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klimann@irif.fr

Camille Noûs
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We define a new strict and computable hierarchy for the family of automaton semigroups,
which reflects the various asymptotic behaviors of the state-activity growth. This hierar-
chy extends that given by Sidki for automaton groups, and also gives new insights into
the latter. Its exponential part coincides with a notion of entropy for some associated
automata.

We prove that the Order Problem is decidable whenever the state-activity is bounded.
The Order Problem remains open for the next level of this hierarchy, that is, when the
state-activity is linear. Gillibert showed that it is undecidable in the whole family.
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We extend the aforementioned hierarchy via a semi-norm making it more coarse but
somehow more robust and we prove that the Order Problem is still decidable for the first
two levels of this alternative hierarchy.

Keywords: Automaton; semigroup; entropy; hierarchy; decision problem.

1. Introduction

The family of automaton groups and semigroups has provided a wide playground
to various algorithmic problems in computational (semi)group theory [1, 3–5, 7,
8, 12–15]. While many undecidable questions in the world of (semi)groups remain
undecidable for this family, the underlying Mealy automata provide a combinatorial
leverage to solve the Word Problem for this family, and various other problems in
some important subfamilies. Recall that a Mealy automaton is a letter-to-letter,
complete, deterministic transducer with same input and output alphabet, so each of
its states induces a transformation from the set of words over its alphabet into itself.
Composing these Mealy transformations leads to so-called automaton (semi)groups,
and the Word Problem can be solved using a classical technique of minimization.

The Order Problem is one of the current challenging problems in computational
(semi)group theory. On the one hand, it was proven to be undecidable for automa-
ton semigroups by Gillibert [12]. On the other hand, Sidki introduced a polynomial
hierarchy for invertible Mealy transformations in [27] and, with Bondarenko, Bon-
darenko, and Zapata in [8], solved the Order Problem for its lowest two levels
(bounded invertible automata).

Our main contributions in this paper are the following: an activity-based hier-
archy for possibly non-invertible Mealy transformations (Sec. 3), extending Sidki
construction [27] to non-necessarily-invertible transformations; and a study of the
algorithmic properties in the lowest two levels of the hierarchy, namely Mealy
automata with bounded activity. We prove:

Theorem (see Sec. 5). The Order Problem is decidable for bounded Mealy trans-
formations ; namely, there is an algorithm that, given a bounded Mealy automaton
with a distinguished initial state, decides whether the transformation τ that it defines
has infinite order, and if not finds the minimal r > s satisfying τr = τs.

Our strategy of proof follows closely that of Sidki [27] and Bondarenko, Bon-
darenko, Sidki and Zapata [8], with some crucial differences. On the one hand, a
naive count of the number of nontrivial states of a transformation yields neither a
useful invariant, nor a hierarchy stable under multiplication; on the other hand, the
structure of cyclic semigroups (e.g. ⟨ a | am = am+n ⟩+ has index m and period n)
is more complex than that of cyclic groups (e.g. ⟨ a | am ⟩ has order m).

Moreover, in Sec. 6, we propose an extended version of the activity such that
the class of Mealy automata without cycles with exit — studied by Antonenko
and Russyev [2, 23], who proved that they only generate finite (semi)groups —
form the very first level (i.e. transformations with finitary extended activity) of this
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alternative hierarchy and for which the Order Problem remains decidable for the
second level (i.e. transformations with bounded extended activity). It is worthwhile
noting that this also gives a nontrivial extension for the group case.

2. Notions from Automata and Graph Theory

This section gathers some basics about automata, especially some links between
automata, Mealy automata, automaton semigroups, and finite-state transforma-
tions. We refer the reader to handbooks for graph theory [22], automata theory [24],
and automaton (semi)groups [7].

A non-deterministic finite-state automaton (NFA for short) is given by a
directed graph with finite vertex set Q, a set of edges ∆ labeled by an alphabet Σ,
and two distinguished subsets of vertices I ⊆ Q and F ⊆ Q. The vertices of the
graph are called states of the automaton and its edges are called transitions. The
elements of I and F are called respectively initial and final states. A transition
from the state p to the state q with label x is denoted by p

x−−→ q.
A NFA is deterministic — DFA for short—(resp. complete) if for each state q

and each letter x, there exists at most (resp. at least) one transition from q with
label x. Given a word w = w1w2 · · ·wn ∈ Σ∗ (where the wi are letters), a run with
label w in an automaton (NFA or DFA) is a sequence of consecutive transitions

q1
w1−−→ q2

w2−−→ q3 → · · · → qn
wn−−→ qn+1.

Such a run is said successful whenever q1 is an initial state and qn+1 a final state. A
word in Σ∗ is recognized by an automaton if it is the label of at least one successful
run. The language recognized by an automaton is the set of words it recognizes. A
DFA is coaccessible if each state belongs to some run ending at a final state.

Let A be a NFA with stateset Q. The Rabin–Scott powerset construction [20]
returns, in a nutshell, the (co)accessible DFA — denoted by det(A)—with states
corresponding to subsets of Q, whose initial state is the subset of all initial states
of A and whose final states are the subsets containing at least one final state of A;
its transition labeled by x from a state S ⊆ 2Q leads to the state {q | ∃p ∈ S, p

x−→
q in A}. Notice that the size of the resulting DFA might therefore be exponential
in the size of the original NFA.

Given a language L ⊆ Σ∗, its entropy is

h(L) = lim sup
ℓ→∞

1

ℓ
log#(L ∩ Σℓ).

This quantity appears in various situations, in particular for subshifts [18] and for
finite-state automata [10]. We shall recall how to compute it with matrices. Notice
that, in all the cases studied here, the languages will be prefix-closed (actually all
paths in a graph) so we can replace lim sup by lim, which will always exist [18, 21].

To any NFA A with n states, associate its transition matrix A = {Ai,j}i,j ∈
Nn×n where Ai,j is the number of transitions from i to j. Let furthermore v ∈ Nn

be the row vector with ‘1’ at all positions in I and w ∈ Nn be the column vector



January 6, 2021 12:48 112-IJFCS 2042004

1072 L. Bartholdi et al.

with ‘1’ at all positions in F . Then vAℓw is the number of successful runs in A with
length ℓ. Assuming furthermore that A is deterministic, vAℓw is the cardinality
of L ∩ Σℓ, where L is the language recognized by A. Moreover, we have a good
understanding of the possible behaviour of this set. We say that a function f grows
exponentially if exp(C1k) ≤ f(k) ≤ exp(C2k) for some C1, C2 ∈ R+

∗ ; in particular,
the functions k *→ exp(Ck)kd grow exponentially.

Proposition 1 ([27, Theorem 6]). Let A be an m×m matrix with non-negative
integer entries, and define the functions fi,j(k) = Ak

i,j. Then for each pair (i, j),
the function fi,j either grows exponentially or is a polynomial function of degree at
most m− 1.

Since the transition matrix of an automaton A is non-negative, it admits a
positive real eigenvalue of maximal absolute value, which is called its Perron eigen-
value and is written λ(A). Therefore, assuming that A is coaccessible, we get the
following.

Proposition 2 ([26, Theorem 1.2]). Let A be a coaccessible DFA recognizing
the language L. We have h(L) = logλ(A).

2.1. Mealy automata

A Mealy automaton is a DFA over an alphabet of the form Σ × Σ. If an edge’s
label is (x, y), one calls x the input and y the output, and denotes the transition

by p
x|y−−→ q. Such a Mealy automaton is assumed to be complete and deterministic

in its inputs: for every state p and every letter x, there exists exactly one transition
from p with input letter x. We denote by xp its corresponding output letter and
by p@x its target state:

p p@xx|xp

A given Mealy automaton with stateset Q and alphabet Σ admits a Mealy
subautomaton with stateset Q′ ⊆ Q and alphabet Σ′ ⊆ Σ provided that it satisfies

∀ q ∈ Q′, ∀x ∈ Σ′, q@x ∈ Q′ and xq ∈ Σ′.

In particular, a subautomaton with the same alphabet as the original automaton
and whose stateset consists in a single state is called a sink.

A crucial point with Mealy automata is that states act on letters and letters on
states. Such actions can be composed in the following way: for all p ∈ Q, q ∈ Q∗,
x ∈ Σ, u ∈ Σ∗, we have

xqp = (xq)p and p@(ux) = (p@u)@x.

We extend recursively the actions of states on letters and of letters on states
(see just below left). Compositions can be more easily understood via an alternative
representation by a cross-diagram [1] (below right).
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For all p ∈ Q, q ∈ Q∗, x ∈ Σ, u ∈ Σ∗, we have:

(ux)q = uqxq@u

and

(qp)@u = q@u · p@uq.

q p

u uq uqp

q@u p@uq

x xq@u

q@ux

The mappings defined above are length-preserving and prefix-preserving. Note
that in particular the image of the empty word is itself.

From an algebraic point of view, the composition gives a semigroup struc-
ture to the set of transformations u *→ uq for q ∈ Q∗. This semigroup is called
the semigroup generated by the Mealy automaton M and denoted by ⟨M ⟩+. An
automaton semigroup is a semigroup which can be generated by a Mealy automa-
ton. Any element of such an automaton semigroup induces a so-called finite-state
transformation.

Conversely, for any length- and prefix-preserving transformation t of Σ∗ and
any word u ∈ Σ∗, we denote by ut the image of u by t, and by t@u the unique
transformation s of Σ∗ satisfying (uv)t = utvs for any v ∈ Σ∗. Whenever Q(t) =
{t@u : u ∈ Σ∗} is finite, the transformation t is said to be finite-state and admits
a unique (minimal) associated Mealy automaton Mt with stateset Q(t).

We also use the following convenient notation to define a finite-state transfor-
mation t: for each state s ∈ Q(t), we write an equation (traditionally called wreath
recursion in the algebraic theory of automata) of the following form

s = (s@x1, . . . , s@x|Σ|)σs,

where σs = [x1
s, . . . , x|Σ|

s] denotes the transformation on Σ induced by s.
We consider the semigroup FEnd(Σ∗) of those finite-state transformations of Σ∗.

Example 3. The transformation t0 = (1, t0)[2, 2] belongs to FEnd({1, 2}∗)
with Q(t0) = {1, t0}. See Examples 11 and 16 for further details about t0.

Example 4. The transformation p = (q, r)[1, 1] with q = (r, 1) and r = (r, r)[2, 2]
also belongs to FEnd({1, 2}∗) with Q(p) = {1, p, q, r}. See Fig. 1 for Mp.

3. An Activity-Based Hierarchy for FEnd(Σ∗)

In this section, we define a suitable notion of activity for finite-state endomorphisms,
together with two norms, from which we build a new hierarchy. We will prove its
strictness and its computability in Sec. 4.

Sidki defined in [27] the activity of a finite-state automorphism t ∈ FAut(Σ∗) as

θt : n *→ #{u ∈ Σn : t@u ̸= 1}.
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p

r

q

1

1|2
2|2

1|1

2|1

1|1

2|2

1|1
2|2

p

q

r

1|1

1

2|2

1|1

r

r

1|2

r

2|2

2|1

(a) (b)

Fig. 1. (a) The Mealy automaton Mp for the transformation p from Example 4 satisfies αp(0) =
αp(1) = 1 and αp(2) = 2. (b) The transformation p induces 3 nontrivial transformations on level 2:
the leftmost one is associated with the output 11, the middle right one with 12 and the rightmost
one with 12, hence nontrivial transformations can be reached by runs with only two different
output words.

Using this notion of activity θ for transformations from FEnd(Σ∗)!FAut(Σ∗)
happens to inevitably lead to a stalemate: the associated classes of those transforma-
tions with fixed degree polynomial activity θ would not be closed under composition
(see for instance Example 11 below).

For any element t ∈ FEnd(Σ∗), we define its activity (see Fig. 1) as

αt : n *→ #{v ∈ Σn : ∃u ∈ Σn, t@u ̸= 1 and ut = v}.

It is straightforward that our new notion of activity α coincides with Sidki’s
activity θ in the case of automorphisms.

This definition (still) requires an identity element, and would become trivial for
any endomorphism t with 1 /∈ Q(t). This possible issue will be addressed in Sec. 6,
but we first describe this simpler case for legibility.

We also define two norms on FEnd(Σ∗). When αt has polynomial growth, namely
when the set D = {d : limn→∞

αt(n)
nd = 0} is nonempty, then we define ∥t∥p =

minD − 1 (from Proposition 1, ∥t∥p is an integer greater than or equal to −1).
Otherwise, the value of limn→∞

logαt(n)
n is denoted by ∥t∥e.

We then define the following classes of finite-state transformations:

SPol(d) = {t ∈ FEnd(Σ∗) : ∥t∥p ≤ d} and

SExp(λ) = {t ∈ FEnd(Σ∗) : ∥t∥e ≤ λ}.

Notice that, as a corollary of Proposition 1, the activity α either is ultimately
equivalent to a polynomial function or grows exponentially, whence the classification
proposed.

In addition, we call those elements belonging to SPol(0) bounded transforma-
tions, and those elements of SPol(−1) finitary transformations. Theses sets are
respectively the ones where activity is bounded by a constant and ultimately 0.
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We shall see in Theorem 7 that they yield a strict and computable hierarchy
for FEnd(Σ∗). The following basic lemma is crucial:

Lemma 5. For each n ≥ 0, the map t *→ αt(n) is subadditive.

Proof. Assume s, t ∈ FEnd(Σ∗).

For any u ∈ Σn with (st)@u ̸= 1,
we have either s@u ̸= 1 or t@us ̸= 1

(or both).
We deduce αst(n) ≤ αs(n) +αt(n) for
every n ≥ 0.

u

s

s@u

v = us

t

t@v

w = vt

(st)@u ̸= 1

We deduce that ∥.∥p and ∥.∥e are max-subadditive: ∥st∥p ≤ max{∥s∥p, ∥t∥p} and
∥st∥e ≤ max{∥s∥e, ∥t∥e} hold for any s, t ∈ FEnd(Σ∗). This proves the following.

Proposition 6. Let Σ be an alphabet. For every integer d ≥ −1, SPol(d) is a
subsemigroup of FEnd(Σ∗). So is SExp(λ) for every 0 ≤ λ ≤ log#Σ.

As an easy corollary of Proposition 6, the subadditivity property allows us to
compute the hierarchy class of the semigroup generated by any given Mealy automa-
ton by considering only its generators.

Theorem 7. Let Σ be an alphabet of size at least 2. The elements of the semi-
group FEnd(Σ∗) can be graded according to the following hierarchy: for any inte-
gers d1, d2 with −1 < d1 < d2 and any reals λ1,λ2 with 0 < λ1 < λ2 < log#Σ, we
have:

SPol(−1) " · · · " SPol(d1) " · · · " SPol(d2) " · · · " SExp(0)

⊆ SExp(λ1) ⊆ · · · ⊆ SExp(λ2) ⊆ · · · ⊆ SExp(log#Σ).

Moreover, if λ1 < λ2 are Perron eigenvalues of some non-negative integral matri-
ces with 1-norm at most #Σ, then we have ∅ ̸= SExp(log λ1) " SExp(log λ2).

The proof of the previous result is postponed to the end of Sec. 4 on page 1078.
The class SExp(0) coincides with the infinite union

⋃
d≥−1 SPol(d), whose corre-

sponding automorphisms subclass is denoted by Pol(∞) in [27].

4. Structural Characterization of the Activity Norm

From [27, Proposition 10], we know that the finite-state automorphisms which have
polynomial activity are exactly those whose underlying automaton does not contain
entangled — or mutually reachable — cycles (except on the trivial state). Moreover,
the degree of the polynomial is given by the longest chain of cycles in the automaton.
The first claim remains true for finite-state endomorphisms, but things are a bit
more involved for the second one (see Example 11).
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To any minimal Mealy automaton M with stateset Q and alphabet Σ, we asso-
ciate its output-pruned automaton Mout defined as the NFA with stateset Q!{1}
(all states being final) and alphabet Σ, and whose transitions are simply given,
for p, q ∈ Q!{1}, by

p
y−→ q ∈ Mout ⇔ p

x|y−−→ q ∈ M.

According to the context, we shall identify a transformation t ∈ FEnd(Σ∗) with the
state of Mt, and with the corresponding state of Mout

t .

Lemma 8. The activity of a transformation t ∈ FEnd(Σ∗) is the number of paths
starting from t in the (non-complete) deterministic automaton det(Mout

t ) con-
structed via the Rabin–Scott construction.

Proof. Let t ∈ FEnd(Σ∗) with Mt its associated Mealy automaton. Let us count
the words v ∈ Σn for which there is a word u ∈ Σn with t@u ̸= 1 and ut = v.
For n = 1, αt(1) is exactly the number of different outputs from the state t that
do not lead to a trivial state of Mt. Now for v ∈ Σn, if E denotes the set of those
states accessible from t by reading v (this corresponds to the Rabin–Scott powerset
construction) in Mout

t , the number of ways to extend v without getting into a trivial
state in Mt corresponds to the number of outputs of the state E in det(Mout

t ),
whence the result.

Whether the activity of a given t ∈ FEnd(Σ∗) is polynomial or exponential can
be decided by only looking at the cycle structure of Mout

t . Any cycle considered
throughout this paper is simple: no repetitions of vertices or edges are allowed. A
chain of cycles is a sequence of cycles such that each cycle is reachable from its
predecessor. Two cycles are mutually reachable if both are reachable from the other.

Proposition 9. A transformation t ∈ FEnd(Σ∗) has exponential activity if and
only if it can reach two mutually reachable cycles with distinct labels in Mout

t .

Proof. From [11] or from [27, Proposition 10], the statement holds for det(Mout
t ).

We shall prove that it still holds for Mout
t , by showing that det(Mout

t ) admits two
mutually reachable cycles if and only if so does Mout

t .
Assume det(Mout

t ) has two mutually reachable cycles. Then there exist two
loops v ̸= w (with vk = wℓ ⇒ k = ℓ = 0) on some state E of det(Mout

t ). Hence for
some p ∈ E , there exist k, ℓ such that, in Mout, vk and wℓ are loops on p.

Let now v ̸= w be two loops on some state p of Mout. Then, for any word m ∈
{v,w}∗, there is a path starting from {p} to some state Em ∋ p of det(Mout

t ). Since
the stateset of det(Mout

t ) is finite, each path labeled by m∗ loops in det(Mout
t ),

and since there is an infinity of such words m ∈ {v,w}∗ (even choosing primitive
words), theses loops cannot be all pairwise disjoints.

Since a state which can reach d cycles in the determinized output-pruned
automaton has polynomial activity of degree d − 1, the subadditivity of the activ-
ity — see Lemma 5 — together with Proposition 9 give the following.
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Corollary 10. Let M be a Mealy automaton. The transformations of ⟨M ⟩+ are
all of polynomial activity if and only if there are no mutually reachable cycles in the
automaton det(Mout). Moreover the degree of the (polynomial) activity corresponds
to the longest chain of cycles in det(Mout) minus 1.

We deduce the decidability of the membership problem for SPol(d).

Example 11. Consider the transformation t0 = (1, t0)[2, 2] from Example 3,
its square t20, and the associated automata Mt20

(left), the output-pruned
automaton Mout

t20
(right, in black), and the determinized output-pruned automa-

ton det(Mout
t20

) (below):

t20 t0 1

2|2

1|2

2|2

1|2
1|1
2|2 t20 t0 1

2|2

1|2

2|2

1|2

{t20} {t20, t0} {t0}
2

2 2

Note that, before determinization, two disjoint cycles are accessible from the state t20.
In the determinized version, {t0} and {t20} both access to only one cycle, and we
conclude {t0, t20} ⊂ SPol(0). By Proposition 6, we actually knew the full inclu-
sion ⟨ t0 ⟩+ ⊂ SPol(0).

By defining further tk = (tk−1, tk)[dk, dk] ∈ FEnd({1, 2}∗) with dk = 3+(−1)k

2

for k > 0, we obtain a family satisfying tk ∈ SPol(k)!SPol(k − 1) for k > 0, that
witnesses the strictness of the polynomial part of the hierarchy from Theorem 7.

tk . . . t0 1

2|dk

1|dk 1|1

2|2

1|2
1|1
2|2

{tk}

{tk−1, tk} . . . {t0, t1}

{t1}

{t0}

dk

dk

dk−1 1

1

2

1

2

Using Proposition 2, we obtain the following explicit formula for the norm ∥ ·∥e.

Proposition 12. Let t be a transformation of FEnd(Σ∗). The norm ∥t∥e is the
logarithm of the Perron eigenvalue of the transition matrix of det(Mout

t ):

∥t∥e = logλ(det(Mout
t )).
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Proof. By Lemma 8, the activity of t counts the number of paths in det(Mout
t ).

Since all its states are final by definition, this automaton is coaccessible and the
cardinality of the recognized language when putting {t} as the initial state is exactly
the activity of t. Therefore by Proposition 2, we have

∥t∥e = lim
ℓ→∞

logαt(ℓ)

ℓ
= lim

ℓ→∞

1

ℓ
log

n∑

t′=1

(Aℓ)t,t′ = h(L) = logλ(det(Mout
t )),

where A = (Ai,j)i,j is the adjacency matrix of det(Mout
t ).

We are now ready to give the proof for the main result from Sec. 3.

Proof of Theorem 7. The strictness for the polynomial part is obtained from
Example 11. Now, as the norm ∥.∥e is the logarithm of the maximal eigenvalue of
a matrix with integer coefficients, the classes SExp(λ) increase only when eλ is an
algebraic integer that is the largest zero of its minimal polynomial, i.e. a root of a
Perron number. Now consider an algebraic number eλ. Using [17, Theorem 1], there
exists a matrix of Nn×n which admits eλ as Perron eigenvalue. Let d be its 1-norm
(i.e. its maximum column-sum), hence there exists a classical n-state automaton Aλ

over some alphabet Σ of size d whose adjacency matrix has Perron eigenvalue eλ. We
use this automaton as det(Mout

λ ), and then build Mλ from it in the following way:

• if the automaton Aλ is not complete, then we add a sink state and direct all
missing arrows to it (this does not change the alphabet);

• for every state p but the sink, we choose a nontrivial permutation σp and put σp(i)

as input for the arrow starting from p whose output is i (i.e. p
σp(i)|i−−−−→ p′), hence p

induces a nontrivial transformation;
• if we added a sink e, then we label its transitions so that it induces the identity

(i.e. e
i|i−→ e).

From this construction, we get an invertible Mealy automata Mλ satisfy-
ing det(Mout

λ ) = Mout
λ , hence the announced result.

Furthermore, each of these numbers is the norm of some finite-state endomor-
phism (actually, automorphism), by using [17, Theorem 3] and the fact that, for any
matrix, we can associate a complete (invertible) automaton whose activity is given
by this matrix by adding a sink state corresponding to the identity and completing
the automaton with edges to this sink. It is also known that Perron numbers are
dense in [1,∞), which gives us the strictness for the exponential part: λ1 < λ2

implies SExp(λ1) " SExp(λ2).
Finally, the growth rate can be computed with any precision 0 < δ < 1

in time Θ(− log(δ) · n), where n is the number of states of the determinized
automaton [25].

Notice moreover that, using [17, Theorem 3], the actual exponential activity of
an endomorphism has to be the logarithm of some Perron number.
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Example 13. Consider the transformations r = (s, r)[1, 1] and s = (1, r) with
common associated automata M (on the left) and det(Mout) (on the right):

r s 12|1
1|1

2|2 1|1
1|1
2|2 {s} {r} {r, s} 1

2 1

2

The adjacency matrix of det(Mout) is

(
0 1 0
0 0 1
0 1 1

)
. We find that αr(n) = αs(n+1)

corresponds to the n-th Fibonacci number. We deduce ∥r∥e = ∥s∥e = logϕ where ϕ
is the golden ratio, hence r, s ∈ SExp(logϕ).

5. The Orbit Signalizer Graph and the Order Problem

This section is devoted to the Order Problem: can one decide whether a given ele-
ment generates a finite semigroup? The latter is known to be undecidable for general
automaton semigroups [12] (and groups [5, 13]) and decidable for Pol(0) [8]. We give
a general construction that associates a graph to any transformation in FEnd(Σ∗),
and show that, if finite, this graph allows us to compute the index and period of the
transformation. We show that this graph is finite for elements from SPol(0), and
solve the Order Problem in this manner.

Let Σ be an alphabet. We define the orbit signalizer graph Φ for FEnd(Σ∗) as
the following (infinite) graph. The vertices are the pairs of elements in FEnd(Σ∗).
For each letter x ∈ Σ, there is an arrow from the source (s, t) with label (x : m, ℓ)
where m and ℓ are the minimal integers (with ℓ > 0) satisfying

xstm+ℓ

= xstm ,

and with target (r@x, tℓ@xr) for r = stm. The parameters m and ℓ correspond
respectively to the index and to the period of the orbit of x under the action of stω,
see Fig. 2.

In what follows, the intuition is roughly to generalize Fig. 2, by considering a
path π instead of the letter x: such a construction leads also to a so-called tadpole

xr

xrt xrt2

xrt3

xrt4xrtℓ

xstm−1
xstxsx

s

s@x

t

t@xs

t

t@xstm−1

t

t t

t
t

.

r = stm

tℓ

Fig. 2. The cross-diagram associated with the orbit of some letter x ∈ Σ under the action of stω .
The index m and period ℓ will complete the label of the x-arrow away from the vertex (s, t)
in the graph Φ. Each of the two gray zones indicates an entry of the corresponding target ver-
tex (r@x, tℓ@xr) with r = stm.
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graph, whose path-part has length i (actually, we will need two approximations
of this length, namely i− and i+), and whose cycle-part has length p. The main
challenge here is to be able to keep the construction finite, when possible.

The inf-index-cost, sup-index-cost, and the period-cost of a given walk π on Φ

π : (s, t)
x1:m1,ℓ1−−−−−−→ · · ·

x|π|:m|π|,ℓ|π|−−−−−−−−−→ (s′, t′)

are respectively defined (δmk,0 being the Kronecker symbol) by:

i−(π) =
∑

1≤k≤|π|

⎛

⎝(1− δmk,0)

⎛

⎝(mk − 1)

⎛

⎝
∏

1≤j<k

ℓj

⎞

⎠+ 1

⎞

⎠

⎞

⎠,

i+(π) =
∑

1≤k≤|π|

⎛

⎝
∏

1≤j<k

ℓj

⎞

⎠mk, and p(π) =
∏

1≤i≤|π|

ℓi.

The basic intuition for these costs is that, according to Fig. 2 to words (see
Fig. 4), the period after reading a new letter is the former period multiplied by
the size of the cycle; and the index is roughly the previous index plus the previous
period times the size of the handle, but this approximation is too coarse since the
actual looping might happen within a period, so we have to introduce i−.

For any t ∈ FEnd(Σ∗), we define the orbit signalizer graph Φ(t) as the subgraph
of Φ accessible from the source vertex (1, t). The inf-index-cost, sup-index-cost, and
the period-cost of t ∈ FEnd(Σ∗) are then respectively defined by

i−t = sup
π on Φ(t)

i−(π), i+t = sup
π on Φ(t)

i+(π), and pt = lcm
π on Φ(t)

p(π).

Proposition 14. The semigroup generated by an element t ∈ FEnd(Σ∗) is finite
if and only if its index-costs i±t and its period-cost pt are finite. In that case, we
have ⟨ t ⟩+ = ⟨ t : tit = tit+pt ⟩+ for some index it with i−t ≤ it ≤ i+t .

Proof. Let Σ = {x1, . . . , x|Σ|}. Let (s0, t0) be a vertex in Φ and (sk, tk) its successor
vertex with arrow xk : mk, ℓk for 1 ≤ k ≤ |Σ|.

(s0, t0)

(s1, t1)

(s|Σ|, t|Σ|)

(i0, p0)

(i1, p1)

(i|Σ|, p|Σ|)

x1 : m1, ℓ1

x|Σ| : m|Σ|, ℓ|Σ|

For 0 ≤ k ≤ |Σ|, let (ik, pk) ∈ {ω, 0, 1, 2, . . .} × {ω, 1, 2, 3 . . .} denote the possible
minimal pair of ordinals (with pk > 0) satisfying

skt
ik
k = skt

ik+pk

k .

Whenever there is at least one successor with (ik, pk) = (ω,ω), (s0, t0) satisfies
also (i0, p0) = (ω,ω), and so does any of its predecessors. Otherwise, we claim

max
1≤k≤|Σ|

(
mk +max(0, ℓk(ik − 1) + 1)

)
≤ i0 ≤ max

1≤k≤|Σ|
(mk + ℓkik)
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and

p0 = lcm
1≤k≤|Σ|

ℓkpk.

Indeed, for 1 ≤ k ≤ |Σ| and for any u ∈ Σ∗, we have

ykv = (xku)
s0t

mk+ℓkik
0 = (ykv)

t
ℓkpk
0

with yk = xk
s0t

mk
0 and v = uskt

ik
k , as illustrated by the cross-diagram:

yk··ykyk · · ykxk

tℓk0

tk

tℓk0

tk

tℓk0

tk

tℓk0

tk

tℓk0

tk

s0t
mk
0

sk

v···· · · vu

· · · · ··

ik pk

We conclude using an induction on the length of the paths.

In the previous proposition, the quantities i− and i+ are distinguished in order
to provide explicit bounds on the size of the index. However both are simultaneously
either finite or infinite. Moreover we can easily have a dichotomy:

Theorem 15. The Order Problem is decidable for any element t ∈ FEnd(Σ∗)
with a finite orbit signalizer graph Φ(t).

Proof. Since Φ(t) is a graph with outdegree #Σ > 0 by construction, its finiteness
implies the existence of cycles. Consider the simple cycles (there is only a finite
number of these). One can compute the index-costs i−(κ) and i+(κ) and the period-
cost p(κ) of each such cycle κ. Whenever i−(κ) > 0 or p(κ) > 1 for some cycle κ,
then t has infinite order, and finite order otherwise.

In fact, we stress that this decision process can be easily performed on the orbit
signalizer graph directly: if m > 0 or ℓ > 1 appears on some cycle then the order is
infinite.

Example 16. The transformations s = (s, 1)[2, 2] and t0 = (1, t0)[2, 2] (on the left)
admit respective graphs Φ(s) and Φ(t0) (on the right):

s

t0

1

1|2 2|2

2|2 1|2

1|1
2|2

(1, s) (1, 1)

(s, 1) (1, t0)

2:0,1

1:1,1 2:0,1

1:0,1

1:0,1
2:0,1

1:1,1
2:0,1
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a

b

1ab

ba

3|2
1|1
2|1

3|1

1|2
2|3

1|1
2|2
3|3

1|2
2|2
3|3

1|1
2|2

3|1

(1, b)

(1, ab) (1, ba)

(a, a) (1, a) (b, a)

(a, 1) (b, 1)(1, 1)

1:0,3
2:0,3
3:0,3

2:0,1
3:0,11:1,1

1:0,1
2:0,1 3:1,1

3:2,1

1:0,1
2:1,13:0,1

1:0,1
2:0,1

1:1,1
2:2,1

3:0,1

3:0,1

1:0,1
2:0,1

3:0,1

1:0,1

2:0,1

1:0,1
2:0,1
3:0,1

Fig. 3. The Mealy automaton Mb and the graph Φ(b) from Example 17.

According to Proposition 14, they generate the finite monoid ⟨s : s2 = s⟩+ and the
free monoid ⟨t0 : ⟩+.

Example 17. The transformation b = (a, 1, b)[2, 3, 1] from SPol(1)!SPol(0)
with a = (1, 1, a)[1, 1, 2] admits the finite graph Φ(b) displayed in Figure 3, in which
we can read that both ab and ba have period 1, and that b has thus period pb = 3.
According to Proposition 14 again, the index of b satisfies 7 ≤ ib ≤ 9, and can be
explicitly computed as ib = 8.

Example 18. To compute the size of the orbit of 232 under the action of b, we
first make b act on 2. This leads us to the state (1, ba) with coefficients m1 = 0
and ℓ1 = 3. Then applying ba to 3 leads to (b, a) with m2 = 1 and ℓ2 = 1. Finally,
the orbit of a on 2b gives us m3 = 2 and ℓ3 = 1. We find p = 3× 1× 1 = 3,

i−3 = 0,

i−2 = m3 +max(ℓ3(i
−
3 − 1) + 1, 0)

= 2 +max(1(0− 1) + 1, 0) = 2,

i−1 = m2 +max(ℓ2(i
−
2 − 1) + 1, 0)

= 1 +max(1(2− 1) + 1, 0) = 3,

i−0 = m1 +max(ℓ1(i
−
1 − 1) + 1, 0)

= 0 +max(3(3− 1) + 1, 0) = 7,

i+3 = 0,

i+2 = m3 + ℓ3i
+
3

= 2 + 1× 0 = 2,

i+1 = m2 + ℓ2i
+
2

= 1 + 1× 2 = 3,

i+0 = m1 + ℓ1i
+
1

= 0 + 3× 3 = 9.
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2 3 1 2 3 1 2 3 1 2 3 1 2

b

1

b

b

b

a

b

1

b

b

b

a

b

1

b

b

b

a

b

1

b

b

b

a

3 3 1 1 1 2 1 1 2 1 1 2 1

1 b 1 1 a 1 1 a 1 1 a 1

2 2 3 3 3 2 2 2 1 1 1 1 1

1 a 1 1 1 1 1 1 1 1 1 1

i p

i−

i+

Fig. 4. Detail of a computation of the orbit of the word 232 under the action of b from Examples 17
and 18. General coefficients are found in Figure 3. This highlights the importance of i−.

Hence we get the bounding 7 ≤ i ≤ 9. In fact, i = 8 as shown in Fig. 4:
considering blocks leads to approximation of the actual value.

Proposition 19. Every bounded finite-state transformation t ∈ SPol(0) admits a
finite orbit signalizer graph Φ(t).

Proof. The activity αt of t ∈ SPol(0) is uniformly bounded by some constant C:

#{v ∈ Σn : ∃u ∈ Σn, t@u ̸= 1 and ut = v} ≤ C for n ≥ 0.

Now the vertices of the graph Φ(t) are built as follows: with each word u ∈ Σ∗

we associate a pair (r(u), s(u)) of words and four integers m(u), ℓ(u),m∗(u), ℓ∗(u)
with m∗(ε) = 0, ℓ∗(ε) = 1 that simultaneously and inductively defined as follows.
For u = vx ∈ Σ+ with x ∈ Σ, let:

m(u) + ℓ(u) be the largest integer such that the images utm
∗(v)+ℓ∗(v)i

for i ∈ {0, . . . ,m(u)+ℓ(u)−1} are pairwise distinct,

m(u) minimal such that utm
∗(u)

= utm
∗(u)+ℓ∗(u)

holds.

m∗(u) = m∗(v) + ℓ∗(v)m(u),

ℓ∗(u) = ℓ∗(v)ℓ(u),

r(u) = tm
∗(u)@u,

s(u) = tℓ
∗(u)@utm

∗(u)

.

Note in particular r(u)s(u) = tm
∗(u)+ℓ∗(u)@u. We will prove that the graph

Φ(t) is finite by showing that r and s may take only finitely many values, namely
are some products of at most C elements of Mt. We shall prove, by induction on
the length of u, that

(1) the uti for i ∈ {0, . . . ,m∗(u)} are pairwise distinct;
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(2) the (utm
∗(u)

)
ti

= utm
∗(u)+i

for i ∈ {0, . . . , ℓ∗(u)− 1} are pairwise distinct;
(3) the distance |i−j| between indices giving the same image uti = utj is a multiple

of ℓ∗(u).

Note however that the uti for i ∈ {0, . . . ,m∗(u) + ℓ∗(u)− 1} might not be pairwise
distinct (see for instance Fig. 4).

For the first claim, assume uti = utj for some i ̸= j both belonging
to {0, . . . ,m∗(u)}. By the induction hypothesis we cannot have i and j both
in {0, . . . ,m∗(v)}, and the distance |i− j| has to be a multiple of ℓ∗(v). For i <

m∗(v) ≤ j, we have i = m∗(v) − δ and j = m∗(v) + αℓ∗(v) − δ, so utm
∗(v)

=

utm
∗(v)+αℓ∗(v)

holds, which contradicts the definition of m(u). For m∗(v) < i, j ≤
m∗(u) = m∗(v) + m(u)ℓ∗(v), we have i = m∗(v) + αℓ∗(v) − δ and j = m∗(v) +

βℓ∗(v)− δ, so utm
∗(v)+αℓ∗(v)

= utm
∗(v)+βℓ∗(v)

holds, which contradicts the definition
of m(u).

For the second claim, assume utm
∗(u)+i

= utm
∗(u)+j

for some i ̸= j both belonging
to {0, . . . , ℓ∗(u)− 1}. By the induction hypothesis, the distance |i − j| is a multiple

of ℓ∗(v), so we have i = αℓ∗(v)− δ and j = βℓ∗(v)− δ. Therefore, utm
∗(v)+αℓ∗(v)

=

utm
∗(v)+βℓ∗(v)

holds, which contradicts the definition of ℓ(u).
For the last claim, if uti = utj holds, then |i − j| is a multiple of ℓ∗(u) by the

definition of m(u) and ℓ(u).
Now since r(u) = tm

∗(u)@u = (t@u)(t@ut) · · · is a product of sections of t at
distinct words, it is a product of at most C nontrivial states ofMt (which has finitely
many states), and thus belongs to a finite set {q ∈ Q≤C}. As s(u) is also a product
of sections of t at distinct words, it also belongs to a finite set, hence, the vertex
set of the orbit signalizer graph Φ(t) of a bounded finite-state transformation t
is finite. Its edge set is also finite since the labels belong to {0, . . . ,#Σ − 1} ×
{1, . . . ,#Σ}.

Corollary 20. The Order Problem is decidable for SPol(0).

6. Beyond Monoids

In this section, we define an extension of the notion of activity which allows to
prove that several new (semi)groups have a decidable Order Problem. The previous
definition we gave for activity required an identity element which might not exist in
a general semigroup. To address this problem, we increase the possible set of arrival
states in the definition. In the former definition, the requirement that the sink has
to be the identity element is very restrictive, and it can be relaxed to going into
a subautomaton that generates a finite (semi)group. Besides particular examples,
there are two distinguished classes of Mealy automata that are known to generate
finite (semi)groups: mdc-trivial Mealy automata [1, 19] and Mealy automata without
cycles with exit [2, 23]. We choose to focus on the latter. Let us mention that this
structural class has the special feature that the finiteness is independent from the
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7

1|1
2|3
3|2

8

1|2
2|3
3|1

9 1|1
2|2
3|3

4

5

3 1

6

0

2

1|2
2|1
3|3

1|1

2|3

3|2

1|3
3|2

2|1
1|3
3|1

2|2

1|3

3|2

2|1

1|1
2|3
3|3

1|1
2|2
3|3

Fig. 5. A nocywex Mealy automaton, that is, without cycles with exit: it typically belongs
to EPol(−1) by definition and generates a finite semigroup by Theorem 21.

choice of output, and that, for every automaton not in this class, one can modify
outputs such that the generated semigroup becomes infinite, see [16]. Throughout
the section, we shall briefly discuss how natural or reliable this choice seems.

A Mealy automaton with stateset Q and alphabet Σ is said to be without cycles
with exit—nocywex for short—if, whenever q ∈ Q belongs to a cycle, all transitions
from q lead to the same state q′, that is,

M is nocywex ⇔ ∀ q ∈ Q, ∃u ∈ Σ+, q@u = q ⇒ #{q@x, x ∈ Σ} = 1.

Informally, a nocywex automaton consists in a directed acyclic graph whose
leaves are attached to cycles; an example is depicted in Fig. 5.

Theorem 21 ([2, 23]). The semigroup generated by a nocywex Mealy automaton
is finite.

We define the extended activity of a transformation t ∈ FEnd(Σ∗) as

εt : n *−→ #{v ∈ Σn : ∃u ∈ Σn, t@u /∈ ⟨N ⟩+ and ut = v},

where N is the maximal nocywex subautomaton of Mt with stateset N ⊆ Q(t)
and same alphabet Σ. We can algorithmically recognize the maximal nocywexpart,
and compute the extended activity ε by pruning the whole nocywexpart instead of
pruning the single trivial sinks as in the computation of the activity α. Hence, we
obtain the output N -pruned automaton Mt

outN .
The extended activity function ε shares several properties with the original

activity α. For instance, the proof of Lemma 5 readily adapts to the extended case
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to show that activity function ε is subadditive. This makes extended activity a
seminorm on FEnd(Σ∗).

We define the classes EPol with the exact same definition as SPol by replac-
ing the activity α with the extended activity ε. Notice that the class of extended
finitary automata coincides with the class nocywex , so all elements from EPol(−1)
generate finite semigroups. Recall that in contrast, the Mealy automaton of any ele-
ment from SPol(−1) " EPol(−1) consists in a directed acyclic graph whose leaves
are trivial sinks. We stress that the choice of nocywex as EPol(−1) is nonetheless
arbitrary and that any other class which generates only finite semigroups would do.

Our main result about the class of bounded Mealy automata remains true under
this extension.

Proposition 22. The Order Problem is decidable for EPol(0).

Proof. We are going to prove that the orbit signalizer graph Φ(t) of any trans-
formation t ∈ EPol(0) is finite, and the result will follow by Theorem 15. The
vertices of the graph Φ(t) are those pairs (r(u), s(u)) with r(u) = tm

∗(u)@u

and s(u) = tℓ
∗(u)@utm

∗(u)
where ℓ∗(u) and m∗(u) are defined as in Proposition 19.

In particular the images uti for i ∈ {0, . . . ,m∗(u)} are pairwise distinct, and so are

the (utm
∗(u)

)
ti

= utm
∗(u)+i

for i ∈ {0, . . . , ℓ∗(u)− 1}.
We can write

tm
∗(u)@u = t@u · t@ut · · · t@utm

∗(u)−1
.

By very definition of εt, the number Cℓ of factors not in ⟨N ⟩+ is bounded by a
constant C. By denoting gi with 1 ≤ i ≤ Cℓ ≤ C the factors not in ⟨N ⟩+ and fi,j
the others, we obtain:

tm
∗(u)@u =

j0∏

j=0

f0,j · g1 ·
j1∏

j=0

f1,j · g2 · · · · · gCℓ−1 ·
jCℓ−1∏

j=0

fCℓ−1,j · gCℓ ·
jCℓ∏

j=0

fCℓ,j .

Each product fi,0 . . . fi,ji can be expressed as an element f ′
i of ⟨N ⟩+, and we find:

tm
∗(u)@u = f ′

0 · g1 · f ′
1 · g2 · · · · · gCℓ−1 · f ′

Cℓ−1 · gCℓ
· f ′

Cℓ
.

Now as ⟨N ⟩+ and {g : ∃u ∈ Σ∗, g = t@u} are finite, so is the set

{f ′
0g1f

′
1g2 · · · f ′

Cℓ−1gCℓ
f ′
Cℓ

| Cℓ ≤ C, f ′
i ∈ ⟨N ⟩+, gi ∈ {g | ∃u ∈ Σ∗, g = t@u}},

so is the set of possible first coordinate of the orbit signalizer graph Φ(t). We apply

the same reasoning for the second coordinate, considering tℓ
∗(u)@utm

∗(u)
and we

finally obtain the finiteness of the orbit signalizer graph Φ(t).

Example 23. The family from Example 11 still satisfies tk ∈ EPol(k)!EPol(k − 1)
for k > 0, that witnesses the strictness of the polynomial part of this alternative



January 6, 2021 12:48 112-IJFCS 2042004

A New Hierarchy for Automaton Semigroups 1087

hierarchy (see Theorem 7):

EPol(−1) " · · · " EPol(d1) " · · · " EPol(d2) " · · · " EExp(0)

holds for any integers d1, d2 with −1 < d1 < d2.

Recall that the original purpose was to handle the cases without an identity
element, that is, these Mealy automata without any trivial sink. The interest of
this extension turns out to be double: first it allows indeed to show that some more
examples have decidable Order Problem, see Example 24, but it also makes this
alternative hierarchy somehow more robust, see Example 25.

Example 24. The Mealy automaton I2 is known from [6] as the very smallest
Mealy automaton of intermediate growth.

b aI2 : 0|1
1|1

0|1
1|0

{b} {a, b} {a}det(I2out) :
1

1

0

0, 1

{b}det(I2out{a}) :

1

From the cycle structure of det(I2out), we immediately deduce that I2 admits an
exponential activity, but, since {a} is a nocywex , we can construct det(I2out{a})
and deduce that I2 has bounded extended activity. We obtain that I2 belongs
to EPol(0) (and incidentally to SExp(log 2)). In particular, by Proposition 22, the
semigroup ⟨ I2 ⟩+ has decidable Order Problem.

Example 25. These two Mealy automata both generate the Grigorchuk 2-group.

c

a

b d

e
0|1
1|0

0|0

1|1

0|0

1|1

0|0

1|1

0|0
1|1

c′

a′

b′ d′

e

0|1
1|0

0|0

1|1

0|0

1|1

0|0

1|1

0|0
1|1

The leftmost Mealy automaton (the well-known one, see [27]) has a bounded activ-
ity. The rightmost one is a modified version which has an exponential activity but
a bounded extended activity: it belongs to EPol(0)!

⋃
d≥−1 SPol(d).
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Concluding remarks. Gillibert has shown that the Order Problem is undecid-
able for (reset) automaton semigroups [12]: could we find/approximate the lowest
class of the hierarchy in which lie automaton semigroups with undecidable Order

Problem? In addition, Bondarenko and Wächter proved that the Finiteness

Problem is decidable for groups generated by bounded automata [9], and it would
be challenging to know whether their methods extend to the semigroup case.
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