Dialogue categories and Frobenius monoids

Paul-André Melliès
CNRS \& Université Paris Diderot

Higher topological quantum field theory and categorical quantum mechanics

Erwin Schrödinger Institute
Vienna 19-23 October 2015

Logic

Like physics, logic should be the description of a material event...

The logical phenomenon

What is the topological structure of a dialogue?

The logical phenomenon

What is the topological structure of a dialogue?

The logical phenomenon

What is the topological structure of a dialogue?

The basic symmetry of logic

The discourse of reason is symmetric between Player and Opponent

Claim: this symmetry is the foundation of logic

Next question: can we reconstruct logic from this basic symmetry?

The microcosm principle

No contradiction (thus no formal logic) can emerge in a tyranny...

A microcosm principle in algebra [Baez \& Dolan 1997]

The definition of a monoid

$$
M \times M \quad \longrightarrow \quad M
$$

requires the ability to define a cartesian product of sets

$$
A, B \quad \mapsto \quad A \times B
$$

Structure at dimension 0 requires structure at dimension 1

A microcosm principle in algebra [Baez \& Dolan 1997]

The definition of a cartesian category

requires the ability to define a cartesian product of categories

$$
\mathscr{A}, \mathscr{B} \quad \mapsto \quad \mathscr{A} \times \mathscr{B}
$$

Structure at dimension 1 requires structure at dimension 2

A similar microcosm principle in logic

The definition of a cartesian closed category

requires the ability to define the opposite of a category

$$
\mathscr{A} \mapsto \mathscr{A}^{o p}
$$

Hence, the "implication" at level 1 requires a "negation" at level 2

An automorphism in Cat

The 2-functor

$$
o p: \underline{\text { Cat }} \longrightarrow \quad \text { Cat }^{o p(2)}
$$

transports every natural transformation

to a natural transformation in the opposite direction:

$\longrightarrow \quad$ requires a braiding on \mathscr{V} in the case of \mathscr{V}-enriched categories

Chiralities

A symmetrized account of categories

From categories to chiralities

A slightly bizarre idea emerges in order to reflect the symmetry of logic:
decorrelate the category \mathscr{C} from its opposite category \mathscr{C} op

So, let us define a chirality as a pair of categories $(\mathscr{A}, \mathscr{B})$ such that

$$
\mathscr{A} \cong \mathscr{C} \quad \mathscr{B} \cong \mathscr{C}^{o p}
$$

for some category \mathscr{C}.
Here \cong means equivalence of category

Chirality

More formally:

Definition:

A chirality is a pair of categories $(\mathscr{A}, \mathscr{B})$ equipped with an equivalence:

Chirality homomorphisms

Definition. A chirality homomorphism

$$
\left(\mathscr{A}_{1}, \mathscr{B}_{1}\right) \quad \longrightarrow \quad\left(\mathscr{A}_{2}, \mathscr{B}_{2}\right)
$$

is a pair of functors

$$
F_{\bullet}: \mathscr{A}_{1} \longrightarrow \mathscr{A}_{2} \quad F_{0}: \mathscr{B}_{1} \quad \longrightarrow \mathscr{B}_{2}
$$

equipped with a natural isomorphism

Chirality transformations

Definition. A chirality transformation

$$
\theta: F \Rightarrow G:\left(\mathscr{A}_{1}, \mathscr{B}_{1}\right) \longrightarrow\left(\mathscr{A}_{2}, \mathscr{B}_{2}\right)
$$

is a pair of natural transformations

Chirality transformations

satisfying the equality

A technical justification of symmetrization

Let Chir denote the 2-category with
\triangleright chiralities as objects
$\triangleright \quad$ chirality homomorphism as 1-dimensional cells
$\triangleright \quad$ chirality transformations as 2-dimensional cells

Proposition. The 2-category Chir is biequivalent to the 2-category Cat.

Cartesian closed chiralities

A symmetrized account of cartesian closed categories

Cartesian chiralities

Definition. A cartesian chirality is a chirality
$\triangleright \quad$ whose category \mathscr{A} has finite products noted

$$
a_{1} \wedge a_{2} \quad \text { true }
$$

$\triangleright \quad$ whose category \mathscr{B} has finite sums noted

$$
b_{1} \vee b_{2} \quad \text { false }
$$

Cartesian closed chiralities

Definition. A cartesian closed chirality is a cartesian chirality

$$
(\mathscr{A}, \wedge, \text { true }) \quad(\mathscr{B}, \vee, \text { false })
$$

equipped with a pseudo-action

$$
\vee: \mathscr{B} \times \mathscr{A} \quad \longrightarrow \mathscr{A}
$$

and a bijection

$$
\mathscr{A}\left(a_{1} \wedge a_{2}, a_{3}\right) \cong \mathscr{A}\left(a_{1}, a_{2}^{*} \vee a_{3}\right)
$$

natural in a_{1}, a_{2} and a_{3}.

Once symmetrized, the definition of a ccc becomes purely algebraic

Dictionary

The pseudo-action

$$
V: \mathscr{B} \times \mathscr{A} \quad \longrightarrow \mathscr{A}
$$

reflects the functor

$$
\Rightarrow: \mathscr{C}^{o p} \times \mathscr{C} \quad \longrightarrow \mathscr{C}
$$

The isomorphisms defining the pseudo-action

$$
\left(b_{1} \vee b_{2}\right) \vee a \cong b_{1} \vee\left(b_{2} \vee a\right) \quad \text { false } \vee a \cong a
$$

reflect the familiar isomorphisms

$$
\left(x_{1} \times x_{2}\right) \Rightarrow y \cong x_{1} \Rightarrow\left(x_{2} \Rightarrow y\right) \quad 1 \Rightarrow x \cong x
$$

Dictionary continued

The isomorphism

$$
\mathscr{A}\left(a_{1} \wedge a_{2}, a_{3}\right) \cong \mathscr{A}\left(a_{2}, a_{1}^{*} \vee a_{3}\right)
$$

reflects the familiar isomorphism

$$
\mathscr{A}(x \times y, z) \cong \mathscr{A}(y, x \Rightarrow z)
$$

Note that the isomorphism

$$
\left(a_{1}\right)^{*} \vee a_{2} \quad \cong \quad a_{1} \Rightarrow a_{2}
$$

deserves the name of classical decomposition of the implication... although we are in a cartesian closed category!

Dictionary continued

So, what distinguishes classical logic from intuitionistic logic... are not the connectives themselves, but their algebraic structure.

Typically, the disjunction \vee is:
$\triangleright \quad$ a pseudo-action in the case of cartesian closed chiralities,
$\triangleright \quad$ a cotensor product -8 in the case of linear logic,
$\triangleright \quad$ a tensor product \otimes in the case of pivotal categories.

Tensorial logic

A primitive logic of tensor and negation

Purpose of tensorial logic

To provide a clear type-theoretic foundation to game semantics

$$
\text { Propositions as types } \quad \Leftrightarrow \quad \text { Propositions as games }
$$

based on the idea that

> game semantics is a diagrammatic syntax of negation

Double negation monad

Captures the difference between addition as a function

$$
\text { nat } \times \text { nat } \quad \Rightarrow \quad \text { nat }
$$

and addition as a sequential algorithm

$$
(\text { nat } \Rightarrow \perp) \Rightarrow \perp \quad \times \quad(\text { nat } \Rightarrow \perp) \Rightarrow \perp \quad \times \quad(\text { nat } \Rightarrow \perp) \quad \Rightarrow \quad \perp
$$

This enables to distinguish the left-to-right implementation

$$
\operatorname{lradd}=\lambda \varphi \cdot \lambda \psi \cdot \lambda k \cdot \varphi(\lambda x \cdot \psi(\lambda y \cdot k(x+y)))
$$

from the right-to-left implementation

$$
\text { rladd }=\lambda \varphi \cdot \lambda \psi \cdot \lambda k \cdot \psi(\lambda y \cdot \varphi(\lambda x \cdot k(x+y)))
$$

The left-to-right addition

| $\neg \neg$ nat | $\times \quad \neg \neg$ nat | \Rightarrow |
| :---: | :---: | :---: | | question
 12 | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| | |

$$
\operatorname{lradd}=\lambda \varphi \cdot \lambda \psi \cdot \lambda k \cdot \varphi(\lambda x \cdot \psi(\lambda y \cdot k(x+y)))
$$

The right-to-left addition

$\neg \neg$ nat	\times	$\neg \neg$ nat	\Rightarrow	$\neg \neg$ nat
		$\begin{gathered} \text { question } \\ 5 \end{gathered}$		question
$\begin{gathered} \text { question } \\ 12 \end{gathered}$				
				17

$$
\text { rladd }=\lambda \varphi \cdot \lambda \psi \cdot \lambda k \cdot \psi(\lambda y \cdot \varphi(\lambda x \cdot k(x+y)))
$$

Tensorial logic

tensorial logic $=$ a logic of tensor and negation
$=$ linear logic without $A \cong \neg \neg A$
$=$ the syntax of tensorial negation
$=$ the syntax of dialogue games

Tensorial logic

\triangleright Every sequent of the logic is of the form:

\triangleright Main rules of the logic:

$$
\begin{aligned}
\frac{\Gamma \vdash A \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} & \frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, A \otimes B, \Delta \vdash C} \\
\frac{\Gamma, A \vdash \perp}{\Gamma \vdash \neg A} & \frac{\Gamma \vdash A}{\Gamma, \neg A \vdash \perp}
\end{aligned}
$$

The primitive kernel of logic

The left-to-right scheduler

$$
\begin{aligned}
& \text { lrsched }=\lambda \varphi \cdot \lambda \psi \cdot \lambda k \cdot \varphi(\lambda x \cdot \psi(\lambda y \cdot k(x, y)))
\end{aligned}
$$

The left-to-right scheduler

$\neg \neg A$		
question answer	$\times \quad \neg \neg B \quad \Rightarrow \quad$ question answer	 question
answer		

The right-to-left scheduler

$$
\begin{aligned}
& \text { rlsched }=\lambda \varphi \cdot \lambda \psi \cdot \lambda k \cdot \psi(\lambda y \cdot \varphi(\lambda x \cdot k(x, y)))
\end{aligned}
$$

The right-to-left scheduler

Dialogue categories

A functorial bridge between proofs and knots

Dialogue categories

A monoidal category with a left duality

A natural bijection between the set of maps

$$
\begin{aligned}
& A \otimes B \quad \longrightarrow \quad \perp \\
& \text { and the set of maps } \\
& B \quad \longrightarrow \quad A \multimap \perp
\end{aligned}
$$

A familiar situation in tensorial algebra

Dialogue categories

A monoidal category with a right duality

A natural bijection between the set of maps

$$
\begin{gathered}
A \otimes B \quad \longrightarrow \quad \perp \\
\text { and the set of maps } \\
A \quad \longrightarrow \quad \perp \circ-B
\end{gathered}
$$

A familiar situation in tensorial algebra

Dialogue categories

Definition. A dialogue category is a monoidal category \mathscr{C} equipped with
\triangleright an object \perp
\triangleright two natural bijections

$$
\begin{aligned}
& \varphi_{A, B}: \mathscr{C}(A \otimes B, \perp) \quad \longrightarrow \quad \mathscr{C}(B, A \multimap \perp) \\
& \psi_{A, B}: \mathscr{C}(A \otimes B, \perp) \quad \longrightarrow \quad \mathscr{C}(A, \perp \circ B)
\end{aligned}
$$

Pivotal dialogue categories

A dialogue category equipped with a family of bijections

$$
\text { wheel }_{A, B} \quad: \quad \mathscr{C}(A \otimes B, \perp) \quad \longrightarrow \quad \mathscr{C}(B \otimes A, \perp)
$$

natural in A and B making the diagram

commutes.

Pivotal dialogue categories

The wheel should be understood diagrammatically as:

The coherence diagram

An equivalent formulation

A dialogue category equipped with a natural isomorphism

$$
\operatorname{turn}_{A}: A \multimap \perp \quad \longrightarrow \quad \perp \circ-A
$$

making the diagram below commute:

Another equivalent formulation

Definition. A pivotal structure is a monoidal natural transformation

$$
\tau_{A}: A \quad \longrightarrow \quad(A \multimap \perp) \multimap \perp
$$

such that the composite

$$
A \multimap \perp \xrightarrow{\eta_{A-\perp}} \quad \perp \circ((A \multimap \perp) \multimap \perp) \quad \xrightarrow{\tau_{A}} \quad \perp \circ-A
$$

is an isomorphism for every object A. Hence, the diagram below commutes

and

$$
\tau_{I}=m_{I} \quad: \quad I \quad \longrightarrow \quad(I \multimap \perp) \multimap \perp
$$

The free dialogue category

The objects of the category free-dialogue (\mathscr{C}) are the formulas of tensorial logic:

$$
A, B \quad::=X|A \otimes B| A \multimap \perp|\perp \circ A| 1
$$

where X is an object of the category \mathscr{C}.

The morphisms are the proofs of the logic modulo equality.

A proof-as-tangle theorem

Every category \mathscr{C} of atomic formulas induces a functor [-] such that

where \mathscr{C}_{\perp} is the category \mathscr{C} extended with an object \perp.
Theorem. The functor [-] is faithful.
\longrightarrow a topological foundation for game semantics

An illustration

Imagine that we want to check that the diagram

commutes in every balanced dialogue category.

An illustration

Equivalently, we want to check that the two derivation trees are equal:

$$
\begin{aligned}
& \text { left }-\frac{A \vdash A}{A, A-0 \perp \vdash \perp} \\
& \begin{array}{l}
\text { braiding } \\
\text { right } \\
A \rightarrow A \rightarrow \perp, A \vdash \perp
\end{array} \\
& \text { right o- }
\end{aligned}
$$

An illustration

equality of proofs \Longleftrightarrow equality of tangles

Game semantics in string diagrams

Main theorem

The objects of the free symmetric dialogue category are dialogue games constructed by the grammar

$$
A, B \quad::=\quad X \quad|A \otimes B| \neg A \mid 1
$$

where X is an object of the category \mathscr{C}.
The morphisms are total and innocent strategies on dialogue games.

As we will see: proofs become 3-dimensional variants of knots...

An algebraic presentation of dialogue categories

Negation defines a pair of adjoint functors

witnessed by the series of bijection:

$$
\mathscr{C}(A, \neg B) \cong \mathscr{C}(B, \neg A) \cong \mathscr{C}^{\circ p}(\neg A, B)
$$

An algebraic presentation of dialogue chiralities

The algebraic presentation starts by the pair of adjoint functors

between the two components \mathscr{A} and \mathscr{B} of the dialogue chirality.

The 2-dimensional topology of adjunctions

The unit and counit of the adjunction $L \dashv R$ are depicted as

$$
\eta: I d \longrightarrow R \circ L
$$

$$
\varepsilon: L \circ R \longrightarrow I d
$$

Opponent move $=$ functor R
Proponent move $=$ functor L

A typical proof

Reveals the algebraic nature of game semantics

A purely diagrammatic cut elimination

The 2-dimensional dynamics of adjunctions

Recovers the usual way to compose strategies in game semantics

When a tensor meets a negation...

The continuation monad is strong

$$
(\neg \neg A) \otimes B \longrightarrow \neg \neg(A \otimes B)
$$

As Gordon explained, this is the starting point of algebraic effects

Tensor vs. negation

Proofs are generated by a parametric strength

$$
\kappa_{X} \quad: \quad \neg(X \otimes \neg A) \otimes B \longrightarrow \neg(X \otimes \neg(A \otimes B))
$$

which generalizes the usual notion of strong monad :

$$
\mathcal{\kappa}: \quad \neg \neg A \otimes B \longrightarrow \neg \neg(A \otimes B)
$$

Proofs as 3-dimensional string diagrams

The left-to-right proof of the sequent

$$
\neg \neg A \otimes \neg \neg B \quad \vdash \quad \neg \neg(A \otimes B)
$$

is depicted as

Tensor vs. negation : conjunctive strength

Linear distributivity in a continuation framework

Tensor vs. negation : disjunctive strength

Linear distributivity in a continuation framework

A factorization theorem

The four proofs $\eta, \epsilon, \kappa^{\otimes}$ and κ^{\otimes} generate every proof of the logic. Moreover, every such proof

$$
X \xrightarrow{\epsilon} \xrightarrow{\kappa^{\infty}} \xrightarrow{\epsilon} \xrightarrow{\epsilon} \xrightarrow{\eta} \xrightarrow{\eta} \xrightarrow{\kappa^{\varnothing}} \xrightarrow{\epsilon} \xrightarrow{\eta} \xrightarrow{\epsilon} \xrightarrow{\kappa^{\varnothing}} \xrightarrow{\eta} \text { Z }
$$

factors uniquely as

$$
X \xrightarrow{\kappa^{\otimes}} \xrightarrow{\epsilon} \xrightarrow{\eta} \mathrm{K}
$$

This factorization reflects a Player - Opponent view factorization

Axiom and cut links

The basic building blocks of linear logic

Axiom and cut links

Every map

$$
f: X \quad \longrightarrow \quad Y
$$

between atoms in the category \mathscr{C} induces an axiom and a cut combinator:

Equalities between axiom and cut links

Equalities between axiom and cut links

Dialogue chiralities

A symmetric account of dialogue categories

Dialogue chiralities

A dialogue chirality is a pair of monoidal categories

$$
(\mathscr{A}, \otimes, \text { true }) \quad(\mathscr{B}, \mathbb{Q}, \text { false })
$$

with a monoidal equivalence

together with an adjunction

Dialogue chiralities

and two natural bijections

$$
\begin{array}{llll}
\chi_{m, a, b}^{L} & :\langle m \otimes a \mid b\rangle & \longrightarrow\left\langle a \mid m^{*} \otimes b\right\rangle \\
\chi_{m, a, b}^{R} & :\langle a \otimes m \mid b\rangle & \longrightarrow & \left\langle a \mid b \otimes m^{*}\right\rangle
\end{array}
$$

where the evaluation bracket

$$
\langle-\mid-\rangle: \mathscr{A}^{O P} \times \mathscr{B} \quad \longrightarrow \quad \text { Set }
$$

is defined as

$$
\langle a \mid b\rangle:=\mathscr{A}(a, R b)
$$

Dialogue chiralities

These are required to make the diagrams commute:

Dialogue chiralities

These are required to make the diagrams commute:

Dialogue chiralities

These are required to make the diagrams commute:

Chiralities as Frobenius monoids

A bialgebraic account of dialogue categories

An observation by Day and Street

A Frobenius monoid F is a monoid and a comonoid satisfying

A surprising relationship with *-autonomous categories discovered by Brian Day and Ross Street.

A symmetric presentation of Frobenius algebras

Key idea. Separate the monoid part

$$
m: A \otimes A \longrightarrow A \quad e: A \otimes A \longrightarrow A
$$

from the comonoid part

$$
m: B \longrightarrow B \otimes B \quad d: B \longrightarrow I
$$

in a Frobenius algebra:

A symmetric presentation of Frobenius algebras

Then, relate A and B by a dual pair

$$
\eta: I \longrightarrow B \otimes A \quad \varepsilon: A \otimes B \longrightarrow I
$$

in the sense that:

A symmetric presentation of Frobenius algebras

Require moreover that the dual pair

$$
(A, m, e) \nsucc(B, d, u)
$$

relates the algebra structure to the coalgebra structure, in the sense that:

Symmetrically

Relate B and A by a dual pair

$$
\eta^{\prime}: I \longrightarrow B \otimes A \quad \varepsilon^{\prime}: A \otimes B \longrightarrow I
$$

this meaning that the equations below hold:

Symmetrically

and ask that the dual pair

$$
A \quad \dashv \quad B
$$

relates the coalgebra structure to the algebra structure, in the sense that:

An alternative formulation

Key observation:

A Frobenius monoid is the same thing as such a pair (A, B) equipped with

between the underlying spaces A and B and...

Frobenius monoids

... satisfying the two equalities below:

Reminiscent of currification in the λ-calculus...

Not far from the connection, but...

Idea: the «self-duality » of Frobenius monoids

is replaced by an adjunction in dialogue chiralities:

Key objection: the category $\mathscr{B} \cong \mathscr{A}^{o p}$ is not dual to the category \mathscr{A}.

Categorical bimodules

A bimodule

$$
M: \mathscr{A} \longrightarrow \mathscr{B}
$$

between categories \mathscr{A} and \mathscr{B} is defined as a functor

$$
M: \mathscr{A}^{o p} \times \mathscr{B} \quad \longrightarrow \text { Set }
$$

Composition of two bimodules

is defined by the coend formula:

$$
M \circledast N \quad: \quad(a, c) \quad \mapsto \quad \int^{b \in \mathscr{B}} M(a, b) \times N(b, c)
$$

The coend formula

The coend

$$
\int^{b \in \mathscr{B}} M(a, b) \times N(b, c)
$$

is defined as the sum

$$
\coprod_{b \in o b(\mathscr{B})} M(a, b) \times N(b, c)
$$

modulo the equation

$$
(x, h \cdot y) \sim(x \cdot h, y)
$$

for every triple

$$
x \in M(a, b) \quad h: b \rightarrow b^{\prime} \quad y \in N\left(b^{\prime}, c\right)
$$

A well-known 2-categorical miracle

Fact. Every category \mathscr{C} comes with a biexact pairing

$$
\mathscr{C} \not \mathscr{C}^{o p}
$$

defined as the bimodule

$$
\text { hom : }(x, y) \mapsto \mathscr{A}(x, y): \mathscr{C}^{o p} \times \mathscr{C} \quad \longrightarrow \text { Set }
$$

in the bicategory BiMod of categorical bimodules.

The opposite category $\mathscr{C}{ }^{o p}$ becomes dual to the category \mathscr{C}

Biexact pairing

Definition. A biexact pairing

$$
\mathscr{A}+\mathscr{B}
$$

in a monoidal bicategory is a pair of 1-dimensional cells

$$
\eta_{[1]}: \mathscr{A} \otimes \mathscr{B} \longrightarrow I \quad \varepsilon_{[1]}: I \longrightarrow \mathscr{B} \otimes \mathscr{A}
$$

together with a pair of invertible 2-dimensional cells

Biexact pairing

such that the composite 2-dimensional cell

coincides with the identity on the 1 -dimensional cell $\varepsilon_{[1]}$,

Biexact pairing

and symmetrically, such that the composite 2-dimensional cell

coincides with the identity on the 1-dimensional cell $\eta_{[1]}$.

Amphimonoid

In any symmetric monoidal bicategory like BiMod...
Definition. An amphimonoid is a pseudomonoid

$$
(\mathscr{A}, \otimes, \text { true })
$$

and a pseudocomonoid

$$
(\mathscr{B}, \otimes, \text { false })
$$

equipped with a biexact pairing

$$
\mathscr{A}+\mathscr{B}
$$

Amphimonoid

together with a pair of invertible 2-dimensional cells

defining a pseudomonoid equivalence.

Bialgebraic counterpart to the notion of monoidal chirality

Frobenius amphimonoid

Definition. An amphimonoid together with an adjunction

and two invertible 2-dimensional cells:

Bialgebraic counterpart to the notion of dialogue chirality

Frobenius amphimonoid

The 1-dimensional cell

$$
L: \mathscr{A} \rightarrow \mathscr{B}
$$

may be understood as defining a bracket

$$
\langle a \mid b\rangle
$$

between the objects \mathscr{A} and \mathscr{B} of the bicategory \mathscr{V}.

Each side of the equation implements currification:

$$
\chi_{L}:\left\langle a_{1} \otimes a_{2} \mid b\right\rangle \Rightarrow\left\langle a_{2} \mid a_{1}^{*} \otimes b\right\rangle \quad \chi_{R}:\left\langle a_{1} \otimes a_{2} \mid b\right\rangle \Rightarrow\left\langle a_{1} \mid b \otimes a_{2}^{*}\right\rangle
$$

Frobenius amphimonoid

These are required to make the diagrams commute:

Frobenius amphimonoid

These are required to make the diagrams commute:

Frobenius amphimonoid

These are required to make the diagrams commute:

Correspondence theorem

Theorem. A pivotal chirality is the same thing as a Frobenius amphimonoid in the bicategory BiMod whose 1-dimensional cells

are representable, that is, induced by functors.

Tensorial strength formulated in cobordism

Connection with topology

Idea: interpret tensorial logic in topological field theory with defects.
\triangleright Formulas as $1+1$ topological field theories with defects
\triangleright Tensorial proofs as $2+1$ topological field theories with defects
\triangleright a coherence theorem including the microcosm?
\triangleright what about dialogue 2-categories and 3-categories?

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of exchange

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of modus ponens

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

The topological nature of proofs

A topological account of the tensorial strength

Thank you

