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Abstract
We introduce and study the computational power of Oritatami, a theoretical model to explore greedy

molecular folding, by which the molecule begins to fold before waiting the end of its production. This model is
inspired by our recent experimental work demonstrating the construction of shapes at the nanoscale by folding
an RNA molecule during its transcription from an engineered sequence of synthetic DNA. While predicting the
most likely conformation is known to be NP-complete in other models, Oritatami sequences fold optimally in
linear time. Although our model uses only a small subset of the mechanisms known to be involved in molecular
folding, we show that it is capable of e�cient universal computation, implying that any extension of this model
will have this property as well.

We introduce general design techniques for programming these molecules. Our main result in this direction
is an algorithm in time linear in the sequence length, that finds a rule for folding the sequence deterministically
into a prescribed set of shapes depending of its environment. This shows the corresponding problem is fixed-
parameter tractable although we proved it is NP-complete in the number of possible environments. This
algorithm was used e�ectively to design several key steps of our constructions.
Our present results have been announced at DNA21 (2015) [6] and are currently submitted to ICALP 2016 [7].

1 Introduction

The process by which one-dimensional sequences of nucleotides or amino-acids acquire the complex
three-dimensional geometries of biomolecules is a major puzzle of biology today. In particular, the problem
of predicting how proteins fold is a major source of interest, as it could potentially allow us to engineer
our own proteins.

A few year ago, the kinetics of folding, which is the step-by-step dynamics of the reaction, has been
demonstrated by biochemists to play a fundamental role in the final shape of molecules [10], and an
essential role in the case of RNA [5]. In recent experimental results [9], researchers have been able to
control this mechanism to engineer their own shapes out of RNA.

One of the most widely used techniques in DNA nanotechnologies, DNA Origami [13], requires the
molecules to be heated up to high temperature (about 90C) before being slowly cooled down at a precisely
controlled rate. In contrast to this, one of the main benefits of RNA Origami [9] is the possibility of
controlling folding at temperatures compatible with human life.

Previous theoretical studies on folding focused mostly on the energy optimization mechanisms. For
example, in di�erent variants of the hydrophobic-hydrophilic (HP) model [4], it has been shown that the
problem of predicting the most likely geometry (or conformation) of a sequence is NP-complete [14, 12, 1,
2, 3], both in two and three dimensions.

Here, we focus on kinetics, a di�erent and complementary mechanism. We introduce a new model
based on the experiments conducted in [9] to explore the perspectives opened by co-transcriptional folding.
In particular, in co-transcriptional folding, molecules fold in linear time, which allows us to focus on
understanding and developing design paradigms.

Main contributions. We introduce a new model of molecular folding where the molecule gets folded while
being produced. More precisely, we consider a sequence of “beads”, or abstract basic components which
may stand for nucleotides or even sequences of nucleotides (or domains). In our model, only the ” latest
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produced beads of the molecules are allowed to move in order to adopt a more favorable configuration.
The folding is driven by the respective attraction between the beads.

We show that our model is able of e�cient universal Turing computation. This result heavily relies on
the e�cient simulation of Turing machines by tag system, from [11]. Building a tag system simulator
not only shows the model to be powerful, it also pointed us explicitly to the challenges of molecular
engineering. Namely, it led us to develop modular constructions and techniques to produce di�erent shapes
from a unique sequence in reaction to its environment. Furthermore, it taught us how one can prepare
this environmental changes to trigger calls to specific functions encoded in the sequence. We believe that
many of our technics can be used to develop an algorithmic basis for molecular folding engineering.

Moreover, our constructions also motivated the development of an algorithm running in time linear in
the sequence length, that finds an attraction rule for folding a single sequence deterministically into a
prescribed set of shapes, depending on surrounding beads. As a consequence, even though we will show
that the problem of finding a rule is NP-complete, we have been able to implement and use this algorithm
to resolve some parts of our designs.

2 Model and Main Results

Oritatami system. Oritatami is about the folding of finite sequences of beads, each from a finite set B

of bead types, using an attraction rule , on the triangular lattice graph T = (Z2, ≥) where (x, y) ≥ (u, v)
if and only if (u, v) œ {(x ± 1, y), (x, y ± 1), (x ± 1, y ± 1)}. A conformation c of a sequence w œ Bú is a
self-avoiding path of length ¸ labelled by w in T, i.e. a path whose vertices c1, . . . , c

¸

are pairwise distinct
and labelled by the letters of w. A partial conformation of a sequence w is a conformation of a prefix of w.
For any partial conformation c of some sequence w, an elongation of c by k beads is a partial conformation
of w of length |c| + k. We denote by C

w

the set of all partial conformations of w. We denote by cÛk the
set of all elongations by k beads of a partial conformation c of a sequence w and by cÙk the singleton
containing the prefix of length |c| ≠ k of c.

An Oritatami system O = (p, , ”) is composed of (1) a (possibly infinite) primary structure p, which is
a sequence of beads, of a type chosen from a finite set B, (2) an attraction rule, which is a symmetric relation

™ B2 and (3) a parameter ” called the delay time. Given an attraction rule and a conformation c of a
sequence w, we say that there is a bond between two adjacent positions c

i

and c
j

of c in T if w
i

w
j

. The
energy of a conformation c of w, written E(c), is the negation of the number of bonds within c: formally,
E(c) = ≠|{(i, j) : c

i

≥ c
j

, j > i + 1, and w
i

w
j

}|.

Oritatami dynamics. A dynamics for a sequence w is a function D
w

: 2Cw æ 2Cw such that for all subset
S of partial conformations of length ¸ of w, D(S) is a subset of the elongations by one bead of the partial
conformations in S (thus, partial conformations of length ¸ + 1).

Given an Oritatami system O = (p, , ”) and a seed conformation ‡ of a seed sequence s of length
¸, the set of partial conformations of the primary structure p at time t under dynamics D is Dt

sp

({‡}),1
i.e. the set of all elongations by t beads of the seed conformation prolongated by the primary structure
according to dynamics D. In this abstract, we focus on the oblivious dynamics, which consists in placing
the last ” beads in the minimal energy positions, regardless of their previously adopted positions.2

O(S) =
€

“œS

A
arg min

cœ(“

Ù(”≠1))Û”

E(c)
B

The resulting conformations are nondeterministic. And, the nondeterministic position of the i-th bead of
p is final at time i + ”.

An Oritatami system O = (p, , ”) is deterministic for dynamics D and seed ‡ of sequence s if
for all i > 1, the position of the i-th bead of p is deterministic at time i ≠ 1 + ”, i.e. if for all
i > 1, |{c|‡|+i

: c œ Di≠1+”

sp

({‡})}| = 1. We say that O stops at time t with seed ‡ and dynamics D if
Dt

sp

({‡}) = ? and Dz

sp

({‡}) ”= ? for z < t. Typically, the folding process stops because of geometric
obstruction (no more elongation are possible because the conformation gets trapped in a closed area).

1 Given two words a, b œ B

ú, we denote by ab their concatenation.
2 We denote by arg min

xœX

f(x) the set of the minima: arg min
xœX

f(x) = {y œ X : f(y) = min
xœX

f(x)}.
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Turing universality. Our first main result shows that there is a Turing-universal Oritatami system, able
to simulate the execution of any Turing machine with only a polynomial slowdown. (Proof sketch next)

I Theorem 1. There is an oblivious deterministic Oritatami system U = (p, , 3) and a log-space reduction
from any Turing machine M and any input x to a seed configuration ‡M,x

, such that starting from seed
conformation ‡M,x

, U stops if and only if M accepts x. Moreover, if M halts after T steps on input x, U
halts after folding O(T 2 log T ) beads.

In particular, the total number of bead types as well as the period of p in U are bounded by a universal
constant.

Rule design. Our second main result concerns the design of a rule for achieving a set of given foldings
depending on the environment. (Proof ommitted)
Input: A set of beads B ´ {1, . . . , n}, a delay time ”, k seed conformations ‡1, . . . , ‡

k

of sequences
s1, . . . , s

k

œ Bú (with possibly di�erent lengths) and k target conformations c1, . . . , c
k

of the n ≠ ”

first beads of the sequence p = È1, . . . , nÍ.
Output: A rule ™ B2 such that for all i = 1..k, the Oritatami system O = (p, , ”) folds the n ≠ ” first

beads of p deterministically into ‡
i

c
i

from seed conformation ‡
i

under the oblivious dynamics O, i.e.
such that Dn≠”

sip

({‡
i

}) = {‡
i

c
i

} for all i = 1..k.

I Theorem 2. The Rule design problem is NP -complete for all ” > 1 and n > 1. However, it is FPT as
it can be solved in time O(C”·kn) for some C > 0, linear in the length n of the primary sequence.

3 A Turing-universal Oritatami system

In this section, we demonstrate the existence of a single periodic primary structure that can simulate
any Turing computation. Precisely, our construction simulates a particular type of tag systems which are
known to simulate in O(T 2 ln T ) steps any Turing machine running in T steps [11]. Our simulation uses
the oblivious dynamics with delay time 3. Due to space constraints, we will not provide the full proofs of
the correctness of the folding. We refer the reader to the videos available at [8] for a full demonstration of
the resulting Oritatami system folding its modules live upon itself. The full description of the modules
and rule is given in [7]. The full description of GG is given as an example in appendix.

Skipping Cyclic Tag systems A skipping cyclic tag system consists of a set of n productions p0, . . . , p
n≠1 œ

{0, 1}ú and an initial word w0 œ {0, 1}ú. At each time step, the tag system cycles through the productions
and decides to append the current production or not depending on the letter read. We denote by wt the
word at time t. Precisely, at time t = 0, the pointer q0 is set to 0. At all time t,

If wt is the empty word ‘, then the tag system halts and outputs qt.
Otherwise, if the first letter wt

1 of wt is 0, then set qt+1 := (qt + 1) mod n and wt+1 := wt

2 . . . wt

|wt|,
the su�x of wt without its first letter.
And if wt

1 = 1, then the tag system appends the next production to wt and skips to the following
production, i.e.: wt+1 := wt

2 . . . wt

|wt|.pq

Õ where qÕ = (qt + 1) mod n and qt+1 := (qt + 2) mod n.
For instance, the skipping tag system (‘, 100, 1, 0) has the following execution (Èwt, p

q

tÍ)
t

from input word
w0 = 010: È010, ‘Í, È10, 100Í, È01, 0Í, È1, ‘Í, È100, 1Í, È000, ‘Í, È00, 100Í, È0, 1Í, È‘, 1Í and outputs thus 1. The
following of the section will describe how to simulate any skipping cyclic tag system.

Principle of the design. Figure 2 presents the global design for our simulation on the example of the
skipping tag system (‘, 100, 1, 0) with the same input word 010 as above. The simulation proceeds in
forward-backward swipes of the encoding of the current word. Each forward (left-to-right) swipe trims all
the initial 0s (encoded as little bumps from above) from the beginning of the word until a 1 (encoded as
flat from above) is met, then rushes to the end of the word to append the corresponding production. The
following backward (right-to-left) swipe rewinds to the position in the word just after its first 1 while
copying its letters down bellow for the reading of the next swipe. The construction continues until running
out of letters in which case the folding gets trapped into a finite space and halts.
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Figure 1 To the left: The production module (folded upright) corresponding to a production 10 in a tag system
where all productions have length at most 3 (hence, Padding submodule E1E1 takes parameter 1).
To the right: Simple Glider (left), Switchback (middle) and compatible Glider (right).

Production encoding. Each production of the tag system is encoded in the molecule as a module, all of
equal length. Each production module is composed of the exact same elements, only the letters encoded
inside each module changes from one production to another (see Fig. 1). Precisely, if L = max

i

|p
i

|
denotes the maximum length of a production, the production module for p

i

is the sequence of submodules
È AA , BB , CC , (D

a

D
a

)
a=(pi)j :j=1..|pi|, E

k

E
k

, FF , GG Í with k = L ≠ |p
i

|.
Module AA : Init is a simple module building a simple sca�old for the following modules; it always folds

in the same way.
Module BB : Empty word probe is a very short module that is sensitive to the presence of an non-empty

word above it; if the word is empty, then it folds to the left, blocking the molecule into a finite space,
halting thus the co-transcriptional folding and simulating the halt of the tag system. Otherwise, it
folds to the right and the folding continues.

Module CC : End of word probe is sensitive to the end of the word; if the end of word is reached, it folds
in a way that initiates the appending of the letters of the production module; otherwise, it initiates
the compact folding of the production module.

Modules D0D0 and D1D1 : Letters encode the letters of the production; it can fold into two main forms:
compact, where the letter are hidden from the reading head in Module GG ; or expanded, when the
letters are appended at the end of the word.

Module EkEk : Padding & Carriage return has two purposes: first, ensure that all production modules
have the same length by padding with k = L ≠ |p

i

| spaces each production p
i

so that they all have
the same length; second, reverse the direction of the folding to accomplish a "carriage return of the
molecule" once the current production letters (in expanded form) have been appended to the word,
marking the end of the forward swipe.

Module FF : Term as for Module AA , is used to built a sca�old along which the next module folds.
Module GG : Read, Copy & Line Feed is the real "brain" of the molecule; in the forward swipe, it first

reacts to the letters of the word by folding so as to skip the initial 0s until it finds a 1 which has the
e�ect of mirroring the following production modules; when the production modules are mirrored, GG
folds in a way that copies the letters read above down bellow; then, at the end of the backward swipe,
when it reaches the beginning of the first letter of the current word, the GG spontaneously folds to
extend further down bellow starting a new line for the next forward swipe to begin.

Designing the modules. The remaining of the section consists in explaining how to design the modules
AA , . . . , GG so that the resulting Oritatami system folds as shown in Fig. 2.

Basic sca�olding: Modules AA and FF . Our construction uses rigid sca�oldings named gliders, see Fig. 1
and [7]. Gliders are rigid (they support themselves) and require only few bonds (one every 3 positions
on average). It is easy to check that glider folds as expected and requires only 6 di�erent beads,
corresponding to a period of the glider pattern. AA and FF use gliders to build a rigid sca�old along
which the following modules will fold.
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Adopting either a compact or expanded form: Modules D0D0 , D1D1 , EkEk , and GG . Our design requires to
be able to store the letters of the production into a compact form inside the production module and to
be able to expand them into a glider when appending the letter at the end of the word. The compact
form is called switchback. Remarking that the sharp turns of the switchback are similar to the gliders,
we have obtained a bonding scheme compatible to both switchback and glider as shown on Fig. 1. The
magic resides in the fact the form is controlled by the placement of the first three beads: if they adopt
a glider form, the rest of the molecule will fold into a glider; if they adopt the switchback form, then
the rest of molecule as well. This allows us to have the modules D0D0 , D1D1 , E

k

E
k

, and GG to contract or
expand at will by forcing the placement of the first three with strong bonding to the environment!
Note that each of the switchback strands can be extended as much as wanted by repeating the same 12
beads, this allows to construct switchback compatible with glider with arbitrary multiple of 12 height.

Detecting ends: BB , CC , and GG . End detection is obtained by realizing various level of attachment of a
given module: by default it will fold in a certain way, but presented with some specific environment, it
will bind strongly with it and change its shape. We refer to [7] and the folding of BB for details.

Implementing various functions: GG . GG is a very sophisticated structure that needs to implement many
di�erent functions: reading, copying, and line feeding. It is also responsible for the major changes in
the geometry of the folding by reversing the production modules. "Calling" the di�erent functions
is achieved by shifting the module along its environment. Precisely, on the one hand, in the upright
conformation of a production module, the area bellow the production module is cleared and GG will
fold its first 8 beads bellow, shift its relative position to the preceeding module FF . The e�ect is
striking: GG will fold as a glider and enter in its "reading" mode. On the other hand, in the mirrored
and rotated conformations, the area above the production module is occupied and GG naturally folds
along FF adopting its switchback shape activating its "copying" mode.

References
1 J. Atkins and W. E. Hart. On the intractability of protein folding with a finite alphabet of amino acids.

Algorithmica, 25(2–3):279–294, 1999.
2 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model is NP-

complete. Journal of Computational Biology, 5(1):27–40, 1998.
3 Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio Piccolboni, and Mihalis Yan-

nakakis. On the complexity of protein folding. Journal of computational biology, 5(3):423–465, 1998.
4 K.A. Dill. Theory for the folding and stability of globular proteins. Biochemistry, 24(6):1501–1509, 1985.
5 Kirsten L. Frieda and Steven M. Block. Direct observation of cotranscriptional folding in an adenine

riboswitch. Science, 338(6105):397–400, 2012.
6 Cody Geary, Pierre-Étienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. E�cient universal com-

putation by molecular co-transcriptional folding (short announcement). In DNA21, page 39, 2015.
7 Cody Geary, Pierre-Étienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Folding turing is hard

but feasible. arXiv:1508.00510 [cs.CG], Nov. 2015.
8 Cody Geary, Pierre-Étienne Meunier, Nicolas Schabanel, and Shinnosuke Seki.

http://www.dailymotion.com/playlist/x4c560_nicolasschabanel_oritatami. Folding Turing:
videos of the folding of the Oritatami system simulating the Skipping Cyclic Tag System (100, 1, 0, ‘) on
input word 10, nov. 2015.

9 Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture for cotran-
scriptional folding of RNA nanostructures. Science, 345:799–804, 2014.

10 Boyle J, Robillard G, and Kim S. Sequential folding of transfer RNA. a nuclear magnetic resonance
study of successively longer tRNA fragments with a common 5’ end. J Mol Biol, 139:601–625, 1980.

11 Turlough Neary and Damien Woods. P-completeness of cellular automaton rule 110. In ICALP, volume
LNCS 4051, pages 132–143, 2006.

12 M. Paterson and T. Przytycka. On the complexity of string folding. In F. Meyer and B. Monien, editors,
ICALP 1996, volume 1099 of LNCS, pages 658–669. Springer Berlin Heidelberg, 1996.

13 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature, 440(7082):297–
302, March 2006.

14 R. Unger and J. Moult. Finding the lowest free energy conformation of a protein is an NP-hard problem:
proof and implications. Bulletin of Mathematical Biology, 55(6):1183–1198, 1993.

http://arxiv.org/abs/1508.00510
http://www.dailymotion.com/playlist/x4c560_NicolasSchabanel_oritatami


6 Folding Turing is hard but feasible

Fi
gu

re
2

T
he

de
sig

n
of

th
e

O
rit

at
am

is
im

ul
at

io
n

of
th

e
ex

ec
ut

io
n

of
sk

ip
pi

ng
cy

cl
ic

ta
g

sy
st

em
(‘

,
10

0,
1,

0)
on

in
pu

t
wo

rd
01

0.
T

he
lit

tle
de

nt
s

ÍÍ
in

ea
ch

m
od

ul
e

in
di

ca
te

s
th

e
lo

ca
tio

ns
of

th
e

be
gi

nn
in

g
an

d
th

e
en

d
of

its
fo

ld
in

g.
Pr

od
uc

tio
n

m
od

ul
es

ar
e

fo
ld

ed
in

th
re

e
m

ai
n

wa
ys

:
U

p
r
i
g
h
t
,a

t
th

e
be

gi
nn

in
g

of
th

e
fo

rw
ar

d
sw

ip
e,

to
re

ad
th

e
fir

st
le

tt
er

s
of

th
e

wo
rd

an
d

tr
im

th
e

0s
un

til
a

1
is

fo
un

d;
th

en
M

i
r
r
o
r
e
d

up
sid

e-
do

w
n,

in
th

e
se

co
nd

ph
as

e
of

th
e

fo
rw

ar
d

sw
ip

e,
w

he
n

th
e

fir
st

1
ha

s
be

en
fo

un
d

an
d

th
e

re
m

ai
ni

ng
le

tt
er

s
ar

e
co

pi
ed

do
w

n
be

llo
w

;a
nd

R
o
t
a
t
e
d

by
18

0¶
,i

n
th

e
ba

ck
w

ar
d

ph
as

e,
to

co
py

th
e

le
tt

er
s

of
th

e
w

or
d

do
w

n
be

llo
w

fr
om

rig
ht

to
le

ft
.

N
ot

e
th

at
al

lt
he

se
sy

m
m

et
rie

s
pr

es
er

ve
th

e
ne

ig
hb

or
ho

od
of

th
e

be
ad

s
an

d
th

us
do

no
t

pe
rt

ur
be

th
e

fo
ld

in
g

of
ea

ch
m

od
ul

e.
T

he
on

ly
th

in
g

th
at

im
pa

ct
s

th
e

fo
ld

in
g

is
th

e
ch

an
ge

of
en

vi
ro

nm
en

t:
in

th
e

U
pr

ig
ht

fo
ld

in
g,

th
e

en
vi

ro
nm

en
t

is
cl

ea
re

d
at

th
e

ba
sis

of
th

e
fo

ld
in

g
(a

t
th

e
bo

tt
om

);
w

he
re

as
in

th
e

M
irr

or
ed

an
d

R
ot

at
ed

fo
ld

in
g,

th
e

en
vi

ro
nm

en
t

is
po

pu
la

te
d

at
th

e
ba

sis
of

th
e

fo
ld

in
g

(o
n

th
e

to
p)

.


	Introduction
	Model and Main Results
	A Turing-universal Oritatami system
	An example: the various forms of Module [2.5ex][c][0ex][c][2ex]2.5ex2.5ex[0ex][c]whiteG
	More details on the design (see arxiv for more details)

