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Synopsis of the lecture

1 – Categories and functors

2 – Natural transformations

2 – The 2-category of categories

3 – String diagrams
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Categories and functors

A concise introduction
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Categories

A category C is given by

[0] a class of objects

[1] a class Hom(A,B) of morphisms

f : A −→ B

for every pair of objects (A,B)

[2] a composition law ◦ : Hom(B,C) ×Hom(A,B) −→ Hom(A,C)

[2] an identity morphism

idA : A −→ A

for every object A,
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Categories

satisfying the following properties:

[3] the composition law ◦ is associative:

∀ f ∈ Hom(A,B)
∀g ∈ Hom(B,C)
∀h ∈ Hom(C,D)

f ◦ (g ◦ h) = ( f ◦ g) ◦ h

[3] the morphisms id are neutral elements

∀ f ∈ Hom(A,B) f ◦ idA = f = idB ◦ f
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A hint of higher-dimensional wisdom

B

g

��

A

f

FF

f ◦ g
//C

The composition law hides a 2-dimensional simplex
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A hint of higher-dimensional wisdom

B
g

//C

f

��

A

h

FF

f ◦ ( g ◦ h )
//

g ◦ h

99

D

=

B
g

//

f ◦ g

%%

C

f

��

A

h

FF

( f ◦ g ) ◦ h
//D

The associativity rule hides a 3-dimensional simplex
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Cartesian products
The cartesian product of two objects A and B in a category C

is an object A × B equipped with two morphisms

π1 : A × B −→ A π2 : A × B −→ B

such that for every diagram

A

X

f --

g 11

A × B

π1
::

π2 $$B

there exists a unique morphism h : X −→ A × B making the diagram

A

X h //

f --

g 11

A × B

π1
::

π2 $$B

commute.
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Examples

1. The cartesian product in the category Set

2. The lub a ∧ b of two elements a and b in an ordered set (X,�)

3. The cartesian product in the category Top of topological spaces
and continuous functions
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Terminal object

An object 1 is terminal in a category C when

Hom(A, 1)

is a singleton for all objects A.

One may consider 1 as a “nullary” product in C .

Example 1. the singleton {∗} in the categories and ,

Example 2. the maximum of an ordered set (X,�)
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Cartesian category

A cartesian category is a category C equipped with a product

A × B

for all pairs A, B of objects, and of a terminal object

1
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Cartesian categories

In every cartesian category, one finds

B weakening maps εA : A −→ 1,

B diagonal maps δA : A −→ A × A obtained as

A

A δA //

idA --

idA
11

A × A
π1

::

π2 $$
A

B symmetry maps γA,B : A × B −→ B × A obtained as

B

A × B γA,B //

π2 --

π1
11

B × A
π1

::

π2 $$
A
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Functors

A functor between categories

F : C −→ D

is defined as the following data:

[0] an object FA of D for every object A of C ,

[1] a function

FA,B : HomC (A,B) −→ HomD (FA,FB)

for every pair of objects (A,B) of the category C .
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Functors

One requires moreover

[2] that F preserves composition

FA
F f

//FB
Fg

//FC = FA
F(g◦ f )

//FC

[2] that F preserves the identities

FA FidA //FA = FA idFA //FA
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Illustration [ orders ]

Every ordered set

(X,≤)

defines a category

[X,≤]

B whose objects are the elements of X

B whose hom-sets are defined as

Hom(x, y) =

{
{∗} if x ≤ y
∅ otherwise

In this category, there exists at most one map between two objects
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Illustration [ orders ]

Exercise: given two ordered sets

(X,≤) (Y,≤)

a functor

F : [X,≤] −→ [Y,≤]

is the same thing as a monotonic function

F : (X,≤) −→ (Y,≤)

between the underlying ordered sets.
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Illustration [ monoids ]

A monoid (M, ·, e) is a set M equipped with a binary operation

· : M ×M −→ M

and a neutral element

e : {∗} −→M

satisfying the two properties below:

Associativity law ∀x, y, z ∈M, (x · y) · z = x · (y · z)

Unit law ∀x ∈M, x · e = x = e · x.
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Illustration [ monoids ]

Key observation: there is a one-to-one relationship

(M, ·, e) 7→ Σ (M, ·, e)

between

B monoids

B categories with one object ∗

obtained by defining Σ(M, ·, e) as the category with unique hom-set

Σ(M, ·, e) (∗, ∗) = M

and composition law and unit defined as

g ◦ f = g · f id ∗ = e
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Illustration [ monoids ]

Key observation: given two monoids

(M, ·, e) (N, •,u)

a functor

F : Σ (M, ·, e) −→ Σ (N, •,u)

is the same thing as a homomorphism

f : (M, ·, e) −→ (N, •,u)

between the underlying monoids.

Recall that a homomorphism is a function f such that

∀x, y ∈M, f (x · y) = f (x) • f (y) f (e) = u
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Illustration [ actions ]

The action of a monoid

(M, ·, e)

on a set

X

is the same thing as a functor

Σ (M, ·, e) −→ Set
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Illustration [ representations ]

The action of a monoid

(M, ·, e)

on a vector space

V

is the same thing as a functor

Σ (M, ·, e) −→ Vect
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Natural transformations

A notion of morphism between functors
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Transformations

A transformation

θ : F ·
−→ G

between two functors

F,G : A −→B

is a family of morphisms

(θA : FA −→ GA)A∈Obj(A )

of the category B indexed by the objects of the category A .
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Vertical composition of transformations

The transformations compose vertically

A

F

��

⇓ θ1∗θ2

H

FFB = A

F

��

G //

H

FF

⇓ θ1

⇓ θ2

B

and thus define a category

Trans ( A , B )

for all categories A and B.
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Left action

In the following situation: A
F

((
⇓θ

G

66B H //C

the left action of the functor H on the transformation

θ : F −→ G : A −→ B

is defined as the transformation

H ◦L θ : H ◦ F −→ H ◦ G : A −→ C

whose instance at object A is defined as the morphism

H ◦ F(A)
H(θA)

// H ◦ G(A).
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Properties of the left action [1]

From a diagrammatic point of view, the two equations

H ◦L (θ2 ∗ θ1) = (H ◦L θ2) ∗ (H ◦L θ1) H ◦L 1F = 1H◦F

mean that

A
��

GG
//

⇓ θ1

⇓ θ2

B H //C =
A

��
//

⇓ θ1
B H //C

A GG
//

⇓ θ2

B H
//C

A

F

��

F

CC⇓ 1F A H //B = A

H◦F

��

H◦F

CC⇓ 1H◦F B
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Properties of the left action (2)

These two equations mean that

H ◦L − : Trans(A ,B) −→ Trans(A ,C )

θ 7→ H ◦L θ

defines a functor, while the two equations

(H1 ◦H2) ◦L F = H1 ◦L (H2 ◦L F) idB ◦L θ = θ

mean that ◦L defines an action.
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Right action

In the following situation: A H //B
F

''
⇓θ

G

77C

the functor H acts on the transformation

θ : F −→ G : B −→ C

and transports it into the transformation:

θ ◦R H : F ◦H −→ G ◦H : A −→ C

whose instance at A is defined as the morphism

F ◦H (A)
θH(A)

// G ◦H (A).

28



Properties of the right action (1)

From a diagrammatic point of view, the two equations

(θ2 ∗ θ1) ◦R H = (θ2 ◦R H) ∗ (θ1 ◦R H) 1F ◦R H = 1F◦H

mean that

A H //B
��

GG
//

⇓ θ1

⇓ θ2

C =
A H //B

��
//

⇓ θ1
C

A H
//B GG

//

⇓ θ2

C

A H //B

F

��

F

DD⇓ 1F B = A

F◦H

��

F◦H

CC⇓ 1F◦H B
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Properties of the right action (2)

The two equations mean that

− ◦R H : Trans(B,C ) −→ Trans(A ,C )

θ 7→ θ ◦R H

defines a functor, while the two equations

θ ◦R (H2 ◦H1) = (θ ◦R H2) ◦R H1 θ ◦R idA = θ

mean that ◦R defines an action.
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Compatibility of the left and right actions

Last equation: in the situation

A ′
H1 //A

F
##

⇓θ

G

<<B
H2 //B′

the order in which one makes the functors

H1 : A ′ −→ A H2 : B −→ B′

act on the transformation θ does not matter:

( H2 ◦L θ ) ◦R H1 = H2 ◦L ( θ ◦R H1 )
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Sesqui-category

A sesqui-category D is

[0] a class of objects

[1, 2] equipped with a category

D (A,B)

for every pair of objects (A,B) of the sesqui-category, where

the objects of D (A,B) = the morphisms from A to B

equipped with a pair of actions ◦L and ◦R satisfying...
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Sesqui-categories

equipped with a pair of actions ◦L and ◦R satisfying the equations

h ◦L (θ2 ∗ θ1) = (h ◦L θ2) ∗ (h ◦L θ1) h ◦L 1 f = 1h◦ f
(h1 ◦ h2) ◦L f = h1 ◦L (h2 ◦L f ) idB ◦L θ = θ
(θ2 ∗ θ1) ◦R h = (θ2 ◦R h) ∗ (θ1 ∗R h) 1 f ◦R h = 1 f◦h
θ ◦R (h2 ◦ h1) = (θ ◦R h2) ◦R h1 θ ◦R idA = θ

( h2 ◦L θ ) ◦R h1 = h2 ◦L ( θ ◦R h1 )

Theorem.
Categories, functors and transformations define a sesqui-category.
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The sesqui-category of categories and transformations

Let θ1 and θ2 be two transformations in A

F1
''

⇓θ1

G1

77B

F2
''

⇓θ2

G2

77C

In general, the transformation obtained by applying θ1 then θ2

A

F1
''

⇓θ1 77B

F2
''
C

A

G1

77B
''

⇓θ2

G2

77C

is not the same as the transformation obtained by applying θ1 then θ2:

A

F1
''
B

F2
''

⇓θ2 77C

A
''

⇓θ1

G1

77B

G2

77C
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Natural transformations

A transformation θ : F⇒ G : A −→B

is natural when the diagram

FA

F f

��

θA //GA

G f

��

FB θB //GB

commutes for every morphism f : A −→ B.

Notation. we write

Nat(A ,B)

for the category of functors and natural transformations

θ : F ⇒ G : A −→ B

35



Exchange law

A pair of 2-cells θ1 and θ2 in a sesqui-categorie D

A
F1

&&
⇓θ1

G1

88B
F2

&&
⇓θ2

G2

88C

satisfy the exchange law when the equality

A
F1

&&
⇓θ1 88B

F2
&&C

A
G1

88B &&
⇓θ2

G2

88C
=

A
F1

&&B
F2

&&
⇓θ2 88C

A &&
⇓θ1

G1

88B
G2

88C

holds.

The order in which one applies θ1 and θ2 does not matter.
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Definition

A 2-cell

B ⇓θ2

g2

88

f2
&&C

is called central on the left when the exchange law

A
f1

&&
⇓θ1 88B

f2
&&C

A
g1

88B &&
⇓θ2

g2

88C
=

A
f1

&&B
f2

&&
⇓θ2 88C

A &&
⇓θ1
g1

88B
g2

88C

is satisfied for every 2-cell θ1 of the sesqui-category D .

37



Exercise

Show that in the sesqui-category with

B categories as objects

B functors as 1-cells

B transformations as 2-cells

the natural transformations are the 2-cells central on the left.

Deduce the existence of a functor

Nat(B,C ) ×Nat(A ,B) −→ Nat(A ,C )
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The 2-category of categories

Categories, functors, natural transformations
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2-categories

A 2-category D is a sesqui-category such that
the exchange law is satisfied for every pair of 2-cells

A
f1

&&
⇓θ1
g1

88B
f2

&&
⇓θ2

g2

88C
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2-categories (alternative definition)

A 2-category D is given by

[0] a class of objects

[1, 2] a category D (A,B) for every pair of objects (A,B)

[2, 3, 4] a composition law defined as a functor

◦ : D (B,C) ×D (A,B) −→D (A,C)

[2, 3, 4] an identity defined as a functor

idA : 1 −→D (A,A)

this for all objects A,B,C of the 2-category,
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2-categories (alternative definition)

1— such that the composition law ◦ is associative in the sense that

D (C,D) ×D (B,C) ×D (A,B) ◦ ×D (A,B)
//

D (C,D)× ◦
��

D (B,D) ×D (A,B)

◦

��

D (C,D) ×D (A,C) ◦ //D (A,D)

commutes.

42



2-categories (alternative definition)

2— such that id is a neutral element of ◦ in the sense that

D (A,B)

�

��

D (A,B)

D (A,B) × 1
D (A,B) × idA //D (A,B) ×D (A,A)

◦

OO

and

D (A,B)

�

��

D (A,B)

1 ×D (A,B) idB ×D (A,B)
//D (B,B) ×D (A,B)

◦

OO

commute for all A and B.
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Notation

One writes

θ : f ⇒ g : A −→ B

when

θ : f −→ g

is a morphism of the category D (A,B).
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Godement law

In a 2-category

D (A ,B)

the two canonical ways to compose the 2-cells

⇓α1 ⇓α2

A

f1

��

g1 //

h1

EEB

f2

��

g2 //

h2

EEC

⇓β1 ⇓β2

coincide:

(β2 ∗ α2) ◦ (β1 ∗ α1) = (β2 ◦ β1) ∗ (α2 ◦ α1)
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Suspension

The notion of monoidal category will be defined very soon.

Every strict monoidal category C may be seen as the 2-category Σ(C )

B which contains only one 0-cell,

B whose 1-cells are the 0-cells of C

B whose 2-cells are the 1-cells of C

equipped with the induced composition laws.

A sesqui-category Σ(C ) with one object is
the same thing as a premonoidal category (C ,⊗, I).
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Useful equality
In a 2-category D (A ,B), the two canonical ways to compose the 2-cells

⇓α1 ⇓α2

A

f1

��
g1 //

h1

FFB

f2

��
g2 //

h2

FFC

⇓β1 ⇓β2

commute:
(β2 ∗ α2) ◦ (β1 ∗ α1) = (β2 ◦ β1) ∗ (α2 ◦ α1)
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The 2-category of sets and relations

The 2-category Rel is defined as follows:

B its 0-cells are the sets,

B its 1-cells are the relations between sets,

A
f ·g

//B = A
f

//B
g

//C

relationally composed:

a [ f · g] c ⇐⇒ ∃ b ∈ B, a [ f ] b et b [g] c.

B its 2-cells are inclusions:

A
f

&&
⇓

g
88B ⇐⇒ f ⊆ g

In particular, the categories Rel (A,B) are order categories.
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String diagrams

A notation introduced by Roger Penrose
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String diagrams

Two key ideas

1. apply the Poincaré duality on the original pasting diagrams:

B
G

��
⇓ θ

A

F
77

H
33C

is depicted as
FG

H

θ

θ : G ◦ F ⇒ H
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String diagrams

Two key ideas

2. hide the identity 1-cells in the picture:

B
G

��
⇓ θ

A

F
77

id
22A

is depicted as
FG

θ

θ : G ◦ F ⇒ id
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String diagrams

More generally, a 2-dimensional cell

θ : F1 ◦ · · · ◦ Fp ⇒ G1 ◦ · · · ◦ Gq : A −→ B

is depicted as

F

G

θ



q

F
p

G
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Exercise

Draw the exchange law and explain the connection to concurrency
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