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Categorical Combinatorics of Scheduling and
Synchronization in Game Semantics

PAUL-ANDRÉ MELLIES, CNRS, Université Paris Diderot, France

Game semantics is the art of interpreting types as games and programs as strategies interacting in space and

time with their environment. In order to reflect the interactive behavior of programs, strategies are required

to follow specific scheduling policies. Typically, in the case of a purely sequential programming language, the

program (Player) and its environment (Opponent) will play one after the other, in a strictly alternating way.

On the other hand, in the case of a concurrent language, Player and Opponent will be allowed to play several

moves in a row, in a non-alternating way. In both cases, the scheduling policy is designed very carefully

in order to ensure that the strategies synchronize properly and compose well when plugged together. A

longstanding conceptual problem has been to understand when and why a given scheduling policy works and

is compositional in that sense. In this paper, we exhibit a number of simple and fundamental combinatorial

structures which ensure that a given scheduling policy encoded as synchronization template defines a symmetric

monoidal closed (and in fact ∗-autonomous) bicategory of games, strategies and simulations. To that purpose,

we choose to work at a very general level, and illustrate our method by constructing two template game

models of linear logic with different flavors (alternating and non-alternating) using the same categorical

combinatorics, performed in the category of small categories. As a whole, the paper may be seen as a hymn in

praise of synchronization, building on the notion of synchronization algebra in process calculi and adapting it

smoothly to programming language semantics, using a combination of ideas at the converging point of game

semantics and of categorical algebra.
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1 INTRODUCTION
In this paper, we want to describe in a simple, uniform and elegant way how proofs and programs

of different nature, typically sequential or concurrent, synchronize themselves and interact in

space and time. In order to describe these various scheduling policies (sequential, concurrent) in

the same framework, we will combine ideas coming from concurrency theory (synchronization

algebras) and programming language theory (categorical semantics) following a trend pioneered

by game semantics [Abramsky et al. 2000; Hyland and Ong 2000]. We start from the well-known
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23:2 Paul-André Mellies

idea in graph theory that the coloring of a graph G with n colors is the same thing as a graph

homomorphism

λ : G Kn (1)

to the complete graph Kn with n vertices. Typically, a graph G is bipartite when there exists a

map (1) to the complete graph K2 with two vertices.

1.1 Games as Categories with Polarities
Here, we adapt this simple idea to categories, and explain how to derive from it a new generation

of 2-categorical game semantics. Our starting point is provided by the category �game which we

call the template of games and define as the category with two objects ⟨⊕⟩ and ⟨⊖⟩ freely generated

by the oriented graph

⟨⊖⟩ ⟨⊕⟩
P

O
(2)

A category A equipped with a functor

λA : A �game

defines a general form of 2-Player game, where every object x of the category A is understood as a

position of the game, polarized either as positive when λA (x ) = ⟨⊕⟩ or as negative when λA (x ) = ⟨⊖⟩.
Accordingly, the maps f : x → y of the category A are understood as the trajectories of the game.

The category of polarities �game thus plays the same role for games as the graph K2 for bipartite

graphs. In particular, among the trajectories of A, we distinguish two classes of maps: the Opponent
moves and Player moves defined as the trajectories

m : x ⊕ y⊖ n : x ⊖ y⊕

such that λA (m) = O and λA (n) = P respectively. Here, we write x ⊕ or x ⊖ to indicate the polarity

(positive or negative) assigned by the polarity functor λA to the position x in the game (A,λA).
The intuition guiding the definition of �game is that a position with polarity ⊕ is a Player position
where Player is satisfied and waits for Opponent to play, and symmetrically, that a position with

polarity ⊖ is an Opponent position where Opponent is satisfied and waits for Player to play. Note

that a game A generally contains trajectories of the form

f : x ⊕ y⊕ д : x ⊖ y⊖

which are typically obtained as sequences of moves of even length

f ,д : x = x1 x2 · · · xk xk+1 = y
m1 m2

mk−1 mk

alternating between Opponent and Player moves.

1.2 Strategies between Games
Once the notion of game has been formulated, the next step is to define a notion of strategy
σ : A→ B between two such games A and B. The definition relies on the introduction of a specific

category �strat which we call the template of strategies with three objects ⟨⊕,⊕⟩, ⟨⊕,⊖⟩, and ⟨⊖,⊖⟩
called its scheduling polarities. The purpose of the three scheduling polarities is to represent the
pair of polarities reached in the source gameA and in the target game B in the course of interaction.

The category �strat is defined as the category freely generated by the graph

⟨⊖,⊖⟩ ⟨⊕,⊖⟩ ⟨⊕,⊕⟩
Os

Ps

Pt

Ot
(3)
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The morphisms of the category �strat are called its scheduling trajectories. Each of the four labels

Os , Ps , Ot and Pt is here to describe a specific kind of Opponent and Player move:

Os : Opponent move played in the source game

Ps : Player move played in the source game

Ot : Opponent move played in the target game

Pt : Player move played in the target game

Somewhat unexpectedly, the category �strat satisfies a number of remarkable properties. The

category comes equipped with a span of functors

�game �strat �game

s t
(4)

where the functor s is defined as the “projection” on the first component:

⟨⊖,⊖⟩ 7→ ⟨⊖⟩

⟨⊕,⊖⟩ , ⟨⊕,⊕⟩ 7→ ⟨⊕⟩

Os 7→ P Ps 7→ O
Ot , Pt 7→ id⟨⊕⟩

and the functor t is defined as the “projection” on the second component:

⟨⊕,⊕⟩ 7→ ⟨⊕⟩

⟨⊖,⊖⟩ , ⟨⊕,⊖⟩ 7→ ⟨⊖⟩

Ot 7→ P Pt 7→ O
Os , Ps 7→ id⟨⊖⟩

This leads us to the definition of a strategy σ : A→ B between two gamesA and B, which is defined

in our formal approach as a span of functors

A S B
s t

(5)

together with a functor λσ : S → �strat making the diagram

A S B

�game �strat �game

λA

s

λσ

t

λB

s t

(6)

commute. The category S is called the support of the strategy σ , and λσ is called its polarity functor.
In the same way as for games, the objects x and maps f : x → y of the category S are called the

positions and the trajectories of (the support S of) the strategy σ . Among the trajectories of the

strategy σ , we distinguish two classes of maps: the Opponent moves defined as the trajectories

m : x ⊕⊕ y⊕⊖ n : x ⊖⊖ y⊕⊖

in the support S such that λσ (m) = Ot or λσ (n) = Os ; and the Player moves defined as the

trajectories

m : y⊕⊖ x ⊕⊕ n : y⊕⊖ z⊖⊖

in the support S such that λσ (m) = Pt or λσ (n) = Ps . Here, in the same way as we did earlier for

positions in games, we write x ⊕⊕ , y⊕⊖ and z⊖⊖ to indicate the value of the polarity functor λσ
taken in �strat and applied to the positions x ,y,z of the support S .

1.3 Illustration
The intuition behind our definition of strategy σ : A→ B is that every trajectory f : x → y in the

support S of the strategy induces a pair of trajectories

fA = s ( f ) : s (x ) s (y) fB = t ( f ) : t (x ) t (y)
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23:4 Paul-André Mellies

living in the game A and in the game B, respectively. The trajectory f : x → y is transported by

the functor λσ to the map or scheduling trajectory in the category �strat

fσ = λσ ( f ) : λσ (x ) λσ (y)

whose purpose is to provide the “glue” which will schedule and synchronize the two trajectories

fA and fB together. By way of illustration, imagine that the support S of the strategy σ contains a

trajectory

f : x ⊕⊕
1

x ⊕⊖
2

x ⊖⊖
3

x ⊕⊖
4

x ⊕⊕
5

m1 n1 m2 n2

wherem1,m2 are Opponent moves, and n1, n2 are Player moves of the strategy σ , in the sense

just formulated that λσ (m1) = Ot , λσ (n1) = Ps , λσ (m2) = Os and λσ (n2) = Pt . As expected, the
trajectory f : x1 → x5 is transported by the polarity functor λσ to the scheduling trajectory

λσ ( f ) : ⟨⊕,⊕⟩ ⟨⊕,⊖⟩ ⟨⊖,⊖⟩ ⟨⊕,⊖⟩ ⟨⊕,⊕⟩
Ot Ps Os Pt

(7)

This scheduling trajectory tells us that the sequence of movesm1 · n1 ·m2 · n2 of the strategy σ
plays successively in the target, then source, then source, and finally target component of the game.

For that reason, the sequence of movesm1 · n1 ·m2 · n2 would be represented in the following way

in the traditional (and informal) notation for plays in sequential games:

A B

first movem1 of polarity Ot m1

second move n1 of polarity Ps n1

third movem2 of polarity Os m2

fourth move n2 of polarity Pt n2

σ

(8)

One benefit of our approach based on the category �strat is that the scheduling trajectory (7) gives

a precise mathematical meaning to the pattern of scheduling represented in (8).

1.4 The Category of Strategies and Simulations
It should be noted that the categorical ingredients used at this stage in order to define games and
strategies are extremely simple. All in all, they essentially consist in the functorial spans (4) and (5)

together with the map (6) between them. In particular, our principled definition of strategies ensures

already that there exists a category Games(A,B) of strategies σ : A→ B between any two games A
and B. In order to define this category, we introduce the notion of simulation

θ : σ τ : A B

between two strategies σ ,τ : A→ B, which is defined as a functor

θ : S T

from the support S of σ to the support T of τ , making the three triangles below commute:

S T

�game

θ

s s

S T

�strat

θ

λσ λτ

S T

�game

θ

t t
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The category Games(A,B) is defined as the category with strategies σ : A→ B as objects, and the

simulations θ : σ ⇒ τ as maps.

1.5 The Bicategory of Games and Strategies [Composition Law ]
We explain now how to turn the family of categories Games(−,−) just constructed into a bi-

category Games of games, strategies and simulations. To that purpose, we need to construct a

functor

◦A,B,C : Games(B,C ) × Games(A,B) Games(A,C )

which transports a pair of strategies σ ∈ Games(A,B) and τ ∈ Games(B,C ) to their composite

strategy τ ◦σ ∈ Games(A,C ), for every 3-tuple of gamesA, B andC . Suppose that σ and τ have the

categories S and T as respective supports. The construction starts by putting the pair of functorial

spans defining σ and τ side by side, in the following way:

S T

A �strat B �strat C

�game �game �game

s
λσ

t s
λτ

t

λA s t
λB s t

λC

In order to perform the construction, we consider the category�int called the template of interactions
and defined by the pullback diagram of small categories below:

�int

�strat pb �strat

�game �game �game

π1 π2

s
t s

t
(9)

An easy and instructive computation detailed in Appendix A shows that the category �int has four

objects

⟨⊖,⊖,⊖⟩ ⟨⊕,⊖,⊖⟩ ⟨⊕,⊕,⊖⟩ ⟨⊕,⊕,⊕⟩

and is in fact freely generated by the following graph:

⟨⊖,⊖,⊖⟩ ⟨⊕,⊖,⊖⟩ ⟨⊕,⊕,⊖⟩ ⟨⊕,⊕,⊕⟩
Os P |O

Ps

Pt

O |P Ot
(10)

Now, consider the category S ×B T induced by the pullback diagram below, whose definition is

designed to implement the parallel composition of σ and τ above the category B:

S ×B T

S pb T

A B C

π1 π2

t
s

s
t

By the universality property of �int, there exists a unique functor

λσ ∥ λτ : S ×B T �int
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23:6 Paul-André Mellies

making the diagram below commute

S ×B T

S T

�int

�strat �strat

�game

π1 π2

λσ ∥λτ

λσ λτ
(12) (23)

(2) (1)

Here, we find convenient to use the notations (1) and (2) for the functors

s = (1) : �strat → �game t = (2) : �strat → �game

defined in (4) because the notation describes well how the two functors behave on objects. The

purpose of this functor λσ ∥λτ is to describe how the parallel composition of the two strategies σ
and τ are scheduled together. At this stage, we make the first key observation of the paper: the

category �int of interactions comes equipped with a functor

hide : �int �strat (11)

which makes the diagram below commute:

�strat �int �strat

�game �strat �game

(1)

(12) (23)

hide (2)

(1) (2)

(12)

and thus defines a map of functorial spans. The functor hide is defined as the “projection” on the

first and third components, and is noted (13) for that reason:

⟨⊖,⊖,⊖⟩ 7→ ⟨⊖,⊖⟩ Os 7→ Os Ps 7→ Ps
⟨⊕,⊖,⊖⟩ , ⟨⊕,⊕,⊖⟩ 7→ ⟨⊕,⊖⟩ O |P , P |O 7→ id⟨⊕,⊖⟩

⟨⊕,⊕,⊕⟩ 7→ ⟨⊕,⊕⟩ Os 7→ Os Ps 7→ Ps

The composite strategy τ ◦ σ : A→ C is then defined as the strategy with support S ×B T obtained

by postcomposing the functor λσ ∥ λτ with the functor hide , in the following way:

S ×B T �int �strat

λσ ∥ λτ hide
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We obtain the strategy τ ◦ σ : A→ C with support S ×B T depicted as the span below:

S ×B T

S �int T

A �strat �strat C

�game �strat �game

π1 π2λσ ∥ λτ
π2

s
λσ

π1 π2

hide

λτ
t

λA
s t λC

ts

This definition of τ ◦ σ implements very precisely the slogan that

composition = parallel composition + hiding

The category S ×B T implements the parallel composition of σ and τ , and comes equipped with a

functor λσ ∥ λτ to the category �int. This functor λσ ∥ λτ describes how the interaction is scheduled

between σ and τ . It is worth noticing that the second step of hiding by postcomposing λσ ∥ λτ with

the functor hide keeps the category S ×B T as support of the strategy τ ◦ σ , without altering it.

1.6 The Bicategory of Games and Strategies [ Identities ]
We carry on the construction of the bicategory Games by explaining how the identity strategies

ccA : A→ A of the bicategory can be defined by purely categorical means. The construction relies

on a second key observation, which complements the introduction of the functor hide in (11). There

exists a functor

copycat : �game �strat (13)

which makes the diagram below commute:

�game

�game �game

�strat

id id

copycat

(1) (2)

(14)

The functor copycat is defined as follows on the objects and morphisms of �game:

⟨⊖⟩ 7→ ⟨⊖,⊖⟩ O 7→ Ot · Ps
⟨⊕⟩ 7→ ⟨⊕,⊕⟩ P 7→ Os · Pt

Given a game A, the copycat strategy ccA : A → A is defined as the strategy with support the

category A itself, and with functor λ ccA obtained by postcomposing the functor λA with the

functor copycat , in the following way:

λ ccA = A �game �strat

λA copycat
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23:8 Paul-André Mellies

We obtain the identity map ccA : A→ A of the bicategory Games of games and strategies, depicted

as the span below:

A

�game

A A

�game �strat �game

id
λA

id

copycatid id

λA λA

s t

(15)

Note that the functor copycat transports the edges O and P of the category �game into the maps

Ot ·Ps andOs ·Pt of the category �strat, respectively. The two mapsOt ·Ps andOs ·Pt are composed

of two edges, instead of just one. This means that postcomposing λA with the functor copycat
involves a change of granularity of moves, which turns

• every O-movem of the game A into the same movem played simultaneously as an Ot -move

in the codomain game A and as a Ps -move in the domain game A,
• every P-movem of the game A into the same movem played simultaneously as an Os -move

in the domain game A and as a Pt -move in the codomain game A.

In other words, the copycat strategy ccA : A → A is synchronous and transmits the information

instantaneously from one component A to the other. As far as we know, this phenomenon of

“rescaling” and turning moves into plays is entirely new in game semantics. As a matter of fact, we

will establish in the technical core of the paper that

Theorem. The bicategory Games of sequential alternating games and strategies is symmetric

monoidal closed (and in fact ∗-autonomous.)

The result is important in itself, but what matters even more to us is the methodology we use in

order to establish it. First, we derive the statement that Games is a bicategory from the purely

combinatorial observation that the triple of synchronization templates underlying and regulating

sequential alternating games and strategies

�alt[0] = �game �alt [1] = �strat �alt [2] = �int

together with the functors (11) and (13) defines an internal category �alt in the category Cat of
small categories and functors. Then, we deduce the statement of the theorem from the fact that the

internal category �alt is symmetric monoidal closed (and in fact ∗-autonomous) in an appropriate

sense, carefully axiomatized in the paper. A clarifying remark about bicategories may be useful at

this point. The composition of three strategies

σ ∈ Games(A,B) τ ∈ Games(B,C ) υ ∈ Games(C,D)

is not strictly associative, but only associative up to an invertible simulation

αυ,τ ,σ : (υ ◦ τ ) ◦ σ υ ◦ (τ ◦ σ ) : A D

Similarly, the copycat strategy is an identity only up to invertible simulations:

λσ : idB ◦ σ σ : A B ρσ : σ ◦ idA σ : A B
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This is the reason why our construction Games defines a bicategory in the sense of [Bénabou 1967]

and not a 2-category where the three coercions αυ,τ ,σ , λσ and ρσ would be required (by definition)

to be identity 2-cells.

1.7 Contributions of the Paper
We have just explained how to derive our first model of template games from the data of a syn-
chronization template provided in this case by the internal category �alt of sequential alternating

games and strategies. More generally, given a category S with finite limits, we show how to derive

a symmetric monoidal closed bicategory Games(�) of games, strategies and simulations from

the data of an internal category � of polarities in S, equipped with a symmetric monoidal closed

structure, formulated in the appropriate sense. The methodology is conceptually clean, and provides

a powerful and flexible way to construct new bicategories of games. In this paper, we illustrate

the flexibility of the approach by deriving from the same construction two game semantics with

entirely different flavors (sequential and concurrent) as well as a relational semantics of linear logic.

The three constructions are performed in the category S = Cat of small categories. We obtain in

this way three symmetric monoidal closed (and in fact ∗-autonomous) bicategories, each of them

defining a particular model of linear logic:

• a bicategory Games(�alt) of sequential alternating games,

• a bicategory Games(�conc) of concurrent non-alternating games,

• a bicategory Games(�span) = Span(Cat) of functorial spans.

Each model of linear logic is derived from a specific internal category � of scheduling in S = Cat:

• the internal category �alt of sequential and alternating schedulings,

• the internal category �conc of concurrent and non-alternating schedulings,

• the internal category �span of no scheduling whatsoever.

In each case, the internal category � of polarities and scheduling should be regarded as a sophisti-

cated synchronization algebra [Winskel 1986] in the sense of process calculi, regulating a specific

flavor of interaction (alternating, non-alternating, purely positional). One main discovery of our

work is that each of the three synchronization templates � organizes itself into an internal category

with sufficient structure in order to define bicategorical models of linear logic. We believe that this

observation clarifies in what sense game semantics is a carefully regulated form of process calculus,

specifically designed in order to produce compositional models of programming languages.

Another important contribution of the paper is the discovery that one needs to shift from an

asynchronous to a synchronous definition of the copycat strategy ccA : A→ A in the construction of

the bicategory Games(−). The ability to change the granularity of moves, and to define strategies

playing two moves simultaneously in different games, is certainly one technical breakthrough

of the paper. In particular, synchronizing Opponent and Player moves in the definition of the

copycat strategy enables us to construct for the first time a symmetric monoidal closed bicategory

Games(�conc) of concurrent and non-alternating strategies, where the copycat strategy ccA : A→
A does not behave as a buffer. In particular, we avoid in that way to take the notions of ingenuous
and receptive strategies designed in [Melliès and Mimram 2007, 2008] and adopted in [Rideau and

Winskel 2011] as primitive notions. We believe that this is a major improvement in our current

understanding of the theory of concurrent non-alternating games.

1.8 Related Works
This paper is our contribution to a research program initiated by Martin Hyland about twenty

years ago [Hyland and Schalk 1999, 2003]. The general challenge is to understand the nature of
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23:10 Paul-André Mellies

the categorical combinatorics involved in the construction of categories of games and strategies.

Our work is in that respect strongly inspired by Hyland’s idea developed with Harmer and Mel-

lies [Harmer et al. 2007] that the category of simple games and alternating strategies is secretly

regulated by a combinatorial category ϒ of schedulings. Another important influence has been the

work by André, Michel and Tom Hirschowitz [Hirschowitz et al. 2007] where the two categories

�game and �strat appear explicitly, with similar regulatory purposes. It should be noted that the

categories �game, �strat and �int also appear as state diagrams in Harmer’s PhD thesis [Harmer

1999]. As a matter of fact, the turning point of our work has been the discovery that �game and

�strat define an internal category in S = Cat where the category �int of interactions between

sequential alternating strategies is computed as the pullback diagram (14). In this way, we were

able to put all these strands together and to “internalize” the category ϒ of scheduling in [Harmer

et al. 2007] into the internal category �alt derived from [Hirschowitz et al. 2007].

Another decisive source of inspiration has been the construction by Mellies and Mimram of a

category of ingenuous and receptive strategies [Melliès and Mimram 2007, 2008] played on event

structures with polarity, and its adaptation by Rideau and Winskel to the language of spans [Rideau

andWinskel 2011]. One strong limitation of the original model [Melliès andMimram 2007] inherited

by [Rideau and Winskel 2011] is the fact that the identity strategy buffA : A→ A is defined there

as a buffer rather than as a synchronous copycat strategy. The problem is inherent to the purely

asynchronous nature of the model, and to the lack of synchronization between events (moves)

in event structures. We resolve the problem here by recasting the game model inside the more

expressive language of concurrency theory, based on synchronization algebras. Interestingly, this

shift requires to move away from the category of event structures and to work in the category

S = Cat of small categories. One main reason is that our definition (15) of the synchronous copycat

strategy ccA : A→ A relies on the existence in (13) of the functor copycat : �game → �strat which

transports the trajectory O (resp. P ) of length 1 in the category �game to the trajectory Ot · Ps
(resp. Os · Pt ) of length 2 in the category �strat. Now, as it happens, a morphism E → F in the

category of event structures is traditionally defined as a partial map of events ; such a map cannot

increase the length of trajectories in the asynchronous graphs of configurations G(E) and G(F )
associated to E and F , see [Melliès 2006] for details and terminology, and thus cannot implement

the operation copycat on event structures. Looking in retrospect, and following a generic recipe

described in [Selinger 1999], we conjecture that the original category (or bicategory) of receptive

and ingenuous strategies constructed in [Melliès and Mimram 2007; Rideau and Winskel 2011]

can be recovered as a specific sub-(bi)-category of the Karoubi envelope of Games(�conc), with
objects defined as the idempotent and asynchronous copycat strategies buffA : A→ A. We leave

that question for future work.

In their recent work on session types and game semantics, Castellan and Yoshida [Castellan and

Yoshida 2019] develop a truly concurrent and fully abstract interpretation (for barbed congruence)

of the synchronous session π -calculus. This technical tour de force is achieved by constructing

a game model based on coincident event structures where, following the same track as we do in

the present paper, the asynchronous (ingenuous and receptive) copycat strategies are replaced by

synchronous copycat strategies. The idea of using coincident event structures in order to model

synchrony in computations originates from [Ghica and Menaa 2011] where a synchronous model

of Syntactic Control of Interference is constructed. Coincident event structures are event structures

where the causal order ≤ on events is replaced by a causal preorder, and where two events e
and e ′ are considered synchronized when they produce a causal loop e ≤ e ′ ≤ e . Despite the

apparent difference in the way the synchronous copycat strategies are constructed in the two

models, the game model of session types in [Castellan and Yoshida 2019] is in fact very similar to
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the game model Games(�conc) associated to the synchronization template �conc for concurrent

and non-alternating games. Building on this timely point of convergence, we believe that a mild

variation of the template �conc would enable us to express in another way the fully complete model

designed by Castellan and Yoshida for the synchronous session π -calculus. We leave that interesting

methodological question for future work, as well as a more detailed comparison between the two

models.

1.9 Synopsis of the Paper
We start by recalling in §2 the notions of internal category and of internal functor in a category S
with finite limits. We then construct the bicategory Games(�) of games, strategies and simulations

associated to such an internal S-category �. The construction of Games(�) is then integrated

in §3 to the construction of a double pseudo category Games(�). This enables us to establish

(Thm. 3.5) that every acute span of internal functors between internal categories �1 and �2

induces a homomorphism between their respective double pseudo categories Games(�1) and
Games(�2). After an intermezzo in §4 on the construction of the tensor product of alternating

games, we establish in §5 that Games(−) defines a lax symmetric monoidal homomorphism from

the symmetric monoidal bicategoryAcuteSpan(Cat(S)) of acute spans of internal functors between
internal categories, to the cartesian 2-category DoubleCat of double categories and vertical natural
transformations. From this very abstract statement follows the important fact that every symmetric

pseudomonoid � in the bicategory AcuteSpan(Cat(S)), what we call an internal symmetric span-
monoidal category, defines a symmetric monoidal bicategory Games(�). We also explicate the

additional conditions on � which ensure that the symmetric monoidal bicategory Games(�) is
monoidal closed, and establish the main result of the paper (Thm. 5.6). We illustrate the theorem in

§6, §7 and §8 by constructing in the categoryS = Cat of small categories three different bicategorical

models of linear logic based either on sequential alternating games in the case �alt, concurrent

non-alternating games in the case of �conc or functorial spans in the case of �span. We explain in

§9 why the three resulting bicategories Games(�alt), Games(�conc) and Games(�span) are in fact

∗-autonomous, and conclude in §10.

2 INTERNAL CATEGORIES AND THEIR ASSOCIATED BICATEGORY OF SPANS
In this section and in the next one (§3), we suppose given a category S with finite limits.

2.1 The Bicategory of Spans
Definition 2.1 (spans). A span (S ,s,t ) : A −→| B between two objects A and B in the category S

consists of an object S together with a pair of maps

A S B
s t

The object S is called the support of the span, while the maps s and t are called its source and target,
respectively.

Definition 2.2 (Span(A,B)). Every pair of objectsA,B induces a category Span(A,B) whose objects
are the spans between A and B, and whose maps

θ : (S ,sS ,tS ) (T ,sT ,tT )
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are the maps θ : S → T of S making the diagram below commute:

S

A B

T

sS tS

θ

tTsT

Because the category S has finite limits, there exists a functor

•A,B,C : Span(B,C ) × Span(A,B) Span(A,C )

for all objects A,B,C . The functor is defined by putting the spans (S ,sS ,tS ) in Span(A,B) and
(T ,sT ,tT ) in Span(B,C ) side by side, and by computing the pullback diagram below:

S ×B T

S pb T

A B C

π1 π2

sS
tS sT

tT

The composite of (S ,sS ,tS ) and (T ,sT ,tT ) is then defined as

(T ,sT ,tT ) •A,B,C (S ,sS ,tS ) := (S ×B T ,sS ◦ π1,tT ◦ π2)

This composition law defines a bicategory Span(S) whose objects are the objects of S. The identity
span idA is defined as the span

A A A
id id

2.2 Internal Categories
For every object A of the category S, the category Span(A,A) comes equipped with a monoidal

structure, provided by the composition law •A := •A,A,A and the identity span idA.

Definition 2.3 (internal category, S-category). An internal category � in the category S with finite

limits is a span

�[0] �[1] �[0]
s t

(16)

equipped with the structure of a monoid object in the category

Span(�[0],�[0])

with tensor product •�[0] and unit id�[0].

This monoid structure is provided by a pair of maps in the category S

m : �[2]→ �[1] e : �[0]→ �[1]

where the object �[2] is defined as the pullback in S of the diagram below:

�[2]

�[1] pb �[1]

�[0] �[0] �[0]

π1 π2

t
s

s
t

(17)
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The maps m and e satisfy moreover the equations of associativity and neutrality required of a

multiplication and of its neutral element in a monoid. We often find convenient to call S-category
an internal category in the category S with finite limits. We also like to call spaces the objects of
the category S. We recall the standard terminology, which we adapt only slightly:

• the object �[0] is called the space of objects,
• the object �[1] is called the space of maps,
• the mapm : �[2]→ �[1] is called the composition law,
• the map e : �[0]→ �[1] is called the identity law

of the internal category or S-category �.

2.3 Internal Functors
We recall now the notion of internal functor between internal categories, a notion which we often

find convenient to call a S-functor between S-categories.

Definition 2.4 (internal functor, S-functor). A S-functor, or internal functor,

F : �1 �2 (18)

of S-categories is a pair of maps of S

F [0] : �1[0] �2[0] F [1] : �1[1] �2[1]

making the diagram below commute

�1[0] �1[1] �1[0]

�2[0] �2[1] �2[0]

F [0]

s

F [1]

t

F [0]

s t

and moreover compatible with the composition law and the identity law of the internal categories

�1 and �2, in the sense that the diagrams below commute:

�1[2] �1[1]

�2[2] �2[1]

m�
1

F [2] F [1]

m�
2

�1[0] �1[1]

�2[0] �2[1]

e�
1

F [0] F [1]

e�
2

where F [2] : �1[2]→ �2[2] is the map induced from F [0] and F [1] by the universality property of

�2[2] = �2[1] ×�2[0]
�2[1].

We will make great usage of the well-known fact that

Proposition 2.5. The category Cat(S) of S-categories and S-functors has finite limits.

Note in particular that all the finite limits (and in particular the cartesian product) of internal

categories are defined pointwise.

2.4 Every Internal Category Induces a Grothendieck Fibration
Jean Bénabou observed in [Bénabou 1985] that every internal category � in a category S with

finite limits induces a Grothendieck fibration

p� : S[�] S
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defined in the following way. The objects of S[�] are the pairs (A,λA) consisting of an object A of

the category S together with a map

λA : A �[0]

A map in the category S[�] between two such objects

( f ,λf ) : (A,λA) (B,λB )

is defined as a pair of maps

f : A B λf : A �[1]

of the category S, making the diagram below commute

A B

�[0] �[1] �[0]

f

λf
λA λB

s t

The Grothendieck fibration p� : S[�] → S transports every object (A,λA) to the underlying

object A, and every map ( f ,λf ) : (A,λA) → (B,λB ) to the underlying map f : A→ B in S.

2.5 Generalization of the Idea from Maps to Spans
One main idea of the paper is to see the Grothendieck fibration p� : S[�]→ S associated to an

internal category � as part of a wider bicategorical structure, defined in the following way. The

bicategory Games(�) has the same objects (A,λA) as the category S[�], and its maps

σ = (S ,s,t ,λσ ) : (A,λA) (B,λB )| (19)

are defined as the spans

A S B
s t

with support S , together with a map λσ : S → �[1] making the diagram below commute:

A S B

�[0] �[1] �[0]

λA

s

λσ

t

λB

s t

(20)

The 2-cells of the bicategory Games(�) are the simulations

θ : σ τ : A B| (21)

defined as maps θ : S → T making the diagram below commute:

S T

�[0]

θ

s s

S T

�[1]

θ

λσ λτ

S T

�[0]

θ

t t

where S is the support of σ and T is the support of τ . Two maps

σ = (S ,sS ,tS ,λσ ) : A B| τ = (T ,sT ,tT ,λτ ) : B C|
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of Games(�) are composed in the following way:

S ×B T

S �[2] T

A �[1] �[1] C

�[0] �[1] �[0]

π1 π2λσ ∥ λτ
π2

sS λσ
π1 π2

m

λτ
tT

λA
s t λC

ts

Here, λσ ∥λτ denotes the map of S induced by the pullback diagram (17) and uniquely determined

by the equations

λσ ◦ π1 = π1 ◦ (λσ ∥λτ ) λτ ◦ π2 = π2 ◦ (λσ ∥λτ )

The identity map

idA = (A,idA,idA,e ◦ λA) : A A|

is depicted as

A

�[0]

A A

�[0] �[1] �[0]

id
λA

id

eid id

λA λA

s t

The reader can check that the construction extends to the general setting of an internal category �
in a category with finite limits S the construction of the bicategory Games performed in the

introduction for the specific internal category �alt.

3 HOW INTERNAL FUNCTORS ACT ON GAMES AND STRATEGIES
Now that we have associated a bicategory Games(�) of spans to every internal category �, we

would like to understand how internal functors act on them. To that purpose, we find convenient

(and even necessary) to think of the bicategory Games(�) as part of an even larger structure,

provided by a pseudo double category Games(�) with same objects and (horizontal) maps. The

reason is essentially technical, driven by the fact that pseudo double categories organise themselves

into a 2-category, which is not the case unfortunately of bicategories. So, we introduce in §3.1 the

pseudo double category Games(�) and explain in §3.2 and §3.3 how to perform change of internal

category along an internal functor. This leads us to the construction in §3.4 of a homomorphism from

a bicategory AcuteSpan(Cat(S)) of spans of internal functors in S to the 2-category DoubleCat of
double categories and vertical natural transformations.

Terminology. We find useful at this stage to instill our game-theoretic intuitions to the cate-

gorical constructions, and we will thus sometimes call games, strategies and simulations the objects,
horizontal maps and double cells of Games(�), respectively.
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3.1 The Pseudo Double Category Games(�) of Games, Strategies and Simulations
A pseudo double category V is defined as

• a vertical category V0 of objects and vertical maps,

• a vertical category V1 of horizontal maps and double cells,

• source and target functors s,t : V1 → V0,

together with horizontal unit and composition functors, associative up to special natural isomor-

phisms, these data satisfying moreover a number of expected coherence diagrams. We refer the

reader to Garner’s PhD thesis [Garner 2006] for a detailed definition of the notion of pseudo double

category.

The pseudo double category Games(�) associated to an internal category � in the category S is

defined as follows: its objects and its horizontal maps are the same as the objects and maps of the

bicategory Games(�), while its vertical maps from (A,λA) to (B,λB ) are the maps u : A → B of

the category S making the diagram below commute

A B

�game

θ

λA λB

Given two horizontal maps defined as in (19)

σ = (S ,sS ,tS ,λσ ) : A B| τ = (T ,sT ,tT ,λτ ) : C D|

the double cells of Games(�)

A B

C D

|
σ

u v

|
τ

θ (22)

are the maps θ : S → T of the category S making the two diagrams commute

A S B

C T D

u

s

θ

t

v

s t

S T

�strat

θ

λσ λτ

Note that a simulation (21) in the bicategory Games(�) is the same thing as a special double
cell (or simulation) in Games(�). Here, by special double cell, we mean a double cell (22) whose

vertical maps u and v are identities. For that reason, the bicategory Games(�) coincides with the

bicategory canonically obtained from the pseudo double category Games(�) by restricting the

vertical category to its identities. This shows that no information is lost in the shift from bicategories

to double categories.

3.2 Homomorphisms between Double Categories
A morphism between pseudo double categories

(F,p) : V W (23)
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is a pair of functors

F0 : V0 W0 F1 : V1 W1

and a family of special double cells

F(A) F(B) F(C )

F(A) F(C )

|

F(σ )

id

|

F(τ )

id

|
F(τ ◦σ )

pσ ,τ

F(A) F(A)

F(A) F(A)

|

F(idA )

id id

|
idF(A)

pA (24)

indexed by the horizontal maps σ and τ and the objects A of the double category V, satisfying the

expected coherence relations. The morphism (23) between double categories is called a homomor-
phism when the natural transformations pσ ,τ and pA are isomorphisms for all horizontal maps σ
and τ and objects A. Note that the definitions of morphism and of homomorphism apply also to

bicategories, which are specific instances of pseudo double categories. Once again, we refer the

reader to [Garner 2006] for a detailed definition of the notion morphism (and homomorphism)

between pseudo double categories.

3.3 Internal Functors and their Action on the Double Category of Games
The following observation will play a central role in the paper, since it will enable us to “change

basis” and relate double categories of games between them:

Proposition 3.1. Every S-functor F : �1 → �2 of S-categories induces a homomorphism

F ▷
: Games(�1) Games(�2)

and a morphism between double categories

F ◁
: Games(�2) Games(�1)

The homomorphism F ▷
transports every game, strategy and simulation in Games(�1) into the

game, strategy and simulation in Games(�2) obtained by postcomposing with F [0] and F [1] in the

following way:

A S B

�1[0] �1[1] �1[0]

�2[0] �2[1] �2[0]

λA

s

λσ

t

λB

F [0]

s

F [1]

t

F [0]

s t

(25)
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Conversely, the homomorphism F ◁
transports every game, strategy and simulation in Games(�2)

into the game, strategy and simulation in Games(�1) obtained by pulling back along the func-

tors F [0] and F [1], as the reader can easily guess from the diagram below:

A S B

�2[0] �2[1] �2[0]

�1[0] �1[1] �1[0]

λA

s

λσ

t

λB

s t

F [0]

s

F [1]

t

F [0]

(26)

As indicated in Prop. 3.1, the pullback construction does not define a homomorphism of bicategories

in general, but just a morphism, because composition is preserved only up to a special double

cells of the form (24). We characterize in the statement below when this natural transformation is

invertible, and thus defines a homomorphism of bicategory.

Proposition 3.2. The morphism of double category F ◁
: Games(�2) → Games(�1) associated to

a S-functor F : �1 → �2 is a homomorphism if and only if the two diagrams below are pullbacks:

�1[2] �2[2]

(a)

�1[1] �2[1]

F [2]

m1 m2

F [1]

�1[0] �2[0]

(b)

�1[1] �2[1]

F [0]

e1 e2

F [1]

(27)

We will use the following terminology:

Definition 3.3. A S-functor F : �1 → �2 is acute when it satisfies the pullback condition (27).

A useful observation for later usage is that

Proposition 3.4. The class of acute S-functors is closed under pullbacks in the category Cat(S).

3.4 Acute Spans of Internal Categories
The statements of Prop. 2.5 and 3.4 lead us to define the bicategory AcuteSpan(Cat(S)) of acute
spans in the category Cat(S) with finite limits. By acute span, we mean a span in Cat(S)

�1 �S �2

Fs Ft
(28)

where the two S-functors Fs and Ft are acute in the sense of Def. 3.3. As expected, the 2-dimensional

cells

H :

(
�1 �S �2

) (
�1 �T �2

)
: �1 �2

Fs Ft Gs Gt
|

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 23. Publication date: January 2019.



Categorical Combinatorics of Scheduling and Synchronization 23:19

in the bicategory AcuteSpan(Cat(S)) are the acute S-functors H : �S → �T making the diagram

below commute:

�S

A B

�T

Fs Ft

H

GsGt

We can easily deduce from Prop. 3.1 that there exists a pair of functors

(−) ▷ = F 7→ F ▷
: Cat(S) DoubleCat

(−) ◁ = F 7→ F ◁
: Cat(S) op DoubleCat

We establish that

Theorem 3.5. The two functors (−) ◁ and (−) ▷ combine into a homomorphism of bicategories

Games(−) : AcuteSpan(Cat(S)) DoubleCat (29)

Every acute span (28) is mapped to the homomorphism of double categories defined as the composite

Games(�1) Games(�S ) Games(�2)
F ◁
s F ▷

t
(30)

A Beck-Chevalley property ensures then that the two constructions behave well with respect to

composition, and induce the announced homomorphism (29) of bicategories.

4 INTERMEZZO: THE TENSOR PRODUCT OF ALTERNATING GAMES
We have seen in the introduction that �alt defines an internal category in S = Cat. From this

combinatorial data in S = Cat follows the existence of the bicategory Games(�alt) of alternating
games, strategies and simulations described in §2. In this short section, we explain how one can

construct the tensor product A ⊗ B of two alternating games A and B using “change of internal

categories” along acute spans of internal categories, following there the philosophy developed in

the previous section §3.

4.1 The Internal Category of Tensor Polarities
We introduce the internal category �⊗

alt
of tensor polarities. Its first component (space of objects)

�⊗
alt
[0] = �⊗

game

is defined as the category freely generated by the graph below:

⟨⊖,⊕⟩ ⟨⊕,⊕⟩ ⟨⊕,⊖⟩
Pl

Ol Or

Pr

The three objects of the category �⊗
game

describe the three polarities

⟨λA1
(x1),λA2

(x2)⟩

possibly reached by a position (x1,x2) in the game A1 ⊗ A2 obtained (as we will see) by tensoring

the games A1 and A2. The next component (space of maps) of the internal category

�⊗
alt
[1] = �⊗

strat
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is defined as the category freely generated by the graph below:

⟨⊕,⊕,⊕,⊕⟩

⟨⊕,⊕,⊖,⊕⟩ ⟨⊕,⊕,⊕,⊖⟩

⟨⊖,⊕,⊖,⊕⟩ ⟨⊕,⊖,⊕,⊖⟩

Ol ,t Or ,t

Pl ,s

Pl ,t

Pr ,s

Pr ,t

Ol ,s Or ,s

Here, the five objects of the category describe the five possible sequences of polarities

⟨λA1
(x1),λA2

(x2),λA3
(x3),λA4

(x4)⟩

possibly reached by a position (x1,x2,x3,x4) of the four games A1, A2, A3, A4 during a sequential

and alternating execution of a strategy σ of the form

σ : A1 ⊗ A2 A3 ⊗ A4 (31)

Typically, the edge Or ,t describes the polarity of an Opponent move playing on the component A4

and thus transporting a position of polarity ⟨⊕,⊕,⊕,⊕⟩ into a position of polarity ⟨⊕,⊕,⊕,⊖⟩. The
scheduling then allows Player to play on the component A2 with a move of polarity Pr ,s which
reaches a position of polarity ⟨⊕,⊖,⊕,⊖⟩ ; or to play on the component A4 with a move of polarity

Pr ,s which goes back to a position of polarity ⟨⊕,⊕,⊕,⊕⟩.

4.2 The Associated Span of Internal Functors
It appears that the internal category �⊗

alt
comes equipped with a span of internal functors

�alt ×�alt �⊗
alt

�alt

F ⊗s F ⊗t
(32)

each of them defined by a pair of functors (ie. maps in S = Cat) below:

�game ×�game �⊗
game

�game

F ⊗s [0]=(1) (2) F ⊗t [0]

�strat ×�strat �⊗
strat

�strat

F ⊗s [1]=(13) (24) F ⊗t [1]

The functor F ⊗s [0] is noted (1) (2) because it projects every position ⟨ϵ1,ϵ2⟩ of �game to its first and

second components ϵ1 and ϵ2, with each of them transported to the first and second component of

the cartesian product �game ×�game. In other words:

F ⊗s [0] : ⟨ϵ1,ϵ2⟩ 7→ (⟨ϵ1⟩,⟨ϵ2⟩)

where ϵ1,ϵ2 ∈ {⊕,⊖}. Similarly, the functor F ⊗s [1] is noted (13) (24) because it behaves as follows:

F ⊗s [1] : ⟨ϵ1,ϵ2,ϵ3,ϵ4⟩ 7→ (⟨ϵ1,ϵ3⟩,⟨ϵ2,ϵ4⟩)

The purpose of F ⊗s [0] and F ⊗s [1] is to “disentangle” the two threads of computation running on

the left and the right component of the tensor product, both at the level of games for F ⊗s [0] and
at the level of strategies for F ⊗s [1]. The internal functor F

⊗
t performs the complementary task of

assigning a polarity in �alt to every polarity in �⊗
alt
, according to the table of polarity expected for

the tensor product of two alternating games. By this, we mean that the functor F ⊗t [0] assigns a
polarity in �game to every position and trajectory of �⊗

game
according to the following table:

⟨⊕,⊕⟩ 7→ ⟨⊕⟩ Os 7→ O Ot 7→ O
⟨⊖,⊕⟩ , ⟨⊕,⊖⟩ 7→ ⟨⊖⟩ Ps 7→ P Pt 7→ P
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and that the functor F ⊗t [1] assigns a polarity in �strat to every position of �⊗
strat

as follows:

⟨⊕,⊕,⊕,⊕⟩ 7→ ⟨⊕,⊕⟩
⟨⊕,⊕,⊕,⊖⟩ , ⟨⊕,⊕,⊖,⊕⟩ 7→ ⟨⊕,⊖⟩ Ol,t , Or ,t 7→ Ot Pr ,t , Pl,t 7→ Pt
⟨⊕,⊖,⊕,⊖⟩ , ⟨⊖,⊕,⊖,⊕⟩ 7→ ⟨⊖,⊖⟩ Ol,s , Or ,s 7→ Os Pr ,s , Pl,s 7→ Ps

Going back to the definition of acute S-functors formulated in §3.3 (Def. 3.3), a nice and elementary

combinatorial exercise establishes that

Proposition 4.1. The two components F ⊗s and F ⊗t of the span (32) are acute S-functors.

4.3 The Construction of the Tensor Product
We are finally ready to explain how to use the combinatorial and categorical material just introduced

in order to construct the tensor product of two alternating games (A,λA) and (B,λB ). The idea is to
compute the pullback diagram (a) below

A × B A ⊗ B

(a)

�game ×�game �⊗
game

�game

λA×λB

inclusion

λ

λA⊗B

F ⊗s [0]=(1) (2) F ⊗t [0]

(33)

in order to compute the category A ⊗ B as well as the polarity functor λ : A ⊗ B → �⊗
game

to the

category of tensor polarities. The polarity functor λA⊗B : A ⊗ B → �game itself is then obtained by

postcomposing the functor λ with the functor F ⊗t [0]. Note that �
⊗
game

may be seen as a subcategory

of �game × �game with F ⊗s [0] as inclusion functor. For that reason, A ⊗ B may be defined as the

subcategory ofA×B whose positions and trajectories have the appropriate polarities and scheduling.

What should strike the reader at this stage is that the very concrete construction of the tensor

product A,B 7→ A ⊗ B of two alternating games just described can be rephrased in the more

abstract and sophisticated language developed in the previous section §3. Indeed, the construction

follows the recipe of Thm. 3.5 which states that the span of two acute S-functors (32) induces a
homomorphism of double categories

Games(�alt ×�alt) Games(�⊗
alt
) Games(�alt)

(F ⊗s )
◁ (F ⊗t )

▷

(34)

defined as the composite of pullback along F ⊗s and postcomposition along F ⊗t . This observation
leads us to the search for a purely combinatorial axiomatics on �alt which would ensure that the

tensor product just defined turns Games(�alt) into a symmetric monoidal closed double category

Games(�alt). Note that this statement would be outrageously difficult to establish directly without

the dictionary between internal categories and double categories developed in the previous two

sections.

5 SPAN-MONOIDAL CLOSED S-CATEGORIES
In this section, we establish that the bicategory Games(�) is symmetric monoidal closed when the

S-category � in S comes equipped with a span-monoidal closed structure, a notion which will be

defined in the core of the section.
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5.1 Lax Symmetric Monoidal Homomorphisms
A lax symmetric monoidal homomorphism (F,p,m) between symmetric monoidal bicategories

(F,p,m) : (V,⊗, I ) (W,⊗, I )

is a homomorphism (F,p) equipped with a family of maps

mA,B : FA ⊗FB F(A ⊗ B) mI : I FI

satisfying a number of coherence relations adapting to symmetric monoidal bicategories the notion

of lax symmetric monoidal functor between symmetric monoidal categories.

5.2 The Lax Symmetric Homomorphism Games(−)
The bicategory AcuteSpan(Cat(S)) defined in §3.4 is symmetric monoidal, with the cartesian

product A,B 7→ A × B of the category Cat(S) of internal categories as tensor product, and with

terminal object 1 in Cat(S) as tensorial unit. We find convenient to use the notation ⊠ for the

cartesian product A,B 7→ A × B of internal categories, when it is seen as a tensor product in

bicategory Span(Cat(S)). Similarly, we write 1 for the terminal internal category 1, seen as the

tensor unit of ⊠. In comparison, the 2-category DoubleCat of double categories, homomorphisms

and vertical natural transformations is cartesian closed, with cartesian product noted V,W 7→

V ×W and terminal double category noted 1. We establish the following result, which provides

the technical foundations of all later results:

Proposition 5.1. The homomorphism of bicategories

Games(−) : (AcuteSpan(Cat(S)),⊠,1) (DoubleCat,×,1)

defined in Thm. 3.5 is lax symmetric monoidal.

As indicated in §5.1, this means that Games(−) comes equipped with a family of homomorphisms

of double categories

m�1,�2
: Games(�1) × Games(�2) −→ Games(�1 ⊠�2)

m1 : 1 −→ Games(1)

indexed by the internal categories �1 and �2 in S, and satisfying a number of coherence relations.

It is worth stressing that the homomorphismsm�1,�2
andm1 of bicategories are as simple as they

should be. Typically, the homomorphismm�1,�2
transports every pair of objects

λA : A �1[0] λB : B �2[0] (35)

of the double categories Games(�1) and Games(�2) to the object

λA × λB : A × B (�1 ×�2)[0]

of the category Games(�1 ⊠�2) defined by taking the cartesian product of (35) in S.

5.3 Span-Monoidal Internal Categories
We are now ready to introduce the central notion of the paper, and to establish our main theorem.

Definition 5.2. A symmetric span-monoidal internal category � is defined as a symmetric pseu-

domonoid object (�,⊗, J ) in the symmetric monoidal bicategory AcuteSpan(Cat(S)).
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In other words, a symmetric span-monoidal internal category � is an internal category which

comes equipped with two spans of acute S-functors

� ⊠� �|

⊗�

1 �|

J�
(36)

satisfying the coherence diagrams of a symmetric pseudomonoid object (�,⊗, J ). We are ready

now to state our first structure theorem:

Theorem 5.3. Every symmetric span-monoidal S-category � induces a symmetric monoidal bicat-
egory Games(�).

The tensor product and unit

Games(�) × Games(�) Games(�)
⊗ 1 Games(�)

J

of the double category Games(�) are defined as the composite homomorphisms:

Games(�) × Games(�) Games(� ⊠�) Games(�)
m�,� Games(⊗� )

1 Games(1) Games(�)
m1 Games(J� )

5.4 Span-Monoidal Closed S-categories
Now that we have established in Thm. 5.3 that every symmetric span-monoidal S-category �
induces a symmetric monoidal bicategory Games(�), we are interested to find sufficient conditions

on � in order to ensure that the bicategory Games(�) is also closed. Before giving the definition,

we observe the following interesting phenomenon: given a S-category �, consider the “opposite”

S-category �op
obtained by permuting the source and target maps s and t in the definition of �. It

is essentially immediate that

Proposition 5.4. The bicategory Games(�op ) is isomorphic to the bicategory Games(�)op (1)

obtained by reversing the 1-dimensional cells in the bicategory Games(�).

This observation leads us to the following definition:

Definition 5.5. A span-monoidal S-category � is closed when there exists an acute span

�op ⊠� �|

⊸�

in the sense of §3.4. This means that there exists a S-category �⊸ equipped with a span of acute

S-functors

�op ×� �⊸ �
F⊸s F⊸t

One requires moreover that the span computed in the category S

�1⊗2,3

�⊗[0] pb �[1]

�[0] ×�[0] �[0] �[0]

(3)(12)

F ⊗t [0]

F ⊗s [0]
s

t
(37)
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coincides with the span also computed in the category S

�1,2⊸3

�[1] pb �⊸[0]

�[0] �[0] �[0] ×�[0]

(1) (23)

t
s

F⊸t [0]

F⊸s [0]

(38)

up to isomorphism, and up to appropriate renaming of the components. Typically, in concrete

situations, the objects �1⊗2,3
and �1,2⊸3

would be required to coincide, and the three maps

f1 = π1 ◦ F
⊗
s [0] ◦ (12) f2 = π2 ◦ F

⊗
s [0] ◦ (12) f3 = t ◦ (3)

induced by the span (37) would be required to coincide with the three maps induced by the span (38)

д1 = s ◦ (1) д2 = π1 ◦ F
⊸
s [0] ◦ (23) д3 = π2 ◦ F

⊸
s [0] ◦ (23)

in the expected sense that f1 = д1, f2 = д2 and f3 = д3.

We establish that

Theorem 5.6. Every symmetric span-monoidal closed S-category � induces a symmetric monoidal
closed bicategory Games(�).

The tensorial implication of the pseudo double category Games(�)

⊸ : Games(�)op (1) × Games(�) Games(�)

is defined as the composite homomorphism:

Games(�)op (1) × Games(�) Games(�)

Games(�op ) × Games(�) Games(�op ⊠�)

iso
m�op ,�

Games(⊸� )

6 BACK TO SEQUENTIAL ALTERNATING GAMES AND STRATEGIES
At this point, we are ready to take all the benefit of the abstract constructions performed in the

previous sections, and to illustrate our foundational and principled approach to game semantics by

deriving a sequential and alternating game model of linear logic Games(�alt) from our main result

(Thm. 5.6). The construction is simple, since it boils down to establishing that the span-monoidal

structure on �alt defined in §4 is closed in the sense of Def. 5.5. An easy computation shows that

the pullback diagram

�1⊗2,3

�⊗
game

pb �strat

�game ×�game �game �game

F ⊗t [0]

F ⊗s [0]

s=(1)
t

(39)
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defines the category �1⊗2,3
freely generated by the graph below:

⟨⊕,⊕,⊕⟩

⟨⊕,⊕,⊖⟩

⟨⊖,⊕,⊖⟩ ⟨⊕,⊖,⊖⟩

O3

O1 O2

P3

P1 P2

(40)

The four positions of the graph describe the four polarities of a position (x1,x2,x3) possibly reached
by a strategy σ of the form

σ : A1 ⊗ A2 A3 (41)

Similarly, one introduces the S-category �⊸
alt

defined as follows. Its first component (space of

objects) is the category �⊸
alt
[0] freely generated by the graph

⟨⊖,⊖⟩ ⟨⊕,⊖⟩ ⟨⊕,⊕⟩
Ol

Pl Pr

Or

Its second component (space of maps) is the category �⊸
alt
[1] freely generated by the graph

⟨⊕,⊖,⊕,⊖⟩

⟨⊖,⊖,⊕,⊖⟩ ⟨⊕,⊕,⊕,⊖⟩

⟨⊖,⊖,⊖,⊖⟩ ⟨⊕,⊕,⊕,⊕⟩

Ol ,t Or ,t

Pl ,t

Pl ,s

Pr ,t

Pr ,s

Ol ,t Or ,t

The span of acute S-functors

�alt �⊸
alt

�op
alt
×�alt

F⊸s F⊸t

is defined in the same way as was done for the tensor product in §4, except that the polarity table

of ⊗ is replaced by the polarity table of⊸. Finally, one checks that the pullback (38) coincides with

the pullback (37) or (39) computed in (40). This establishes that the four positions of the graph (41)

describe the four polarities of a position (x1,x2,x3) possibly reached by a strategy σ of the form

σ : A1 A2 ⊸ A3 (42)

This concludes the proof that the internal S-category �alt is symmetric span-monoidal closed in

the sense of Def. 5.5. From this elementary combinatorial property, it follows by Thm 5.6 that

Theorem 6.1. The bicategory Games = Games(�alt) of sequential alternating games, strategies
and simulations is symmetric monoidal closed.

It should be noted that the tensorial implication of two games (A,λA) and (B,λB ) is defined using
the same recipe as the tensor product in (33) as

(A , λA ) ⊸ ( B , λB ) := (A ⊸ B , F⊸t [0] ◦ (λA ⊸ λB ) )
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where the categoryA ⊸ B and the functor λA ⊸ λB are defined by the pullback diagram (a) below,
living in S = Cat:

A × B A ⊸ B

(a)

�op
game
×�game �⊸

alt
[0] �game

λA×λB

inclusion

λ

λA⊸B

F⊸s [0]=(1) (2) F⊸t [0]

(43)

7 CONCURRENT NON-ALTERNATING GAMES AND STRATEGIES
Here, we illustrate again, this time with concurrent non-alternating games and strategies, the fact

that our main result (Thm. 5.6) is extremely simple and useful in practice, since it enables us to

derive sophisticated bicategories of games, strategies and simulations from basic combinatorial

properties of their scheduling policy. Here, we illustrate the usage and benefit of the theorem by

deriving a bicategory Games(�conc) of concurrent non-alternating games and strategies from the

construction of a specific internal S-category �conc in the category S = Cat of small categories.

We start by defining the internal category �conc. Its first component is the space of objects and

template of concurrent non-alternating games defined as the category

�conc[0]

with one object ⟨∗⟩ generated by the graph

⟨∗⟩P O

and the additional equation O · P = P ·O . Its second component is the space of maps and template
of concurrent non-alternating strategies defined as the category

�conc[1]

with one object ⟨∗,∗⟩ generated by the graph

and the six elementary equations

Os · Ps = Ps ·Os Os · Pt = Pt ·Os Os ·Ot = Ot ·Os
Ot · Ps = Ps ·Ot Ot · Pt = Pt ·Ot Ps · Pt = Pt ·Os

The categories �conc[0] and �conc[1] are constructed along the same lines as the categories �alt[0]

and �alt[1] except that all the polarity positions appearing in the alternating case of �alt have been

“depolarized” and identified to the very same object, noted ∗ or ⟨∗,∗⟩. Since a category with one

object is the same thing as a monoid, the two categories �conc[0] and �conc[1] may be seen as

free commutative monoids generated by the two elements O and P in the case of �conc[0] and by

the four elements Os , Ot , Ps and Pt in the case of �conc[1]. For that reason, we find convenient to

describe each of the two categories by the set of elements, or edges, which generate it:

�conc[0] = �conc[1] =
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The edges O and P generating �conc[0] are represented as red ⊖ (for O) and blue ⊕ (for P ) while
the edges Os , Ot , Ps , Pt generating �conc[1] are represented as red ⊖ on the left (for Os ), red ⊖

on the right (for Ot ), blue ⊕ on the left (for Ps ) and blue ⊕ on the right (for Pt ). The functors

s,t : �conc[1]→ �conc[0] are defined as expected, and in essentially the same way as in the case of

alternating polarities (4) expect for the absence of polarities on positions:

s :
Os 7→ P Ps 7→ O

Ot , Pt 7→ id

t :
Ot 7→ O Ot 7→ P

Os , Ps 7→ id

The diagrammatic representation is particularly convenient to describe the source and target

functors s and t :

ts

At this stage, it appears that the category �conc[2] of concurrent and non-alternating interaction

defined by the pullback diagram (17) is once again a free commutative monoid generated this time

by six elements depicted as follows:

�conc[2] =

More generally, all the categories involved to establish that �conc is span-monoidal closed in

S = Cat are defined as free commutative monoids of that form. The coherence diagrams is thus

even easier to check than in the case of the template �alt of sequential alternating games. Typically,

the important categories of concurrent and non-alternating polarities involved in the proof are

generated by the following elements, or edges:

�⊗
conc

[0] = �⊗
conc

[1] = �1⊗2,3
conc

[0] =

So, we may apply Theorem 5.6 and deduce from this purely combinatorial description of the internal

category �conc that

Theorem 7.1. The bicategory Games(�conc) of concurrent and non-alternating games, strategies
and simulations is symmetric monoidal closed.

It should be stressed that this last theorem (and its companion Thm. 6.1) would be tremendously

difficult to establish in full rigor without the conceptual tools introduced in the paper.

8 RELATIONAL SEMANTICS AND FUNCTORIAL SPANS
The relational semantics of linear logic was originally formulated by Girard as a mild variation of

the coherence space model [Girard 1987]. The model relies on the existence of the ∗-autonomous

(and in fact compact closed) category Rel of sets and relations. The model was more recently

“categorified” into a 2-dimensional model of linear logic [Fiore et al. 2008] based this time on the

bicategory Dist of small categories and distributors (also called bimodules or profunctors) between

them. Here, we consider another variation and categorification of the relational semantics of linear

logic, based this time on the bicategory Span(Cat) of small categories and functorial spans between

them. Interestingly, this bicategorical model of linear logic is an instance (although degenerate) of

our general construction since Span(Cat) = Games(�span) for the terminal internal category �span

in S = Cat, whose components �span[0] and �span[1] are thus equal to the terminal category 1. The
internal category �span is span-monoidal closed for obvious reasons, and we may thus conclude

from our main result (Thm. 5.6) that
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Theorem 8.1. The bicategory Span(Cat) = Games(�conc) of small categories, functorial spans
and simulations is symmetric monoidal closed.

9 STAR-AUTONOMOUS SPAN-MONOIDAL S-CATEGORIES
In some situations of interest, we will see that the closed structure (Def. 5.5) of a symmetric

span-monoidal S-category � comes from a more primitive structure which we describe now.

Definition 9.1. A symmetric span-monoidal S-category is ∗-autonomous when there exists a pair

of inverse S-functors between S-categories

∗ (−) : �op � (−)∗ : � �op
(44)

such that the acute S-functor obtained by composition

�op ⊠� �op ⊠�op �op �
�op⊠(−)∗

|

⊗
op
�

∗ (−)

(45)

makes the two spans (37) and (38) coincide up to isomorphism, and up to appropriate renaming of

the components.

Every ∗-autonomous span-monoidal category is closed by definition, with tensorial implication

⊸� defined as the acute span (45). As a matter of fact, we establish a variant of Thm. 5.6:

Theorem 9.2. Every ∗-autonomous span-monoidal S-category � induces a ∗-autonomous bicate-
gory Games(�).

In particular, the ∗-autonomous bicategory Games(�) comes equipped with an isomorphism of

bicategory induced by the pair of inverse S-functors (44).

(−)∗ : Games(�)op (1) Games(�)

As mentioned in the introduction, the three S-categories �alt, �conc and �span are ∗-autonomous.

The inverse S-functors (44) are defined by reversing the polarities of positions and moves in the

case of �alt, by reversing the polarities of moves in the case of �conc and by doing nothing in the

case of �span. From this, we conclude by Thm. 9.2 that the bicategoriesGames(�alt),Games(�conc)
and Games(�span) are not just symmetric monoidal closed, but also ∗-autonomous.

10 CONCLUSION AND FUTUREWORKS
Given a category S with finite limits, we have shown how to derive a monoidal closed bicategory

Games(�) of games, strategies and simulations from any span-monoidal closed category� internal

in the category S. We have also illustrated the construction with three monoidal closed bicategories

Games(�alt), Games(�conc) and Games(�span) corresponding to three different flavors of game

semantics (alternating or non-alternating) and of relational semantics (functorial spans). Although

the categorical material required to establish our main theorem (Thm. 5.6) is conceptually demand-

ing, the construction of the span-monoidal closed category � is quite elementary in each case, and

the verification of the expected coherence axioms is instructive and pleasant. The framework of

template games thus provides a new foundation for game semantics, based on a very flexible and

compelling way to construct new bicategories of games and strategies, with more sophisticated and

interesting synchronization mechanisms than we ever had access to in the past. In particular, we

are currently working on a formulation of the asynchronous game model of concurrent separation

logic [Melliès and Stefanesco 2018] in the language of synchronization templates developed in the

present paper. A fascinating aspect of the exercise is that the synchronization templates � are

provided in that case by (variants of) the stateful or stateless machine models �L and �S in the
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category S of asynchronous graphs — thus quite far in apparence from the internal categories of

game polarities �alt and �conc considered in the present paper. For all these reasons, we believe

that this work provides a unifying and long-awaited framework for a new generation of integrated

game semantics, at ease both with high-level and low-level description of programming languages.

A COMPUTING THE PULLBACK DEFINING THE CATEGORY OF INTERACTIONS
We give a detailed proof that the category�int defined by the pullback diagram (9) is freely generated

by the graph (10). The computation relies on the existence of a faithful functor noted (1223) from
the category �int computed by the pullback diagram (9) to the category �strat × �strat. We find

convenient to depict the functor (1223) in the following way:

�int = = �strat ×�strat

(1223)

In order to recover the oriented graph (10) from this representation, one needs to “fatten” every

edge of the non-oriented graph by a ribbon whose two borders define a pair of oriented edges,

going in opposite directions. The two edges Ot and Pt are then defined as the borders of the upper

ribbon, the two edges O |P and P |O as the borders of the middle ribbon, and the two edges Os and

Ps as the borders of the lower ribbon. One obtains the following translation:

�int = =

Note the functor π1 : �int → �strat is characterized by the fact that it behaves in the following way

on objects: ⟨ϵ1,ϵ2,ϵ3⟩ 7→ ⟨ϵ1,ϵ2⟩ and that it transports every edge of the graph (10) to an edge of

the graph (3) or to the identity. For that reason, we find convenient to use the notation (12) for
the first projection π1. Similarly, the functor π2 : �int → �strat is characterized by the fact that it

behaves in the following way on objects ⟨ϵ1,ϵ2,ϵ3⟩ 7→ ⟨ϵ2,ϵ3⟩ and that it transports every edge of

the graph (10) to an edge of the graph (3) or to the identity. We thus proceed accordingly, and use

the notation (23) for the second projection π2 : �int → �strat. Note that putting the functors (12)
and (23) together and side by side using the universality property of the cartesian product, one

recovers the functor (1223) : �int → �strat × �strat. The notation is thus a useful guide in the

categorical combinatorics of synchronization we are exploring.
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