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Synopsis of the lecture

1 — Categories and functors
2 — Natural transformations
2 — The 2-category of categories

3 — String diagrams



Categories and functors

A concise infroduction



Categories
A caftegory % is given by
[0] a class of objects

[1] a class Hom(A, B) of morphisms
f + A — B
for every pair of objects (A, B)

[2] a composition law o : Hom(B, C) X Hom(A, B) — Hom(A, C)

[2] an identity morphism
idy @+ A — A
for every object A,



Categories
safisfying the following properties:

[3] the composition law o is associative:

VY f € Hom(A, B)
V¢ € Hom(B, () fo(goh)=(fog)oh
Yh € Hom(C, D)

[3] the morphisms id are neutfral elements

Vf € Hom(A, B) foidy = f = idgof



A hint of higher-dimensional wisdom
B
/X
A—FrC

The composition law hides a 2-dimensional simplex




A hint of higher-dimensional wisdom

B—2< __C B— <&
h f  _ ok f
A D A D

fo(goh) (fog)oh

The associativity rule hides a 3-dimensional simplex



Cartesian products

The cartesian product of two objects A and B in a category %
IS an object A x B equipped with two morphisms

M :AXB—A T :AXB— B
such that for every diagram
/ A
V
X AXB
: N,
there exists a unique morphism h : X — A x B making the diagram
f A
V
X—h—A XB\
B

commute.



Examples
1. The cartesian product in the category Set
2. The lub a A b of two elements a and b in an ordered set (X, x)

3. The cartesian product in the category Top of topological spaces
and continuous functions



Terminal object

An object 1 is terminal in a category 4 when

Hom(A, 1)

is a singleton for all objects A.

One may consider 1 as a "nullary” product in .

Example 1. the singleton {+} in the categories and,

Example 2. the maximum of an ordered set (X, x)
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Cartesian category

A cartesian category is a category ¢ equipped with a product

A X B

for all pairs A, B of objects, and of a terminal object

1
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Cartesian categories
In every cartesian category, one finds
> weadkening mapses : A — 1,

> diagonalmaps 64:A— AXA obtained as

A—04—A XA

> symmetry maps yap:AXB-—BXA obtained as

AXB—VAB~B X A

y

T(1 A
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Functors

A functor between categories
F : € — 9
is defined as the following data:
[0] an object FA of & for every object A of &,

[1] a function

Fpap : Homg(A,B) — Homgy(FA, FB)
for every pair of objects (A, B) of the category 7.
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Functors
One requires moreover

[2] that F preserves composition

FAEL rpES pC _ FAE8D pe

[2] that F preserves the identities

Fid 4

FA FA _ FA—UA _Fa




lllustration [orders ]

Every ordered set

(X, <)
defines a category

[X, <]

> whose objects are the elements of X

> whose hom-sets are defined as

B {>(-} if Xﬁy
Hom(x,y) = { %) otherwise

In this category, there exists at most one map between two objects
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lllustration [orders |

Exercise: given two ordered sets
(X, <) (Y, <)
a functor
F : [X<] — [Y<]
is the same thing as a monotonic function
F : X)) — (s

pbetween the underlying ordered sets.
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lllustration [ monoids ]

A monoid (M, -, e) is a set M equipped with a binary operation

MxM — M

and a neutral element
e : {¥} —M
safisfying the two properties below:
Associativity law Vx,y,zeM, (x-y)-z=x-(y-2)

Unit law VxeM, X-e=x=e¢e-X.
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lllustration [ monoids ]

Key observation: there is a one-tfo-one relationship
(M,-,e) — X(M,-e)

between
> MonNoids
> cafegories with one object =

obtained by defining X(M,, -, e) as the category with unigue hom-set
X(M,-e) (x,x) = M
and composition law and unit defined as

gof = gf id«=e
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lllustration [ monoids ]

Key observation: given two monoids
(M, -, e) (N,e,u)
a functor
F : XWM,.,e) — X(N,o,u)
is The same thing as a homomorphism
for Mo —  (Neuw

between the underlying monoids.

Recall that a homomorphism is a function f such that

VoyyeM, flx-y) = fx)e f(y) fle) = u
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lllustration [actions|]
The action of a monoid
(M, -, e)
on a set
X
is the same thing as a functor
Y.(M,-,e) —> Set
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lllustration

The action of a monoid

| representations |

(M, '/ 8)

on a vector space

is the same thing as a functor

Y.(M,-,e)

—  Vect
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Natural tfransformations

A notion of morphism between functors
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Transformations

A transformation

between two functors

EFEG : o — A

Is a family of morphisms

(04 : FA — GA) pcopj(wr)
of the category % indexed by the objects of the category 7.
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Vertical composition of transformations

The transformations compose vertically

S\

1*82 —

and thus define a category

Trans ( &/ , X$ )

for all categories .« and 4.

/e \

X4 G B

\/ W
H
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Left action

In the following situation: 77 1o ~@p—H ¢
\(—;/

the left action of the functor H on the fransformation
e : F — G : o — A
Is defined as the fransformation
Hoj6 : HoF — HoG : o — €

whose insfance at object A is defined as the morphism

H(04)

H o F(A) H o G(A).
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Properties of the left action [1]

From a diagrammatic point of view, the two equations

Hop (0p%601) = (Hop 0p)*(Hop 07) Hop1p = 1gor
mean that

VATAN

/\ . o z—H ¢

\/ o —— P
e/

/\ /H%
o U1f H » = o llpgs P
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Properties of the left action (2)

These tTwo equations mean that

Ho;— : Trans(«/,%) —  Trans(</,%)

8 — HOLQ

defines a functor, while the two equations

(Hl OHz) OLF = Hl OL (H2 OL F) Zd@ OLQ

mean that o; defines an action.
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Right action

In the following situation: o—H BT 0 "¢

the functor H acts on the transformation
e : F — G : $B — €
and fransports it info the transformation:
OorkH : FoH — GoH : & — %

whose instfance at A is defined as the morphism

0
FoH(A) o) G o H(A).
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Properties of the right action (1)

From a diagrammatic point of view, the two equations

(2% 601)og H = (630 H)* (01 og H) lrorH = 1pey

%
i

/\

FoH
RN

o Vlpoy AB

mean that

H

o H

o
A
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Properties of the right action (2)

The two equations mean that

—or H : Trans(%4, %) — Trans(<7, ¢)

0 = QORH

defines a functor, while the two equations
Oogr(HyoHy) = (0ogHy)ogHy O oR id oy

mean that op defines an action.

0
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Compatibility of the left and right actions

Last equation: in the situation

the order in which one makes the functors
H : & — o Hy : 4 — %#
act on the fransformation 6 does not matter:

(Hp op 0) or Hy - Hjp op (6 og Hyp)
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Sesqui-category
A sesqui-category 7 is
[0] a class of objects

[1,2] equipped with a category
ZJ (A, B)

for every pair of objects (A, B) of the sesqui-category, where
the objects of ©7(A,B) = the morphisms from A to B

equipped with a pair of actions o; and oy safisfying...
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Sesqui-categories

equipped with a pair of actions o; and oy satisfying the equations

hop(02+01) = (hop03)=*(hop 61) hoply = o
(hiohy)op f = hiop (hpor f) idgo,0 = 0
(O2%01)orh = (O20rh)*(01*rN) lpogh = o
OoR (hpohy) = (0 o hp) or Iy Oopidyy = 0
(hp o 6)og hy = hypop (6 og hy)
Theorem.

Categories, functors and transformations define a sesqui-category.
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The sesqui-category of categories and transformations

Fq Fr

Let 6, and 6, be two fransformations in =~ o7~ U, B~ 16, ¢
\_/ \/

Gq Go

In general, the fransformation obtained by applying 64 then 6,

Fq Fr

o B 10, OF
~—
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Natural transformations

A fransformation 6 : F=G : o —H
is natural when the diagram
FA—4_GA
Ff Gf
FB—Y _GB

commutes for every morphism f : A — B.

Notation. we write
Nat(.o/, $)
for the category of functors and natural fransformations
o : F = G : & — A
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Exchange law

A pair of 2-cells 6; and 6, in a sesqui-categorie &/

Fq Fr Fq Fr
A 3 A 0
NG ¢4 B0 €
6 6
A A € AL A€
Gy Gy Gy G2

holds.

The order in which one applies 61 and 8, does not matter.
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Definition

A 2-cell
/K
B\UEZ/,C
82
is called central on the left when the exchange law
0 0
A B ¢ _ 4 B %2 ¢
0 0
A\g/B \Ug_z/c A\l{g_l/fB \g_/c
1 2 1 2

is satisfied for every 2-cell 61 of the sesqui-category 9 .
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Exercise
Show that in the sesqui-category with
> categories as objects
> functfors as 1-cells
> fransformations as 2-cells

the natural fransformations are the 2-cells central on the left.

Deduce the existence of a functor

Nat(%,¢) x Nat(«/, ) —> Nat(Z,?)
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The 2-category of categories

Categories, functors, natural transformations
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2-categories

A 2-category s a sesqui-category such that
the exchange law is satisfied for every pair of 2-cells
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2-categories (alternative definition)
A 2-category </ is given by
0] a class of objects

1,2] a category 7% (A, B) for every pair of objects (A, B)

2,3,4] a composition law defined as a functor

o: &J(B,C)x &J/(A,B)— ZJ(A,Q)

[2,3,4] an identity defined as a functor

idg 11— /(A A)

this for all objects A, B, C of the 2-category,
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2-categories (alternative definition)

1— such that the composifion law o is associative in the sense that

(C,D)x &/ (B,C)x T/ (A,B) o x Z/(AB) 7 (B,D)x Z/(A,B)
I (CD)x o 0

2 (C,D)x ZJ(A,CQC) ° (A, D)

commutes.
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2-categories (alternative definition)

2— such that id is a neutral element of o in the sense that

T (A, B) (A, B)
T By x 1L AB XA 4 s T )
and
(A, B) (A, B)
1 x T/ B) BT AR ) py A

commute for all A and B.
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Notation
One writes

when

0 : f-—g
is a morphism of the category £/ (A, B).

A— B
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Godement law

In a 2-category
D (oA, B)

the two canonical ways o compose the 2-cells

/\/\
\/\/

(B2xag)o(Br*ay) = (B20p1)*(az0ay)

coincide:
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Suspension

The notion of monoidal category will be defined very soon.

Every strict monoidal category @ may be seen as the 2-category (%)
> which contains only one 0-cell,

> whose 1-cells are the 0-cells of ¢

> whose 2-cells are the 1-cells of ¢

equipped with the induced compaosition laws.

A sesqui-category X(%) with one object is
the same thing as a premonoidal category (¢, ®,1).
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Useful equality

In a 2-category &/ (<7, PB). the two canonical ways to compose the 2-cells

NS\
N

(Baraz)o(Br*a1) = (B2of1)*(az0a)

commute:
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The 2-category of sets and relations

The 2-category 22/ is defined as follows:
> its 0-cells are the sefs,
> ifs 1-cells are the relations between sefts,
A—t8 g - a4 S g &

relationally composed:

alf-glc < dbeB, alflb et blg]c.

> ifs 2-cells are inclusions:

In particular, the categories &£/ (A, B) are order categories.
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String diagrams

A notation infroduced by Roger Penrose
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Two key ideas

1. apply the Poincaré duality on the original pasting diagrames:

F G
lLo Is depicted as

4

B

S
H

C

String diagrams

0

GoF = H
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String diagrams

Two key ideas

2. hide the identity 1-cells in the picture:

o
B
F G
(I, is depicted as
q
id
O : GoF = i

o1




String diagrams

More generally, a 2-dimensional cell

& : Fio---oFp = Gpo---0(Gy

is depicted as

o

—
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Exercise

Draw the exchange law and explain the connection fo concurrency
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