Five Basic Concepts of Axiomatic Rewriting Theory

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF) CNRS & Université Paris Denis Diderot

5th International Workshop on Confluence Obergurgl – September 2016

Rewriting paths modulo homotopy

An algebraic and topological notion of confluence

The λ -calculus with explicit substitutions

Terms $M ::= \mathbf{1} | MN | \lambda M | M[s]$ **Substitutions** $s ::= id | \uparrow | M \cdot s | s \circ t$

Key idea: replace the β -rule of the λ -calculus

 $(\lambda x.M)N \longrightarrow M[x := N]$

by the Beta-rule of the $\lambda\sigma$ -calculus

 $(\lambda M)N \longrightarrow M[N \cdot id]$

where the substitution is explicit – and thus similar to a closure.

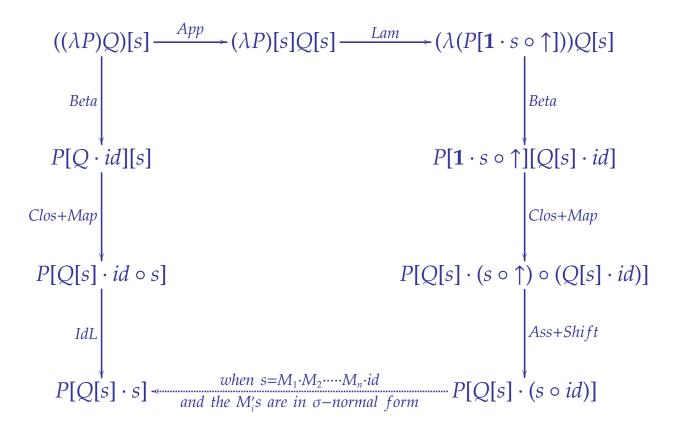
The eleven rewriting rules of the $\lambda\sigma$ -calculus

Beta	$(\lambda M)N$	\rightarrow	$M[N \cdot id]$
App	(MN)[s]	\rightarrow	M[s]N[s]
Abs	$(\lambda M)[s]$	\rightarrow	$\lambda(M[1 \cdot (s \circ \uparrow)])$
Clos	M[s][t]	\rightarrow	$M[s \circ t]$
VarCons	$1[M \cdot s]$	\rightarrow	M
VarId	1 [<i>id</i>]	\rightarrow	1
Map	$(M \cdot s) \circ t$	\rightarrow	$M[t] \cdot (s \circ t)$
IdĹ	$id \circ s$	\rightarrow	S
Ass	$(s_1 \circ s_2) \circ s_3$	\rightarrow	$s_1 \circ (s_2 \circ s_3)$
ShiftCons	$\uparrow \circ (M \cdot s)$	\rightarrow	S
ShiftId	$\uparrow \circ id$	\rightarrow	1
_ · · · j · - · ·			

The eleven critical pairs of the $\lambda\sigma$ -calculus

App + Beta	$(\lambda M)[s](N[s])$	$\stackrel{App}{\leftarrow}$	$((\lambda M)N)[s]$	\xrightarrow{Beta}	$M[N \cdot id][s]$
Clos + App Clos + Abs Clos + VarId Clos + VarCons Clos + Clos	$(MN)[s \circ t]$ $(\lambda M)[s \circ t]$ $1[id \circ s]$ $1[(M \cdot s) \circ t]$ $M[s][t \circ t']$	$\begin{array}{c} Clos \\ \leftarrow \\ Clos \\ \leftarrow \end{array}$	(MN)[s][t] $(\lambda M)[s][t]$ 1[id][s] $1[M \cdot s][t]$ M[s][t][t']	$\begin{array}{c} App \\ \rightarrow \\ Abs \\ \rightarrow \\ VarId \\ \rightarrow \\ VarCons \\ \rightarrow \\ Clos \\ \rightarrow \end{array}$	$(M[s](N[s]))[t]$ $(\lambda(M[1 \cdot s \circ \uparrow]))[t]$ $1[s]$ $M[t]$ $M[s \circ t][t']$
Ass + Map Ass + IdL Ass + ShiftId Ass + ShiftCons Ass + Ass	$(M \cdot s) \circ (t \circ t')$ $id \circ (s \circ t)$ $\uparrow \circ (id \circ s)$ $\uparrow \circ ((M \cdot s) \circ t)$ $(s \circ s') \circ (t \circ t')$	$\begin{array}{c} Ass \\ \leftarrow \\ Ass \\ \leftarrow \\ Ass \\ \leftarrow \\ Ass \\ \leftarrow \\ Ass \\ \leftarrow \end{array}$	$((M \cdot s) \circ t) \circ t'$ $(id \circ s) \circ t$ $(\uparrow \circ id) \circ s$ $(\uparrow \circ (M \cdot s)) \circ t$ $((s \circ s') \circ t) \circ t'$	$\begin{array}{c} Map \\ \rightarrow \\ IdL \\ \rightarrow \\ ShiftId \\ \rightarrow \\ ShiftCons \\ \rightarrow \\ Ass \\ \rightarrow \end{array}$	$(M[t] \cdot s \circ t) \circ t'$ $s \circ t$ $\uparrow \circ s$ $s \circ t$ $(s \circ (s' \circ t)) \circ t'$

A very dangerous critical pair

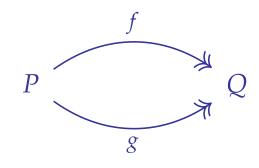


This critical pair leads to a counter-example to **strong normalization** in the simply-typed $\lambda\sigma$ -calculus (TLCA 1995).

A fundamental problem

Hence, one main challenge of Rewriting Theory:

Classify the rewriting paths from a term P to its normal form Q



Very complicated in the case of the $\lambda\sigma$ -calculus...

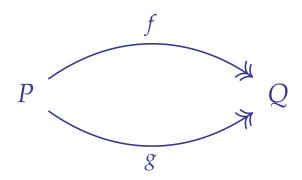
I. Permutation tiles

A geometric account of redex permutations

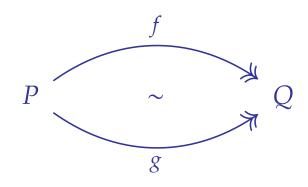
A key observation

Theorem (Lévy 1978)

In the λ -calculus, every two paths to the normal form



are equal modulo a series of β -redex permutations:



A geometric intuition

It is nice and clarifying to think of

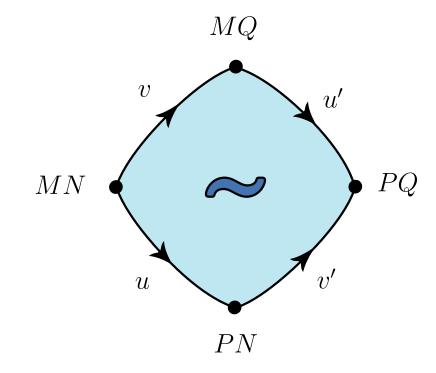
the redex permutation equivalence

between f and g in a geometric way as

a homotopy relation between rewriting paths

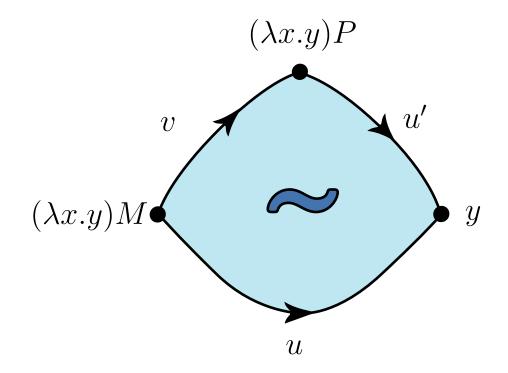
This intuition can be made rigorous mathematically using Albert Burroni's notion of **polygraph**.

Permutation tiles (1)



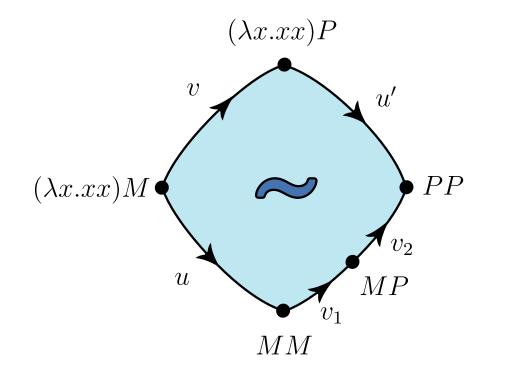
the redex $u: M \rightarrow P$ and the redex $v: N \rightarrow Q$ are **independent**

Permutation tiles (2)



the outer redex $u: (\lambda x.y) M \rightarrow y$ erases the inner redex $v: M \rightarrow P$

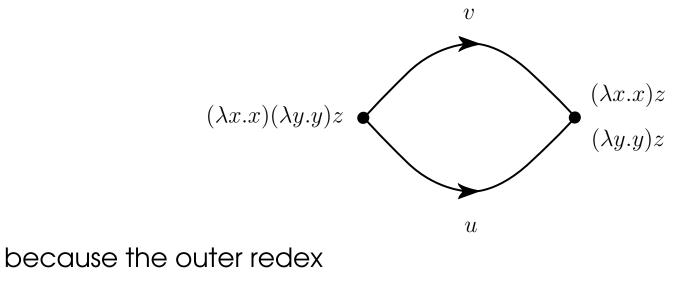
Permutation tiles (3)



the outer redex $u: (\lambda x.xx) M \rightarrow MM$ **duplicates** the inner redex $v: M \rightarrow P$

Illustration of the theorem

There is a 2-dimensional hole in the λ -calculus



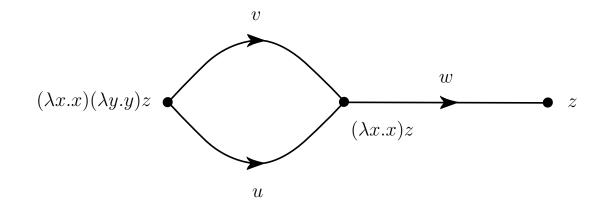
$$u : (\lambda x.x) (\lambda y.y) z \longrightarrow (\lambda y.y) z$$

is not equivalent modulo homotopy to the inner redex

$$v : (\lambda x.x) (\lambda y.y) z \longrightarrow (\lambda x.x) z$$

Illustration of the theorem

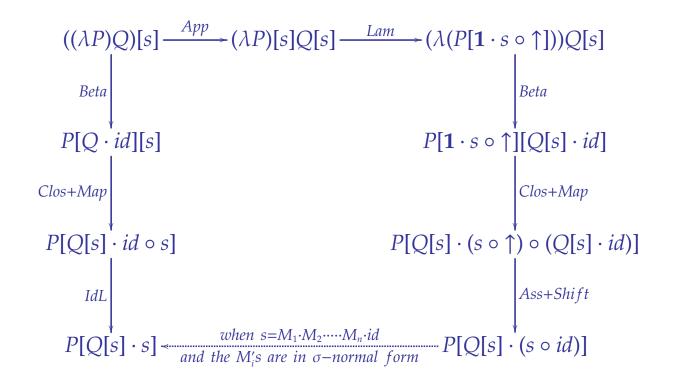
When one extends the two redexes u and v with w



the resulting rewriting paths $u \cdot w$ and $v \cdot w$ are normalizing and thus equivalent modulo homotopy!

In the $\lambda\sigma$ -calculus...

Critical pairs like



generate 2-dimensional holes in the rewriting geometry and thus obstructions to homotopy equivalence...

A bridge between $\lambda\sigma$ and λ

Key theorem (Abadi-Cardelli-Curien-Lévy 1990)

Every rewriting path between $\lambda\sigma$ -terms

 $f : P \longrightarrow Q$

induces a rewriting path (modulo homotopy)

 $\sigma(f) \quad : \quad \sigma(P) \longrightarrow \sigma(Q)$

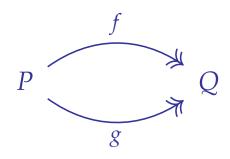
between the underlying λ -terms.

Moreover, the translation preserves homotopy equivalence:

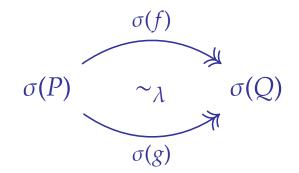
$$f \sim_{\lambda\sigma} g \quad \Rightarrow \quad \sigma(f) \sim_{\lambda} \sigma(g)$$

A remarkable consequence

Fact. Two rewriting paths in the $\lambda\sigma$ -calculus



are transported to the **same homotopy class** of rewriting paths



when the $\lambda\sigma$ -term Q is in normal form.

What about head-normal forms?

Can we classify the **head-rewriting paths** of the $\lambda\sigma$ -calculus?

This requires to resolve two very serious difficulties:

- define a general notion of head-rewriting path for a term rewriting system admitting critical pairs
- \triangleright establish that every head-rewriting path in the $\lambda\sigma$ -calculus

 $f : P \longrightarrow V$

is transported to a head-rewriting path

$$\sigma(f) \quad : \quad \sigma(P) \longrightarrow \sigma(V)$$

of the λ -calculus.

Axiomatic Rewriting Theory

Main claim.

This problem is arguably too difficult to resolve by working directly on the syntax of the $\lambda\sigma$ -calculus.

One should move to a purely **diagrammatic** approach based on the 2-dimensional notion of permutation tile.

The purpose of **Axiomatic Rewriting Theory** is to establish a number of important structural properties:

- standardisation theorem
- factorisation theorem
- stability theorem

from the generic properties of permutation tiles in rewriting.

Axiomatic rewriting system

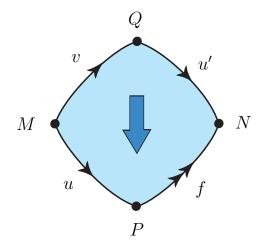
Definition. A graph

 $G = (V, E, \partial_0, \partial_1)$

defined by its source and target functions

 ∂_0 , ∂_1 : $E \longrightarrow V$

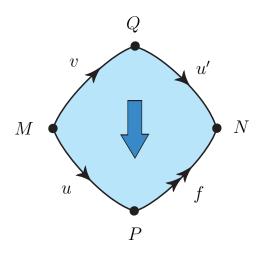
together with a set of 2-dimensional tiles of the form



where the rewriting path f is of arbitrary length.

Reversible permutations

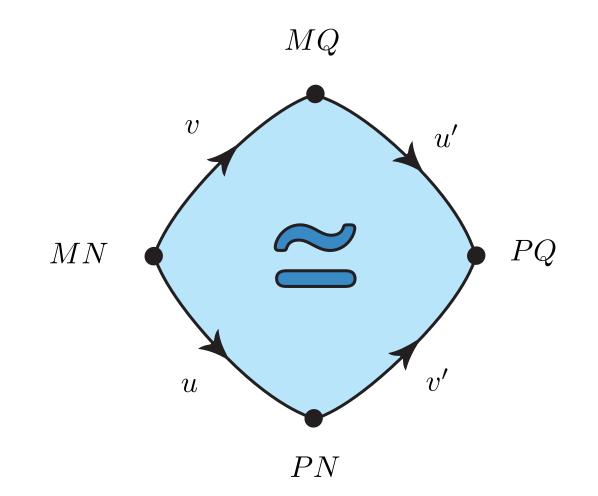
Definition: a permutation tile



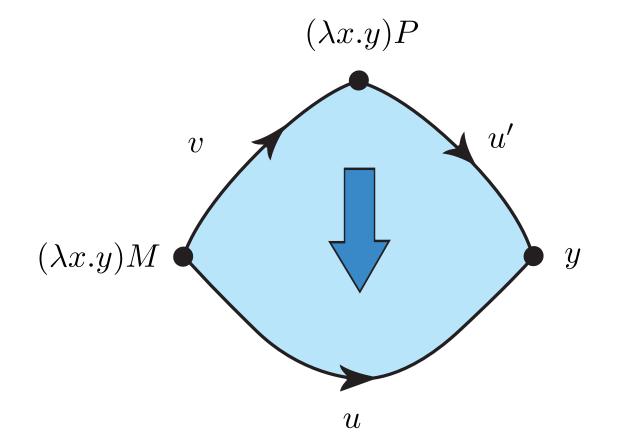
is called **reversible** when it has an inverse.

Note that f is of length 1 in that specific case.

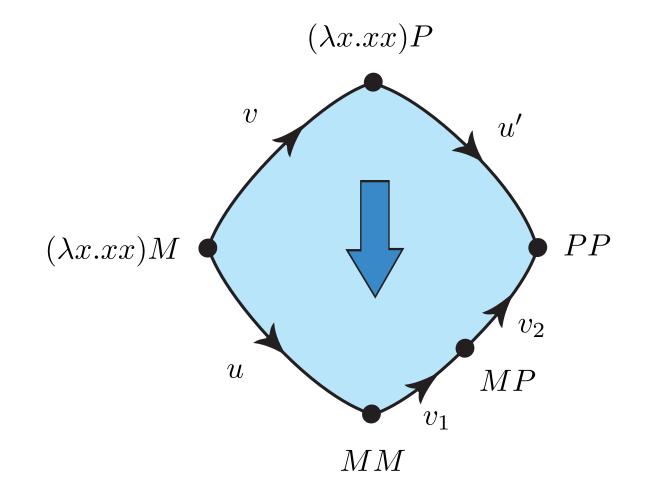
Reversible permutation tiles



Irreversible permutation tiles



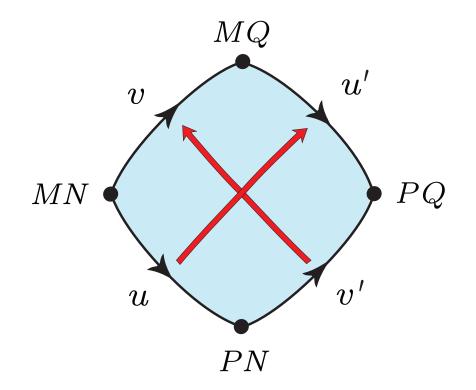
Irreversible permutation tiles



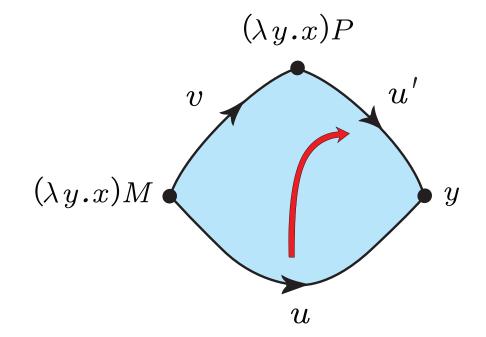
II. Standardisation cells

Rewriting surfaces between rewriting paths

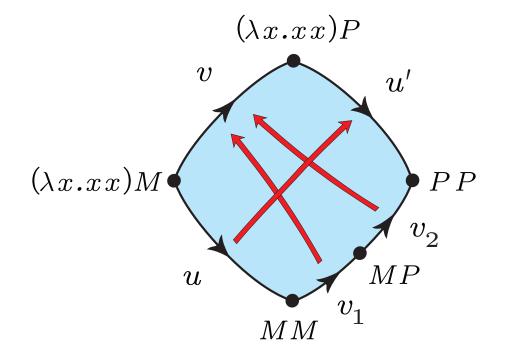
Key idea: let us track ancestors!

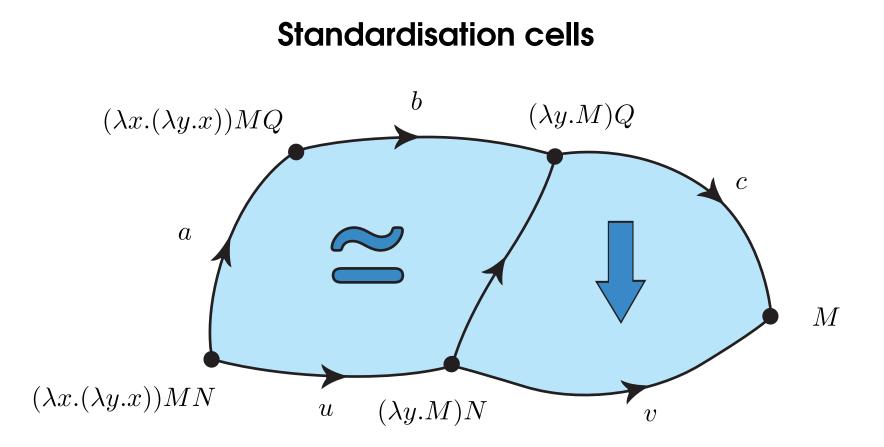


Key idea: let us track ancestors!

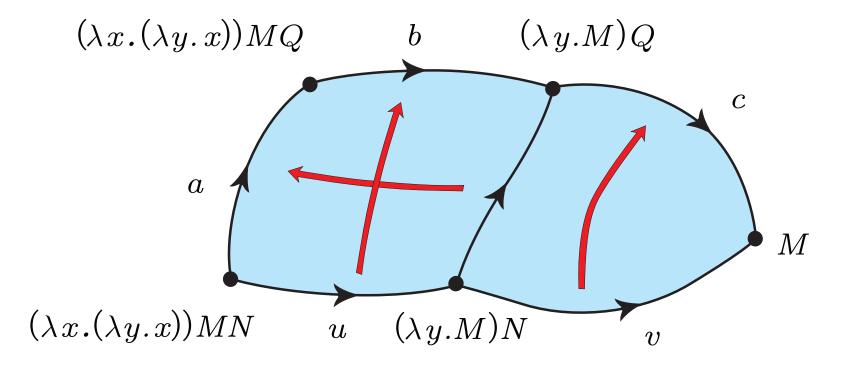


Key idea: let us track ancestors!





Illustration



Standardisation cells

Definition.

A standardisation cell

$$\theta \quad : \quad f \implies g \quad : \quad M \longrightarrow N$$

is a triple (f, g, φ) consisting of two coinitial and cofinal paths

$$f = M \xrightarrow{u_1} \xrightarrow{u_2} \cdots \xrightarrow{u_p} N \qquad g = M \xrightarrow{v_1} \xrightarrow{v_2} \cdots \xrightarrow{v_q} N$$

and of a function

$$\varphi \quad : \quad \{1,\ldots,q\} \quad \longrightarrow \quad \{1,\ldots,p\}$$

called the **ancestor function** of the standardisation cell.

A 2-category of rewriting and standardisation

Theorem.

Every axiomatic rewriting system G induces a 2-category

- \triangleright its objects are the terms,
- ▷ its morphisms are the rewriting paths,
- \triangleright its cells are the standardisation cells.

III. Standard rewriting paths

The normal forms of the 2-dimensional rewriting

Standard rewriting paths

Definition.

A rewriting path

$$f : M \longrightarrow N$$

is called **standard** when every standardisation cell

 $f \Rightarrow g$

is reversible.

A diagrammatic standardisation theorem

Theorem.

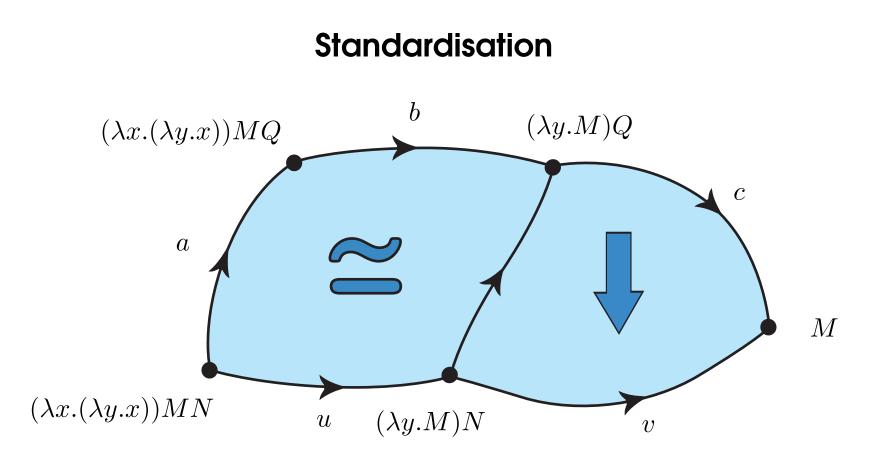
For every rewriting path f, there exists a 2-dimensional cell

 $f \Rightarrow g$

transforming f into a standard path g.

Moreover, the standard path g associated to the path f is unique, modulo reversible permutations.

The 2-dimensional cell $f \Rightarrow g$ itself is unique, up to canonical 3-dimensional deformations.



A two-dimensional process revealing the causal dependencies

IV. External rewriting paths

The external-internal factorisation theorem

External rewriting paths

Definition. A rewriting path

is called **external** when it satisfies the following property:

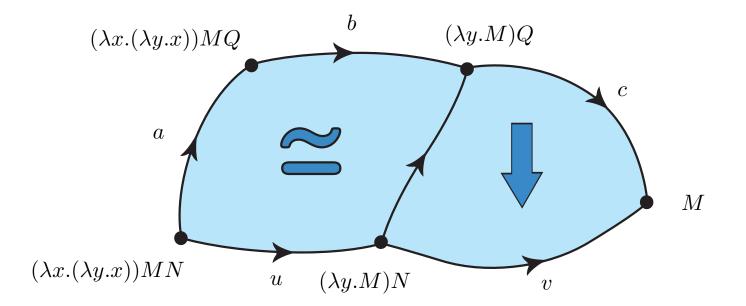
$$P \xrightarrow{f} Q$$
 standard $\implies M \xrightarrow{e} P \xrightarrow{f} Q$ standard.

External rewriting paths

The β -redex

$$(\lambda x.(\lambda y.x))MN \xrightarrow{a} (\lambda x.(\lambda y.x))MP$$

is standard but not external in the diagram below:

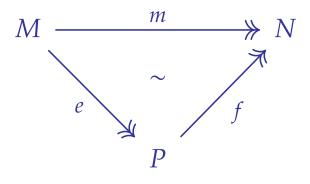


Internal rewriting paths

Definition. A rewriting path

 $M \xrightarrow{m} N$

is called internal when every factorization up to homotopy



satisfies the following property:

e is external $\implies e$ is equal to the identity.

Factorization theorem (Existence)

Suppose given an axiomatic rewriting system.

Theorem. Every rewriting path

$$M \xrightarrow{f} N$$

factors as

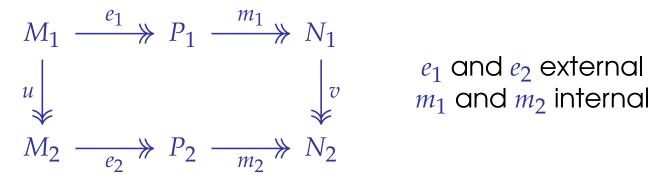
$$M \xrightarrow{e} P \xrightarrow{m} N$$

where

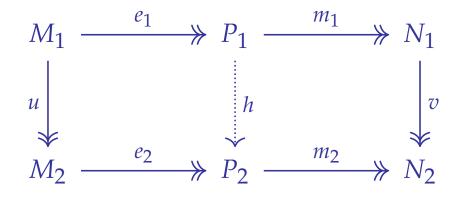
- \triangleright the rewriting path *e* is external
- \triangleright the rewriting path *m* is internal

Factorization theorem (uniqueness)

For every commutative diagram



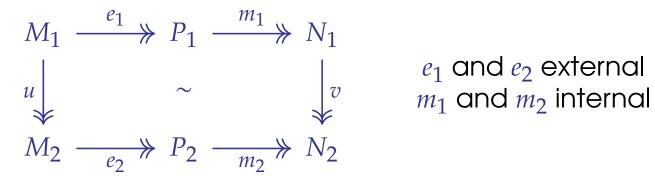
there exists a unique path $h: P_1 \rightarrow P_2$ such that



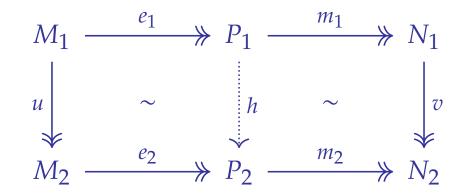
commutes.

Factorization theorem (uniqueness)

For every commutative diagram (up to homotopy)



there exists a unique path $h: P_1 \rightarrow P_2$ (up to homotopy) such that



commutes (up to homotopy.)

V. Head rewriting paths

A universal cone of head-rewriting paths

Axiomatic set of values

Definition.

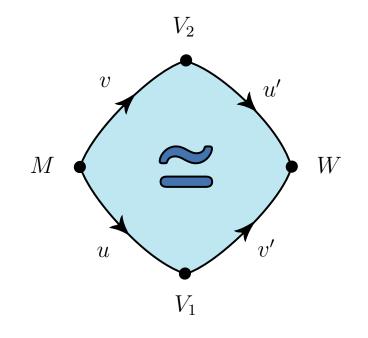
An axiomatic set \mathcal{H} of values is a set of terms satisfying three properties:

(1) the set \mathcal{H} is closed under reduction:

$$V \in \mathcal{H}$$
 and $V \longrightarrow W \implies W \in \mathcal{H}$

Axiomatic set of values

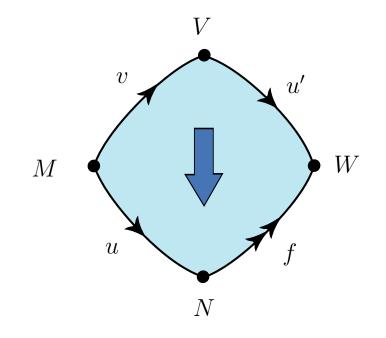
(2) In every reversible tile



 $V_1 \in \mathcal{H} \quad \text{and} \quad V_2 \in \mathcal{H} \implies M \in \mathcal{H}$

Axiomatic set of values

(3) In every irreversible tile



Stability theorem

Suppose given an axiomatic set ${\mathcal H}$ of values.

Theorem. For every term M, there exists a cone of paths

$$\begin{pmatrix} M & \xrightarrow{e_i} & V_i \end{pmatrix}_{i \in \mathbb{N}}$$

satisfying the following property: for every rewriting path

$$f: M \longrightarrow W$$
 where $W \in \mathcal{H}$

there exists a **unique** index $i \in I$ and a unique path

 $h: V_i \longrightarrow W$ up to homotopy

such that

$$M \xrightarrow{f} W \sim M \xrightarrow{e_i} V_i \xrightarrow{h} W$$

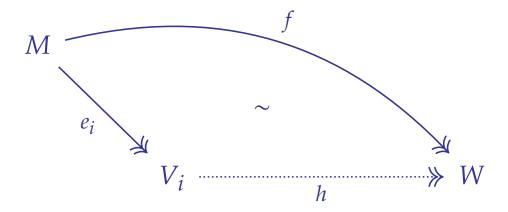
49

A cone of head-rewriting paths

This means that there is a unique head-rewriting path

 $e_i : M \longrightarrow V_i$

in the cone such that f factors as



up to homotopy.

Application to the $\lambda\sigma$ -calculus

Suppose that M is a λ -term seen as a $\lambda\sigma$ -term.

Theorem. Every head rewriting path

 $e_i : M \longrightarrow V_i \qquad V_i \in \mathcal{H}_{\lambda\sigma}$

to the set $\mathcal{H}_{\lambda\sigma}$ of $\lambda\sigma$ -head-normal forms is transported to

 $e : M \longrightarrow \sigma(V_i)$

the **unique** head-rewriting path from M to the set

 \mathcal{H}_{λ}

of head-normal forms in the λ -calculus.

Short bibliography

On the $\lambda\sigma$ -calculus:

Typed lambda-calculi with explicit substitutions may not terminate. Proceedings of TLCA 1995, LNCS 902, pp. 328-334, 1995.

The lambda-sigma calculus enjoys finite normalisation cones.

Journal of Logic and Computation, vol 10 No. 3, pp. 461-487, 2000.

On axiomatic rewriting theory:

A diagrammatic standardisation theorem.

Processes, Terms and Cycles: Steps on the Road to Infinity. Jan Willem Klop Festschrift, LNCS 3838, 2002.

A factorisation theorem in Rewriting Theory.

Proceedings of CTCS 1997, LNCS 1290, 1997.

A stability theorem in Rewriting Theory.

Proceedings of LICS 1998, pp. 287-298, 1998.