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Rewriting paths modulo homotopy

An algebraic and topological notion of confluence
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The λ-calculus with explicit substitutions

Terms M ::= 1 | MN | λM | M[s]

Substitutions s ::= id | ↑ | M · s | s ◦ t

Key idea: replace the β-rule of the λ-calculus

(λx.M) N −→ M [x := N]

by the Beta-rule of the λσ-calculus

(λM) N −→ M [N · id]

where the substitution is explicit – and thus similar to a closure.
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The eleven rewriting rules of the λσ-calculus

Beta (λM)N → M[N · id]

App (MN)[s] → M[s]N[s]
Abs (λM)[s] → λ(M[1 · (s ◦ ↑)])
Clos M[s][t] → M[s ◦ t]

VarCons 1[M · s] → M
VarId 1[id] → 1

Map (M · s) ◦ t → M[t] · (s ◦ t)
IdL id ◦ s → s
Ass (s1 ◦ s2) ◦ s3 → s1 ◦ (s2 ◦ s3)

Shi f tCons ↑ ◦ (M · s) → s
Shi f tId ↑ ◦ id → ↑
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The eleven critical pairs of the λσ-calculus

App + Beta (λM)[s](N[s])
App
← ((λM)N)[s] Beta

→ M[N · id][s]

Clos + App (MN)[s ◦ t] Clos
← (MN)[s][t]

App
→ (M[s](N[s]))[t]

Clos + Abs (λM)[s ◦ t] Clos
← (λM)[s][t] Abs

→ (λ(M[1 · s ◦ ↑]))[t]

Clos + VarId 1[id ◦ s] Clos
← 1[id][s] VarId

→ 1[s]

Clos + VarCons 1[(M · s) ◦ t] Clos
← 1[M · s][t] VarCons

→ M[t]

Clos + Clos M[s][t ◦ t′] Clos
← M[s][t][t′] Clos

→ M[s ◦ t][t′]

Ass +Map (M · s) ◦ (t ◦ t′) Ass
← ((M · s) ◦ t) ◦ t′

Map
→ (M[t] · s ◦ t) ◦ t′

Ass + IdL id ◦ (s ◦ t) Ass
← (id ◦ s) ◦ t IdL

→ s ◦ t

Ass + Shi f tId ↑ ◦ (id ◦ s) Ass
← (↑ ◦ id) ◦ s

Shi f tId
→ ↑ ◦ s

Ass + Shi f tCons ↑ ◦ ((M · s) ◦ t) Ass
← (↑ ◦ (M · s)) ◦ t

Shi f tCons
→ s ◦ t

Ass + Ass (s ◦ s′) ◦ (t ◦ t′) Ass
← ((s ◦ s′) ◦ t) ◦ t′ Ass

→ (s ◦ (s′ ◦ t)) ◦ t′
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A very dangerous critical pair

((λP)Q)[s]

Beta

��

App
// (λP)[s]Q[s] Lam // (λ(P[1 · s ◦ ↑]))Q[s]

Beta

��

P[Q · id][s]

Clos+Map

��

P[1 · s ◦ ↑][Q[s] · id]

Clos+Map

��

P[Q[s] · id ◦ s]

IdL

��

P[Q[s] · (s ◦ ↑) ◦ (Q[s] · id)]

Ass+Shi f t

��

P[Q[s] · s] P[Q[s] · (s ◦ id)]when s=M1·M2·····Mn·id
and the M′

is are in σ−normal f orm
oo

This critical pair leads to a counter-example to strong normalization
in the simply-typed λσ-calculus (TLCA 1995).
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A fundamental problem

Hence, one main challenge of Rewriting Theory:

Classify the rewriting paths from a term P to its normal form Q

P Q

f

g

Very complicated in the case of the λσ-calculus...
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I. Permutation tiles

A geometric account of redex permutations
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A key observation

Theorem [Lévy 1978]

In the λ-calculus, every two paths to the normal form

P Q

f

g

are equal modulo a series of β-redex permutations:

P ∼ Q

f

g
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A geometric intuition

It is nice and clarifying to think of

the redex permutation
equivalence

between f and g in a geometric way as

a homotopy relation
between rewriting paths

This intuition can be made rigorous mathematically
using Albert Burroni’s notion of polygraph.
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Permutation tiles [1]

MQ

PQ

PN

MN

u′

u v′

v

the redex
u : M→ P

and the redex
v : N→ Q

are independent
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Permutation tiles [2]

y

(λx.y)P

(λx.y)M

u′v

u

the outer redex
u : (λx.y) M→ y

erases
the inner redex

v : M→ P
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Permutation tiles [3]

MP

(λx.xx)P

PP

MM

(λx.xx)M

u′

v2

v1

u

v

the outer redex
u : (λx.xx) M→MM

duplicates
the inner redex

v : M→ P
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Illustration of the theorem

There is a 2-dimensional hole in the λ-calculus

(λy.y)z

(λx.x)z
(λx.x)(λy.y)z

v

u

because the outer redex

u : (λx.x) (λy.y) z −→ (λy.y) z

is not equivalent modulo homotopy to the inner redex

v : (λx.x) (λy.y) z −→ (λx.x) z
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Illustration of the theorem

When one extends the two redexes u and v with w

z

(λx.x)z

(λx.x)(λy.y)z

v

w

u

the resulting rewriting paths u · w and v · w are normalizing
and thus equivalent modulo homotopy!
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In the λσ-calculus...

Critical pairs like

((λP)Q)[s]

Beta

��

App
// (λP)[s]Q[s] Lam // (λ(P[1 · s ◦ ↑]))Q[s]

Beta

��

P[Q · id][s]

Clos+Map

��

P[1 · s ◦ ↑][Q[s] · id]

Clos+Map

��

P[Q[s] · id ◦ s]

IdL

��

P[Q[s] · (s ◦ ↑) ◦ (Q[s] · id)]

Ass+Shi f t

��

P[Q[s] · s] P[Q[s] · (s ◦ id)]when s=M1·M2·····Mn·id
and the M′

is are in σ−normal f orm
oo

generate 2-dimensional holes in the rewriting geometry
and thus obstructions to homotopy equivalence...
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A bridge between λσ and λ

Key theorem [Abadi-Cardelli-Curien-Lévy 1990]

Every rewriting path between λσ-terms

f : P Q

induces a rewriting path (modulo homotopy)

σ( f ) : σ(P) σ(Q)

between the underlying λ-terms.

Moreover, the translation preserves homotopy equivalence:

f ∼λσ g ⇒ σ( f ) ∼λ σ(g)
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A remarkable consequence

Fact. Two rewriting paths in the λσ-calculus

P Q

f

g

are transported to the same homotopy class of rewriting paths

σ(P) ∼λ σ(Q)

σ( f )

σ(g)

when the λσ-term Q is in normal form.
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What about head-normal forms?

Can we classify the head-rewriting paths of the λσ-calculus?

This requires to resolve two very serious difficulties:

B define a general notion of head-rewriting path
B for a term rewriting system admitting critical pairs

B establish that every head-rewriting path in the λσ-calculus

f : P V

B is transported to a head-rewriting path

σ( f ) : σ(P) σ(V)

B of the λ-calculus.
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Axiomatic Rewriting Theory

Main claim.

This problem is arguably too difficult to resolve
by working directly on the syntax of the λσ-calculus.

One should move to a purely diagrammatic approach
based on the 2-dimensional notion of permutation tile.

The purpose of Axiomatic Rewriting Theory is to establish
a number of important structural properties:
B B standardisation theorem
B B factorisation theorem
B B stability theorem
from the generic properties of permutation tiles in rewriting.
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Axiomatic rewriting system

Definition. A graph

G = (V,E, ∂0, ∂1)

defined by its source and target functions

∂0 , ∂1 : E −→ V

together with a set of 2-dimensional tiles of the form

Q

N

P

M

u′

fu

v

where the rewriting path f is of arbitrary length.
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Reversible permutations

Definition: a permutation tile

Q

N

P

M

u′

fu

v

is called reversible when it has an inverse.

Note that f is of length 1 in that specific case.
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Reversible permutation tiles

MQ

PQ

PN

MN

u′

u v′

v
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Irreversible permutation tiles

y

(λx.y)P

(λx.y)M

u′v

u
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Irreversible permutation tiles

MP

(λx.xx)P

PP

MM

(λx.xx)M

u′

v2

v1

u

v
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II. Standardisation cells

Rewriting surfaces between rewriting paths
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Key idea: let us track ancestors!

MN PQ

PN

MQ

v u´

u v ´
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Key idea: let us track ancestors!

y

u

v

Pλy.x �

�

Mλy.x �

�

u ´
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Key idea: let us track ancestors!

u

v

Mλx.x �

�

x

Pλx.x �

�

x

u´

MM

MP

PP

v

1

2

v
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Standardisation cells

M

(λy.M)N

(λy.M)Q(λx.(λy.x))MQ

(λx.(λy.x))MN

c

b

vu

a
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Illustration

u v

a

c

λx. x

�

λy. �

�

�MN
�
λy. �M N

M

�

λy. �M Qbλx. x

�

λy. �

�

�MQ
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Standardisation cells

Definition.

A standardisation cell

θ : f g : M N

is a triple ( f , g, ϕ) consisting of two coinitial and cofinal paths

f = M · · · N
u1 u2 up

g = M · · · N
v1 v2 vq

and of a function

ϕ : {1, . . . , q} {1, . . . , p}

called the ancestor function of the standardisation cell.
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A 2-category of rewriting and standardisation

Theorem.

Every axiomatic rewriting system G induces a 2-category

B its objects are the terms,

B its morphisms are the rewriting paths,

B its cells are the standardisation cells.
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III. Standard rewriting paths

The normal forms of the 2-dimensional rewriting
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Standard rewriting paths

Definition.

A rewriting path

f : M N

is called standard when every standardisation cell

f ⇒ g

is reversible.
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A diagrammatic standardisation theorem

Theorem.

For every rewriting path f , there exists a 2-dimensional cell

f ⇒ g

transforming f into a standard path g.

Moreover, the standard path g associated to the path f is unique,
modulo reversible permutations.

The 2-dimensional cell f ⇒ g itself is unique,
up to canonical 3-dimensional deformations.
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Standardisation

M

(λy.M)N

(λy.M)Q(λx.(λy.x))MQ

(λx.(λy.x))MN

c

b

vu

a

A two-dimensional process revealing the causal dependencies
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IV. External rewriting paths

The external-internal factorisation theorem
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External rewriting paths

Definition. A rewriting path

M Pe

is called external when it satisfies the following property:

P Q
f

standard =⇒ M P Qe f
standard.
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External rewriting paths

The β-redex

(λx.(λy.x))MN (λx.(λy.x))MPa

is standard but not external in the diagram below:

M

(λy.M)N

(λy.M)Q(λx.(λy.x))MQ

(λx.(λy.x))MN

c

b

vu

a
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Internal rewriting paths

Definition. A rewriting path

M Nm

is called internal when every factorization up to homotopy

M N

∼

P

e

m

f

satisfies the following property:

e is external =⇒ e is equal to the identity.

41



Factorization theorem [Existence]

Suppose given an axiomatic rewriting system.

Theorem. Every rewriting path

M N
f

factors as

M P Ne m

where

B the rewriting path e is external

B the rewriting path m is internal
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Factorization theorem [uniqueness]

For every commutative diagram

M1 P1 N1

∼

M2 P2 N2

u

e1 m1

v

e2 m2

e1 and e2 external
m1 and m2 internal

there exists a unique path h : P1� P2 such that

M1 P1 N1

∼ ∼

M2 P2 N2

u

e1 m1

h v

e2 m2

commutes.
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Factorization theorem [uniqueness]

For every commutative diagram (up to homotopy)

M1 P1 N1

∼

M2 P2 N2

u

e1 m1

v

e2 m2

e1 and e2 external
m1 and m2 internal

there exists a unique path h : P1� P2 (up to homotopy) such that

M1 P1 N1

∼ ∼

M2 P2 N2

u

e1 m1

h v

e2 m2

commutes (up to homotopy.)
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V. Head rewriting paths

A universal cone of head-rewriting paths
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Axiomatic set of values

Definition.

An axiomatic set H of values is a set of terms
satisfying three properties:

[1] the set H is closed under reduction:

V ∈ H and V −→W =⇒ W ∈ H
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Axiomatic set of values

[2] In every reversible tile

V2

W

V1

M

u′

u v′

v

V1 ∈ H and V2 ∈ H =⇒ M ∈ H
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Axiomatic set of values

[3] In every irreversible tile

V

W

N

M

u′

fu

v

V ∈ H =⇒ M ∈ H
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Stability theorem

Suppose given an axiomatic set H of values.

Theorem. For every term M, there exists a cone of paths(
M Vi

ei )
i∈I

satisfying the following property: for every rewriting path

f : M W where W ∈ H

there exists a unique index i ∈ I and a unique path

h : Vi W up to homotopy

such that

M W
f

∼ M Vi W
ei h
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A cone of head-rewriting paths

This means that there is a unique head-rewriting path

ei : M Vi

in the cone such that f factors as

M

∼

Vi W

f

ei

h

up to homotopy.
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Application to the λσ-calculus

Suppose that M is a λ-term seen as a λσ-term.

Theorem. Every head rewriting path

ei : M Vi Vi ∈ Hλσ

to the set Hλσ of λσ-head-normal forms is transported to

e : M σ(Vi)

the unique head-rewriting path from M to the set

Hλ

of head-normal forms in the λ-calculus.
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