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for the Adjan-Garside-Thurston normal form, Q is chosen to be {positive braids in which any two strands cross at most once}

automata - (semi)groups - dualities July 10, 2017 6 /25



[eETST R VAN Automatic (semi)groups

Let S be a (semi)group with a finite generating subfamily O :
EV:QF——S
NF

A for (S, Q) is a map NF that assigns to each element of S
a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, Q is chosen to be {positive braids in which any two strands cross at most once}

automata - (semi)groups - dualities July 10, 2017 6 /25



[eETST R VAN Automatic (semi)groups

Let S be a (semi)group with a finite generating subfamily O :
EV:QF——S
NF

A for (S, Q) is a map NF that assigns to each element of S
a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, Q is chosen to be {positive braids in which any two strands cross at most once}

automata - (semi)groups - dualities July 10, 2017 6 /25



[eETST R VAN Automatic (semi)groups

Let S be a (semi)group with a finite generating subfamily O :
EV:QF——S
NF

A for (S, Q) is a map NF that assigns to each element of S
a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, Q is chosen to be {positive braids in which any two strands cross at most once}

automata - (semi)groups - dualities July 10, 2017 6 /25



[eETST R VAN Automatic (semi)groups

Let S be a (semi)group with a finite generating subfamily O :
EV:QF——S
NF

A for (S, Q) is a map NF that assigns to each element of S
a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, Q is chosen to be {positive braids in which any two strands cross at most once}

automata - (semi)groups - dualities July 10, 2017 6 /25



[eETST R VAN Automatic (semi)groups

Let S be a (semi)group with a finite generating subfamily O :
EV:QF——S
NF

A for (S, Q) is a map NF that assigns to each element of S
a distinguished representative Q-word.

for the Adjan-Garside-Thurston normal form, Q is chosen to be {positive braids in which any two strands cross at most once}

automata - (semi)groups - dualities July 10, 2017 6 /25



[eETST R VAN Automatic (semi)groups

Let S be a (semi)group with a finite generating subfamily O :
EV:QF——S
NF

A for (S, Q) is a map NF that assigns to each element of S
a distinguished representative Q-word. One will consider NF = NF o EV.

for the Adjan-Garside-Thurston normal form, Q is chosen to be {positive braids in which any two strands cross at most once}

automata - (semi)groups - dualities July 10, 2017 6 /25



[eETST R VAN Automatic (semi)groups

Let S be a (semi)group with a finite generating subfamily O :
EV:QF——S
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A for (S, Q) is a map NF that assigns to each element of S
a distinguished representative Q-word. One will consider NF = NF o EV.

for the Adjan-Garside-Thurston normal form, Q is chosen to be {positive braids in which any two strands cross at most once}

Whenever NF(S) is regular, it provides a for S
if the language £, = { (NF(a),NF(aq)) : a € S } is regular for each g € Q.
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Let S be a (semi)group with a finite generating subfamily O :

EV: 9t ——S

NF
A for (S, Q) is a map NF that assigns to each element of S
a distinguished representative Q-word. One will consider NF = NF o EV.
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Let G be a finite group generated as a monoid by a set X.
The Lx(g) of an element g of G with respect to the alphabet X is

Ix(g)=min{p e N:3(x1,..., %) € XP. g =x1-" Xp}.
We consider the <x on G:

h <x g if and only if £x(h) + ¢x(h™'g) = lx(g) -

Procedure

> Start from a finite group G.

> Choose a set X generating G as a monoid.
> Build the associated poset (G, <x).

> Pick a maximal element d dominating X.

> Extract the monoid presentation ( X : Ry ).
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[eETOLERLIYVAN  Germ-monoids

Let G be a finite group generated as a monoid by a set X.
The Lx(g) of an element g of G with respect to the alphabet X is

Ix(g)=min{p e N:3(x1,..., %) € XP. g =x1-" Xp}.
We consider the <x on G:

h <x g if and only if £x(h) + ¢x(h™'g) = lx(g) -

Procedure

> Start from a finite group G.
> Choose a set X generating G as a monoid.
> Build the associated poset (G, <x).
> Pick a maximal element d dominating X.
> Extract the monoid presentation ( X : Ry ).
> Check whether or not:
{ X : Ry U x°r) ) is isomorphic to G;

( X : Rq )i is a Garside monoid;
( X : Ry ) is isomorphic to B(G) (if defined).
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P 2002 Bessis 2003

The dual braid monoid B*(B,) admits the presentation

( Otts, Brsy Te : [Oes, Ts, Pts, Te] for t > s,
[otes, otsry 0ter] o [Bis, srs Ber] o [ctes, Bors Ber] for t >s>r,
[otes, Tr] 5 [Tes &sr] , [Bitr, Ts] for t > s > r,
[(XtSv 0‘fq] ) [OCts, qu] ’ [Bt&(qu] ’

[(thy o‘sr] s [tha o‘sr] , [ﬁtqv Bsr] fort>s>r> q >J1r
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[(thy o‘sr] s [tha o‘sr] , [ﬁtqv Bsr] fort>s>r> q >J1r
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P(q) = [Tjy(1+ g+ + g2 ) 7(q) = [Tjey S0 = (1)

automata - (semi)groups - dualities July 10, 2017 8/ 25



P(q) = [Ty (1 + g+ + g2 1) 2(q) = [The, 00 = ()

automata - (semi)groups - dualities July 10, 2017 8/ 25



P(q) = [Ty (1 + g+ + g2 1) 2(q) = [The, 00 = ()

automata - (semi)groups - dualities July 10, 2017 8/ 25



Gar5|de theory Hyperoctahedral (braid) groups

— - &

P(q) = Hk ((T+q+- 1) 71[k1 k

v O
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Garslde theory

W

P(q) = ITea(L+ g+ - )

E§<>

Hyperoctahedral (braid) groups

&

71[1( 1 k

S
B

picantin@irif.fr automata - (semi)groups - dualities July 10, 2017 8/ 25



W

Pl@)=(1+q)1+g+-+a N[ +g+-+¢*7)

picantin@irif.fr automata - (semi)groups - dualities July 10, 2017 8/ 25



Gar5|de theory Hyperoctahedral (braid) groups

- &9

W

P(q) = Hk (I+g+- ) *Mkl /<
>
Q=0 +a+qat+a DL +g++e*) (e 202 () o2 kst

P(a) = (1+6*)(1+a) 2 [[5(1+4q Fq?<?) 2(q) = q" [liep 2 = 55 (%)
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Garside theory Braid groups of complex reflection groups

Bessis Corran 2006

The dual braid monoid B*(e, e, r) satisfies

Z(q) = r+e(r—’1)(q,1) L;]i ek+e(r;k1)(q,1) -
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(2(r=1)4e)lt
ell

et — 2

Garside theory

The dual braid monoid B*(e, e, r) satisfies

Z(q) = r+e(r7r1)(qfl) HZ;} ek+e(r;k1)(q,1)-

0
(Gord] > [germ]
Garg [Garg]
[braid] [braid]

The post-classical braid monoid B¥(e, e, r) satisfies

P(q) = Tica(1+ g+ + " +egh + ¢ 4+ ¢*%).

<t(e+r-2

rtr—e (2r—2
== (V)
(r—1)—p
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Garside theory

The dual braid monoid B*(e, e, r) satisfies

Z(q) = r+e(r7r1)(qfl) HZ;} ek+e(r;k1)(q,1)-

A A
o 1)te rtr—e (2r—2
] === (0)
r(r—1) 2 r
[ germ | - [germ]
[Gar5] [Gar?]
[braid] [braid]
et ———p <t(e+r—2)(r—1)—p
Y Y

Neaime 2017

The post-classical braid monoid B¥(e, e, r) satisfies

P(q) = Tica(1+ g+ + " +egh + ¢ 4+ ¢*%).

July 10, 2017 9/25



Garside theory

Braid (semi)groups Mealy automata
& Garside theory & automaton (semi)groups

Quadratic normalisations
Thurston vs Mealy automata

July 10, 2017 9/25



Garside theory

Braid (semi)groups Mealy automata
& Garside theory & automaton (semi)groups

Quadratic normalisations
Thurston vs Mealy automata

July 10, 2017 9/25



(]51:H‘—>M1,

Let My, M,, H be monoids with {¢2  H < M,

The is
< Mi *x My ¢1(h) = ¢2(h), he H >i
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. . (]51 cH— Ml,
Let My, M,, H be monoids with {¢2 CH s My,
The is

< M; x My ¢1(h) = @2(/1), he H >i

P 2013

Let M; and M5 be Garside monoids.
For any root h; of a Garside element in M;
and any root h, of a Garside element in Mo,
the monoid My *p,—p, M> is Garside.
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[eETOLERLIYVAN Amalgams and HNN extensions

(]51:1“/‘—)/\/’1,

Let My, M,, H be monoids with {¢2 CH s My,

The is
< M; x My ¢1(h) = ¢2(h)7 he H >i

P 2013

Let M; and M, be Garside monoids.
For any root h; of a Garside element in M;
and any root h, of a Garside element in M,
the monoid My *p,—p, M> is Garside.

The of M(= M; = M) is
(M.t : ¢p1(h)t = tpa(h),h € H)}.

P 2013

Let M be a Garside monoid and H = ( h )} with |h1] = |h2].
The enveloping group of ( M, t: hit = thy )} is Garside

iff hy and hy are n-th roots of a same Garside element.
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The is
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The is

< M; x My ¢1(h) = @2(/1), he H >i

P 2013

Let M; and M, be Garside monoids.
For any root h; of a Garside element in M;
and any root h, of a Garside element in Mo,
the monoid My *p,—p, M> is Garside.

The of M(= My = M) is
(M.t : ¢p1(h)t = tpa(h),h € H)}.

P 2013
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Garside theory

. . ¢1: H— My,
A non-cyclic one-relator group is | Let M1, Mz, H be monoids with {¢2 “H s M.
Garside iff its center is non-trivial. | The amalgamated free product is

< My x My (]51(/7) = ¢2(h), he H >Jlr

Let M; and M, be Garside monoids.
For any root hy of a Garside element in M;
and any root h, of a Garside element in M,
the monoid My *p,—p, M> is Garside.

The HNN extension of M(= My = Ma) is
(M,t : ¢p1(h)t = tpa(h),h € H)}.

Let M be a Garside monoid and H = ( h )} with |h1] = |h2].
The enveloping group of ( M, t: hit = thy )} is Garside
iff hy and hy are n-th roots of a same Garside element.
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A non-cyclic one-relator group is (a,x:x%ax %a~lx%ax%a"1)
Garside iff its center is non-trivial.
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Braid (semi)groups Mealy automata
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Quadratic normalisations
Thurston vs Mealy automata
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Mealy automata
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x| 0q(x) i
q %’ 7x(q)
n Tx(q)
Uq(X)
2 2 3 1
a —l—» b
1
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x| 74(x) 1
q %’ 7x(q)
q] 7x(9)
Uq(x)
2 2 3 1
e
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M =(Q,X,7,0)

x| oq(x) 1
q*f'TX(q)
q] 7«(q)
Uq(x)
2 2 3 1
a | | a | c | c
N | I +
1 2 2 1
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\Sfr S
%ﬁ&fv X Q%j/%{/{
M=(Q,X,7,0)
x| og(x)
n 7%(q)
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M =(Q,X, o) (M) =(05.9€Q):

x| oq(x) 1
q %’ 7x(q)
n Tx(q)

Uq(X)
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M =(Q,X, o) (M) =(05.9€Q):

x| oq(x) 1
q %’ 7x(q)

(2]
<
LN
Q
2

0q(x)
2 2 3 1
/
Oa
\)1 2 2 1
b
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M=(Q.X/7.0) (M)s=(0qa€Q)s

x| oq(x) 1
q %’ 7x(q)
q] 7«(q)

Uq(x)
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M=(Q.X/7.0) (M)s=(0qa€Q)s

x| oq(x) 1
q %’ 7x(q)
q] 7«(q)

Uq(x)
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M:(Q,X,T,U) <M>+:)<<Uq;<qEQ>+

x| oq(x) 1
q %’ 7x(q)

Uq(x)

(2]
<
LN
Q
2
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M =(Q,X,7,0) (M) =(05.q€Q):

x| oq(x) 1
q %’ 7x(q)
n Tx(q)
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M =(Q,X,7,0) (M) =(05.q€Q):

x| oq(x) 1
q %’ 7x(q)
n Tx(q)

Uq(X)

//2 2 3 1
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M=(Q.X/7.0) (M)s=(0qa€Q)s

x| oq(x) 1
q %’ 7x(q)

(2]
<
LN
Q
2

7q(x)
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M=(Q,X,7,0) M?

exponentiation

2/1
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Mealy automata
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Mealy automata

order ?
alb bla cle
P blaefy
clc alb aje
bla
clb
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Mealy automata

order 1494186269 970473 680 896

alb bla cle
I —
clc alb aje

bla
clb
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Mealy automata Finiteness, minimisation, dualisation

0/1
2|3

1/0 A, 1/0

m 3zc®v\/®332
03
21
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Mealy automata Finiteness, minimisation, dualisation

picantin@irif.fr

a|a
b|b
3 Q)
2|3
1/0 = 1/0 0 a
3)2 < 3 — bla ) bla
ajb
03
u ous
aja

blb
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Mealy automata Finiteness, minimisation, dualisation

ala
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blb
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1/0 = 1/0 0 alb
m 3zc®v\/®332 bl , bla
03 ab
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ala
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Mealy automata Finiteness, minimisation, dualisation

ala

blb

: =0

23

1/0 = 1/0 0 alb
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; o

ala

blb
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e —
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Mealy automata Finiteness, minimisation, dualisation

ala

blb
: a0
23
10 =, 1/0 0 alb
m 3zc®v\/®332 ) ’ bla bla

alb
0[3

" o
ala
blb
| m
alb
0213 bla
T 0
e —
02|13 ala
blb

lm
02113
3 13)02
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Mealy automata

ala
blb

o (O )
23
N 10 1)0 0 alb
32 > 32 -~ bla b bla

03
21
ala
blb
|m
alb
02/13 ) bla
A,
13\02¢@‘\/@:)13\02 — .
02[13 ala
blb
| m
ablab
0213 0
@=%n
ablab

0
:) 0213(0213 — ablab

A Mealy automaton generates a finite (semi)group iff its mod-reduced pair does.
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Mealy automata
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Even for bireversible automata, finiteness cannot be decide via mo-triviality.
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Mealy automata
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Even for bireversible automata, finiteness cannot be decide via md-triviality.
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(I

1/0

0[0

oL oL 1}1
Aleshin 1[0

Mealy automata

(x,0}«—y.0)

(1) 1D

If a non-trivial md-reduced bireversible automaton
is rigid, it generates an infinite group.
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\EEIVATCIEY=I  Finiteness, helix graphs, rigidity
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Mealy automata
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\EEIVATCIEY=I  Finiteness, helix graphs, rigidity
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Mealy automata
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Mealy automata
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100 202
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A bireversible automaton generates a finite group iff it is mdc-trivial.
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(\VIEIEN LY EYEI  Torsion and reversibility

Burnside 1902

Is a finitely generated torsion group
necessarily finite?
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Mealy automata

Is a finitely generated torsion group
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Grigorchuk 1980
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Mealy automata

Is a finitely generated torsion group
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Grigorchuk 1980
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And what about reversible automata? l
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Mealy automata

Is a finitely generated torsion group
necessarily finite?
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Grigorchuk 1980
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Mealy automata

Is a finitely generated torsion group

necessarily finite?
v
5k

4

And what about reversible automata? l
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Mealy automata Torsion, reversible automata, orbit trees
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Mealy automata Torsion, reversible automata, orbit trees
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Mealy automata

Torsion, reversible automata, orbit trees
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Mealy automata Torsion, reversible automata, orbit trees
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Mealy automata Torsion, reversible automata, orbit trees

(=)

0|1 1/0 3
the cc of the ¢" are bounded

o N
e (}
E 11 . ‘X/ the label of the branch ¢”

0/0 0l0 / \ in t(A) ends with 1%

11 . — B2
NN

/\ =5

o/\ — B
v K\V ST
p—

automata - (semi)groups - dualities July 10, 2017 16 / 25

(g )+ is finite



Mealy automata Torsion, reversible automata, orbit trees
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Mealy automata Torsion, reversible automata, orbit trees
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Mealy automata Torsion, reversible automata, orbit trees
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01 1/0

picantin@irif.fr
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k-self-liftable branch
0j1 1/0
@4 2

J D |

gl

1-self-liftable branches

J 2-self-liftable branches
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Assume that A is an invertible reversible g-state Mealy automaton.
Let A4« be the number of strict k-self-liftable branches in t(A) for k > 1.
If (A k)k>1 <tex (Tg,k)k>1 holds, (A);+ admits elements of infinite order.

the number of qlary words with primitive period of length k [oeis.org/A143324]
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Mealy automata

Assume that A is an invertible reversible g-state Mealy automaton.

Let A4« be the number of strict k-self-liftable branches in t(A) for k > 1.
If (A k)k>1 <tex (Tqk)k>1 holds, (A); admits elements of infinite order

the number of g-ary words with primitive period of length k [oeis.org/A143324]

Otherwise, (A)y is finite.

t(A) admits a maximal number
of self-liftable branches

N proven for special cases:
S, > 2-state [Klimann 2013]
contrapositive % > connected 3-state [Klimann P Savchuk 2015]
of the theorem H

> no bireversible cc [Godin Klimann P 2015]
n
(A)+ is periodic

> 2-letter 4-state [Klimann P Savchuk 2015]
¥ > connected prime-state [Godin Klimann 2016]
(A)+ is finite

July 10, 2017 17 / 25



Mealy automata Torsion, reversible automata, orbit trees

1/4
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2|4 33 3|5
32 =[a] 42 42
45 5[5 53
51 pS
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14

21 )
" three 1-self-liftable branches
204 33 35 six strict 2-self-liftable branches
32 >[a] 42 42
4[5 5[5 53
51 c
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Mealy automata Torsion, reversible automata, orbit trees

three 1-self-liftable branches
six strict 2-self-liftable branches

abbab) aabaa)

2 1 1

abbabb| aabaab babbab| babbac
(ab) ( A (aab heb) h (bbbcb 4 | (bab) (
abbabba bbabbab| bbabbac
( ccacca)
1 1
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Mealy automata Torsion, reversible automata, orbit trees

1/4
" 2 three 1-self-liftable branches
24 33 35 six strict 2-self-liftable branches
32 42 422
45 5/5 (3,6,18,...) <1x (3.6.24....)

abbab) aabaa)

2 1 1

abbabb| aabaab|

1

abbabba bbabbab| bbabbac

two active branches

two active branches

two active branches
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Mealy automata

Braid (semi)groups Mealy automata
& Garside theory & automaton (semi)groups

Quadratic normalisations
Thurston vs Mealy automata
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Let S =( Q:{w =NF(w),w € Q*} )} be an automatic monoid
where NF is a normalisation associated with a Q.

automata - (semi)groups - dualities July 10, 2017 20 /25



Let S =( Q:{w =NF(w),w € Q*} )} be an automatic monoid
where NF is a normalisation associated with a Q.

We define the Mealy automaton Ms g v = (Q, @, 7, 0) with 7 and ¢ satisfying
NF(ab) = 74(b) op(a)

for every (a, b) € Q?, that s,

ab(a)

automata - (semi)groups - dualities July 10, 2017 20 / 25



picantin@irif.fr

Let S=(Q:{w=NF(w),we Q*} )i

be an automatic monoid

where NF is a normalisation associated with a Q.

We define the Mealy automaton Ms g v = (Q, @, 7, 0) with 7 and ¢ satisfying

NF(ab) = 74(b) op(a)
for every (a, b) € Q?, that s,

—a

b NF  |7a(b)

4
-

ab(a)

ab(a).
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Let S =( Q:{w =NF(w),w € Q*} )} be an automatic monoid
where NF is a normalisation associated with a Q.

We define the Mealy automaton Ms g v = (Q, @, 7, 0) with 7 and ¢ satisfying
NF(ab) = 74(b) op(a)

for every (a, b) € Q2.

For NF(s) = s, --s1 and NF(sq) = gns, - - - 51, we obtain diagrammatically:

o1 2 &l 51 B Sn

a NF d1 NF q2 An—1 An Q+Q1+q2 ----- %1*‘-%
A e AT -— ’ ’ 7
sy S5 S °1 Ki *n
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Let S =( Q:{w =NF(w),w € Q*} )} be an automatic monoid
where NF is a normalisation associated with a Q.

We define the Mealy automaton Ms g v = (Q, @, 7, 0) with 7 and ¢ satisfying
NF(ab) = 74(b) op(a)
for every (a, b) € Q2.

For NF(s) = s, --s1 and NF(sq) = gns, - - - 51, we obtain diagrammatically:

S 2 S s S Sn
q NF g1 NF q2 dn—-1 an Q+Q1+q2 ----- %1*‘-%
4 4 4
g Y e ~~ 51 sh s/
s1 Sy Sp 1 2 n

Theorem [P 2015]

5 < MS,Q,NF >i \
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(a,b:ab=a)}
Q={a b1}

4

ala




(a,b:ab=a)}

Q={a,b,1}

a b 1
a a a

a b 1
b b b

a b 1
1 1 1
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Artin-Krammer

R0— abimms =01 )

BS}(3,2) = (a,b:ab®=b%a )}

w5 O—@)

a
1
/!
b
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(bay———— B
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/
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Baumslag-Solitar Artin-Krammer
BS'(1,0)= (ab:ab=a)t :AKi(B }])

BS}(3,2) = (a,b:ab® = b%a )t

(b2 @

e —@
o '/ \./
(at ab

S

There exists a group-embeddable automaticon monoid
whose enveloping group is not an automaticon group

Hoffmann 2001

BS; (m, n) is an automaticon monoid
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Baumslag-Solitar Artin-Krammer

BSH(1,0) = (ab:ab=a)l :AKi(B ﬂ)

le32 _ b b3_b2 1 AK1 13 2 _ b .abab=aba 1
. (3,2)=(a,b:ab’>=b"a); +<[;1ﬂ)— a,b,c: ac=ca

S o

—H—e_ ®
— @ &
= »

Dehornoy Guiraud 2016

Hoffmann 2001
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A normalisation (Q,N) is if:
w=w - w, € Q"is N-normal iff so is each factor wjw;; for 1 </ < n;
one can go from any w to N(w) by applying a finite sequence of N = N|gz.
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A normalisation (Q,N) is if:
w=w - w, € Q"is N-normal iff so is each factor wjw;; for 1 </ < n;
one can go from any w to N(w) by applying a finite sequence of N = N|gz.

<Vlrlréagx3 min{ ¢ : N(w) = N&a_}(w)}, Vrvnean3 min{ ¢ : N(w) = Nal,./(w)}>
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A normalisation (Q,N) is if:
w=w - w, € Q"is N-normal iff so is each factor wjw;; for 1 </ < n;
one can go from any w to N(w) by applying a finite sequence of N = N|gz.

N212,..(W)
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A normalisation (Q,N) is if:
w=w - w, € Q"is N-normal iff so is each factor wjw;; for 1 </ < n;
one can go from any w to N(w) by applying a finite sequence of N = N|gz.

47/
No1o.. /‘//
/// 7
r
/‘,/?— o
The of (Q,N) is defined as:
(mg min M) =g, (), g mind () =, (w)}).
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Automat-ic-on

A normalisation (Q,N) is quadratic if:
ow=w---w, € Q"is N-normal iff so is each factor wyw; 1 for 1 <j < n;
> one can go from any w to N(w) by applying a finite sequence of N = N|ga.

()///// !
\\ //‘//'//AN// | .Nmm(W)

w3 N.
'/‘,///
S=(Mson)i/? I (Mson )i =2S5/?7 < (Q,N) satisfies (@)
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Every J is an automaticon monoid:
let (J,N) verify N(xy) = 1(xy) for every (x,y) € J?;
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Every J is an automaticon monoid:
let (J,N) verify N(xy) = 1(xy) for every (x,y) € J?;
its breadth is (3, 2), implying Condition (@ ).
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let (J,N) verify N(xy) = 1(xy) for every (x,y) € J?;
its breadth is (3, 2), implying Condition (@ ).

_\
/\
1
\<// j
\\.«//

The B=(ab:ab=1)} is not an automaton monoid:
let ({a,b,1},N) with N(ab) = 11, N(x1) = 1x, and N(xy) = xy;
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Every J is an automaticon monoid:
let (J,N) verify N(xy) = 1(xy) for every (x,y) € J?;
its breadth is (3, 2), implying Condition (@ ).

// I\,
/ \ = \
/ el 1/e! A
\V// QEZ”
\ /i/xyz/ \ j;//l/x/
The B=(ab:ab=1)} is not an automaton monoid:

let ({a,b,1},N) with N(ab) = 11, N(x1) = 1x, and N(xy) = xy;
its breadth is (3,4), contradicting Condition (®).
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The of rank n'is

zxy =xzy forx<y<z

Pn = 1<“.<n:yxz:yzx forx<y<z
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The of rank n'is
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_ < y |z z X
Pn:<1<“.<n_zxy XZy forx_y<z>.
+

"yxz=yzx forx<y<z x y
Then P, is also generated by the family Q of , i  EE
defined to be strictly decreasing products of elements of {1,..., n}. x x

P, is an automatic monoid

w ~ O
N O
= W s~ O
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The of rank n'is

1
_ < y |z z X
Pn:<1<“.<n_zxy XZy forx_y<z>. -
+

"yxz=yzx forx<y<z x y
Then P, is also generated by the family Q of , i  EE
defined to be strictly decreasing products of elements of {1,..., n}. x x

P, is an automatic monoid

5 6 6 5 6 6
4 24 4 4 1
VNN
3 3 3 3

1 2
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Automat-ic-on Examples and counterexamples

The of rank n'is
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The plactic monoid of rank n is

1
ZXy = XZy forx§y<z> y.Wz *

P”:<1<”'<n:yxz:yzx forx<y<z

Then P, is also generated by the family Q of columns, HE | N

defined to be strictly decreasing products of elements of {1,..., n}. . x

Cain Gray Malheiro 2014
P, is an automatic monoid P, is an automaton monoid

5] [6l &) ?iG 64. 6 [6 1

4 2 & 4 4 1 B El E 5 4

3 .W 3 3 742 IV L
1 2 3 3 2
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The plactic monoid of rank n is

1
ZXy = X2y forx§y<z> y.Wz *
: X

P”:<1<”'<n'yxz:yzx forx<y<z

Then P, is also generated by the family Q of columns, HE |

defined to be strictly decreasing products of elements of {1,..., n}. . x

Cain Gray Malheiro 2014
P, is an automatic monoid P, is an automaton monoid

The Chinese monoid of rank n is

Ch=(1<---<n:zyx=zxy =yzx forx§y§z>i.
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The plactic monoid of rank n is

P, = 1<...<n.ZXY:XZy forx§y<z ! ylwz X
" ‘yxz=yzx forx<y<z/ X

Then P, is also generated by the family Q of columns, _] 1

~

defined to be strictly decreasing products of elements of {1,..., n}. . x

Cain Gray Malheiro 2014
P, is an automatic monoid P, is an automaton monoid

The Chinese monoid of rank n is

Ch=(1<---<n:zyx=zxy =yzx forx§y§z>i.
Then C, is generated by @ = {x:n>x > 1} U{yx:y > x}

Cain Gray Malheiro 2016

C, is an automatic monoid
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The plactic monoid of rank n is

P, = 1<...<n.ZXY:XZy fOI’XSy<z ! ylwz X
" ‘yxz=yzx forx<y<z/ X

Then P, is also generated by the family Q of columns, _] i

s

defined to be strictly decreasing products of elements of {1,..., n}. . x

Cain Gray Malheiro 2014
P, is an automatic monoid P, is an automaton monoid

The Chinese monoid of rank n is

Ch=(1<---<n:zyx=zxy =yzx forx§y§z>i.

Then C,, is generated by O = {x:n>x> 1 U{yx:y>x}U{x? n> x> 1}

Cain Gray Malheiro 2016
C, is an automatic monoid C, is an automaton monoid
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Automat-ic-on FAVEETE

hyperbolic grouas

some Artin groups

bicyclic monoid

finite groups
{a,b:[a,b]?)
(a,b:ab” =b"a )
free (abelian) groups

finite semigroups

free (abelian) semigroups

automatic

picantin@irif.fr
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Gupta-Sidki groups
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finite semigroups
bicyclic monoid free (abelian) semigroups
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Automat-ic-on Two dual properties

Thurston transducer
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Mealy automata

Is the finiteness problem for reset automaton groups decidable ?
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