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1 Multiset ordering
Recall that a multiset M on a set S is defined as a function

M : S →N.

The intuition is that the function M describes how many times each element s ∈ S
appears in the multiset. A multiset M is called finite when its domain

dom(M) = { s ∈ S |M(s) , 0 }

is finite. Notation: we write M = [ a, c, c, c, d, d, d, d ] for the finite multiset

M = a 7→ 1 , b 7→ 0 , c 7→ 3 , d 7→ 4

on the set S = {a, b, c, d}. We also write s ∈ M when M(s) , 0 or equivalently, when
s ∈ dom(M). Given two multisets M, N , we define the multiset M ]N as follows:

M ]N = s 7→M(s) + N(s).

We write M ⊆ N when ∀s ∈ S, M(s) ≤ N(s) and define in that case the multiset M \ N
as follows:

M \N = s 7→M(s)−N(s).

Notation: the set of finite multisets on S is denoted M (S).

We suppose from now on that (S,�) is a partially ordered set. As explained during the
course, we write

M �mset N

for two finite multisets M, N on S, when there exists two finite multisets X, Y such that

N = (M \X) ] Y where ∀y ∈ Y, ∃x ∈ X, x � y.

§1. Given two finite multisets M, N , we write M �mset N when

N = (M \ [ x ]) ] Y

for an element x ∈ M and a finite multiset Y such that ∀y ∈ Y, x � y. Show that the
relation �mset is the smallest partial ordering on finite multisets containing �mset.
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§2. Notation: we find convenient to write M �Y
x N or simply M �x N in the situation de-

scribed in §1 where M�msetN . We want to show that the partial ordering (M (S),�mset) is
well-founded when (S,�) is well-founded. To that purpose, we proceed by contradiction,
and suppose the existence of an infinite decreasing sequence of finite multisets:

M1 �mset M2 �mset M3 �mset M4 �mset . . . �mset Mn �mset . . . (1)

where for the sake of notations:
Mn �Yn

xn
Mn+1.

We construct a family Tn of rooted trees in the following way:

• the rooted tree T1 has a leaf attached to its root ∗ for each element x ∈ M1 with
repetition,

• each rooted tree Tn+1 is obtained from the rooted tree Tn by picking a leaf xn in the
tree Tn and by attaching a leaf to xn for each element y ∈ Yn with repetition.

Illustrate the construction of the trees T1, T2, T3, T4, T5 for the sequence of multisets:

[ a, a, b ] �a [ a, b, b, c ] �b [ a, b, c, c, c, d ] �b [ a, c, c, c, d, d, d, d ]

on the ordered set S = {a, b, c, d} where a � b � c � d. Are there different choices of
construction of that specific sequence of rooted trees?

§3. Deduce from the construction in §2. and König’s lemma that there exists no infinite
sequence (1) when the partial ordering (S,�) is well-founded.

§4. Deduce that the partial ordering (M (S),�mset) is well-founded if and only if the
partial ordering (S,�) is well-founded.

2 Nested multiset ordering
Informally speaking, a nested multiset M ∈M ∗(S) over a base set S is a multiset whose
elements may belong to the base set S, or may be multisets containing both elements
of S and multisets of elements of S, and so on. For example,

[ [ a, a ], [ [ a ], c, d ], a, b ]

is a nested multiset over S = {a, b, c, d}. We are looking for a more formal definition.
Given two disjoint sets S and T , a pointed multiset over S, T is a finite multiset on their
disjoint union S]T which contains at least an element of S. The set of pointed multisets
over S, T is noted

M •(S, T ) ⊆M (S ] T ).
We define a hierarchy of sets

M <k+1(S) M k+1(S)

of nested multisets over the base set S of height strictly less than, and strictly equal to,
k + 1 ∈N. The hierarchies are defined as

M <k+1(S) = M k(S) ]M <k(S) M k+1(S) = M •(M k(S), M <k(S))
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with base case
M <0(S) = ∅ M 0(S) = S.

§1. Suppose that the base set S contains only atoms, and show by induction on k ∈ N
that

M <k(S) =
⊎
p<k

M p(S)

and that M <k(S) and M k(S) are disjoint sets.

§2. From this, deduce that

∀p, q ∈N, p , q ⇒ M p(S) ∩M q(S) = ∅

The set M ∗(S) of nested multisets over the base set S is defined as

M ∗(S) =
⊎

k∈N

M k(S)

§3. We suppose from now on that the base set (S,�) is partially ordered. We define an
ordering on M <k(S) and on M k(S) by induction:

• every element of M k+1(S) is strictly larger than every element of M <k+1(S),

• two nested multisets M, N ∈M <k+1(S) of height k + 1 are ordered by the multiset
ordering of

M k+1(S) ⊆ M (M k(S) ]M <k(S))

Show by induction on k that this defines an ordering relation

M �k
mset N

between nested multisets M, N ∈M k(S) of height k. Deduce the existence of an ordering
relation

M �∗mset N

between nested multisets M, N ∈M ∗(S)

§4. Repeat the argument by induction of §3. to establish that the partial order

(M ∗(S),�∗mset)

on nested multisets is well-founded when the base set (S,�) is well-founded.

3 Battle of Hercules against the hydra
A hydra is a finite rooted tree which may be considered as a finite collection of straight
line segments, each joining two nodes, such that every node is connected by a unique
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path of segments to the root. For example:

head

segment

node

root

A top node of a hydra is one which is a node of only one segment, and is not the root. A
head of the hydra is a top node together with its attached segment.

A battle between Hercules and a given hydra proceeds as follows: at stage n ≥ 1,
Hercules chops off one head from the hydra. The hydra then grows n new heads in the
following manner:

From the node that used to be attached to the head which was just chopped off, tra-
verse one segment towards the root until the next node is reached. From this node sprout
n replicas of the part of the hydra (after decapitation) which is “above” the segment just
traversed, i.e., those nodes and segments from which, in order to reach the root, this
segment would have to be traversed. If the head just chopped off had the root as one of
its nodes, no new head is grown.

Thus the battle might for instance commence like this, assuming that at each stage
Hercules decides to chop off the head marked with an arrow:

after stage 

after stage  after stage 

initial hydra

Hercules wins if after some finite number of stages, nothing is left of the hydra but its
root. A strategy is a function which determines for Hercules which head to chop off at
each stage of any battle.

4



§1. Establish a one-to-one relationship between hydra and nested sequences of finite
multisets, generated by an empty base set S = ∅.

§2. Deduce that every strategy of Hercules is a winning strategy.

4 Well-quasi-orderings and Kruskal theorem
A well-quasi-ordering (wqo) is a partial order (A,�) such that for every infinite sequence

(an)n∈N = a0, a1, . . . , an, . . . (2)

of elements of A, there exists a pair of indices i, j ∈N such that

i < j and ai � aj .

A sequence is called good in that case, and bad otherwise. Hence, a wqo is a partial order
where every infinite sequence is good.
§1. Show that for every sequence (2) of a wqo, there exists an index i ∈ N an an infinite
number of indices j ≥ i such that

ai � aj .

§2. Deduce that for every sequence (2) of a wqo, there exists an infinite subsequence (aϕ(i))i∈N
such that

∀i, j, i < j ⇒ aϕ(i) � aϕ(j).

§3. Apply Ramsey theorem to establish that for every sequence (2) of elements of a
partial order (A,�), one of the following three cases occurs:

• the sequence contains an infinite antichain,

• the sequence contains an infinite increasing subsequence,

• the sequence contains an infinite strictly decreasing subsequence.

§4. Show that a partial order is a wqo if and only if it is well-founded and it does not
contain any infinite antichain.

Given two words u = a1 · · · am and v = b1 · · · bn, one writes

u �emb v

when there exists an injective and monotone function

ϕ : {1, . . . , m} −→ {1, . . . , n}

such that
∀i ∈ {1, . . . , m} ai � bϕ(i).

§5. Check that �emb defines a partial order on finite words.

5



§6. Higman Theorem. Show that �emb defines a wqo on finite words, using the “smallest
counterexample” argument below.

§6a. Proceed by contradiction, and suppose that there exists an infinite bad sequence.
Construct a sequence v in the following way. Start from the index i = 0 and at each
index i, take the shortest word vi such that there exists a bad sequence

v0, . . . , vi, ui+1, ui+2, . . .

Show that the resulting sequence

S = v0, . . . , vi, vi+1, vi+2, . . .

is bad.

§6b. Show that the sequence S does not contain the empty word.

§6c. We write
vi = ai · wi

where ai is the first letter of the word vi, and wi its suffix. There exists an infinite
sequence

∀i, j i < j ⇒ aϕ(i) � aϕ(j)

Consider the corresponding sequence S′ of suffixes

S′ = wϕ(0), · · · , wϕ(n), · · ·

Show that the sequence S′ is bad.

§6d. Deduce a contradiction from the construction of S, and conclude that the embedding
order �emb is a wqo.

Given a partial order on A, the homeomorphic embedding ordering of trees labelled by A
is defined as

a(s1, . . . , sm) �hom b(t1, . . . , tn)

precisely when
a � b

and moreover there exists an injective and monotone function

ϕ : {1, ..., m} −→ {1, ..., n}

such that
∀i ∈ {1, ..., m}, si �hom tj .

§7. Kruskal tree theorem. Adapt the previous argument and establish that �hom is a
wqo on finite trees labelled by A when � is a wqo on A.
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