematics 7. Cambridge University Press, New York, 1986.

S. Mac Lane. Natural associativity and commutativity. Rice University Studies, 49:28–46, 1963.
E. Moggi. Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-66, Edinburgh
University, Department of Computer Science, 1988.

C.-H. L. Ong. A semantic view of classical proofs: Type-theoretic, categorical, and denotational character-
izations. In Proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science, pages
230–241, 1996.

Control Categories and Duality 53

C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional computation with control. In
Proceedings of the Symposium on Principles of Programming Languages, pages 215–227, 1997.

M. Parigot. �µ-calculus: An algorithmic interpretation of classical natural deduction. In Proceedings of
the International Conference on Logic Programming and Automated Reasoning, St. Petersburg, Springer
LNCS 624, pages 190–201, 1992.

G. D. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical Computer Science, 1:125–159,
1975.

J. Power and E. Robinson. Premonoidal categories and notions of computation. Math. Struct. in Computer
Science, 7(5):445–452, 1997.

D. Pym and E. Ritter. On the semantics of classical disjunction. Preprint, 1998.
P. Selinger. An implementation of the call-by-name �µ⌫-calculus. Preprint. Available from the Hypatia
Electronic Library, 1998.

T. Streicher and B. Reus. Classical logic, continuation semantics and abstract machines. Journal of Func-
tional Programming, 8(6):543–572, Nov. 1998.

H. Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis, University of Edinburgh,
1997.

