Categorical combinatorics of scheduling and synchronization

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF) CNRS & Université Paris Diderot

ACM Symposium on Principles of Programming Languages Cascais  $\pm$  POPL'19  $\pm$  16  $\rightarrow$  19 January 2019 Categorical combinatorics of scheduling and synchronization in game semantics

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF) CNRS & Université Paris Diderot

ACM Symposium on Principles of Programming Languages Cascais  $\pm$  POPL'19  $\pm$  16  $\rightarrow$  19 January 2019

# Understanding logic in space and time



#### What are the principles at work in a dialogue?

# Understanding logic in space and time



#### What are the principles at work in a dialogue?

# Understanding logic in space and time



#### What are the principles at work in a dialogue?



#### Purpose of this talk:

Understand how different proofs and programs may be

- combined together in space
- synchronized together in time

in the rich and modular ecosystem provided by linear logic.



#### Purpose of this talk:

Understand how different proofs and programs may be

- combined together in space
- synchronized together in time

in the rich and modular ecosystem provided by game semantics.

# **Template games**

Categorical combinatorics of synchronization

### The category of polarities

We introduce the category

±game

freely generated by the graph

$$\langle \ominus \rangle \xleftarrow{O} \\ \xrightarrow{P} \\ \langle \oplus \rangle$$

the category  $\pm_{game}$  will play a fundamental role in the talk

## **Template games**

#### First idea:

Define a **game** as a category A equipped with a functor



to the category  $\ \pm_{game} \ \mbox{freely generated by the graph}$ 

$$\langle \ominus \rangle \xleftarrow{O} \\ \xleftarrow{P} \\ \langle \oplus \rangle$$

Inspired by the notion of **coloring** in graph theory

### **Positions and trajectories**

It is convenient to use the following terminology

| objects   | $\leftrightarrow$ | positions    |
|-----------|-------------------|--------------|
| morphisms | $\leftrightarrow$ | trajectories |

and to see the category A as an **unlabelled** transition system.

# The polarity functor

The polarity functor

$$\lambda_A : A \longrightarrow \pm_{game}$$

assigns a polarity  $\oplus$  or  $\ominus$  to every position of the game A.

**Definition.** A position  $a \in A$  is called

Playerwhen its polarity $\lambda_A(a) = \bigoplus$ is positiveOpponentwhen its polarity $\lambda_A(a) = \bigoplus$ is negative

# **Opponent moves**

Definition. An Opponent move



is a trajectory of the game A transported to the edge

 $O \quad : \quad \langle \oplus \rangle \longrightarrow \langle \ominus \rangle$ 

of the template category  $\pm_{game}$ .

#### **Player moves**

**Definition.** A **Player move** 



is a trajectory of the game A transported to the edge

 $P \quad : \quad \langle \ominus \rangle \longrightarrow \langle \oplus \rangle$ 

of the template category  $\pm_{game}$ .

#### **Silent trajectories**

**Definition.** A silent move

 $m : a \longrightarrow b$ 

is a trajectory of the game A transported to an identity morphism



of the template category  $\pm_{game}$ .

Categorical combinatorics of synchronization

In order to describe the strategies between two games

 $\sigma \quad : \quad A \longrightarrow B$ 

we introduce the template of strategies

 $\pm_{strat}$ 

defined as the category freely generated by the graph

$$\langle \ominus, \ominus \rangle \xleftarrow{P_s} \langle \oplus, \ominus \rangle \xleftarrow{O_t} \langle \oplus, \oplus \rangle$$

Each of the four labels

#### $O_s P_s O_t P_t$

describes a specific kind of Opponent and Player move

| $O_S$   | : | Opponent move | played at | the source game |
|---------|---|---------------|-----------|-----------------|
| $P_{s}$ | : | Player move   | played at | the source game |
| $O_t$   | : | Opponent move | played at | the target game |
| $P_t$   | : | Player move   | played at | the target game |

which may appear on the interactive trajectory played by a strategy

 $\sigma \quad : \quad A \longrightarrow B.$ 

The four generators

$$\langle \ominus, \ominus \rangle \xleftarrow{P_s} \langle \oplus, \ominus \rangle \xleftarrow{O_t} \langle \oplus, \oplus \rangle \\ \xrightarrow{O_s} \langle \oplus, \ominus \rangle \xleftarrow{P_t} \langle \oplus, \oplus \rangle$$

of the category

 $\pm$ strat

may be depicted as follows:



In that graphical notation, the sequence

 $O_t \cdot P_s \cdot O_s \cdot P_t$ 

is depicted as



The category  $\pm_{strat}$  comes equipped with a span of functors

$$\pm_{game} \xleftarrow{s=(1)} \pm_{strat} \xrightarrow{t=(2)} \pm_{game}$$

defined as the projection s = (1) on the first component:

$$\begin{array}{cccc} \langle \ominus, \ominus \rangle & \mapsto & \langle \ominus \rangle \\ \langle \oplus, \ominus \rangle, \langle \oplus, \oplus \rangle & \mapsto & \langle \oplus \rangle \end{array} & \begin{array}{cccc} O_s & \mapsto & P & P_s & \mapsto & O \\ O_t & , & P_t & \mapsto & id_{\langle \oplus \rangle} \end{array} \end{array}$$

and as the projection t = (2) on the second component:

$$\begin{array}{ccc} \langle \oplus, \oplus \rangle & \mapsto & \langle \oplus \rangle \\ \langle \oplus, \oplus \rangle, \langle \oplus, \oplus \rangle & \mapsto & \langle \oplus \rangle \end{array} & \begin{array}{ccc} O_t & \mapsto & O & P_t & \mapsto & P \\ O_s & O_s & P_s & \mapsto & id_{\langle \oplus \rangle} \end{array}$$

The two functors s and t are illustrated below:



## **Strategies between games**

#### Second idea:

Define a **strategy** between two games



as a span of functors

$$A \xleftarrow{s} S \xrightarrow{t} B$$

together with a **scheduling functor** 

$$S \xrightarrow{\lambda_{\sigma}} \pm_{\text{strat}}$$

#### Strategies between games

making the diagram below commute



#### Key idea:

Every trajectory  $s \in S$  induces a pair of trajectories  $s_A \in A$  and  $s_B \in B$ . The functor  $\lambda_{\sigma}$  describes how  $s_A$  and  $s_B$  are scheduled together by  $\sigma$ .

# Support of a strategy



#### **Basic intuition:**

« the support S contains the trajectories played by  $\sigma$  »

# A typical scheduling $B \cdot A \cdot A \cdot B$

A trajectory  $s \in S$  of the strategy  $\sigma$  with schedule

$$\langle \oplus, \oplus \rangle \xrightarrow{O_t} \langle \oplus, \ominus \rangle \xrightarrow{P_s} \langle \ominus, \ominus \rangle \xrightarrow{O_s} \langle \ominus, \oplus \rangle \xrightarrow{P_t} \langle \oplus, \oplus \rangle$$

is traditionally depicted as

|                                     | $A \xrightarrow{\sigma} B$ | 3          |
|-------------------------------------|----------------------------|------------|
| first move $m_1$ of polarity $O_t$  | m                          | <i>l</i> 1 |
| second move $n_1$ of polarity $P_s$ | $n_1$                      |            |
| third move $m_2$ of polarity $O_s$  | <i>m</i> <sub>2</sub>      |            |
| fourth move $n_2$ of polarity $P_t$ | п                          | 2          |

# A typical scheduling $B \cdot A \cdot A \cdot B$

Thanks to the approach, one gets the more informative picture:



### Simulations

**Definition:** A simulation between strategies

 $\theta : \sigma \longrightarrow \tau : A \longrightarrow B$ 

is a **functor** from the support of  $\sigma$  to the support of  $\tau$ 

 $\theta : S \longrightarrow T$ 

making the three triangles commute



### The category of strategies and simulations

Suppose given two games A and B.

The category **Games** (A, B) has **strategies** between A and B

 $\sigma, \tau \quad : \quad A \longrightarrow B$ 

as objects and **simulations** between strategies

 $\theta \ : \ \sigma \longrightarrow \tau \ : \ A \longrightarrow B$ 

as morphisms.

# The bicategory Games

A bicategory of games, strategies and simulations

## The bicategory **Games** of games and strategies

At this stage, we want to turn the family of categories

#### **Games** (A, B)

into a **bicategory** 

#### Games

of games and strategies.

# The bicategory **Games** of games and strategies

To that purpose, we need to define a composition functor

 $\circ_{A,B,C}$  : Games  $(B,C) \times$  Games  $(A,B) \longrightarrow$  Games (A,C)

which composes a pair of strategies

 $\sigma \quad : \quad A \longrightarrow B \qquad \quad \tau \quad : \quad B \longrightarrow C$ 

into a strategy

 $\sigma \circ_{A,B,C} \tau \quad : \quad A \longrightarrow C$ 

#### **Composition of strategies**

The construction starts by putting the pair of functorial spans side by side:



Fine, but how shall one carry on and perform the composition?

#### The template of interactions

Third idea:

#### We define the template of interactions

#### $\pm_{int}$

as the category obtained by the pullback diagram below



#### The template of interactions

Somewhat surprisingly, the category

#### $\pm_{int}$

is simple to describe, as the **free category** generated by the graph

$$\langle \ominus, \ominus, \ominus \rangle \xleftarrow{P_s} \langle \oplus, \ominus, \ominus \rangle \xleftarrow{O|P} \langle \oplus, \oplus, \ominus \rangle \xleftarrow{O_t} \langle \oplus, \oplus, \ominus \rangle \xleftarrow{P_t} \langle \oplus, \oplus, \oplus \rangle$$

with four states or positions.

#### The template of interactions

The six generators

may be depicted as follows:






A typical sequence of interactions is thus depicted as follows:



## **Key observation**

The template  $\pm_{int}$  of interactions comes equipped with a functor

*hide* :  $\pm_{int} \longrightarrow \pm_{strat}$ 

which makes the diagram below commute:



and thus defines a map of span.

#### **Key observation**

The functor



is defined by **projecting** the positions of the interaction category

 $\langle \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle$ 

on their first and third components:

 $\begin{array}{cccc} \langle \ominus, \ominus, \ominus \rangle & \mapsto & \langle \ominus, \ominus \rangle & & O_s & \mapsto & O_s & P_s & \mapsto & P_s \\ \langle \oplus, \ominus, \ominus \rangle, & \langle \oplus, \oplus, \ominus \rangle & \mapsto & \langle \oplus, \ominus \rangle & & O|P, P|O & \mapsto & id_{\langle \oplus, \ominus \rangle} \\ & \langle \oplus, \oplus, \oplus \rangle & \mapsto & \langle \oplus, \oplus \rangle & & O_s & \mapsto & O_s & P_s & \mapsto & P_s \end{array}$ 

# Illustration



# **Composition of strategies**



# **Composition of strategies**

This definition of composition implements the slogan that

composition = synchronization + hiding

# What about identities?



and thus defines a morphism of spans.

# What about identities?

The functor

*copycat* :  $\pm_{game} \longrightarrow \pm_{strat}$ 

is defined by **duplicating** the positions of the polarity category

 $\langle \mathcal{E} \rangle$ 

in the following way:

### A synchronous copycat strategy

The functor

*copycat* :  $\pm_{game} \longrightarrow \pm_{strat}$ 

transports the edge

 $\langle \ominus \rangle \xleftarrow{O} \langle \oplus \rangle$ 

to the trajectory consisting of two moves

$$\langle \ominus, \ominus \rangle \xleftarrow{P_s} \langle \oplus, \ominus \rangle \xleftarrow{O_t} \langle \oplus, \oplus \rangle$$

#### A synchronous copycat strategy

The functor  $copycat : \pm_{game} \longrightarrow \pm_{strat}$ transports the edge  $\langle \ominus \rangle \xrightarrow{P} \langle \oplus \rangle$ to the trajectory consisting of two moves

$$\langle \ominus, \ominus \rangle \xrightarrow{O_s} \langle \oplus, \ominus \rangle \xrightarrow{P_t} \langle \oplus, \oplus \rangle$$

### The identity strategy

Given a game *A*, the copycat strategy

 $cc_A : A \longrightarrow A$ 

is defined as the functorial span

 $A \xleftarrow{identity} A \xrightarrow{identity} A$ 

together with the scheduling functor

$$\lambda_{cc_A} = A \xrightarrow{\lambda_A} \pm_{game} \xrightarrow{copycat} \pm_{strat}$$

# **Identity strategy**



# **Discovery of an unexpected principle**

Key observation: the categories

 $\pm [0] = \pm_{game} \qquad \pm [1] = \pm_{strat} \qquad \pm [2] = \pm_{int}$  and the span of functors

$$\pm [0] \xleftarrow{s} \pm [1] \xrightarrow{t} \pm [0]$$

define an **internal category** in *Cat* with composition and identity

$$\pm [2] \xrightarrow{hide} \pm [1] \qquad \qquad \pm [0] \xrightarrow{copycat} \pm [1]$$

## As an immediate consequence...

**Theorem A.** The construction just given defines a **bicategory** 

#### Games

of games, strategies and simulations.

# Main technical result of the paper

**Theorem B.** The bicategory

#### Games

of games, strategies and simulations is symmetric monoidal.

# Main technical result of the paper

**Theorem C.** The bicategory

#### Games

of games, strategies and simulations is star-autonomous.

#### All these results are based on the same recipe!

One constructs an internal category of tensorial schedules

 $\pi_{\otimes}$ 

together with a pair of internal functors

 $\pm \times \pm \xleftarrow{pick} \pm^{\otimes} \xrightarrow{pince} \pm$ 

## All these results are based on the same recipe!

£ 3

One constructs an internal category of cotensorial schedules

together with a pair of internal functors

$$\pm \times \pm \xleftarrow{pick} \pm \overset{pince}{\longrightarrow} \pm$$

# All these results are based on the same recipe!

One constructs an internal functor

*reverse* :  $\pm^{op} \longrightarrow \pm$ 

which reverses the polarity of every position and move

| $\oplus$  | $\mapsto$ | $\ominus$ | 0 | $\mapsto$ | P |
|-----------|-----------|-----------|---|-----------|---|
| $\ominus$ | $\mapsto$ | $\oplus$  | Р | $\mapsto$ | 0 |

# The pick functor

The internal functor

 $pick : \pm^{\otimes} \longrightarrow \pm \times \pm$ 

is defined at dimension 0 by the functor:



# The pick functor

The internal functor

$$pick : \pm^{\otimes} \longrightarrow \pm^{\times} \pm$$

is defined at dimension 1 by the functor:



# The pince functor

The internal functor



is defined at dimension 0 by the functor:



## The pince functor

The internal functor

pince :  $\pm^{\otimes} \longrightarrow \pm$ 

is defined at dimension 1 by the functor:



# **Conclusion and future work**

- games played on categories with synchronous copycats
- an easy recipe to construct **new game semantics**
- **three templates** considered in the paper:

- same basic principles in concurrent separation logic
- a model of differential linear logic based on homotopy theory

Selected bibliography

- Pierre Castellan and Nobuko Yoshida.
  Two Sides of the Same Coin: Session Types and Game Semantics.
  POPL'19 Capabilities and Session Types session this afternoon!
- [2] Clovis Eberhart and Tom Hirschowitz. What's in a Game? A Theory of Game Models. LICS 2018
- [3] Russ Harmer, Martin Hyland and PAM. Categorical Combinatorics for Innocent Strategies. LICS 2007
- [4] PAM and Samuel Mimram. Asynchronous Games: Innocence Without Alternation. CONCUR 2007
- [5] PAM and Léo Stefanesco.
  An Asynchronous Soundness Theorem for Concurrent Separation Logic. LICS 2018
- [6] Sylvain Rideau and Glynn Winskel. Concurrent Strategies. LICS 2011

# The distributivity law of linear logic

A game semantics of linear logic

# The distributivity law of linear logic

The main ingredient of linear logic

 $\kappa_{A,B,C} : A \otimes (B \ \mathfrak{P} C) \longrightarrow (A \otimes B) \ \mathfrak{P} C$ 

cannot be interpreted in traditional game semantics.

When one interprets it in template games, here is what one gets...



How the category  $\ \pm_{int}\$ is computed as a pullback





In order to fully appreciate the diagram, one needs to "fatten" it



in such a way as to recover the template of interactions



# The template of concurrent games

Templates of concurrent games as commutative monoids

# The template of games

The category

 $\pm_{conc} \left[ 0 \right]$ 

is generated by the graph

$$P \overset{}{\smile} \langle * \rangle \overset{}{\supset} O$$

together with the additional equation

 $O \cdot P = P \cdot O$ 

# The template of strategies

The category

 $\pm_{conc} [1]$ 

is generated by the graph



together with the six elementary equations

| $O_S \cdot P_S = P_S \cdot O_S$ | $O_s \cdot P_t = P_t \cdot O_s$ | $O_s \cdot O_t = O_t \cdot O_s$ |
|---------------------------------|---------------------------------|---------------------------------|
| $O_t \cdot P_s = P_s \cdot O_t$ | $O_t \cdot P_t = P_t \cdot O_t$ | $P_s \cdot P_t = P_t \cdot O_s$ |

### The templates of games and strategies

The two templates

 $\pm_{\text{conc}} [0] \qquad \pm_{\text{conc}} [1]$ 

are **commutative monoids** generated by the sets of moves:



The representation is nice to describe the source and target functors:
## The template of interactions

When one computes the pullback



one obtains the commutative monoid:

$$\pm_{\operatorname{conc}}[2] = \bigoplus_{i=1}^{n} \bigoplus_{i=1}^{n}$$