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Physics

Like physics, logic should be the description of a material event...



The logical phenomenon

What is the topological structure of a dialogue?
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The logical phenomenon

What is the topological structure of a dialogue?



The basic symmetry of logic

The discourse of reason is symmetric between Player and Opponent

Claim: this symmetry is the foundation of logic

Next question: can we reconstruct logic from this basic symmetry?



The microcosm principle

No contradiction (thus no formal logic) can emerge in a tyranny...



A microcosm principle in algebra
|[Baez & Dolan 1997]

The definition of a monoid

M x M — M

requires the ability to define a cartesian product of sets

A , B - AXB

Structure at dimension 0 requires structure at dimension 1



A microcosm principle in algebra
|[Baez & Dolan 1997]

The definition of a cartesian category

¢ X € — ¥

requires the ability to define a cartesian product of categories

o , B — A X B

Structure at dimension 1 requires structure at dimension 2



A similar microcosm principle in logic

The definition of a cartesian closed category

¢ F X C — ©

requires the ability to define the opposite of a category

o > AP

Hence, the “implication” at level 1 requires a “negation” at level 2



An automorphism in Cat

The 2-functor )
op : Cat — Cat?

transports every natural transformation

to a natural transformation in the opposite direction:

FoP
&P @ ki

G

—> requires a braiding on ¥ in the case of ¥ "-enriched categories



Chiralities

A symmetrized account of categories



From categories to chiralities

A slightly bizarre idea emerges in order to reflect the symmetry of logic:

decorrelate the category ¢ from its opposite category ¢ °F

So, let us define a chirality as a pair of categories (<7, %) such that
9 = € B = EF

for some category 4.

Here = means equivalence of category



Chirality
More formally:

Definition:

A chirality is a pair of categories (<7, %) equipped with an equivalence:

“(-)
oS & it B
\()*/



Chirality homomorphisms

Definition. A chirality homomorphism
(1, %) — (95, 5)
is a pair of functors
F. . VQ{l — % Fo . %1

equipped with a natural isomorphism

A L ot
(—)I F f (=)
%Op %Op




Chirality transformations

Definition. A chirality transformation
0 : F = G : (%/ %1) — (%/ %2)

IS a pair of natural transformations



Chirality transformations

satisfying the equality




A technical justification of symmetrization
Let Chir denote the 2-category with

>  chiralities as objects
>  chirality homomorphism as 1-dimensional cells

> chirality transformations as 2-dimensional cells

Proposition. The 2-category Chir is biequivalent to the 2-category Cat.



Cartesian closed chiralities

A symmetrized account of cartesian closed categories



Cartesian chiralities
Definition. A cartesian chirality is a chirality

> whose category .7 has finite products noted

a1 N ap true

> whose category %4 has finite sums noted

b1V by false



Cartesian closed chiralities

Definition. A cartesian closed chirality is a cartesian chirality
(o, A, true) (A, V, false)
equipped with a pseudo-action
V. B X o — o
and a bijection
A (ay Nag,a3) = @/(ay,a, vV az)

natural in a{,a, and as.

Once symmetrized, the definition of a ccc becomes purely algebraic



Dictionary

The pseudo-action

vV : B x o — A

reflects the functor
= : P x € — €
The isomorphisms defining the pseudo-action

(b1 Vby)Vva = byV(byVa) falseVa =

reflect the familiar isomorphisms

(X1 Xx) =y = x1= x>y 1=>x
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Dictionary continued

The isomorphism
A (ay Nag,a3) = o (ap,a] V az)
reflects the familiar isomorphism
dxxyz) = dyx=2z)
Note that the isomorphism
(a1)" V ay - a1 = ap

deserves the name of classical decomposition of the implication...
although we are in a cartesian closed category!



Dictionary continued

So, what distinguishes classical logic from intuitionistic logic...
are not the connectives themselves, but their algebraic structure.

Typically, the disjunction V is:
> a pseudo-action in the case of cartesian closed chiralities,
> a cotensor product ¥ in the case of linear logic,

> atensor product ® in the case of pivotal categories.



Tensorial logic

A primitive logic of tensor and negation



Purpose of tensorial logic
To provide a clear type-theoretic foundation to game semantics
Propositions as types = Propositions as games

based on the idea that

game semantics is a diagrammatic syntax of negation




Double negation monad

Captures the difference between addition as a function

nat X nat = nat

and addition as a sequential algorithm

mmat=1)=> 1L X mat=>1)=> 1L X (nhat=1) = L

This enables to distinguish the left-to-right implementation

lradd = Ap. AP.Ak.@(Ax. ¥ (Ay.k(x+y)))
from the right-to-left implementation

rladd = A@.AY. Ak. Y (Ay.@(Ax.k(x+y)))



The left-to-right addition

—— nat X —— nat = — = nat
question
question
12
question
5
17

lradd = A@. AY.Ak.@ (Ax. ¥ (Ay.k(x+v)))




The right-to-left addition

—— nat X —— nat = — = nat
question
question
5
question
12
17

rladd = A@.AY. Ak Y (Ay.@(Ax.k(x+y)))




tensorial logic

Tensorial logic

= alogic of tensor and negation
= linear logic without A = == A
= the syntax of tensorial negation
= the syntax of dialogue games



Tensorial logic

>  Every sequent of the logic is of the form:

>  Main rules of the logic:

'trA ArB I'yA,B,A+ C
I'\rA®B I' A B, A+ C
I' Ar L I'rA

The primitive kernel of logic



The left-to-right scheduler

Right ®

B .

- (A®B),A + -8B R:_gel}j[[_l
A, B, ~(A&B) r i
B, oAb B oA G
~A®B), A, B P TR -

lrsched = A@.AY. Ak.@(Ax. ¥ (Ay.k(x,v)))



The left-to-right scheduler

- A X - - B = - A®B
question
question
answer
question
answer
answer

lrsched = A@p.AY. Ak.@(Ax. ¢ (Ay.k(x,vy)))




The right-to-left scheduler

A+ A B+ B :
ABFr A®B R'gl_rgf{@
A, B, ~(A®B) r "R

B, - (A®B) r —A
Left —

B,-(A®B), —A r Reigthh
~(A®B), A r ~B 9

~(A®B), m=A, ==B F_ Tgin

rlsched = A@. AY. k.Y (Ay.@(Ax.k(x,y)))



The right-to-left scheduler

- A X - - B = - A®B
question
question
answer
question
answer
answer

rlsched = A@. AY.Ak. Y (Ay.@ (Ax.k(x,y)))




Dialogue categories

A functorial bridge between proofs and knots



Dialogue categories

A monoidal category with a left duality

A natural bijection between the set of maps
A®B — L
and the set of maps

B — A—ol

A familiar situation in tensorial algebra



Dialogue categories

A monoidal category with a right duality

A natural bijection between the set of maps
A®B — L
and the set of maps

A — 1o0B

A familiar situation in tensorial algebra



Dialogue categories
Definition. A dialogue category is a monoidal category % equipped with
> an object L

> two natural bijections

pap : CA®B,1) — C(BA-—ol)

Yap : CA®B,1) — E(A Lo B)



Pivotal dialogue categories

A dialogue category equipped with a family of bijections

wheel yp : C(A®B,1) — % (B®A, 1)
natural in A and B making the diagram

associativity

C(BCO)®A, L) C(AR®(C®B), 1)
wheel A pec wheel g coA
(A (B®()) C(C®A)®B, 1)
associativity associativity

heel
C(A®B)®C, 1)———4%BC __ o(Ce(A®B), 1)
commutes.



Pivotal dialogue categories

The wheel should be understood diagrammatically as:

wheel xy >




The coherence diagram

wheel ; g2 wheel y ,xz

|
L FEE A

S I
< |



An equivalent formulation

A dialogue category equipped with a natural isomorphism

turng : A—-olL — 1lo—A

making the diagram below commute:

1
% %
(L—A)®A B® (B —l1)
turn o turn !
A—ol)®A B® (Lo B)
eval eval

B(A®B) —o 1)@ A—1488  Bo (1o (A®B)®A



Another equivalent formulation

Definition. A pivotal structure is a monoidal natural transformation

T4 : A — (A-—ol)—olL
such that the composite
Aol Mo (A—ol)—ol) A 1 A
is an isomorphism for every object A. Hence, the diagram below commutes
A®B
‘W w
MA,B
(A—ol)ol®(B—oLl)—oL (A®B) o 1) o L

and

tyg=my; : I — (I—ol)—oLl



The free dialogue category

The objects of the category free-dialogue(%’) are the formulas
of tensorial logic:

A B = X | A®B | A—ol | Lo—A | 1

where X is an object of the category @

The morphisms are the proofs of the logic modulo equality.



A proof-as-tangle theorem

Every category ¢ of atomic formulas induces a functor [—] such that

[-]

free-dialogue(%)

AN

where %, is the category 4 extended with an object L.

free-ribbon (%))

€

Theorem. The functor [—] is faithful.

—  a topological foundation for game semantics



An illustration

Imagine that we want to check that the diagram

1Lo— (Lo x) Loty | o (x —o 1)
turn jo—x twisto—(x—ol)
(Lo—x) —o L Lo (x —o1)

commutes in every balanced dialogue category.



An illustration

Equivalently, we want to check that the two derivation trees are equal:

AFA
left o 4 A o1 F 1

Ietﬁ_f[’ A A—olF L
WISL"A A o1 + 1

right - AF Lo—(A—ol)
AFA
left —
A, A—oLlF_L
?{Srlﬁln—g Aol AF L ArA left o
Aol Flo—A 1o—A,AF L cut
braiding ﬁ AJ‘ ‘iti
ghte= o (A =0 1)



An illustration

le];tﬁo A,A—o
E;W.*t’ A, Ao

righto— A F’

eft o 4 jlll—A
braiding Aol At Ar A

right o— Aol A — A AF Ief”:o—
- e cu
braiding

right o— AAI—, AUO_’(_MA'I:O}\

equality of proofs =  equality of tangles




Game semantics in string diagrams



Main theorem

The objects of the free symmetric dialogue category are dialogue games
constructed by the grammar

AB == X | A®B | -A | 1

where X is an object of the category %

The morphisms are total and innocent strategies on dialogue games.

As we will see: proofs become 3-dimensional variants of knots...



An algebraic presentation of dialogue categories

Negation defines a pair of adjoint functors

L

SN

%\J_/Cgop
R

witnessed by the series of bijection:

112

% (A, - B) ¢@B,-A) = E%(=AB)



An algebraic presentation of dialogue chiralities

The algebraic presentation starts by the pair of adjoint functors

R

between the two components .« and % of the dialogue chirality.



The 2-dimensional topology of adjunctions

The unit and counit of the adjunction L 4 R are depicted as

n:ld— RolL c:LoR—1Id
R L
A BE
L R

Opponent move = functor R Proponent move = functor L




A typical proof

Reveals the algebraic nature of game semantics



A purely diagrammatic cut elimination




The 2-dimensional dynamics of adjunctions

Recovers the usual way to compose strategies in game semantics



When a tensor meets a negation...

The continuation monad is strong

(——A)® B — - (A®B)

As Gordon explained, this is the starting point of algebraic effects



Tensor vs. negation
Proofs are generated by a parametric strength
ky : " (X®-"A)®B — (X®-(A®B))
which generalizes the usual notion of strong monad :



Proofs as 3-dimensional string diagrams

The left-to-right proof of the sequent

—|—|A®—|ﬁB - ﬂ—l(A®B)

is depicted as




Tensor vs. negation : conjunctive strength

AN
R 4, {
&lb O /@\
—

B L

B/ \L ‘
B
7\

Al Al AZ

Linear distributivity in a continuation framework



Tensor vs. negation : disjunctive strength

\
L
| L By
2N < qu
—
A R /
‘ A \R
W)
VRN
B4 B, Bq

Linear distributivity in a continuation framework



A factorization theorem

The four proofs n, ¢, «® and x¥ generate every proof of the logic.
Moreover, every such proof

e\K®\ e\ e\ TI\ TI\K® € TI € K® TI TI

AN AN AN AN AN AN AN
7 7 7 7 7 7 7

factors uniquely as

This factorization reflects a Player — Opponent view factorization



Axiom and cut links

The basic building blocks of linear logic



Axiom and cut links

Every map
f @ X — Y

between atoms in the category 4 induces an axiom and a cut combinator:

f cut ax f .
X = — X
y* Y




Equalities between axiom and cut links

cut




Equalities between axiom and cut links




Dialogue chiralities

A symmetric account of dialogue categories



Dialogue chiralities

A dialogue chirality is a pair of monoidal categories

(o, D, true) (%, Q, false)
with a monoidal equivalence
(=)

(=)
together with an adjunction

42/@%

R



Dialogue chiralities

and two natural bijections

X%w,b . (m@®alb)y — (alm"@b)
Xlni,a,b . {(a®m|b)y — <(alb@m")

where the evaluation bracket
(==Y : FdPxPB — Set
Is defined as

(alb) = /(a,RDb)



Dialogue chiralities

These are required to make the diagrams commute:

L

(mon) ®alb) Amen

(a|(m®n)*@b)

[1]

L L
Xm <n®a|m>&@b> Xn

(m®nOa)|b) (aln” @ (m” @ b))



Dialogue chiralities

These are required to make the diagrams commute:

R

(a® (mon)|b) A mon

(alb@ (mon)”)

2]

X X \ .
—(a®Om|bQn*)——(al(b@n*)@m")

(a@m)On|b)



Dialogue chiralities

These are required to make the diagrams commute:

R L

(MmPa)dn|b) (mPalb@n™)y—"—(a|m" @ (b Q@n*))

3]

L R

(m®@dn)|b) (a®n|m* @b)

(a|(m* @ Db)@n*)



Chiralities as Frobenius monoids

A bialgebraic account of dialogue categories



An observation by Day and Street

A Frobenius monoid F is a monoid and a comonoid satisfying

A surprising relationship with *-autonomous categories
discovered by Brian Day and Ross Street.



A symmetric presentation of Frobenius algebras

Key idea. Separate the monoid part
m:AQA — A e:ARA — A
from the comonoid part

m:B— B®B d:B—1

in a Frobenius algebra:

ARQA B



A symmetric presentation of Frobenius algebras

Then, relate A and B by a dual pair

n:1 — B®A ¢ : A®B — 1

in the sense that:

N Wi



A symmetric presentation of Frobenius algebras

Require moreover that the dual pair

(A,m,e) 4 (B,d,u)

relates the algebra structure to the coalgebra structure, in the sense that:

€
€
u
— p— e
n
n




Symmetrically

Relate B and A by a dual pair

n : 1 — BQA ¢ : AQB — 1

this meaning that the equations below hold:




Symmetrically

and ask that the dual pair
A 4 B

relates the coalgebra structure to the algebra structure, in the sense that:




An alternative formulation

Key observation:

A Frobenius monoid is the same thing as such a pair (A, B) equipped with

L

R
between the underlying spaces A and B and...



Frobenius monoids

... satisfying the two equalities below:

Reminiscent of currification in the A-calculus...



Not far from the connection, but...

Idea: the « self-duality » of Frobenius monoids
L
is replaced by an adjunction in dialogue chiralities:
L
(O
R

Key objection: the category % = 7 7 is not dual to the category o7



Categorical bimodules

A bimodule
M : o | B
between categories o7 and % is defined as a functor

M : d%Px% — Set
Composition of two bimodules

o | P | C
is defined by the coend formula:

beX#
M®N : (ac) f M(a,b) X N(b, c)



The coend formula

The coend

be A
f M(a, b) X N(b, c)
Is defined as the sum

[l Ma@b)xNw,o)
b € ob(A)

modulo the equation

(x,h']/) ~ (Xh/y)
for every triple

x € M(a, b) h:b—-U y e N, c)



A well-known 2-categorical miracle

Fact. Every category 4 comes with a biexact pairing
¢ 4 EF
defined as the bimodule
hom : (xy) +— Ay : €Px¥ — Set

in the bicategory BiMod of categorical bimodules.

The opposite category 4 °F becomes dual to the category %




Biexact pairing

Definition. A biexact pairing

o A AB
in @ monoidal bicategory is a pair of 1-dimensional cells

17[1]:%(8%—)[ 8[1]21—%%@%
together with a pair of invertible 2-dimensional cells

< o

B B
" IS
[1] €1
?7[2] 6[2]
- M1] M)
B B




Biexact pairing

such that the composite 2-dimensional cell

€11l €11l €11] €1l

€[a] €la]
2] “l2]
1] 1]
o B of B of B o B

coincides with the identity on the 1-dimensional cell ¢y ,



Biexact pairing

and symmetrically, such that the composite 2-dimensional cell

B A B of B o B A
- [ ©[1] .
[2] [2]
1] 1]

sy M1 (1] M1]

coincides with the identity on the 1-dimensional cell 1y



Amphimonoid
In any symmetric monoidal bicategory like BiMod...

Definition. An amphimonoid is a pseudomonoid

(o, D, true)
and a pseudocomonoid
(A, Q, false)

equipped with a biexact pairing
A A RB

Bialgebraic counterpart to the notion of chirality



Amphimonoid

together with a pair of invertible 2-dimensional cells

o - o
« o of
e
o o o o n "

defining a pseudomonoid equivalence.

Bialgebraic counterpart to the notion of monoidal chirality



Frobenius amphimonoid

Definition. An amphimonoid together with an adjunction

L
771N
and two invertible 2-dimensional cells:
B
X, Xg

o o o o o o

Bialgebraic counterpart to the notion of dialogue chirality



Frobenius amphimonoid

The 1-dimensional cell

L : & - A

may be understood as defining a bracket

(alb)
between the objects .7 and 4 of the bicategory 7.

Each side of the equation implements currification:

XL :(a1®ax|b)=(axla; @b)  xr: (a1 ®ay|b)=>a1|b@a,)



Frobenius amphimonoid

These are required to make the diagrams commute:

L

((mon)®alb) Amcon

(a|(m®n)*@b)

[1]

L L
Xm <n®ﬂ|m*@b> Xn

(m®nOa)|b) (aln” @ (m” @ b))



Frobenius amphimonoid

These are required to make the diagrams commute:

R

(a®mon)|b) A mon

(alb@ (mon)”)

2]

X X \ .
—(a®Om|bQn*)——(al(b@n*)@m")

(a@m)On|b)



Frobenius amphimonoid

These are required to make the diagrams commute:

R L

(MmPa)dn|b) (mPalb@n™)y—"—(a|m" @ (b Q@n*))

3]

L R

(m@P@on)|b) (a®n|m* Q@Db)

(a|(m* @ Db)@n*)



Correspondence theorem

Theorem. A pivotal chirality is the same thing as a Frobenius amphimonoid
in the bicategory BiMod whose 1-dimensional cells

B of B op of OP
~—] hom ~— *
L R \
! * hom
af B of P

are representable, that is, induced by functors.



Tensorial strength formulated in cobordism

o of of o
R R
L L R
— —> L =
R
N L
o o of o 427*% o o

a1 ® RL(ap) F+ RL(a1 © ay)

o/ (RL(a1 ® ap),a) —> /(a1 ® RL(ay),a)



Connection with topology
|dea: interpret tensorial logic in topological field theory with defects.

> Formulas as 1+1 topological field theories with defects

> Tensorial proofs as 2+1 topological field theories with defects

> a coherence theorem including the microcosm?

> what about dialogue 2-categories and 3-categories?



The topological nature of proofs

A topological account of exchange
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The topological nature of proofs
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The topological nature of proofs

A topological account of modus ponens
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The topological nature of proofs
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The topological nature of proofs

A topological account of the tensorial strength



The topological nature of proofs

A topological account of the tensorial strength



The topological nature of proofs

A topological account of the tensorial strength



Thank you




