Lambda calculs et catégories

Paul-André Melliès

Master Parisien de Recherche en Informatique

Ecole Normale Supérieure

Synopsis of the lecture

- 1 Categories and functors
- 2 Natural transformations
- 2 The 2-category of categories
- 3 String diagrams

Categories and functors

A concise introduction

Categories

- [0] a class of **objects**
- [1] a class Hom(A, B) of morphisms

 $f : A \longrightarrow B$ for every pair of objects (A, B)

- [2] a composition law \circ : Hom $(B, C) \times$ Hom $(A, B) \longrightarrow$ Hom(A, C)
- [2] an **identity** morphism

$$id_A : A \longrightarrow A$$

for every object A,

Categories

satisfying the following properties:

[3] the composition law \circ is associative:

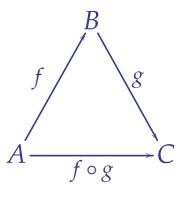
 $\forall f \in \mathbf{Hom}(A, B) \\ \forall g \in \mathbf{Hom}(B, C) \\ \forall h \in \mathbf{Hom}(C, D)$

 $f \circ (g \circ h) = (f \circ g) \circ h$

[3] the morphisms *id* are neutral elements

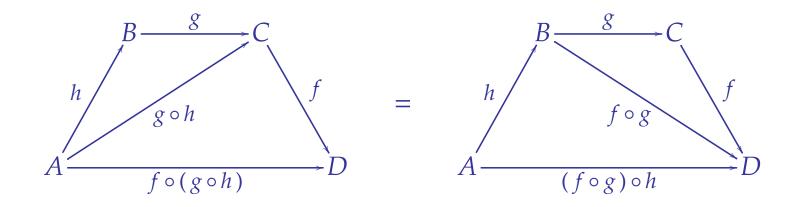
 $\forall f \in \mathbf{Hom}(A, B) \qquad \qquad f \circ id_A = f = id_B \circ f$

A hint of higher-dimensional wisdom



The composition law hides a 2-dimensional simplex

A hint of higher-dimensional wisdom



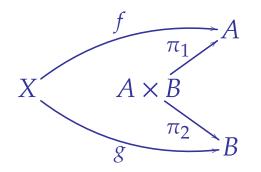
The associativity rule hides a 3-dimensional simplex

Cartesian products

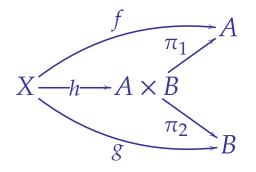
The **cartesian product** of two objects *A* and *B* in a category \mathscr{C} is an object *A* × *B* equipped with two morphisms

 $\pi_1: A \times B \longrightarrow A \qquad \qquad \pi_2: A \times B \longrightarrow B$

such that for every diagram



there exists a unique morphism $h: X \longrightarrow A \times B$ making the diagram



commute.

Examples

1. The cartesian product in the category *Set*

2. The lub $a \wedge b$ of two elements a and b in an ordered set (X, \leq)

3. The cartesian product in the category *Top* of topological spaces and continuous functions

Terminal object

An object 1 is **terminal** in a category ${\mathscr C}$ when

Hom(*A*, **1**)

is a singleton for all objects A.

One may consider 1 as a "nullary" product in \mathscr{C} .

Example 1. the singleton {*} in the categories and ,

Example 2. the maximum of an ordered set (X, \leq)

Cartesian category

A cartesian category is a category & equipped with a product

$A \times B$

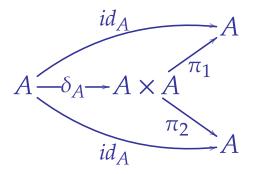
for all pairs A, B of objects, and of a terminal object

1

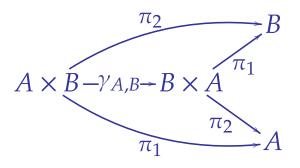
Cartesian categories

In every cartesian category, one finds

- \triangleright weakening maps $\epsilon_A : A \longrightarrow \mathbf{1}$,
- \triangleright diagonal maps $\delta_A : A \longrightarrow A \times A$ obtained as



 \triangleright symmetry maps $\gamma_{A,B}: A \times B \longrightarrow B \times A$ obtained as



Functors

A functor between categories

 $F : \mathscr{C} \longrightarrow \mathscr{D}$

is defined as the following data:

[0] an object FA of \mathscr{D} for every object A of \mathscr{C} ,

[1] a function

 $F_{A,B}$: $\operatorname{Hom}_{\mathscr{C}}(A,B) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(FA,FB)$ for every pair of objects (A,B) of the category \mathscr{C} .

Functors

One requires moreover

[2] that F preserves composition $FA \xrightarrow{Ff} FB \xrightarrow{Fg} FC = FA \xrightarrow{F(g \circ f)} FC$

[2] that *F* preserves the identities

$$FA \xrightarrow{Fid_A} FA = FA \xrightarrow{id_{FA}} FA$$

Illustration [orders]

Every ordered set

 (X, \leq)

defines a category

 $[X,\leq]$

- \triangleright whose objects are the elements of X
- whose hom-sets are defined as

$$Hom(x, y) = \begin{cases} \{*\} & \text{if } x \leq y \\ \emptyset & \text{otherwise} \end{cases}$$

In this category, there exists at most one map between two objects

Illustration [orders]

Exercise: given two ordered sets

 $(X, \leq) \qquad (Y, \leq)$

a functor

 $F \quad : \quad [X, \leq] \quad \longrightarrow \quad [Y, \leq]$

is the same thing as a monotonic function

 $F \quad : \quad (X, \leq) \quad \longrightarrow \quad (Y, \leq)$

between the underlying ordered sets.

Illustration [monoids]

A monoid (M, \cdot, e) is a set M equipped with a binary operation

 $\cdot : M \times M \longrightarrow M$

and a neutral element

 $e \quad : \quad \{*\} \quad \longrightarrow M$

satisfying the two properties below:

Associativity law $\forall x, y, z \in M$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Unit law $\forall x \in M$, $x \cdot e = x = e \cdot x$.

Illustration [monoids]

Key observation: there is a one-to-one relationship $(M, \cdot, e) \mapsto \Sigma(M, \cdot, e)$

between

▷ monoids

categories with one object *

obtained by defining $\Sigma(M, \cdot, e)$ as the category with unique hom-set

 $\Sigma(M,\cdot,e) (*,*) = M$

and composition law and unit defined as

$$g \circ f = g \cdot f \qquad id_* = e$$

Illustration [monoids]

Key observation: given two monoids (M, \cdot, e) (N, \bullet, u) a functor

 $F : \Sigma(M, \cdot, e) \longrightarrow \Sigma(N, \bullet, u)$

is the same thing as a homomorphism

 $f \quad : \quad (M, \cdot, e) \quad \longrightarrow \quad (N, \bullet, u)$

between the underlying monoids.

Recall that a homomorphism is a function f such that

 $\forall x, y \in M, \quad f(x \cdot y) = f(x) \bullet f(y) \qquad \qquad f(e) = u$

Illustration [actions]

The action of a monoid

 (M, \cdot, e)

on a set

Х

is the same thing as a functor

 $\Sigma(M, \cdot, e) \longrightarrow \mathbf{Set}$

Illustration [*representations*]

The action of a monoid

 (M, \cdot, e)

on a vector space

V

is the same thing as a functor

 $\Sigma(M, \cdot, e) \longrightarrow$ **Vect**

Natural transformations

A notion of morphism between functors

Transformations

A transformation

$$\theta \quad : \quad F \xrightarrow{\cdot} G$$

between two functors

$$F, G : \mathscr{A} \longrightarrow \mathscr{B}$$

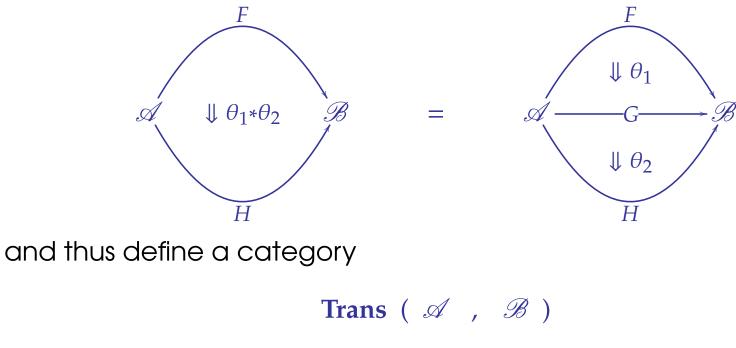
is a family of morphisms

$$(\theta_A: FA \longrightarrow GA)_{A \in Obj(\mathscr{A})}$$

of the category \mathscr{B} indexed by the objects of the category \mathscr{A} .

Vertical composition of transformations

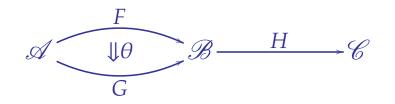
The transformations compose vertically



for all categories \mathscr{A} and \mathscr{B} .

Left action

In the following situation:



the **left action** of the functor H on the transformation

 $\theta \quad : \quad F \quad \longrightarrow \quad G \quad : \quad \mathscr{A} \quad \longrightarrow \quad \mathscr{B}$

is defined as the transformation

 $H \circ_L \theta \quad : \quad H \circ F \quad \longrightarrow \quad H \circ G \quad : \quad \mathscr{A} \quad \longrightarrow \quad \mathscr{C}$

whose instance at object A is defined as the morphism

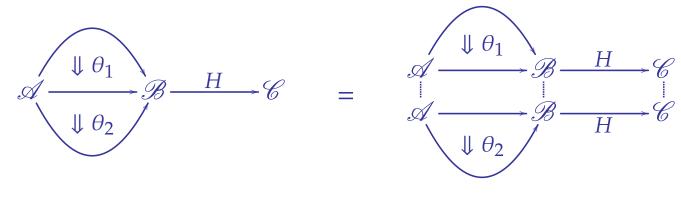
$$H \circ F(A) \longrightarrow H \circ G(A).$$

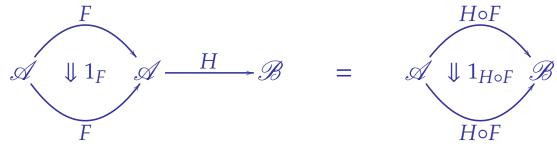
Properties of the left action [1]

From a diagrammatic point of view, the two equations

 $H \circ_L (\theta_2 * \theta_1) = (H \circ_L \theta_2) * (H \circ_L \theta_1) \qquad H \circ_L 1_F = 1_{H \circ F}$

mean that





Properties of the left action (2)

These two equations mean that

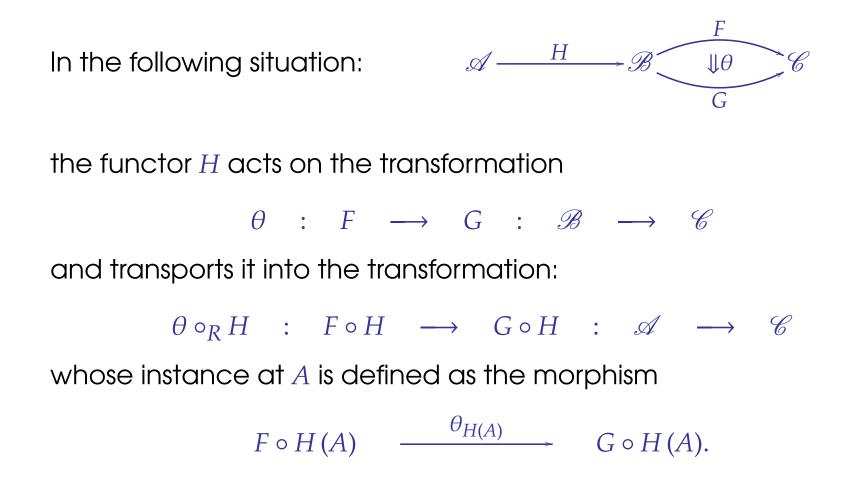
 $H \circ_{L} - : \operatorname{Trans}(\mathscr{A}, \mathscr{B}) \longrightarrow \operatorname{Trans}(\mathscr{A}, \mathscr{C})$ $\theta \longmapsto H \circ_{L} \theta$

defines a functor, while the two equations

 $(H_1 \circ H_2) \circ_L F = H_1 \circ_L (H_2 \circ_L F) \qquad id_{\mathscr{B}} \circ_L \theta = \theta$

mean that \circ_L defines an action.

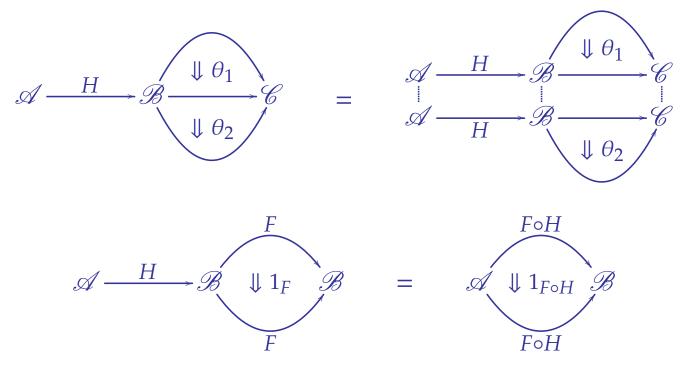
Right action



Properties of the right action (1)

From a diagrammatic point of view, the two equations

 $(\theta_2 * \theta_1) \circ_R H = (\theta_2 \circ_R H) * (\theta_1 \circ_R H) \qquad 1_F \circ_R H = 1_{F \circ H}$ mean that



Properties of the right action (2)

The two equations mean that

$$\begin{split} - \circ_R H &: \operatorname{Trans}(\mathscr{B}, \mathscr{C}) \longrightarrow \operatorname{Trans}(\mathscr{A}, \mathscr{C}) \\ \theta &\mapsto \theta \circ_R H \end{split}$$

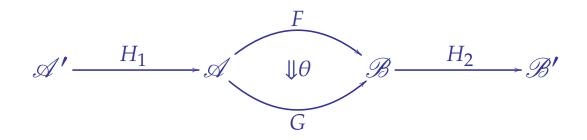
defines a functor, while the two equations

 $\theta \circ_R (H_2 \circ H_1) = (\theta \circ_R H_2) \circ_R H_1 \qquad \theta \circ_R id_{\mathscr{A}} = \theta$

mean that \circ_R defines an action.

Compatibility of the left and right actions

Last equation: in the situation



the order in which one makes the functors

 $H_1 : \mathscr{A}' \longrightarrow \mathscr{A} \qquad H_2 : \mathscr{B} \longrightarrow \mathscr{B}'$ act on the transformation θ does not matter:

 $(H_2 \circ_L \theta) \circ_R H_1 = H_2 \circ_L (\theta \circ_R H_1)$

Sesqui-category

A sesqui-category 河 is

[0] a class of objects

[1,2] equipped with a category

 $\mathcal{D}(A,B)$

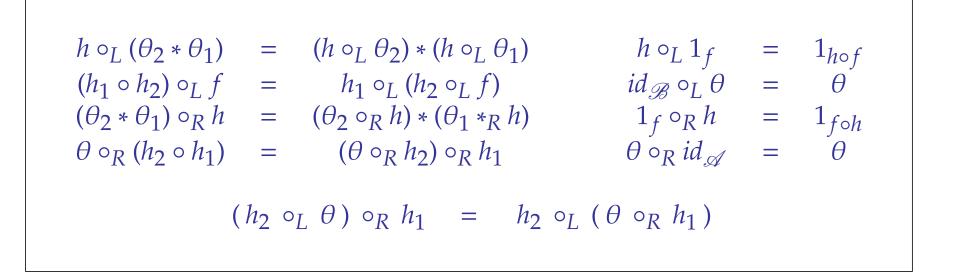
for every pair of objects (A, B) of the sesqui-category, where

the objects of $\mathscr{D}(A, B)$ = the morphisms from A to B

equipped with a pair of actions \circ_L and \circ_R satisfying...

Sesqui-categories

equipped with a pair of actions \circ_L and \circ_R satisfying the equations

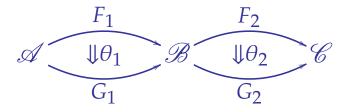


Theorem.

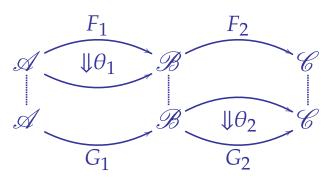
Categories, functors and transformations define a sesqui-category.

The sesqui-category of categories and transformations

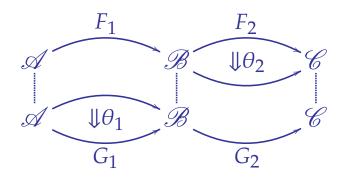
Let θ_1 and θ_2 be two transformations in



In general, the transformation obtained by applying θ_1 then θ_2

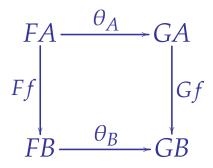


is not the same as the transformation obtained by applying θ_1 then θ_2 :



Natural transformations

A transformation $\theta : F \Rightarrow G : \mathscr{A} \longrightarrow \mathscr{B}$ is **natural** when the diagram



commutes for every morphism $f : A \longrightarrow B$.

Notation. we write

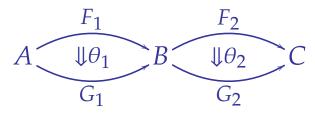
$Nat(\mathscr{A}, \mathscr{B})$

for the category of functors and natural transformations

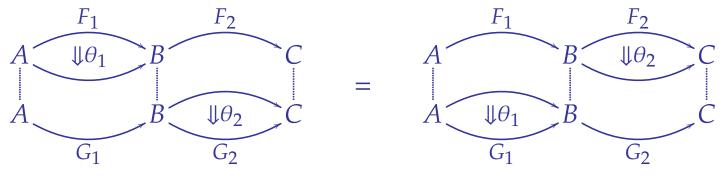
 $\theta \quad : \quad F \quad \Rightarrow \quad G \quad : \quad \mathscr{A} \quad \longrightarrow \quad \mathscr{B}$

Exchange law

A pair of 2-cells θ_1 and θ_2 in a sesqui-categorie \mathscr{D}



satisfy the exchange law when the equality

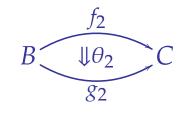


holds.

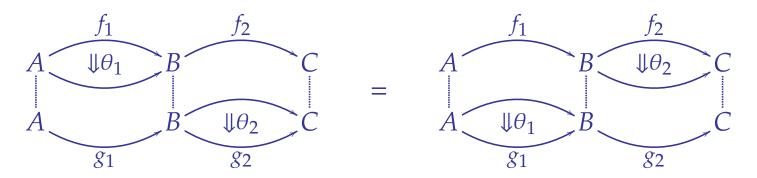
The order in which one applies θ_1 and θ_2 does not matter.

Definition

A 2-cell



is called **central on the left** when the exchange law



is satisfied for every 2-cell θ_1 of the sesqui-category \mathscr{D} .

Exercise

Show that in the sesqui-category with

- categories as objects
- ▷ functors as 1-cells
- ▷ transformations as 2-cells

the natural transformations are the 2-cells central on the left.

Deduce the existence of a functor

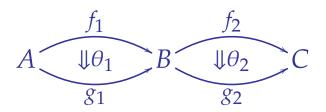
 $\operatorname{Nat}(\mathscr{B}, \mathscr{C}) \times \operatorname{Nat}(\mathscr{A}, \mathscr{B}) \longrightarrow \operatorname{Nat}(\mathscr{A}, \mathscr{C})$

The 2-category of categories

Categories, functors, natural transformations

2-categories

A 2-category \bigcirc is a sesqui-category such that the **exchange law** is satisfied for every pair of 2-cells



2-categories (alternative definition)

A 2-category \bigcirc is given by

- [0] a class of **objects**
- [1,2] a category $\mathscr{D}(A,B)$ for every pair of objects (A,B)

[2,3,4] a **composition law** defined as a functor $\circ: \mathscr{D}(B,C) \times \mathscr{D}(A,B) \longrightarrow \mathscr{D}(A,C)$

[2,3,4] an **identity** defined as a functor $id_A : \mathbb{1} \longrightarrow \mathscr{D}(A,A)$

this for all objects A, B, C of the 2-category,

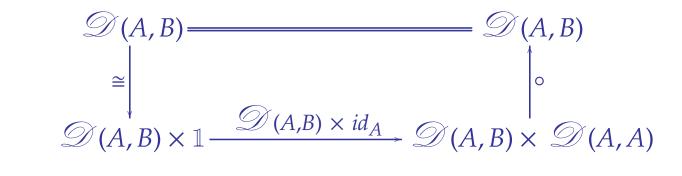
2-categories (alternative definition)

1— such that the composition law \circ is associative in the sense that

commutes.

2-categories (alternative definition)

2— such that *id* is a neutral element of \circ in the sense that



and

$$\begin{array}{c} \widehat{\mathcal{D}}(A,B) & \longrightarrow & \widehat{\mathcal{D}}(A,B) \\ \cong & & & & & & & \\ 1 \times \widehat{\mathcal{D}}(A,B) & \xrightarrow{id_B \times \widehat{\mathcal{D}}(A,B)} & \widehat{\mathcal{D}}(B,B) \times \widehat{\mathcal{D}}(A,B) \end{array}$$

commute for all A and B.

Notation

One writes

$$\theta \quad : \quad f \quad \Rightarrow \quad g \quad : \quad A \longrightarrow B$$

when

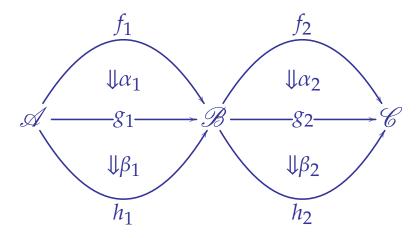
 $\theta : f \longrightarrow g$ is a morphism of the category $\mathscr{D}(A, B)$.

Godement law

In a 2-category

$\mathcal{D}(\mathcal{A},\mathcal{B})$

the two canonical ways to compose the 2-cells



coincide:

$$(\beta_2 * \alpha_2) \circ (\beta_1 * \alpha_1) = (\beta_2 \circ \beta_1) * (\alpha_2 \circ \alpha_1)$$

Suspension

The notion of monoidal category will be defined very soon.

Every strict monoidal category \mathscr{C} may be seen as the 2-category $\Sigma(\mathscr{C})$

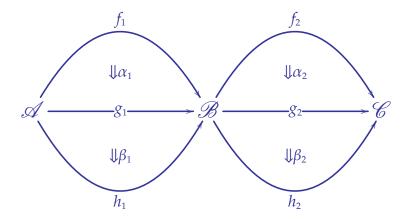
- \triangleright which contains only one 0-cell,
- \triangleright whose 1-cells are the 0-cells of \mathscr{C}
- \triangleright whose 2-cells are the 1-cells of \mathscr{C}

equipped with the induced composition laws.

A sesqui-category $\Sigma(\mathscr{C})$ with one object is the same thing as a premonoidal category $(\mathscr{C}, \otimes, I)$.

Useful equality

In a 2-category $\mathscr{D}(\mathscr{A},\mathscr{B})$, the two canonical ways to compose the 2-cells



commute:

$$(\beta_2 * \alpha_2) \circ (\beta_1 * \alpha_1) = (\beta_2 \circ \beta_1) * (\alpha_2 \circ \alpha_1)$$

The 2-category of sets and relations

The 2-category \mathcal{R}_{ℓ} is defined as follows:

▷ its 0-cells are the sets,

▷ its 1-cells are the relations between sets,

$$A \xrightarrow{f \cdot g} B = A \xrightarrow{f} B \xrightarrow{g} C$$

relationally composed:

 $a [f \cdot g] c \iff \exists b \in B, \quad a [f] b \in b [g] c.$

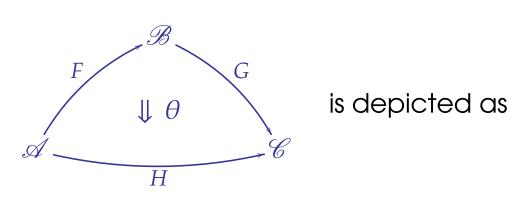
▷ its 2-cells are inclusions:

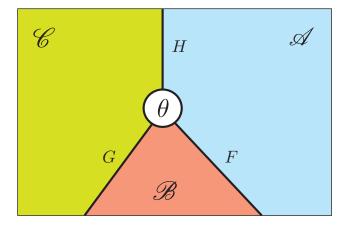
In particular, the categories $\mathcal{Rel}(A, B)$ are order categories.

A notation introduced by Roger Penrose

Two key ideas

1. apply the Poincaré duality on the original pasting diagrams:

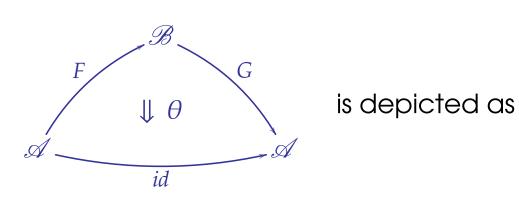


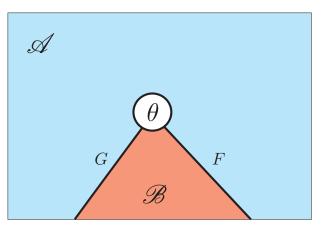


$$\theta \quad : \quad G \circ F \quad \Rightarrow \quad H$$

Two key ideas

2. hide the identity 1-cells in the picture:

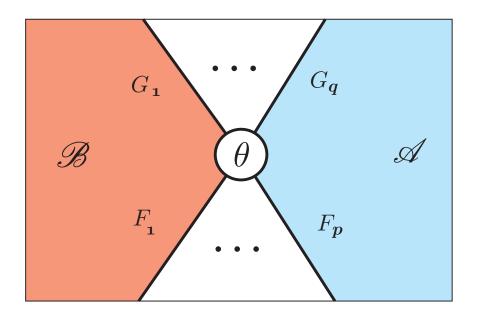




$$\theta \quad : \quad G \circ F \quad \Rightarrow \quad id$$

More generally, a 2-dimensional cell

 $\theta \quad : \quad F_1 \circ \cdots \circ F_p \quad \Rightarrow \quad G_1 \circ \cdots \circ G_q \quad : \quad \mathscr{A} \quad \longrightarrow \quad \mathscr{B}$ is depicted as



Exercise

Draw the exchange law and explain the connection to concurrency

Short bibliography of the course

On categorical semantics of linear logic and 2-categories:

Categorical semantics of linear logic.

Survey published in « Interactive models of computation and program behaviour ». Pierre-Louis Curien, Hugo Herbelin, Jean-Louis Krivine, Paul-André Melliès. Panoramas et Synthèses 27, Société Mathématique de France, 2009.

On string diagrams:

Christian Kassel **Quantum groups** Graduate Texts in Mathematics 155 Springer Verlag 1995.

Peter Selinger **A survey of graphical languages for monoidal categories**. New Structures for Physics Springer Lecture Notes in Physics 813, pp. 289-355, 2011.

Functorial boxes in string diagrams Proceedings of CSL 2006. Lecture Notes in Computer Science 4207.