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Abstract
We introduce and study the computational power of Oritatami, a theoretical model to explore
greedy molecular folding, by which a molecule begins to fold before awaiting the end of its
production. This model is inspired by a recent experimental work demonstrating the construction
of shapes at the nanoscale by folding an RNAmolecule during its transcription from an engineered
sequence of synthetic DNA.

An important challenge of this model, also encountered in experiments, is to get a single
sequence to fold into different shapes, depending on the surrounding molecules. Another big
challenge is that not all parts of the sequence are meaningful for all possible inputs. Hence, to
prevent them from interfering with subsequent operations in the Oritatami folding pathway we
must structure the unused portions of the sequence depending on the context in which it folds.

Next, we introduce general design techniques to solve these challenges and program molecules.
Our main result in this direction is an algorithm that is time linear in the sequence length that
finds a rule for folding the sequence deterministically into a prescribed set of shapes, dependent
on its local environment. This shows that the corresponding problem is fixed-parameter tractable,
although we also prove it NP-complete in the number of possible environments.
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1 Introduction

The process by which one-dimensional sequences of nucleotides or amino-acids acquire their
complex three-dimensional geometries, which are key to their function, is a major puzzle of
biology today. Understanding molecular folding will not only shed light on the origin and
functions of the molecules existing in nature, it will also enable us to control the process

∗ C. Geary is a Carlsberg Postdoctoral Fellow supported by the Carlsberg Foundation and is supported
by USNSF Grant no. 1317694 (http://molecular-programming.org). N. Schabanel is supported by
Grants ANR-12-BS02-005 RDAM and IXXI-MOLECAL. S. Seki is in part supported by: the Academy
of Finland; Postdoctoral Researcher Grant 13266670/T30606; JST Program, MEXT, Japan, No. 6F36;
and JSPS Grants No. 15H06212 and No. 16H05854.

© Cody Geary, Pierre-Étienne Meunier, Nicolas Schabanel and Shinnosuke Seki;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. ; pp. :1–:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:codyge@gmail.com
http://users.ics.aalto.fi/meunier/
http://www.irif.univ-paris-diderot.fr/users/nschaban/
mailto:s.seki@uec.ac.jp
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.
http://molecular-programming.org
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 Programming biomolecules that fold greedily during transcription

more finely, and engineer artificial molecules with a wide range of uses, from performing
missing functions inside living organisms, to producing precisely targeted drugs.

Biomolecular nano-engineering includes DNA self-assembly, which gave rise to an impres-
sive number of successful experimental realizations, from arbitrary 2D shapes [23] to molecule
cyclic machines [28], or counters [11]. First pioneered by Seeman [24], DNA nanotechnologies
only really started to take off once a computer science model was devised by Winfree [26] to
program molecular self assembly in a computer science way.

Since then, many models have been designed to refine different features of experiments:
hierarchical self-assembly [4, 5], modeling the absence of a seed, kinetic tile assembly [26, 13],
3D and probabilistic tile assembly [6], among others.

The applications of DNA are limited by the high-fidelity of DNA base-pairing. The
elaborate structures that researchers are able to produce with DNA are typically formed by
the thermodynamically-driven assembly process of annealing, where many DNA strands are
brought near equilibrium by heating them up to a high temperature and then cooling them
down at a controlled rate, a folding process that is essentially incompatible with living cells.

By contrast, the RNA nanostrutures are designed to mimic the natural folding process,
and are designed to fold under conditions that are cell-like. However, their assembly process is
harder to program: intuitively, the shape depends on both the sequence and the environment,
and the sequence is read linearly, independent from the environment. This contrasts with
more classical programming models such as Turing machines, or even tile assembly, which
are able to jump to different parts of the program depending on the input.

Another important difficulty is that even predicting the final shape of a sequence is still
the center of active research, especially for proteins [29, 17, 18, 8, 21, 22, 16]

In particular, a large body of computer science literature focused on energy optimization,
one of the main drivers of folding. For example, in different variants of the hydrophobic-
hydrophilic (HP) model [9], it has been shown that the problem of predicting the most likely
geometry (or conformation) of a sequence is NP-complete [25, 20, 2, 3, 7, 1], both in two
and three dimensions, and in different variants of the model.

A few years ago, the kinetics of folding, which is the step-by-step dynamics of the reaction,
has been demonstrated by biochemists to play a role in the final shape of molecules [15],
even a prevalent role in the case of RNA [12]. In recent experimental results [14], researchers
have even been able to control this mechanism to engineer their own shapes out of RNA.

This paper introduces a new model of RNA folding, intended to capture the kinetics of
folding and model the experiments in [14]. In particular, it focuses on the co-transcriptional
nature of RNA folding, which is the fact that, in real conditions, molecules fold while being
transcribed (see Figure 1): in computer science terms, the folding process is a local energy
optimization, or otherwise put, a greedy algorithm.

Figure 1 An RNA molecule folding over itself while being transcribed, as the experiments in [14].

The first experimental results have used a standard benchmark: making simple shapes,
such as squares (as shown for instance on Figure 2). With the new model introduced in
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this paper, our goal is twofold: first, explore the engineering possibilities of this mechanism,
in order to make arbitrary shapes and structures. Then, the other aim of our study is to
understand the complexity of sequence operations, to understand the computational processes
which led to the creation of complex molecular networks.

Figure 2 The design of a rectangle, co-transcriptionally folded with RNA, and the corresponding
path on the triangular lattice, where each bead corresponds to two to four nucleotides.

Main contributions. In our model, called Oritatami, we consider a sequence of “beads”,
which are abstract basic components, standing for nucleotides or even sequences of nucleotides
(also called domains). In Oritatami, only the latest produced beads of the molecules are
allowed to move in order to adopt a more favorable configuration. The folding is driven by
the respective attraction between the beads.

Our main construction is a binary counter. Counters are an essential component of many
sophisticated constructions in biological computing, in particular in tile assembly [10, 19].
Counters are also an important benchmark in experiments [11].
§ Theorem 1. There is a fixed periodic sequence 0, 1, . . . , 59, 0, 1, . . . of period 60 whose rule
is given in Fig. 11, which, when started from a seed encoding an integer x in binary with at
most 2k ` 1 bits for some k, folds into a structure encoding x` 1, x` 2, . . . , 22k`1 ´ 1, on
the successive rows of the triangular grid.

We prove the correctness of this construction by designing an abstract module system to
handle the complexity of the base mechanism of the model, which is about as low-level as
assembly code in more standard computing models.

We then show a generic construction method in this model, which we applied to automate
parts of the design of the counter. Moreover, this result helps understanding the computational
complexity of sequence programming. Precisely, we prove two results in this direction:
§ Theorem 2. Designing a single sequence that folds into different target shapes in a set of
surrounding environments, is NP-complete in the number of environments.

More surprisingly, it turns out that there is an algorithm to solve this problem in time
linear in the length of the sequence. This algorithm is also practical, as we were able to use it
to find sequences for our main construction:
§ Theorem 3. The sequence design problem is FPT with respect to the length ` of the
sequence: there is an algorithm linear in ` (but exponential in the number of environments)
to design a single sequence that folds into the target shapes in the given environments.

2 Model and Main Results

2.1 Model
Oritatami system. Oritatami is about the folding of finite sequences of beads, each from a fi-
nite set B of bead types, using an attraction rule , on the triangular lattice graph T “ pZ2,„q

MFCS 2016
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where px, yq „ pu, vq if and only if pu, vq P tpx ´ 1, yq, px ` 1, yq, px, y ` 1q, px ` 1, y ` 1q,
px´ 1, y ´ 1q, px, y ´ 1qu.

A conformation c of a sequence w P B˚ is a self-avoiding path of length ` labelled by w
in T, i.e. a path whose vertices c1, . . . , c` are pairwise distinct and labelled by the letters of
w. A partial conformation of a sequence w is a conformation of a prefix of w. For any partial
conformation c of some sequence w, an elongation of c by k beads is a partial conformation
of w of length |c| ` k. We denote by Cw the set of all partial conformations of w (the index
w will be omitted when the context is clear). We denote by cŹk the set of all elongations by
k beads of a partial conformation c of a sequence w and by cŸk the singleton containing the
prefix of length |c| ´ k of c.

An Oritatami system O “ pp, , δq is composed of (1) a (possibly infinite) primary
structure p, which is a sequence of beads, of a type chosen from a finite set B, (2) an attraction
rule, which is a symmetric relation Ď B2 and (3) a parameter δ called the delay time.

Given an attraction rule and a conformation c of a sequence w, we say that there
is a bond between two adjacent positions ci and cj of c in T if wi wj . The energy of a
conformation c of w, written Epcq, is the negation of the number of bonds within c: formally,
Epcq “ ´|tpi, jq : ci „ cj , j ą i` 1, and wi wju|.

Oritatami dynamics. A dynamics for a sequence w is a function D : 2C Ñ 2C such that for
all subset S of partial conformations of length ` of w, DpSq is a subset of the elongations by
one bead of the partial conformations in S (thus, partial conformations of length `` 1).

Given an Oritatami system O “ pp, , δq and a seed conformation σ of a seed sequence
s of length `, the set of partial conformations of the primary structure p at time t under
dynamics D is Dt

spptσuq,1 i.e. the set of all elongations by t beads of the seed conformation
prolongated by the primary structure according to dynamics D.

We explore greedy folding dynamics where only the most recently transcribed beads can
move, all other beads remain in place. These are controlled by integer parameter δ (in this
article, δ ď 4). Several dynamics could model the “greedy” nature of the process. We choose
the following dynamics, called the hasty dynamics:

The hasty dynamics does not question previous choices but chooses the energy-minimal
positions for the δ last beads among all elongations of the previously adopted partial
conformations. It lets the δ ´ 1 already placed last beads where they are and abandons
the extension of a conformation if no extension with the newly transcribed bead allows
to reach a lowest energy conformation available for the δ last beads. Formally, H starts
from a set of partial conformations, elongates each of them by one bead, and keeps the
elongated conformations that have minimal energy among those who share the same
prefix of length |σ| ` t´ δ:

HpSq “
ď

γPSŸpδ´1q

˜

arg min
cPpSŹ1qXpγŹδq

Epcq
¸

An Oritatami system O “ pp, , δq is deterministic for dynamics D and seed σ of sequence
s if for all i ě 1, the position of the i-th bead of p is deterministic at time i ´ 1 ` δ, i.e.
if for all i ě 1, |tc|σ|`i : c P Di´1`δ

sp ptσuqu| “ 1. We say that O stops at time t with seed σ
and dynamics D if Dt

spptσuq “ ∅ and Dz
spptσuq ‰ ∅ for z ă t. The folding process may

1 Given two words a, b P B˚, we denote by ab their concatenation.
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only stop because of a geometric obstruction (no more elongation are possible because the
conformation gets trapped in a closed area).

3 Folding a binary counter

3.1 General idea of the construction
Our construction works with δ “ 4. The counter is implemented by folding the periodic
sequence of bead types 0, 1, . . . , 58, 59, 0, 1, . . . with period 60. Our construction proceeds in
zig-zags as the classic implementation of a counter with a sweeping Turing machine whose
head goes back and forth between the two ends of the coding part of the tape. Each pass is
3-rows thick and folds each part of the molecule into a parallelogram of size 4ˆ 3 or 6ˆ 3
except for the last and the first parts of each pass which are folded into parallelograms of
size 3ˆ 6 to accomplish the U-turn downwards and start the next pass. The zig pass, folding
three rows at a time from right to left, computes the carry propagation in the current value
of the counter. The zag pass, folding three rows at a time from left to right, writes down the
bits of the newly incremented value, and gets the folding to resume at the right-hand side of
the conformation.

The molecule is semantically divided into 4 parts, called modules:
Module A (beads 0–11, in blue in all figures): the First Half-Adder
Module B (beads 12–29, in red in all figures): the Left-Turn module
Module C (beads 30–41, in blue in all figures): the Second Half-Adder
Module D (beads 42–59, in red in all figures): the Right-Turn module

Encoding. The current value of the counter is encoded in standard binary with the most
significant bit to the left. Each bit is encoded into a specific folding of the modules A and C
of the molecule in the rows corresponding to a zag pass: namely folding A0 and C0 for 0,
and A1 and C1 for 1. During the zig pass, the value of the carry is encoded by the position
of the molecule when it starts to fold Module A or C: carry “ 0 if Module A or C starts to
fold in the top row; carry “ 1 if Module A or C starts to fold from the bottom row.

In the zig pass (Ð), modules A and C “read” from the row above the value encoded into
the folding in the row above during the previous zag-phase (or in the seed conformation for
the first zig pass), and fold into a shape (called a brick, see Section 4) A00, A10, A01, A11 or
C00, C10, C01, C11 accordingly where Axc is the brick corresponding to the case where x
is the bit read in the row above and c is the carry. In the zig pass, modules B and D just
propagate the carry value (0 or 1, i.e. start from top or bottom row) output by the preceding
module A or C to the next.

When the zig pass reaches the leftmost part of the row on top, the beads there forces the
module B to adopt the Left-turn shape which reverses the folding direction and starts the
next zag pass.

In the zag pass (Ñ), modules A and C “read” the bricks above Axc or Cxc and folds into
the bricks that encodes the corresponding bits, namely Ay or Cy where y “ px` cq mod 2.
There are no carry propagation and all the modules B and D fold into the same brick B2 or
D2 in this pass.

When the molecule reaches the rightmost part of the row on top of it, the special beads
there force the module D to fold into the Right-turn brick which reverses the folding direction
and starts the next zig pass.

MFCS 2016
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3.2 The first two passes of the folding
Let’s run the first passes of the 3 bits counter to get acquainted with the process.

The seed conformation is shown in Fig. 3. The seed conformation for the p2k ` 1q-bit
counter is composed of 4k ` 3 parts:

The first part 20 ŒSE 21 ŒSE 26 ŒSE 27 ÑE 28 ÑE 29, made of beads from Module B, encodes a
sequence that will trigger the carriage return at the end of the next zig pass.
The central part consists in k repetitions of the same sequence of 4 patterns, plus an
extra repetition of the first pattern at the end (the central part consists thus in 4k ` 1
parts in total):

30ÑE 39ÑE 40ÑE 41 encoding a bit 0 using beads from Module C,
followed by 42 ÑE 47 ÑE 48 ÑE 53 ÑE 54 ÑE 59 encoding nothing but padding using beads
from Module B,
followed by 0ÑE 9ÑE 10ÑE 11 encoding a bit 0 using beads from Module A,
followed by 12 ÑE 17 ÑE 18 ÑE 23 ÑE 24 ÑE 29 encoding nothing but padding using beads
from Module D.

Note the symmetry by a shift of 30 of the beads values in the patterns involving Modules
A and C, and Modules B and D.
The last part 42ÑE 48ÑE 50 ÖSW 51ÐW 52 ŒSE 53ÑE 54 NE

Õ 55 ŒSE 56 ŒSE 57ÐW 58ÐW 59, made of beads
from Module D, encodes a sequence that will first initiate the next zig pass and later
trigger the carriage return at the end of the next zag pass.

Note that the seed conformation ends at the bottom row of the upcoming zig pass, which
encodes thus that initially the carry is 1.

The first zig pass (Ð). Each zig pass starts with a carry equal to 1, i.e. starts folding from
the bottom row. In the first zig pass, the first module A (see Figure 4) folds into the brick
A01, encoding the bit 1 “ 0` 1 with no carry propagation, as a consequence of the carry
being 1 and of reading the first bit, 0, from the seed above. Note that the folding A01 ends
at the top row, encoding that the carry is now 0. The reading of the bit from the seed is
accomplished by the way the module binds to the seed which shapes the module accordingly
as we will see in details in Section 3.3.

Then, as illustrated in Fig. 5, the next modules B, C, D, and A fold into shapes B0, C00,
D0 and A00 respectively: B0 and D0 meaning that no carry is propagated (they start and
end on the top row); and C00 and A00 meaning that the (input) carry is 0 and the bit read
from the seed is 0.

Finally, as illustrated in Fig. 6, the last module, B, of the zig pass binds to the 3-beads
long carriage-return pattern at the leftmost part of the seed and folds into the shape BT
conducing the molecule to go down by 6 rows, reverse direction and start the following zag
pass. Note that the bottom of the shape BT contains the exact same carriage-return pattern.

The first zag pass (Ñ). The zag pass is mostly a normalization pass as illustrated in
Fig. 7–8. It progresses from left to right and computes the new value of each bit by rewriting
each shape A00 and A11 as C0, C00 and C11 as A0, A10 and A01 as C1, and C10 and C10 as
A0. Shapes A0 and C0 encode 0, and Shapes A1 and C1 encode 1, both to be read during
the upcoming zig pass. Modules B and D just fold into the shapes B2 and D2 respectively,
encoding nothing but padding.

Finally, as illustrated in Fig. 9, the last module, D, of the zag pass binds to the 3-beads
long carriage-return pattern in the rightmost part of the seed and folds into the shape
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Figure 3 The seed conformation for the 3-bits counter encoding the three bits 000 as the initial
value of the counter.
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Figure 4 The folding of the first module, A: starting with a carry 1, encoded by the position of
the first bead (on the bottom row), this module “reads” a 0 from the seed by binding to the seed,
and folds into A01, encoding a 1 with no carry propagation, as encoded by the position of the last
bead (on the top row of the module).
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Figure 5 The folding of the central part of the first zig pass in the 3-bits counter.
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Figure 8 At the end of the first zag pass, the new value of each bit have been encoded into
shapes: A0 or C0 for bits equal to 0, A1 or C1 for bit equal to 1.
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Figure 9 Finally, at the end of the first zag pass, the last module D binds to the carriage-return
pattern in the seed and fold into the shape DT to accomplish the right U-turn from which the next
zig pass can start.
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DT conducing the molecule to go down by 6 rows, reverse direction and start the next zig
pass. Note that, as for the shape BT, the bottom of the shape DT contains the exact same
carriage-return pattern.

Figure 10 shows the 3-bits counter folded upto the value 3 “ 011 in binary. One can
observe the shape A11 in the second zig pass. A11 corresponds to reading a 1 with a carry 1
which propagates the carry: indeed, the folding ends at the bottom row which propagates
the carry to the next module C which folds into C01 as it reads a 0 from above with carry 1.
Note that shape A11 is then rewritten as C0 in the following zag pass below.

0 (A11)
Carry=1

1 (C1)0 (A0)

0 (C0)1 (A1)

Carry=1

Carry=0

1 (C01)
Carry=1

Figure 10 The folding of the 3-bits counter upto value 4 “ 100 in binary. Observe the carry
propagation in the second zig pass.

3.3 How does computation take place: modules, functions, states and
environment

Each module A, B, C and D implement various “functions” that are “called” when the
molecule is folded. Which function is called depends on two things:
the current “state” of the molecule: here, the state is whether the carry is 0 or 1. As

mentionned earlier this is encoded in the position of the molecule when the module starts
to fold: it starts in the top row if the carry is 0; in the bottom row if the carry is 1.

the local environment of the molecule: the environment, i.e. the beads already placed
around the current area where the folding take place, acts as the memory in the compu-
tation.

The position where the folding of a module starts, determines which beads of a given module
will be exposed to and interact with the environment. Then, by creating bonds (or not) with
the environment, each module will adopt a specific shape. Therefore, the possible binding
schemes will be different depending of this initial position. Similarly, depending on the beads
already placed in the environment, the part of the module exposed to it will adopt one form
or another depending on how many bonds it can create with the environment. Adopting

MFCS 2016
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Figure 11 The rule of the Counter Oritatami system: in this diagram, we have b b1 iff there
is a bullet ‚ at the intersection of one the two lines coming from b and from b1; for instance, we have
4 8 but not 4 7.

the language of computer science: the position at which a module starts to fold, determines
which function of the module is called; the function then reads the input encoded by the
beads already placed in the environment.

Fig. 12 provides a precise description on how the function of the Half-Adder Module C
are implemented in the zig pass. As the zig pass goes from right to left, the figure is meant
to be read from right to left. In the zig pass, Module C implements two functions: 1) Add 1
to the bit above and propagate the carry if needed, or 2) Copy the bit above unchanged.
Add is called if the carry is 1 at the beginning of the folding and Copy is called if the carry
is 0. The following step-by-step description of the folding explains how:
Beads 30-33 (rightmost column in Fig. 12): if the carry is 0 at start, then bead 30 is able

to bind with beads 11 and 12 from the environment and depending on whether the input
encodes a bit 0 or 1, bead 32 will be able to bind to bind either to 28 or to 5 and 6
respectively. Whereas if the carry is 1, then bead 30 cannot reach beads 11 and 12. Thus,
these are beads 31 and 32 that will bind with beads 10 and 12 from the environment,
giving to the molecule a completely different shape.

Beads 34-37 with carry = 0 at start: as bead 34 is attracted by both beads 30 and 31, the
molecule folds upon itself similarly but with a different rotation depending on whether it
had read a 0 or a 1 in the environement above: vertically if it has read a 0, horizontally
if it has read a 1. Bead 36 attracted by beads 9 and 27 fixes the end of the tip in place
leaving bead 37 free to move for now.

Beads 34-37 with carry = 1 at start: Bead 34 is attracted by beads 9 and 10 encoding a
bit 0 above which allows beads 36 and 37 to bind with 31 as well, and but prefers to bind
with 31 together with 35 otherwise. This induces two different shapes: the beginning of
a “wave” pattern ( ) if the bit read above is 0; or the beginning of a “switchback”
pattern ( ) if the bit read is 1.

Beads 38-41, without carry propagation (carry = 0, or carry = 1 and bit read = 0): in
these three cases the folding of the beads 38-41 starts from the same position. As the
environment is different for each of them, we could design the rule so that this part of
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Figure 12 An illustration of how the module C applies a different function which results in
different foldings according to the initial state of the molecule (carry = 0 or 1) at the beginning
of the folding of the module, and to the environment (the bit 0 or 1 encoded) read above by the
function. This figure is meant to be read from right to left (zig pass Ð).

the module prefers to adopt the same shape, climing along the part already folded to the
top row to start the next module with a carry “ 0.

Beads 38-41, with carry propagation (carry = 1 and bit read = 1): because the switch-
back pattern is upside down in this case, bead 37 stays low and bead 38 can firmly attach
to the top with beads 5, 6 and 33, and the tip of the module folds downwards as 40 and
41 are attracted by 37. This ensures that the folding of the module ends at the bottom
row, propagating the carry “ 1 to the next module.

Note that the bottom rows of the four resulting foldings differ significantly: 39–38–37–30
for C01, 39–38–33–32 for C00, 39–38–37–36 for C10, and 41–36–35–30 for C11. This will
allow to distinguish between them in the following zag pass to write the correct bit for the
new value of the counter.

4 Proof Sketch of Theorem 1

We call bricks the various conformations each module will adopt in the final folding, as they
are the bricks upon which the whole folding is built. Designing the bricks is one of the biggest
challenges when programming Oritatami. There are six bricks for Modules A and C: Axc
and Cxc in the zig pass where x, c P t0, 1u are the bit read from the brick above (Ax or Cx)
and the (input) carry from the preceding module (Bc or Dc); and Ay and Cy in the zag pass
where y is the bit written: namely y “ x` cmod 2 if the brick above is Axc or Cxc. There
are four bricks for Modules B and D: Bc1 and Dc1 in the zig pass where c1 P t0, 1u is the carry
output by the preceding brick Cxc or Axc, namely c1 “ x ^ c; B2 and D2 in the zag pass.
Figure 13 lists the six bricks for Module A.

The proof works in two stages. First, we describe the final target folding and show
that it implements correctly a binary counter: i.e. that the bricks implement correctly the
relationships between the y, x, c and c1 described above. Second, we show that indeed, each

MFCS 2016



XX:12 Programming biomolecules that fold greedily during transcription

Zig Direction ÐÝ Zag Direction ÝÑ
11

9

10

6

8

7

5

3

4

0

2

1

11

9

10

4

8

5

3

7

6

2

0

1

11

9

10

2

8

3

1

7

4

0

6

5

9

11

10

8

6

7

3

5

4

2

0

1 1

2

0

4

3

9

8

5

10

7

6

11

1

2

0

4

3

5

7

8

6

10

9

11

Brick A00 Brick A01 Brick A10 Brick A11 Brick A0 Brick A1

Figure 13 The six different bricks for Module A, First Half-Adder (beads 0–11).
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Figure 14 The folding certificate for the brick A01 in the environment: D2B2 C0
D1A01

module folds into the expected brick in each given environment. For that matter, we produce
a folding certificate, which shows for each step all the possible extension of the current
conformation together with the number of bonds created (the number in the north-east
corner), grouping together several extensions when they share a common path (the number
of paths groupes are in the south-east corner). Figure 14 displays the folding certificate for
Brick A01 surrounded by the bricks B2, C0, D2 and D1.

5 Rule design is NP-hard and FPT

Once we have agreed on the desired conformations in our construction, an important issue is
to find an attraction rule such that a primary structure folds into its correct functions. The
rule design problem consists in: given a delay time δ, a list of n ą 0 seeds σ1, σ2, . . . , σn, and
a list of n conformations c1, c2, . . . , cn of the same length `, output an attraction rule such
that for all i P t1, 2, . . . , nu, Oritatami system Oi “ ps, σi, , δq deterministically folds into
conformation ci, where s “ x0, 1, . . . , `´ 1y.

Theorem 2 (proof omitted) shows by a reduction from 3-SAT that this problem is NP-
hard. However, Theorem 3 (proof omitted) shows using the locality of the bindings that it is
fixed-parameter tractable with respect to the length of the sequence `. Then, as n and δ are
usually small for the designs we considered, we could use this algorithm to help us designing
an attraction rule compatible with our brick designs.

6 Perspectives

The purpose of our new model is not to be entirely accurate with respect to phenomena
observed in nature, but instead to start developing an intuition about the kind of problem
that need to be solved in order to engineer RNA shapes, and later, even proteins.

In the future, a number of extensions of this model seem natural. In particular, extending
it with a more realistic notion of thermodynamics and molecular agitation. Using existing
works in molecular dynamics [27], would allow to explore stochastic optimization processes.
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