Automata, (semi)groups, dualities

Matthieu Picantin

IRIF - UMR 8243 CNRS & Université Paris Diderot

habilitation à diriger des recherches amphithéâtre Alan Turing 10 juillet 2017

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston vs Mealy automata

2

0

0

1

2

the actions induced by 0 and 1 generate a rank 2 free semigroup

the actions induced by 0 and 1 generate a rank 2 free semigroup and a group isomorphic to $\mathrm{BS}(1,2) = \langle \ \alpha, \delta : \alpha \delta = \delta \alpha^2 \ \rangle$

multiplication by 2 in base 3 (less significant digit first) $0|0 \\ 1|2 \\ 0|1$

the actions induced by 0 and 1 generate a rank 2 free semigroup and a group isomorphic to $\mathrm{BS}(1,2) = \langle \ \alpha, \delta : \alpha \delta = \delta \alpha^2 \ \rangle$

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

a positive braid

a negative braid

a negative braid

Garside 1965

The braid group B_3 is the group of fractions of the monoid $B_{3+}^1 = \langle \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle_+^1$.

Garside 1965

The braid group \mathbf{B}_3 is the group of fractions of the monoid $\mathbf{B}_{3+}^1 = \langle \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle_+^1$.

$$\operatorname{EV}:\mathcal{Q}^{+}{\longrightarrow}\mathcal{S}$$

$$\mathsf{EV}: \mathcal{Q}^+ \underset{\mathsf{NF}}{\longrightarrow} \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

 $for the \ Adjan-Garside-Thurston \ normal \ form, \ \mathcal{Q} \ is \ chosen \ to \ be \ \{positive \ braids \ in \ which \ any \ two \ strands \ cross \ at \ most \ once\}$

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{NF} = NF \circ EV$.

$$\mathsf{EV}:\mathcal{Q}^+ \underset{\mathsf{NF}}{\longrightarrow} \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{\text{NF}} = \text{NF} \circ \text{EV}$.

 $for the \ Adjan-Garside-Thurston \ normal \ form, \ \mathcal{Q} \ is \ chosen \ to \ be \ \{positive \ braids \ in \ which \ any \ two \ strands \ cross \ at \ most \ once\}$

$$EV: \mathcal{Q}^+ \xrightarrow{\mathsf{NF}} \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{\text{NF}} = \text{NF} \circ \text{EV}$.

$$\mathsf{EV}:\mathcal{Q}^+ \xrightarrow{\mathsf{NF}} \mathcal{S}$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{\text{NF}} = \text{NF} \circ \text{EV}$.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{\text{NF}} = \text{NF} \circ \text{EV}$.

$$EV: \mathcal{Q}^+ \xrightarrow{\mathsf{NF}} S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{\text{NF}} = \text{NF} \circ \text{EV}$.

$$EV: \mathcal{Q}^+ \xrightarrow{\mathsf{NF}} S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{\text{NF}} = \text{NF} \circ \text{EV}$.

$$EV: \mathcal{Q}^+ \xrightarrow{\mathsf{NF}} S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{\text{NF}} = \text{NF} \circ \text{EV}$.

$$\mathsf{EV}:\mathcal{Q}^+ \underset{\mathsf{NF}}{\longrightarrow} \mathcal{S}$$

A normal form for (S, \mathcal{Q}) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{NF} = NF \circ EV$.

$$\mathsf{EV}:\mathcal{Q}^+ \underset{\mathsf{NF}}{\longrightarrow} \mathcal{S}$$

A normal form for (S, \mathcal{Q}) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{NF} = NF \circ EV$.

$$\mathsf{EV}: \mathcal{Q}^+ \underset{\mathsf{NF}}{\longrightarrow} \mathcal{S}$$

A normal form for (S, \mathcal{Q}) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{NF} = NF \circ EV$.

$$\mathsf{EV}: \mathcal{Q}^+ \underset{\mathsf{NF}}{\longrightarrow} \mathcal{S}$$

A normal form for (S, \mathcal{Q}) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{NF} = NF \circ EV$.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{\text{NF}} = \text{NF} \circ \text{EV}$.

$$EV: Q^+ \longrightarrow S$$

A normal form for (S, Q) is a map NF that assigns to each element of S a distinguished representative Q-word. One will consider $\overline{\text{NF}} = \text{NF} \circ \text{EV}$.

Garside 1965

The braid group B_3 is the group of fractions of the monoid $\mathbf{B}_{3+}^1 = \langle \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle_+^1$.

The braid group B_3 is the group of fractions of the monoid $\mathbf{B}_{3+}^1 = \langle \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle_+^1$.

The braid group B_3 is the group of fractions of the monoid $\mathbf{B}_{3+}^1 = \langle \sigma_1, \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle_+^1$.

Birman Ko Lee 1998

Birman Ko Lee 1998

Birman Ko Lee 1998

Birman Ko Lee 1998

Let G be a finite group generated as a monoid by a set X.

The word length $\ell_X(g)$ of an element g of G with respect to the alphabet X is

$$\ell_X(g) = \min\{p \in \mathbb{N} : \exists (x_1, \dots, x_p) \in X^p, g = x_1 \cdots x_p\}.$$

The word length $\ell_X(g)$ of an element g of G with respect to the alphabet X is

$$\ell_X(g) = \min\{p \in \mathbb{N} : \exists (x_1, \dots, x_p) \in X^p, g = x_1 \cdots x_p\}.$$

We consider the associated partial order \leq_X on G:

$$h \preccurlyeq_X g$$
 if and only if $\ell_X(h) + \ell_X(h^{-1}g) = \ell_X(g)$.

The word length $\ell_X(g)$ of an element g of G with respect to the alphabet X is

$$\ell_X(g) = \min\{p \in \mathbb{N} : \exists (x_1, \dots, x_p) \in X^p, g = x_1 \cdots x_p\}.$$

We consider the associated partial order \leq_X on G:

$$h \preccurlyeq_X g$$
 if and only if $\ell_X(h) + \ell_X(h^{-1}g) = \ell_X(g)$.

The word length $\ell_X(g)$ of an element g of G with respect to the alphabet X is

$$\ell_X(g) = \min\{p \in \mathbb{N} : \exists (x_1, \dots, x_p) \in X^p, g = x_1 \cdots x_p\}.$$

We consider the associated partial order \leq_X on G:

$$h \preccurlyeq_X g$$
 if and only if $\ell_X(h) + \ell_X(h^{-1}g) = \ell_X(g)$.

Procedure

- \triangleright Start from a finite group G.
- \triangleright Choose a set X generating G as a monoid.
- \triangleright Build the associated poset (G, \preccurlyeq_X) .
- \triangleright Pick a maximal element d dominating X.
- \triangleright Extract the monoid presentation ($X : R_d$).

The word length $\ell_X(g)$ of an element g of G with respect to the alphabet X is

$$\ell_X(g) = \min\{p \in \mathbb{N} : \exists (x_1, \dots, x_p) \in X^p, g = x_1 \cdots x_p\}.$$

We consider the associated partial order \leq_X on G:

$$h \preccurlyeq_X g$$
 if and only if $\ell_X(h) + \ell_X(h^{-1}g) = \ell_X(g)$.

Procedure

- \triangleright Start from a finite group G.
- \triangleright Choose a set X generating G as a monoid.
- \triangleright Build the associated poset (G, \preccurlyeq_X) .
- \triangleright Pick a maximal element d dominating X.
- \triangleright Extract the monoid presentation ($X : R_d$).
- ▷ Check whether or not:

[germ]
$$\langle X : R_d \cup x^{\operatorname{ord}(x)} \rangle$$
 is isomorphic to G ;

$$[\operatorname{Gar}_{\bullet}^{\bullet}] \langle X : R_d \rangle_{+}^{1}$$
 is a Garside monoid;

[braid] $\langle X : R_d \rangle$ is isomorphic to $\mathbf{B}(G)$ (if defined).

P 2002 Bessis 2003

The dual braid monoid $\mathbf{B}^{\times}(B_n)$ admits the presentation

$$\langle \alpha_{ts}, \beta_{ts}, \tau_t : [\alpha_{ts}, \tau_s, \beta_{ts}, \tau_t] \text{ for } t > s,$$

$$[\alpha_{ts}, \alpha_{sr}, \alpha_{tr}] , [\beta_{ts}, \alpha_{sr}, \beta_{tr}] , [\alpha_{ts}, \beta_{sr}, \beta_{tr}] \text{ for } t > s > r,$$

$$[\alpha_{ts}, \tau_r] , [\tau_t, \alpha_{sr}] , [\beta_{tr}, \tau_s] \text{ for } t > s > r,$$

$$[\alpha_{ts}, \alpha_{rq}] , [\alpha_{ts}, \beta_{rq}] , [\beta_{ts}, \alpha_{rq}] ,$$

$$[\alpha_{tq}, \alpha_{sr}] , [\beta_{tq}, \alpha_{sr}] , [\beta_{tg}, \beta_{sr}] \text{ for } t > s > r > q \rangle_+^1.$$

P 2002 Bessis 2003

The dual braid monoid $\mathbf{B}^{\times}(B_n)$ admits the presentation

$$\begin{array}{l} \langle \ \alpha_{ts}, \beta_{ts}, \tau_t : [\alpha_{ts}, \tau_s, \beta_{ts}, \tau_t] \ \ \text{for} \ t > s, \\ [\alpha_{ts}, \alpha_{sr}, \alpha_{tr}] \ , \ [\beta_{ts}, \alpha_{sr}, \beta_{tr}] \ , \ [\alpha_{ts}, \beta_{sr}, \beta_{tr}] \ \ \text{for} \ t > s > r, \\ [\alpha_{ts}, \tau_r] \ , \ [\tau_t, \alpha_{sr}] \ , \ [\beta_{tr}, \tau_s] \ \ \text{for} \ t > s > r, \\ [\alpha_{ts}, \alpha_{rq}] \ , \ [\alpha_{ts}, \beta_{rq}] \ , \ [\beta_{ts}, \alpha_{rq}] \ , \\ [\alpha_{tq}, \alpha_{sr}] \ , \ [\beta_{tq}, \alpha_{sr}] \ , \ [\beta_{tq}, \beta_{sr}] \ \ \text{for} \ t > s > r > q \ \rangle_+^1. \end{array}$$

P 2002 Bessis 2003

The dual braid monoid $\mathbf{B}^{\times}(B_n)$ admits the presentation

$$\begin{array}{l} \langle \ \alpha_{ts}, \beta_{ts}, \tau_t : [\alpha_{ts}, \tau_s, \beta_{ts}, \tau_t] \ \ \text{for} \ t > s, \\ [\alpha_{ts}, \alpha_{sr}, \alpha_{tr}] \ , \ [\beta_{ts}, \alpha_{sr}, \beta_{tr}] \ , \ [\alpha_{ts}, \beta_{sr}, \beta_{tr}] \ \ \text{for} \ t > s > r, \\ [\alpha_{ts}, \tau_r] \ , \ [\tau_t, \alpha_{sr}] \ , \ [\beta_{tr}, \tau_s] \ \ \text{for} \ t > s > r, \\ [\alpha_{ts}, \alpha_{rq}] \ , \ [\alpha_{ts}, \beta_{rq}] \ , \ [\beta_{ts}, \alpha_{rq}] \ , \\ [\alpha_{tq}, \alpha_{sr}] \ , \ [\beta_{tq}, \alpha_{sr}] \ , \ [\beta_{tq}, \beta_{sr}] \ \ \text{for} \ t > s > r > q \ \rangle_+^1. \end{array}$$

[germ] [Gar∰]

[germ] [Gar 🖁]

July 10, 2017

Bessis Corran 2006

The dual braid monoid $\mathbf{B}^{\times}(e, e, r)$ satisfies

$$Z(q) = \frac{r + e(r-1)(q-1)}{r} \prod_{k=1}^{r-1} \frac{ek + e(r-1)(q-1)}{ek}.$$

Bessis Corran 2006

The dual braid monoid $\mathbf{B}^{\times}(e,e,r)$ satisfies

$$Z(q) = \frac{r + e(r-1)(q-1)}{r} \prod_{k=1}^{r-1} \frac{e^k + e(r-1)(q-1)}{e^k}.$$

Corran P 2011

The post-classical braid monoid $\mathbf{B}^{\oplus}(e, e, r)$ satisfies

$$P(q) = \prod_{k=1}^{r-1} (1 + q + \dots + q^{k-1} + eq^k + q^{k+1} + \dots + q^{2k}).$$

Bessis Corran 2006

The dual braid monoid $\mathbf{B}^{\times}(e,e,r)$ satisfies

$$Z(q) = \frac{r + e(r-1)(q-1)}{r} \prod_{k=1}^{r-1} \frac{ek + e(r-1)(q-1)}{ek}.$$

Corran P 2011 Neaime 2017

The post-classical braid monoid $\mathbf{B}^{\oplus}(e, e, r)$ satisfies

$$P(q) = \prod_{k=1}^{r-1} (1 + q + \dots + q^{k-1} + eq^k + q^{k+1} + \dots + q^{2k}).$$

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston vs Mealy automata

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

The amalgamated free product is

$$\langle M_1 \star M_2 : \phi_1(h) = \phi_2(h), h \in H \rangle^1_+.$$

The amalgamated free product is

$$\langle M_1 \star M_2 : \phi_1(h) = \phi_2(h), h \in H \rangle_+^1.$$

P 2013

Let M_1 and M_2 be Garside monoids. For any root h_1 of a Garside element in M_1 and any root h_2 of a Garside element in M_2 , the monoid $M_1 \star_{h_1=h_2} M_2$ is Garside.

The amalgamated free product is

$$\langle M_1 \star M_2 : \phi_1(h) = \phi_2(h), h \in H \rangle_+^1.$$

P 2013

Let M_1 and M_2 be Garside monoids. For any root h_1 of a Garside element in M_1 and any root h_2 of a Garside element in M_2 , the monoid $M_1 \star_{h_1=h_2} M_2$ is Garside.

The HNN extension of $M(=M_1=M_2)$ is $\langle M, t : \phi_1(h)t = t\phi_2(h), h \in H \rangle^1_+$.

Let M be a Garside monoid and $H=\langle\ h\ \rangle_+^1$ with $\|h_1\|=\|h_2\|$. The enveloping group of $\langle\ M,t:h_1t=th_2\ \rangle_+^1$ is Garside iff h_1 and h_2 are n-th roots of a same Garside element.

Let M_1, M_2, H be monoids with $\begin{cases} \phi_1 : H \hookrightarrow M_1, \\ \phi_2 : H \hookrightarrow M_2. \end{cases}$ The amalgamated free product is

$$\langle M_1 \star M_2 : \phi_1(h) = \phi_2(h), h \in H \rangle_+^1.$$

P 2013

Let M_1 and M_2 be Garside monoids. For any root h_1 of a Garside element in M_1 and any root h_2 of a Garside element in M_2 , the monoid $M_1 \star_{h_1 = h_2} M_2$ is Garside.

The HNN extension of
$$M(= M_1 = M_2)$$
 is $\langle M, t : \phi_1(h)t = t\phi_2(h), h \in H \rangle^1_+$.

P 2013

Let M be a Garside monoid and $H=\langle h \rangle_+^1$ with $\|h_1\|=\|h_2\|$. The enveloping group of $\langle M, t : h_1t=th_2 \rangle_+^1$ is Garside iff h_1 and h_2 are n-th roots of a same Garside element.

The amalgamated free product is

$$\langle M_1 \star M_2 : \phi_1(h) = \phi_2(h), h \in H \rangle_+^1.$$

P 2013

Let M_1 and M_2 be Garside monoids. For any root h_1 of a Garside element in M_1 and any root h_2 of a Garside element in M_2 , the monoid $M_1 \star_{h_1=h_2} M_2$ is Garside.

The HNN extension of
$$M(=M_1=M_2)$$
 is $\langle M, t : \phi_1(h)t = t\phi_2(h), h \in H \rangle^1_+$.

P 2013

Let M be a Garside monoid and $H=\langle h \rangle_+^1$ with $\|h_1\|=\|h_2\|$. The enveloping group of $\langle M, t : h_1t=th_2 \rangle_+^1$ is Garside iff h_1 and h_2 are n-th roots of a same Garside element.

P 2013

A non-cyclic one-relator group is Garside iff its center is non-trivial.

Let M_1, M_2, H be monoids with $\begin{cases} \phi_1 : H \hookrightarrow M_1, \\ \phi_2 : H \hookrightarrow M_2. \end{cases}$

The amalgamated free product is

$$\langle M_1 \star M_2 : \phi_1(h) = \phi_2(h), h \in H \rangle^1_+.$$

P 2013

Let M_1 and M_2 be Garside monoids. For any root h_1 of a Garside element in M_1 and any root h_2 of a Garside element in M_2 , the monoid $M_1 \star_{h_1=h_2} M_2$ is Garside.

The HNN extension of
$$M(=M_1=M_2)$$
 is $\langle M, t : \phi_1(h)t = t\phi_2(h), h \in H \rangle^1_+$.

P 2013

Let M be a Garside monoid and $H = \langle h \rangle_+^1$ with $\|h_1\| = \|h_2\|$. The enveloping group of $\langle M, t : h_1t = th_2 \rangle_+^1$ is Garside iff h_1 and h_2 are n-th roots of a same Garside element.

P 2013

A non-cyclic one-relator group is Garside iff its center is non-trivial.

$$\langle \ a, x : x^8 a x^{-6} a^{-1} x^4 a x^{-6} a^{-1} \ \rangle$$

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

2 2 3 1 ...

a

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\mathcal{M} = (Q, X, au, \sigma)$$

$$\mathcal{M} = (Q, X, au, \sigma)$$

$$\begin{array}{c|c} x \mid \sigma_q(x) \\ \hline \hline \tau_X(q) \end{array}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in m{Q} \;
angle_+$$

$$\sigma_{a}$$
 σ_{a}
 σ_{a

$$\mathcal{M} = (Q, X, au, \sigma)$$

$$\begin{array}{c|c} x \mid \sigma_q(x) \\ \hline \hline \tau_x(q) \end{array}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in m{Q} \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\begin{array}{c|c} x \mid \sigma_q(x) \\ \hline \hline \\ \hline \end{array}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in Q \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$(q) \qquad (\tau_X(q))$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in Q \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\boxed{q} \qquad \boxed{\tau_{x}(q)}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in m{Q} \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$x \mid \sigma_q(x)$$
 $\tau_x(q)$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in \textit{Q} \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in \textit{Q} \;
angle_+$$

$$q \xrightarrow{X} \tau_{X}(q)$$

$$\sigma_{q}(x)$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

$$\begin{array}{c|c} x \mid \sigma_q(x) \\ \hline \hline \tau_x(q) \end{array}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in Q \;
angle_+$$

$$\begin{array}{c|c} x \mid \sigma_q(x) \\ \hline \\ \hline \end{array}$$

$$\langle \; \mathcal{M} \;
angle_+ = \langle \sigma_{m{q}}, m{q} \in m{Q} \;
angle_+$$

$$\mathcal{M} = (Q, X, \tau, \sigma)$$

 \mathcal{M}^2

order 1 494 186 269 970 473 680 896

Akhavi Klimann Lombardy Mairesse P 2012

A Mealy automaton generates a finite (semi)group iff its mo-reduced pair does.

Akhavi Klimann Lombardy Mairesse P 2012

Even for bireversible automata, finiteness cannot be decide via mo-triviality.

Akhavi Klimann Lombardy Mairesse P 2012

Even for bireversible automata, finiteness cannot be decide via mo-triviality.

 \mathbb{Z}^{*3}

If a non-trivial mo-reduced bireversible automaton is rigid, it generates an infinite group.

$$(\mathfrak{dmdm})^* \qquad \begin{array}{c} 0|2 & 1|1 & 0|2 & 1|1 \\ 2|1 & 2|0 & 2|1 & 2|2 \\ 2|0 & 0|0 & 2|1 & 2|1 \\ \end{array}$$

$$(\mathfrak{dmdm})^* \qquad \begin{array}{c} 0|2 \\ 1|1 \\ 2|2 \\ 2|0 \\ 0|0 \\ \end{array} \qquad \begin{array}{c} 1|1 \\ 2|2 \\ 2|1 \\ \end{array} \qquad \begin{array}{c} 0|2 \\ 2|2 \\ \end{array} \qquad \begin{array}{c} 0|2 \\ 2|1 \\ \end{array} \qquad \begin{array}{c} 0|2 \\ 2|1 \\ \end{array} \qquad \begin{array}{c} 0|2 \\ 2|1 \\ \end{array} \qquad \begin{array}{c} 0|1 \\ 2|2 \\ \end{array} \qquad \begin{array}{c} 0|1 \\$$

$$(\mathfrak{dmdm})^* \qquad \begin{array}{c} 0|2 \\ 1|1 \\ 2|1 \\ 2|0 \\ 0|0 \\ 2|1$$

$$(\mathfrak{dmdm})^* \qquad \begin{array}{c} 0|2 & 1|1 & 0|2 & 1|1 \\ 2|1 & 1|0 & 2|0 \\ 2|0 & 0|0 & 2|1 & 0|0 \\ 2|0 & 0|0 & 2|1 & 0|0 \\ 2|1 & 1|2 & 2|1 \\ \end{array}$$

Conjecture

A bireversible automaton generates a finite group iff it is moc-trivial.

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

Is a finitely generated torsion group necessarily finite?

Is a finitely generated torsion group necessarily finite?

Is a finitely generated torsion group necessarily finite?

Is a finitely generated torsion group necessarily finite?

Question

Is a finitely generated torsion group necessarily finite?

Question

Is a finitely generated torsion group necessarily finite?

Question

Is a finitely generated torsion group necessarily finite?

Question

a

Assume that A is an invertible reversible q-state Mealy automaton. Let $\lambda_{A,k}$ be the number of strict k-self-liftable branches in $\mathfrak{t}(A)$ for $k \geq 1$. If $(\lambda_{A,k})_{k\geq 1} <_{\text{lex}} (\pi_{q,k})_{k\geq 1}$ holds, $\langle A \rangle_+$ admits elements of infinite order.

the number of g'-ary words with primitive period of length k [oeis.org/A143324]

Assume that A is an invertible reversible q-state Mealy automaton. Let $\lambda_{A,k}$ be the number of strict k-self-liftable branches in $\mathfrak{t}(A)$ for $k \geq 1$. If $(\lambda_{A,k})_{k>1} <_{\text{lex}} (\pi_{q,k})_{k>1}$ holds, $\langle A \rangle_+$ admits elements of infinite order.

the number of g'-ary words with primitive period of length k [oeis.org/A143324]

Conjecture

Otherwise, $\langle A \rangle_+$ is finite.

Assume that A is an invertible reversible q-state Mealy automaton. Let $\lambda_{A,k}$ be the number of strict k-self-liftable branches in $\mathfrak{t}(A)$ for $k \geq 1$. If $(\lambda_{A,k})_{k\geq 1} <_{\text{lex}} (\pi_{g,k})_{k\geq 1}$ holds, $\langle A \rangle_+$ admits elements of infinite order.

the number of q-ary words with primitive period of length k [oeis.org/A143324]

Conjecture

Otherwise, $\langle A \rangle_{+}$ is finite.

Assume that A is an invertible reversible q-state Mealy automaton. Let $\lambda_{A,k}$ be the number of strict k-self-liftable branches in $\mathfrak{t}(A)$ for $k \geq 1$. If $(\lambda_{A,k})_{k>1} <_{\text{lex}} (\pi_{q,k})_{k>1}$ holds, $\langle A \rangle_+$ admits elements of infinite order.

the number of q-ary words with primitive period of length k [oeis.org/A143324]

Conjecture

Otherwise, $\langle A \rangle_{+}$ is finite.

three 1-self-liftable branches

two active branches

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

Braid (semi)groups & Garside theory

Mealy automata & automaton (semi)groups

Quadratic normalisations Thurston *vs* Mealy automata

(semi)groups acting on regular rooted trees

(semi)groups acting on regular rooted trees

- > recognize the language of normal forms
- ▷ execute the (semi)group operations

- b define sequential transformations
- represent the elements themselves

▷ recognize the la

 \triangleright execute the (ser

#

Groups defined by automata

Laurent Bartholdi

Pedro V. Silva

Contents

	The	geometry of the Cayley graph	102
	1.1	History of geometric group theory	103
	1.2	Automatic groups	105
	1.3	Main examples of automatic groups	108
	1.4	Properties of automatic groups	110
	1.5		111
	1.6	Non-automatic groups	114
	Grou	ips generated by automata	115
	2.1	Main examples	118
	2.2	Decision problems	120
	2.3	Bounded and contracting automata	120
	2.4	Branch groups	122
	2.5	Growth of groups	123
	2.6	Dynamics and subdivision rules	125
	2.7	Reversible actions	127
	2.8	Bireversible actions	128
e	eferences		

formations

themselves

Grigorchuk groups Gupta-Sidki groups

Grigorchuk groups Gupta-Sidki groups $\langle a, b : ab = b^m a \rangle$

AIM Self-similar groups & conformal dynamics finite groups Grigorchuk groups hyperbolic groups $\langle a, b : [a, b]^2 \rangle$ Gupta-Sidki groups $\langle a, b : ab = b^m a \rangle$

finite groups $\langle a, b : [a, b]^2 \rangle$ $\langle a, b : ab^m = b^m a \rangle$ free (abelian) groups

Grigorchuk groups Gupta-Sidki groups $\langle a, b : ab = b^m a \rangle$

semigroups

& conformal dynamics 2... finite groups Grigorchuk groups hyperbolic groups $\langle a, b : [a, b]^2 \rangle$ Gupta-Sidki groups $\langle a, b : ab^m = b^m a \rangle$ $\langle a, b : ab = b^m a \rangle$ some Artin groups free (abelian) groups Kourovka notebook ?... finite semigroups bicyclic monoid free (abelian) semigroups

& conformal dynamics 2... finite groups Grigorchuk groups hyperbolic groups $\langle a, b : [a, b]^2 \rangle$ Gupta-Sidki groups $\langle a, b : ab^m = b^m a \rangle$ $\langle a, b : ab = b^m a \rangle$ some Artin groups free (abelian) groups Kourovka notebook ?... finite semigroups bicyclic monoid free (abelian) semigroups

Let $S = \langle \mathcal{Q} : \{ w = NF(w), w \in \mathcal{Q}^* \} \rangle_+^1$ be an automatic monoid where NF is a normalisation associated with a Garside family \mathcal{Q} .

Let $S = \langle \mathcal{Q} : \{ w = NF(w), w \in \mathcal{Q}^* \} \rangle_+^1$ be an automatic monoid where NF is a normalisation associated with a Garside family \mathcal{Q} .

We define the Mealy automaton $\mathcal{M}_{\mathcal{S},\mathcal{Q},\mathrm{NF}}=(\mathcal{Q},\mathcal{Q},\tau,\sigma)$ with τ and σ satisfying

$$NF(ab) = \tau_a(b)\,\sigma_b(a)$$

for every $(a,b) \in \mathcal{Q}^2$, that is,

Let $S = \langle \mathcal{Q} : \{ w = NF(w), w \in \mathcal{Q}^* \} \rangle_+^1$ be an automatic monoid where NF is a normalisation associated with a Garside family \mathcal{Q} .

We define the Mealy automaton $\mathcal{M}_{\mathcal{S},\mathcal{Q},\mathrm{NF}}=(\mathcal{Q},\mathcal{Q}, au,\sigma)$ with au and σ satisfying

$$NF(ab) = \tau_a(b)\,\sigma_b(a)$$

for every $(a, b) \in \mathcal{Q}^2$, that is,

Let $S = \langle \mathcal{Q} : \{ w = NF(w), w \in \mathcal{Q}^* \} \rangle_+^1$ be an automatic monoid where NF is a normalisation associated with a Garside family Q.

We define the Mealy automaton $\mathcal{M}_{S,\mathcal{Q},NF} = (\mathcal{Q},\mathcal{Q},\tau,\sigma)$ with τ and σ satisfying

$$NF(ab) = \tau_a(b)\,\sigma_b(a)$$

for every $(a, b) \in \mathcal{Q}^2$.

For NF(s) = $s_n \cdots s_1$ and NF(sq) = $q_n s'_n \cdots s'_1$, we obtain diagrammatically:

Let $S = \langle \mathcal{Q} : \{ w = NF(w), w \in \mathcal{Q}^* \} \rangle_+^1$ be an automatic monoid where NF is a normalisation associated with a Garside family Q.

We define the Mealy automaton $\mathcal{M}_{S,\mathcal{Q},NF} = (\mathcal{Q},\mathcal{Q},\tau,\sigma)$ with τ and σ satisfying

$$NF(ab) = \tau_a(b)\,\sigma_b(a)$$

for every $(a, b) \in \mathcal{Q}^2$.

For NF(s) = $s_n \cdots s_1$ and NF(sq) = $q_n s'_n \cdots s'_1$, we obtain diagrammatically:

We deduce $\sigma_q(s_1 \cdots s_n) = s'_1 \cdots s'_n$ for any $q \in \mathcal{Q}$.

Theorem [P 2015] $S \cong \langle \mathcal{M}_{S,O,NE} \rangle^1$

$$\langle a, b : ab = a \rangle_+^1$$

$$\langle a, b : ab = a \rangle_+^1$$

$$\mathcal{Q} = \{a,b,1\}$$

$$\langle a, b : ab = a \rangle^1_+$$

$$Q = \{a, b, 1\}$$

$$\langle a, b : ab = a \rangle^1_+$$

$$Q = \{a, b, 1\}$$

Baumslag-Solitar

$$\mathrm{BS}^1_+(1,0) = \ \langle \ \textbf{\textit{a}}, \textbf{\textit{b}} : \textbf{\textit{ab}} = \textbf{\textit{a}} \ \rangle^1_+ \ = \mathrm{AK}^1_+ \left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right)$$

$$\mathrm{BS}^1_+(1,0) = \langle a,b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$\mathrm{BS}^1_+(3,2) = \langle \ a,b : ab^3 = b^2 a \ \rangle^1_+$$

$$\mathrm{BS}^1_+(1,0) = \langle a,b:ab=a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix}1&1\\2&1\end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b : ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$\mathrm{BS}^1_+(1,0) = \langle a,b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right)$$

$$BS_{+}^{1}(3,2) = \langle a, b : ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$\mathrm{BS}^1_+(1,0) = \langle a,b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b : ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$\mathrm{BS}^1_+(1,0) = \langle a,b : ab = a \rangle^1_+ = \mathrm{AK}^1_+ \left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right)$$

$$BS^1_+(3,2) = \langle a, b : ab^3 = b^2 a \rangle^1_+$$

$$\mathrm{BS}^1_+(1,0) = \langle a,b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right)$$

$$\mathrm{BS}^1_+(3,2) = \langle \ a,b : ab^3 = b^2a \ \rangle^1_+$$

There exists a group-embeddable automaticon monoid whose enveloping group is not an automaticon group

$$BS_{+}^{1}(1,0) = \langle a, b : ab = a \rangle_{+}^{1} = AK_{+}^{1} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \end{pmatrix}$$

$$BS^1_+(3,2) = \langle a, b : ab^3 = b^2 a \rangle^1_+$$

There exists a group-embeddable automaticon monoid whose enveloping group is not an automaticon group

$$\mathrm{BS}^1_+(1,0) = \langle a, b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right)$$

$$BS^1_+(3,2) = \langle a, b : ab^3 = b^2 a \rangle^1_+$$

There exists a group-embeddable automaticon monoid whose enveloping group is not an automaticon group

Hoffmann 2001 P 2015

$$\mathrm{BS}^1_+(1,0) = \langle a, b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b : ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$AK_{+}^{1}\left(\begin{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 2 & 4 & 1 \end{bmatrix}\right) = \left\langle a, b, c : \begin{matrix} abab = aba \\ abcbc = bcb \end{matrix} \right\rangle_{+}^{1}$$

Hoffmann 2001 P 2015

$$\mathrm{BS}^1_+(1,0) = \langle a,b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b : ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$AK_{+}^{1}\left(\begin{bmatrix}1&3&2\\4&1&3\\2&4&1\end{bmatrix}\right) = \left\langle a,b,c: \begin{array}{c}abab = aba\\abcbc = bcb\end{array}\right\rangle_{+}^{1}$$

Hoffmann 2001 P 2015

$$\mathrm{BS}^1_+(1,0) = \langle a,b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b : ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$AK_{+}^{1}\left(\begin{bmatrix}1&3&2\\\frac{4}{4}&1&3\\2&4&1\end{bmatrix}\right) = \left\langle a,b,c: \begin{array}{c}abab = aba\\abcbc = bcb\end{array}\right\rangle_{+}^{1}$$

Hoffmann 2001 P 2015

 $\mathrm{BS}^1_+(m,n)$ is an automaticon monoid

$$BS_{+}^{1}(1,0) = \langle a, b : ab = a \rangle_{+}^{1} = AK_{+}^{1}(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix})$$

$$\mathrm{BS}^1_+(3,2) = \langle \ a,b : ab^3 = b^2a \ \rangle^1_+$$

$$AK_{+}^{1}\left(\begin{bmatrix}1&3&2\\4&1&3\\2&4&1\end{bmatrix}\right) = \left\langle a,b,c: \begin{matrix} abab = aba\\abcbc = bcb \end{matrix}\right\rangle_{+}^{1}$$

Hoffmann 2001 P 2015

Automat-ic-on

Baumslag-Solitar

$$\mathrm{BS}^1_+(1,0) = \langle a, b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \right)$$

$$BS^1_+(3,2) = \langle a, b : ab^3 = b^2 a \rangle^1_+$$

$$AK_{+}^{1}\left(\begin{bmatrix}1&3&2\\\frac{4}{4}&1&3\\2&4&1\end{bmatrix}\right) = \left\langle a,b,c: \begin{matrix} abab = aba\\ ac = ca\\ bcbc = bcb \end{matrix}\right\rangle_{+}^{1}$$

Hoffmann 2001 P 2015

$$\mathrm{BS}^1_+(1,0) = \langle a, b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$\mathrm{BS}^1_+(3,2) = \langle \ a,b : ab^3 = b^2a \ \rangle^1_+$$

$$AK_{+}^{1}\left(\begin{bmatrix}1&3&2\\4&1&3\\2&4&1\end{bmatrix}\right) = \left\langle a,b,c: \begin{array}{c}abab = aba\\abcbc = bcb\end{array}\right\rangle_{+}^{1}$$

Hoffmann 2001 P 2015

$$\mathrm{BS}^1_+(1,0) = \langle a,b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$\mathrm{BS}^1_+(3,2) = \langle \ a,b : ab^3 = b^2a \ \rangle^1_+$$

$$AK_{+}^{1}\left(\begin{bmatrix}1&3&2\\4&1&3\\2&4&1\end{bmatrix}\right) = \left\langle a,b,c: \begin{array}{c}abab = aba\\abcbc = bcb\end{array}\right\rangle_{+}^{1}$$

Hoffmann 2001 P 2015

$$BS_{+}^{1}(1,0) = \langle a, b : ab = a \rangle_{+}^{1} = AK_{+}^{1}(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix})$$

$$BS^1_+(3,2) = \langle a, b : ab^3 = b^2 a \rangle^1_+$$

$$\operatorname{AK}^1_+\left(\left[\begin{smallmatrix}1&3&2\\\frac44&1&3\\2&4&1\end{smallmatrix}\right]\right) = \left\langle a,b,c: \begin{matrix} abab = aba\\ac = ca\\bcbc = bcb \end{matrix}\right\rangle^1_+$$

Hoffmann 2001 P 2015

$$\mathrm{BS}^1_+(1,0) = \langle a,b : ab = a \rangle^1_+ = \mathrm{AK}^1_+\left(\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}\right)$$

$$BS_{+}^{1}(3,2) = \langle a, b : ab^{3} = b^{2}a \rangle_{+}^{1}$$

$$\operatorname{AK}^1_+\left(\left[\begin{smallmatrix}1&3&2\\\frac44&1&3\\2&4&1\end{smallmatrix}\right]\right) = \left\langle a,b,c: \begin{matrix} abab = aba\\ac = ca\\bcbc = bcb \end{matrix}\right\rangle^1_+$$

Hoffmann 2001 P 2015

Dehornoy Guiraud 2016 P 2016

 $\mathrm{BS}^1_+(m,n)$ is an automaticon monoid

 $AK_{+}^{1}(\Gamma)$ is an automaticon monoid

 $\triangleright w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- ightharpoonup one can go from any w to N(w) by applying a finite sequence of $\overline{N}=N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

- $\triangleright \ w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

$$\min\{\ell: N(w) = \overline{N}_{\underbrace{212\cdots}_{\operatorname{length}\ell}}(w)\}$$

- $\triangleright w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

$$\min\{\ell: N(w) = \overline{N}_{\underbrace{212\cdots}_{\operatorname{length}\ell}}(w)\} \qquad \min\{\ell: N(w) = \overline{N}_{\underbrace{121\cdots}_{\operatorname{length}\ell}}(w)\}$$

- $\triangleright w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

$$\bigg(\max_{w\in\mathcal{Q}^{\mathbf{3}}}\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{212\cdots}_{\mathrm{length}\,\ell}}(w)\}, \ \max_{w\in\mathcal{Q}^{\mathbf{3}}}\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{121\cdots}_{\mathrm{length}\,\ell}}(w)\}\bigg).$$

- $v = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

The breadth of (Q, N) is defined as:

$$\left(\max_{w\in\mathcal{Q}^{\mathbf{3}}}\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{212\cdots}_{\mathrm{length}\,\ell}}(w)\}, \,\, \max_{w\in\mathcal{Q}^{\mathbf{3}}}\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{121\cdots}_{\mathrm{length}\,\ell}}(w)\}\right).$$

- $w = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \le i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

The breadth of (Q, N) is defined as:

$$\left(\max_{w\in\mathcal{Q}^{\mathbf{3}}}\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{212\cdots}_{\mathrm{length}\,\ell}}(w)\}, \,\, \max_{w\in\mathcal{Q}^{\mathbf{3}}}\min\{\,\ell: \mathsf{N}(w)=\overline{\mathsf{N}}_{\underbrace{121\cdots}_{\mathrm{length}\,\ell}}(w)\}\right).$$

- $v = w_1 \cdots w_n \in \mathcal{Q}^n$ is N-normal iff so is each factor $w_i w_{i+1}$ for $1 \leq i < n$;
- \triangleright one can go from any w to N(w) by applying a finite sequence of $\overline{N} = N|_{\mathcal{Q}^2}$.

Lemma [P 2016] top-

$$S \cong \langle \mathcal{M}_{S,Q,N} \rangle^1_+ / ?$$

Proposition [P 2016] bottom-approximation

$$\langle \mathcal{M}_{S,\mathcal{Q},\mathsf{N}} \rangle_+^1 \cong S/? \iff (\mathcal{Q},\mathsf{N}) \text{ satisfies } (\blacksquare)$$

Every finite monoid $\mathcal J$ is an automaticon monoid:

▶ let (\mathcal{J}, N) verify N(xy) = 1(xy) for every $(x, y) \in \mathcal{J}^2$;

Every finite monoid \mathcal{J} is an automaticon monoid:

- ▶ let (\mathcal{J}, N) verify N(xy) = 1(xy) for every $(x, y) \in \mathcal{J}^2$;
- \triangleright its breadth is (3,2), implying Condition (\spadesuit).

Every finite monoid $\mathcal J$ is an automaticon monoid:

- ▷ let (\mathcal{J}, N) verify N(xy) = 1(xy) for every $(x, y) \in \mathcal{J}^2$;
- \triangleright its breadth is (3,2), implying Condition (\spadesuit).

The bicyclic monoid $\mathbf{B} = \langle \ \mathbf{a}, \mathbf{b} : \mathbf{ab} = 1 \rangle_+^1$ is not an automaton monoid:

 \triangleright let ({a, b, 1}, N) with N(ab) = 11, N(x1) = 1x, and N(xy) = xy;

Every finite monoid $\mathcal J$ is an automaticon monoid:

- ▶ let (\mathcal{J}, N) verify N(xy) = 1(xy) for every $(x, y) \in \mathcal{J}^2$;
- \triangleright its breadth is (3,2), implying Condition (\spadesuit).

The bicyclic monoid $\mathbf{B} = \langle \ \mathbf{a}, \mathbf{b} : \mathbf{ab} = 1 \rangle_+^1$ is not an automaton monoid:

- ▶ let $({a,b,1},N)$ with N(ab) = 11, N(x1) = 1x, and N(xy) = xy;
- \triangleright its breadth is (3,4), contradicting Condition (\spadesuit).

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{l} \mathtt{zxy} = \mathtt{xzy} & \text{for } \mathtt{x} \leq \mathtt{y} < \mathtt{z} \\ \mathtt{yxz} = \mathtt{yzx} & \text{for } \mathtt{x} < \mathtt{y} \leq \mathtt{z} \end{array} \right\rangle_+^1.$$

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{l} \mathtt{zxy} = \mathtt{xzy} & \text{for } \mathtt{x} \leq \mathtt{y} < \mathtt{z} \\ \mathtt{yxz} = \mathtt{yzx} & \text{for } \mathtt{x} < \mathtt{y} \leq \mathtt{z} \end{array} \right\rangle_+^1.$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{l} \mathtt{zxy} = \mathtt{xzy} & \text{for } \mathtt{x} \leq \mathtt{y} < \mathtt{z} \\ \mathtt{yxz} = \mathtt{yzx} & \text{for } \mathtt{x} < \mathtt{y} \leq \mathtt{z} \end{array} \right\rangle_+^1.$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \frac{\mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y}}{\mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x}} \quad \text{for } \mathbf{x} \leq \mathbf{y} \leq \mathbf{z} \right\rangle_+^1 \quad \mathbf{x} \quad \mathbf{z} \quad \mathbf{z} \quad \mathbf{x}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_{+}^{1} \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \end{array} \right\rangle$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \end{array} \right\rangle$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

◄	←	◄
5	6	6
4	2	4
3		3
		1

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \end{array} \right\rangle$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \end{array} \right\rangle$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014 \mathbf{P}_n is an automatic monoid

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \end{array} \right\rangle$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \end{array} \right\rangle$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathbf{z} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathtt{zxy} = \mathtt{xzy} & \mathsf{for} \ \mathtt{x} \leq \mathtt{y} < \mathtt{z} \\ \mathtt{yxz} = \mathtt{yzx} & \mathsf{for} \ \mathtt{x} < \mathtt{y} \leq \mathtt{z} \end{array} \right\rangle_+^1 \cdot \left\langle \begin{array}{c} \mathtt{y} & \mathtt{z} \\ \mathtt{x} \end{array} \right\rangle$$

P 2016

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_{+}^{1} \cdot \mathbf{x}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

P 2016

 P_n is an automaton monoid

The Chinese monoid of rank n is

$$\mathbf{C}_n = \langle 1 < \dots < n : \mathtt{zyx} = \mathtt{zxy} = \mathtt{yzx} \text{ for } \mathtt{x} \leq \mathtt{y} \leq \mathtt{z} \rangle_+^1.$$

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_{+}^{1} \cdot \mathbf{y} \mathbf{z} \xrightarrow{\mathbf{z}} \mathbf{x}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

P 2016

 \mathbf{P}_n is an automaton monoid

The Chinese monoid of rank n is

$$\mathbf{C}_n = \langle 1 < \dots < n : \mathtt{zyx} = \mathtt{zxy} = \mathtt{yzx} \text{ for } \mathtt{x} \leq \mathtt{y} \leq \mathtt{z} \rangle_+^1.$$

Then C_n is generated by $Q = \{x : n \ge x \ge 1\} \cup \{yx : y > x\}$

Cain Gray Malheiro 2016

$$\mathbf{P}_n = \left\langle 1 < \dots < n : \begin{array}{c} \mathbf{z} \mathbf{x} \mathbf{y} = \mathbf{x} \mathbf{z} \mathbf{y} & \text{for } \mathbf{x} \leq \mathbf{y} < \mathbf{z} \\ \mathbf{y} \mathbf{x} \mathbf{z} = \mathbf{y} \mathbf{z} \mathbf{x} & \text{for } \mathbf{x} < \mathbf{y} \leq \mathbf{z} \end{array} \right\rangle_{+}^{1} \quad \mathbf{y} \quad \mathbf{z} \quad \mathbf{x}$$

Then P_n is also generated by the family Q of columns, defined to be strictly decreasing products of elements of $\{1, \ldots, n\}$.

Cain Gray Malheiro 2014

 P_n is an automatic monoid

P 2016

 P_n is an automaton monoid

The Chinese monoid of rank n is

$$\mathbf{C}_n = \langle 1 < \dots < n : \mathtt{zyx} = \mathtt{zxy} = \mathtt{yzx} \text{ for } \mathtt{x} \leq \mathtt{y} \leq \mathtt{z} \rangle_+^1.$$

Then C_n is generated by $Q = \{x : n \ge x \ge 1\} \cup \{yx : y > x\} \cup \{x^2 : n > x > 1\}$.

Cain Gray Malheiro 2016

 C_n is an automatic monoid

P 2016

 C_n is an automaton monoid

& conformal dynamics 2... finite groups Grigorchuk groups hyperbolic groups $\langle a, b : [a, b]^2 \rangle$ Gupta-Sidki groups $\langle a, b : ab^m = b^m a \rangle$ $\langle a, b : ab = b^m a \rangle$ some Artin groups free (abelian) groups Kourovka notebook ?... finite semigroups bicyclic monoid free (abelian) semigroups

& conformal dynamics 2... hyperbolic groups

some Artin groups Kourovka notebook ?... finite groups

 $\langle a, b : [a, b]^2 \rangle$ $\langle a, b : ab^m = b^m a \rangle$

Grigorchuk groups Gupta-Sidki groups $\langle a, b : ab = b^m a \rangle$

free (abelian) groups

bicyclic monoid

finite semigroups free (abelian) semigroups Artin or Garside monoids

& conformal dynamics 2... hyperbolic groups

some Artin groups

Kourovka notebook ?...

finite groups

 $\langle a, b : [a, b]^2 \rangle$

 $\langle a, b : ab^m = b^m a \rangle$

free (abelian) groups

Grigorchuk groups Gupta-Sidki groups

 $\langle a, b : ab = b^m a \rangle$

bicyclic monoid

finite semigroups free (abelian) semigroups Artin or Garside monoids Baumslag-Solitar monoids

some Artin groups

Kourovka notebook

finite groups

 $\langle a, b : [a, b]^2 \rangle$

 $\langle a, b : ab^m = b^m a \rangle$

free (abelian) groups

Grigorchuk groups Gupta-Sidki groups

 $\langle a, b : ab = b^m a \rangle$

bicyclic monoid

finite semigroups free (abelian) semigroups Artin or Garside monoids Baumslag-Solitar monoids Artin-Krammer monoids

Jps

hyperbolic groups

some Artin groups

Kourovka notebook ?...

finite groups

 $\langle a, b : [a, b]^2 \rangle$

 $\langle a, b : ab^m = b^m a \rangle$

free (abelian) groups

Grigorchuk groups Gupta-Sidki groups $\langle a, b : ab = b^m a \rangle$

bicyclic monoid

finite semigroups free (abelian) semigroups Artin or Garside monoids Baumslag-Solitar monoids Artin-Krammer monoids plactic or Chinese monoids

AIM Self-similar groups & conformal dynamics

some Artin groups

finite groups

 $\langle a, b : [a, b]^2 \rangle$

 $\langle a, b : ab^m = b^m a \rangle$

free (abelian) groups

Grigorchuk groups Gupta-Sidki groups

 $\langle a, b : ab = b^m a \rangle$

bicyclic monoid

hypoplactic monoids

finite semigroups
free (abelian) semigroups
Artin or Garside monoids
Baumslag-Solitar monoids
Artin-Krammer monoids
plactic or Chinese monoids

ups

$$B^1_{3+} = \langle \ \, \underline{\sim}, \, \overline{>}_{\!\!\!>} \colon \underline{\sim} \, \underline{\sim} \, \underline{\sim} = \, \overline{>}_{\!\!\!>} \underline{\sim} \, \underline{>} \, \rangle^1_+$$

Thurston transducer

$$\mathbf{B}_{3+}^{1} = \langle \geq, \geq \geq \geq \geq \geq \rangle_{+}^{1}$$

$$\begin{vmatrix} \mathbf{B}_{1} \\ \mathbf{B}_{1}$$

adapter au nouvel alphabet $\{1,\dots,8\}$

Question

Is the finiteness problem for reset automaton groups decidable?

adapter au nouvel alphabet $\{1,\dots,8\}$

Question

Is the finiteness problem for reset automaton groups decidable?