
A Generic Framework for Reasoning about
Dynamic Networks of Infinite-State Processes

Ahmed Bouajjani, Yan Jurski, and Mihaela Sighireanu

LIAFA, University of Paris 7, Case 7014, 2 place Jussieu, 75251 Paris 05, France.
{abou,jurski,sighirea}@liafa.jussieu.fr

Abstract. We propose a framework for reasoning about unbounded dynamic net-
works of infinite-state processes. We propose Constrained Petri Nets (CPN) as
generic models for these networks. They can be seen as Petri nets where tokens
(representing occurrences of processes) are colored by values over some poten-
tially infinite data domain such as integers, reals, etc. Furthermore, we define
a logic, calledCML (colored markings logic), for the description ofCPN con-
figurations.CML is a first-order logic over tokens allowing to reason about their
locations and their colors. BothCPNs andCML are parametrized by a color logic
allowing to express constraints on the colors (data) associated with tokens.
We investigate the decidability of the satisfiability problem ofCML and its ap-
plications in the verification ofCPNs. We identify a fragment ofCML for which
the satisfiability problem is decidable (whenever it is the case for the underlying
color logic), and which is closed under the computations ofpost andpre images
for CPNs. These results can be used for several kinds of analysis such as invari-
ance checking, pre-post condition reasoning, and bounded reachability analysis.

1 Introduction

The verification of software systems requires in general theconsideration of infinite-
state models. The sources of infinity in software models are multiple. One of them is
the manipulation of variables and data structures ranging over infinite domains (such as
integers, reals, arrays, etc). Another source of infinity isthe fact that the number of pro-
cesses running in parallel in the system can be either a parameter (fixed but arbitrarily
large), or it can be dynamically changing due to process creation. While the verifica-
tion of parameterized systems requires reasoning uniformly about the infinite family
of (static) networks corresponding to any possible number of processes, the verifica-
tion of dynamic systems requires reasoning about the infinite number of all possible
dynamically changing network configurations.

There are many works and several approaches on the verification of infinite-state
systems taking into account either the aspects related to infinite data domains, or the
aspects related to unbounded network structures due to parameterization or dynamism.
Concerning systems with data manipulation, a lot of work hasbeen devoted to the verifi-
cation of, for instance, finite-structure systems with unbounded counters, clocks, stacks,
queues, etc. (see, e.g., [1, 11, 30, 7, 5, 27, 26]). On the other hand, a lot of work has
been done for the verification of parameterized and dynamic networks of boolean (or
finite-data domain) processes, proposing either exact model-checking and reachability

analysis techniques for specific classes of systems (such asbroadcast protocols, mul-
tithreaded programs, etc) [24, 25, 22, 16, 15], or generic algorithmic techniques (which
can be approximate, or not guaranteed to terminate) such as network invariants-based
approaches [31, 20], and (abstract) regular model checking[13, 17, 3, 12]. However,
only few works consider both infinite data manipulation and parametric/dynamic net-
work structures (see the paragraph on related work).

In this paper, we propose a generic framework for reasoning about parameterized
and dynamic networks of concurrent processes which can manipulate (local and global)
variables over infinite data domains. Our framework is parameterized by a data domain
and a first-order theory on it (e.g., Presburger arithmeticson natural numbers). It con-
sists of (1) expressive models allowing to cover a wide classof systems, and (2) a logic
allowing to specify and to reason about the configurations ofthese models.

The models we propose are called Constrained Petri Nets (CPN for short). They
are based on (place/transition) Petri nets where tokens arecolored by data values. In-
tuitively, tokens represent different occurrences of processes, and places are associ-
ated with control locations and contain tokens corresponding to processes which are
at a same control location. Since processes can manipulate local variables, each token
(process occurrence) has several colors corresponding to the values of these variables.
Then, configurations of our models are markings where each place contains a set of
colored tokens, and transitions modify the markings as usual by removing tokens from
some places and creating new ones in some other places. Transitions are guarded by
constraints on the colors of tokens before and after firing the transition. We show that
CPNs allow to model various aspects such as unbounded dynamic creation of processes,
manipulation of local and global variables over unbounded domains such as integers,
synchronization, communication through shared variables, locks, etc.

The logic we propose for specifying configurations ofCPN’s is called Colored
Markings Logic (CML for short). It is a first order logic over tokens and their colors.
It allows to reason about the presence of tokens in places, and also about the relations
between the colors of these tokens. The logicCML is parametrized by a first order logic
over the color domain allowing to express constraints on tokens.

We investigate the decidability of the satisfiability problem ofCML and its appli-
cations in verification ofCPNs. While the logic is decidable for finite color domains
(such as booleans), we show that, unfortunately, the satisfiability problem of this logic
becomes undecidable as soon as we consider as a color domain the set of natural num-
bers with the usual ordering relation (and without any arithmetical operations). We
prove that this undecidability result holds already for thefragment∀∗∃∗ of the logic (in
the alternation hierarchy of the quantifiers over token variables) with this color domain.

On the other hand, we prove that the satisfiability problem isdecidable for the frag-
ment∃∗∀∗ of CML whenever the underlying color logic has a decidable satisfiability
problem, e.g., Presburger arithmetics, the first-order logic of addition and multiplica-
tion over reals, etc. Moreover, we prove that the fragment∃∗∀∗ of CML is effectively
closed underpost andpre image computations (i.e., computation of immediate suc-
cessors and immediate predecessors) forCPN’s where all transition guards are also in
∃∗∀∗. We show also that the same closure results hold when we consider the fragment
∃∗ instead of∃∗∀∗.

These generic decidability and closure results can be applied in the verification of
CPN models following different approaches such as pre-post condition (Hoare triples
based) reasoning, bounded reachability analysis, and inductive invariant checking. More
precisely, we derive from our results mentioned above that (1) checking whether start-
ing from a∃∗∀∗ pre-condition, a∀∗∃∗ condition holds after the execution of a transition
is decidable, that (2) the bounded reachability problem between two∃∗∀∗ definable sets
is decidable, and that (3) checking whether a formula definesan inductive invariant is
decidable for boolean combinations of∃∗ formulas.

These results can be used to deal with non trivial examples ofsystems. Indeed, in
many cases, program invariants and the assertions needed toestablish them fall in the
considered fragments of our logic. We illustrate this by carrying out in our framework
the parametric verification of a Reader-Writer lock with an arbitrarily large number of
processes. This case study was introduced in [28] where the authors provide a correct-
ness proof for the case of one reader and one writer.

Proofs as well as the exposition of the Reader-Writer case study are provided in
appendix.

Related work:The use of unbounded Petri nets as models for parametrized networks
of processes has been proposed in many existing works such as[29, 24, 22]. However,
these works consider networks offinite-stateprocesses and do not address the issue of
manipulating infinite data domains. The extension of this idea to networks of infinite-
state processes has been addressed only in very few works [4,21, 18, 2]. In [4], Abdulla
and Jonsson consider the case of networks of 1-clock timed systems and show, using
the theory of well-structured systems and well quasi orderings [1, 27], that the verifi-
cation problem for a class of safety properties is decidable. Their approach has been
extended in [21, 18] to a particular class of multiset rewrite systems with constraints
(see also [2] for recent developments of this approach). Ourmodeling framework is
actually inspired by these works. However, while they address the issue of deciding the
verification problem of safety properties (by reduction to the coverability problem) for
specific classes of systems, we consider in our work a generalframework, allowing to
deal in a generic way with various classes of systems, where the user can express as-
sertions about the configurations of the system, and check automatically that they hold
(using post-pre reasoning and inductive invariant checking) or that they do not hold
(using bounded reachability analysis). Our framework allows to reason automatically
about systems which are beyond the scoop of the techniques proposed in [4, 21, 18, 2]
(such as, for instance, the parametrized Reader-Writer lock system of Appendix E).

In a series of papers, Pnueli et al. developed an approach forthe verification of pa-
rameterized systems combining abstraction and proof techniques (see, e.g., [6]). This
is probably one of the most advanced existing approaches allowing to deal with un-
bounded networks of infinite-state processes. We propose here a different framework
for reasoning about these systems. In [6], the authors consider a logic on (parametric-
bound)arraysof integers, and they identify a fragment of this logic for which the sat-
isfiability problem is decidable. In this fragment, they restrict the shape of the formula
(quantification over indices) to formulas in the fragment∃∗∀∗ similarly to what we do,
and also the class of used arithmetical constraints on indices and on the associated val-
ues. In a recent work by Bradley and al. [19], the satisfiability problem of the logic of

unbounded arrays with integers is investigated and the authors provide a new decidable
fragment, which is incomparable to the one defined in [6], butagain which imposes
similar restrictions on the quantification alternation in the formulas, and on the kind
of constraints that can be used. In contrast with these works, we consider a logic on
multisetsof elements withany kind of associated data values, provided that the used
theory on the data domain is decidable. For instance, we can use in our logic general
Presburger constraints whereas [6] and [19] allow limited classes of constraints. On the
other hand, we cannot specify faithfully unbounded arrays in our decidable fragment
because formulas of the form∀∃ are needed to express that every non extremal element
has a successor/predecessor. Nevertheless, for the verification of safety properties and
invariant checking, expressing this fact is not necessary,and therefore, it is possible to
handle in our framework all usual examples of parametrized systems (such as mutual
exclusion protocols) considered in the works mentioned above.

Let us finally mention that there are recent works on logics (first-order logics, or
temporal logics) over finite/infinite structures (words or trees) over infinite alphabets
(which can be considered as abstract infinite data domains) [9, 8, 23]. The obtained pos-
itive results so far concern logics with very limited data domain (basically infinite sets
with only equality, or sometimes with an ordering relation), and are based on reduction
to complex problems such as reachability in Petri nets.

2 Colored Markings Logic

2.1 Preliminaries

Consider an enumerable set oftokensand let us identify this set with the set of natural
numbersN. Intuitively, tokens represent occurrences of (parallel)processes. We assume
that tokens may have colors corresponding for instance to data values attached to the
corresponding processes. LetC be a (potentially infinite)token color domain. Examples
of color domains are the set of natural numbersN and the set of real numbersR.

Colors are associated with tokens throughcoloring functions. LetΓ be a finite set of
token coloring symbols. Each element inΓ is interpreted as a mapping fromN (the set
of tokens) toC (the set of colors). Then, let a valuation of the token coloring symbols
be a mapping in[Γ→ (N→ C)].

To express constraints on token colors, we use first-order logics over the considered
color domains. In the sequel we refer to such logics ascolor logics. Presburger arith-
meticsPA = (N,{0,1,+},{≤}) is an example of such a logic. It is well known that the
satisfiability problem of Presburger arithmetics is decidable. An interesting sublogic of
PA is the difference logicDL = (N,{0},{≤k : k ≥ 0}) where, for everyu,v,k ∈ N,
u≤k v holds if and only ifu−v≤ k. Theorder logicon natural numbers is the sublogic
of DL defined byOL = (N,{0},≤). Another example of a decidable logic which can
be used as a color logic is the first-order theory of realsFOR = (R,{0,1,+,×},{≤}).

We consider that tokens can be located atplaces. LetP be a finite set of such places.
A markingis a mapping in[N→ P∪{⊥}] which associates with each token the unique
place where it is located if it is defined, or⊥ otherwise. Acolored markingis a pair
〈M,µ〉 whereM is a marking andµ is a valuation of the token coloring symbols.

2.2 Syntax and semantics ofCML

We define hereafter the syntax of the logiccolored markings logicCML(L,Γ,P) which
is parametrized with a color logicL, a finite set of token coloring symbolsΓ, and a finite
set of placesP. Then, letL = (C,Ω,Ξ) be the first-order logic over the color domainC

of the set of functionsΩ and the set of relationsΞ. In the sequel, we omit all or some
of the parameters ofCML when their specification is not necessary.

Let T be set oftoken variablesand letC be set ofcolor variables, and assume that
T ∩C = /0. The set ofCML terms (calledtoken color terms) is given by the grammar:

t ::= z | γ(x) | ω(t1, . . . ,tn)

wherez∈C, γ ∈ Γ, x∈ T, andω ∈Ω. Then, the set ofCML formulas is given by:

ϕ ::= x = y | p(x) | ξ(t1, . . . ,tm) | ¬ϕ | ϕ∨ϕ | ∃z. ϕ | ∃x. ϕ

wherex,y∈ T, z∈C, p∈ P∪{⊥}, ξ ∈ Ξ, andt1, . . . ,tm are token color terms. Boolean
connectives such as conjunction (∧) and implication (⇒), and universal quantification
(∀) can be defined in terms of¬, ∨, and∃. We also use∃x∈ p. ϕ (resp.∀x∈ p. ϕ) as
an abbreviation of the formula∃x. p(x)∧ϕ (resp.∀x. p(x)⇒ ϕ). Notice that the set of
terms (resp. formulas) ofL is included in the set of terms (resp. formulas) ofCML(L).

The notions of free/bound occurrences of variables in formulas and the notions of
closed/open formulas are defined as usual in first-order logics. In the sequel, we assume
w.l.o.g. that in every formula, each variable is quantified at most once.

We define a satisfaction relation between colored markings andCML formulas. For
that, we need first to define the semantics ofCML terms. Given valuationsθ ∈ [T→N],
δ ∈ [C→ C], andµ∈ [Γ→ (N→ C)], we define a mapping〈〈·〉〉θ,δ,µ which associates
with each color term a value inC:

〈〈z〉〉θ,δ,µ = δ(z)

〈〈γ(x)〉〉θ,δ,µ = µ(γ)(θ(x))

〈〈ω(t1, . . . ,tn)〉〉θ,δ,µ = ω(〈〈t1〉〉θ,δ,µ, . . . ,〈〈tn〉〉θ,δ,µ)

Then, we define inductively the satisfaction relation|=θ,δ between colored markings
〈M,µ〉 andCML formulas as follows:

〈M,µ〉 |=θ,δ ξ(t1, . . . ,tm) iff ξ(〈〈t1〉〉θ,δ,µ, . . . ,〈〈tm〉〉θ,δ,µ)

〈M,µ〉 |=θ,δ p(x) iff M(θ(x)) = p

〈M,µ〉 |=θ,δ x = y iff θ(x) = θ(y)

〈M,µ〉 |=θ,δ ¬ϕ iff 〈M,µ〉 6|=θ,δ ϕ
〈M,µ〉 |=θ,δ ϕ1∨ϕ2 iff 〈M,µ〉 |=θ,δ ϕ1 or 〈M,µ〉 |=θ,δ ϕ2

〈M,µ〉 |=θ,δ ∃x. ϕ iff ∃t ∈ T. 〈M,µ〉 |=θ[x←t],δ ϕ
〈M,µ〉 |=θ,δ ∃z. ϕ iff ∃c∈ C. 〈M,µ〉 |=θ,δ[z←c] ϕ

For every formulaϕ, we define[[ϕ]]θ,δ the be the set of markings〈M,µ〉 such that
〈M,µ〉 |=θ,δ ϕ. A formulaϕ is satisfiableiff there exist valuationsθ andδ s.t.[[ϕ]]θ,δ 6= /0.

2.3 Syntactical forms and fragments

Prenex normal form: A formula is inprenex normal form(PNF) if it is of the form

Q1y1Q2y2 . . .Qmym. ϕ

where (1)Q1, . . . ,Qm are (existential or universal) quantifiers, (2)y1, . . . ,ym are vari-
ables inT∪C, andϕ is a quantifier-free formula. It can be proved that for every formula
ϕ in CML, there exists an equivalent formulaϕ′ in prenex normal form.

Quantifier alternation hierarchy: We consider two families{Σn}n≥0 and{Πn}n≥0 of
fragments ofCML defined according to the alternation depth of existential and universal
quantifiers in their PNF:

– Let Σ0 = Π0 be the set of formulas in PNF where all quantified variables are inC,
– For n≥ 0, letΣn+1 (resp.Πn+1) be the set of formulasQy1 . . .ym. ϕ in PNF where

y1, . . . ,ym∈ T∪C, Q is the existential (resp. universal) quantifier∃ (resp.∀), andϕ
is a formula inΠn (resp.Σn).

It is easy to see that, for everyn≥ 0, Σn andΠn are closed under conjunction and dis-
junction, and that the negation of aΣn formula is aΠn formula and vice versa. For every
n≥ 0, let B(Σn) denote the set of all boolean combinations ofΣn formulas. Clearly,
B(Σn) subsumes bothΣn andΠn, and is included in bothΣn+1 andΠn+1.

Special form: The set of formulas in special form is given by the grammar:

ϕ ::= x = y | ξ(t1, . . . ,tn) | ¬ϕ | ϕ∨ϕ | ∃z. ϕ | ∃x∈ p. ϕ

wherex,y ∈ T, z∈ C, p ∈ P∪ {⊥}, ξ ∈ Ξ, andt1, . . . ,tn are token color terms. It is
not difficult to see that for every closed formulaϕ in CML, there exists an equivalent
formula ϕ′ in special form. The transformation is based on the following fact: since
variables are assumed to be quantified at most once in formulas, each formula∃x. φ can
be replaced by

W

p∈P∪{⊥}∃x∈ p. φx,p whereφx,p is obtained by substituting inφ each
occurrence ofp(x) by true, and each occurrence ofq(x), with p 6= q, by false.

3 Satisfiability Problem

We investigate the decidability of the satisfiability problem of the logicCML(L), as-
suming that the underlying color logicL has a decidable satisfiability problem.

Let us mention that in the case of a finite color domain, for instance for the domain
of booleans with equality and usual operations, the logicCML is decidable. The result
is a direct consequence of the decidability of the class of relational monadic formulae
in first-order logic, also known as the Löwenheim class withequality [10].

Then, let us consider the case of infinite data domains. First, we prove that as soon
as we consider natural numbers with ordering, the satisfiability problem ofCML is un-
decidable already for the fragmentΠ2. The proof (see Appendix A) is by a reduction of

the halting problem of Turing machines. The idea is to encodea computation of a ma-
chine, seen as a sequence of tape configurations, using tokens with integer colors. Each
token represents a cell in the tape of the machine at some computation step. Therefore
the token has two integer colors, its position in the tape, and the position of its configura-
tion in the computation (the corresponding computation step). The other informations
such as the contents of the cell, the fact that a cell corresponds to the position of the
head, and the control state, are encoded using a finite numberof places. Then, using
∀∗∃∗ formulas, it is possible to express that two consecutive configurations correspond
indeed to a valid transition of the machine. Intuitively, this is possible because these
formulas allow to relate each cell at some configuration to the corresponding cell at the
next configuration.

Theorem 1. The satisfiability problem of the fragmentΠ2 of CML(OL) is undecidable.

Nevertheless, we can prove the following generic decidability result for the frag-
mentΣ2 of our logic:

Theorem 2. Let L be a colored tokens logic. If the satisfiability problemof L is decid-
able, then the fragmentΣ2 of CML(L) is decidable.

The idea of the proof (see Appendix B) is to reduce the satisfiability problem ofΣ2

to the satisfiability problem ofΣ0 formulas (which are formulas in the color logicL).
We proceed as follows: we prove first that the fragmentΣ2 has the small model property,
i.e., every satisfiable formulaϕ in Σ2 has a model of a bounded size (where the size is
the number of tokens in each place). This bound corresponds actually to the number
of existentially quantified token variables in the formula.Notice that this fact does not
lead directly to an enumerative decision procedure for the satisfiability problem since
the number of models of a bounded size is infinite in general (due to infinite color
domains). Then, we use the fact that over a finite model, universal quantifications inϕ
can be transformed into finite conjunctions, in order to build a formulaϕ̂ in Σ1 which
is satisfiable if and only if the original formulaϕ is satisfiable. Actually,̂ϕ defines
precisely the upward-closure of the set of markings defined by ϕ (w.r.t. the inclusion
ordering between sets of colored markings, extended to vectors of places). Finally, it
can be shown that theΣ1 formula ϕ̂ is satisfiable if and only if theΣ0 obtained by
transforming existential quantification over token into existential quantification over
colors is decidable.

4 Constrained Petri Nets

Let T be a set of token variables andC be a set of color variables such thatT∩C 6= /0. A
Constrained Petri Net(CPN) is a tupleS= (P,L,Γ,∆) whereP is a finite set of places,
L = (C,Ω,Ξ) is a colored tokens logic,Γ is a finite set of token coloring symbols, and
∆ is a finite set ofconstrained transitionsof the form:

−→x ∈−→p →֒ −→y ∈−→q : ϕ(−→x ,−→y) (1)

where−→x = (x1, . . . ,xn) ∈ Tn, −→y = (y1, . . . ,ym) ∈ Tm, −→p = (p1, . . . , pn) ∈ Pn, −→q =
(q1, . . . ,qm) ∈ Pm, andϕ(−→x ,−→y) is aCML(L,Γ,P) formula called thetransition guard.

Given a fragmentΘ of CML, we denote byCPN[Θ] the class ofCPN where all
transition guards are formulas in the fragmentΘ. Due to the (un)decidability results of
section 3, we focus in the sequel on the classesCPN[Σ2] andCPN[Σ1].

Configurations ofCPN’s are colored markings. Constrained transitions define trans-
formation rules of these markings. Given aCPN S, we define a transition relation
→S between colored markings as follows: For every two colored markings〈M,µ〉 and
〈M′,µ′〉, we have〈M,µ〉 →S 〈M′,µ′〉 iff there exists a constrained transition of the form
(1), and there exist tokenst1, . . . ,tn andt ′1, . . . ,t

′
m s.t.∀i, j ∈ {1, . . . ,n}. i 6= j ⇒ ti 6= t j ,

and∀i, j ∈ {1, . . . ,m}. i 6= j ⇒ t ′i 6= t ′j , and

1. ∀i ∈ {1, . . . ,n}. M(ti) = pi andM′(ti) =⊥,
2. ∀i ∈ {1, . . . ,m}. M(t ′i) =⊥ andM′(t ′i) = qi ,
3. ∀t ∈ N, if ∀i ∈ {1, . . . ,n}. t 6= ti and∀ j ∈ {1, . . . ,m}. t 6= t ′j , thenM(t) = M′(t) and
∀γ ∈ Γ. µ(γ)(t) = µ′(γ)(t),

4. 〈M,µ∪µ′〉 |=θ,δ /0 ϕ(−→x ,−→y), whereθ ∈ [T→N] is a valuation of the token variables
such that∀i ∈ {1, . . . ,n}. θ(xi) = ti and∀ j ∈ {1, . . . ,m}. θ(y j) = t ′j , δ /0 is the empty
domain valuation of color variables, andµ∪µ′ is such that: for everyγ ∈ Γ, and
every tokent ∈ T, if t ∈ {t1, . . . ,tn} thenµ∪ µ′(γ)(t) = µ(γ)(t), if t ∈ {t ′1, . . . ,t

′
m}

thenµ∪µ′(γ)(t) = µ′(γ)(t), andµ∪µ′(γ)(t) = µ(γ)(t) = µ′(γ)(t) otherwise.

Intuitively, the definition above says that firing a transition means thatn different
tokenst1, . . . ,tn are deleted from the placesp1, . . . , pn (1), andm new different tokens
t ′1, . . . ,t

′
m are added to the placesq1, . . . ,qm (2), provided that the colors of all these (old

and new) tokens satisfy the formulaϕ, which may also involve constraints on other
tokens in the whole markingM (4). Moreover, this operation does not modify the rest
of the tokens (others thant1, . . . ,tn andt ′1, . . . ,t

′
m) in the marking (3).

Given a colored markingM , let postS(M) = {M ′ : M →SM
′} be the set of its

immediate successors, and letpreS(M)= {M ′ : M ′→SM } be the set of its immediate
predecessors. These definitions can be generalized to sets of colored markings in the

obvious way. Finally, for every set of colored markingsM, let p̃reS(M) = preS(M),
where(·) denotes complementation (w.r.t. the set of all colored markings).

5 Modeling power ofCPN

We show in this section howCPN can be used to model (unbounded) dynamic networks
of parallel processes. We assume w.l.o.g. that all processes are identically defined. We
consider that a process is defined by a finite control state machine supplied with vari-
ables and data structures ranging over potentially infinitedomains (such as integer vari-
ables, reals, etc). Processes running in parallel can communicate and synchronize using
various kinds of mechanisms (rendez-vous, shared variables, locks, etc). Moreover, they
can dynamically spawn new (copies of) processes in the network.

Dynamic networks of processes:Let L be the set of control locations of each of the
processes. (Remember that this set is the same for all processes.) We associate with
each process control locationℓ ∈ L a place. Then, each running process is represented

by a token, and in every marking, a place contains precisely the tokens representing
processes which are at the corresponding control location.

Assume for the moment that processes do not manipulate (infinite domain) data.
Then, a basic actionℓ−→ ℓ′ of a process moving its control from a locationℓ to another
locationℓ′ is modeled by a transition:x∈ ℓ →֒ y∈ ℓ′ : true. An action spawning a new

processℓ
spawn(ℓ0)−−−−−−→ℓ′ is modeled using a transition which creates a new token in the

initial control location of the new process:x∈ ℓ →֒ y1 ∈ ℓ′,y2 ∈ ℓ0 : true.

Local variables: Consider now that each process has a vector ofn local variables
−→v = (v1, . . . ,vn) over some (potentially infinite) data domain. Then, we consider a
set of coloring symbolsΓ = {γ1, . . . ,γn} associating with each tokenn colors (in the
considered data domain) corresponding to the values of the local variables: for each
process, represented by a tokent, for each local variablevi , γi(t) defines the value ofvi .

A process actionℓ
−→v :=

−→
f (−→v)

−−−−−−−→ℓ′ which (in addition of changing the control location
from ℓ to ℓ′) performs the assignment−→v :=

−→
f (−→v), where

−→
f is a vector of expressions

over the considered data domain, is modeled by the transition

x∈ ℓ →֒ y∈ ℓ′ :
n̂

i=1

γi(y) = fi(γ1(x), . . . ,γn(x))

For that, we use a token color logic which allows to express the effects of the actions.
For instance, in the case of processes with integer variables and linear assignments,
Presburger arithmetics (PA) can be used as colored tokens logic.

Global variables: Assume that processes share global variables−→u = {u1, . . . ,um}
(which are read and updated in a concurrent way). We associate with each global vari-
ableui a placegi containing a single tokenti , and we associate with this token a color
α(ti) representing the value ofui , whereα ∈ Γ is a special coloring symbol. Then,

a process actionℓ
−→u :=

−→
f (−→u ,−→v)

−−−−−−−−−→ℓ′ (assigning to global variables values depending on
both global variables and local variables of the process) ismodeled by the transition:

x∈ ℓ,x1 ∈ g1, . . . ,xm ∈ gm →֒ y∈ ℓ′,y1 ∈ g1, . . . ,ym∈ gm :

(n̂

i=1

γi(y) = γi(x)
)
∧

m̂

i=1

α(yi) = fi(α(x1), . . . ,α(xm),γ1(x), . . . ,γn(x))

In the modeling above, we consider that the execution of the process action is atomic.
When assignments are not atomic, we must transform each of assignment action into a
sequence of atomic operations: read first the global variables and assign their values to
local variables, then compute locally the new values to be assigned to global variables,
and finally assign these values to global variables.

Rendez-vous synchronization:Synchronization between a finite number of processes
can be modeled as in Petri nets.CPNs allow in addition to put constraints on the colors
(data) of the involved processes.

Priorities: Various notion of priorities, such as priorities between different classes of
processes (defined by properties of their colors), or priorities between different actions,
can be modeled inCPNs. This can be done by imposing in transition guards that tran-
sitions (performed by processes or corresponding to actions) of higher priority are not
enabled. These constraints can be expressed usingΠ1 formulas. In particular, checking
that a placep is empty can be expressed by∀x∈ p. false. (Which shows that as soon
as universally quantified formulas are allowed in guards, our models are as powerful as
Turing machines, even for color logics over finite domains.)

Process identities:It is possible to associate with each newly created process an identity
defined by an integer number. For that, we consider a special coloring symbolId ∈ Γ
associating to each token the identity of the process it represents. To ensure that different
processes have different identities, we express in the guard of every transition which
creates a process (i.e., adds a token to the place corresponding to its initial control
location) the fact that the identity of this process does notexist already among tokens in
places corresponding to control locations. This can easilybe done using a universally

quantified (Π1) formula. Therefore, a spawn actionℓ
spawn(ℓ0)−−−−−−→ℓ′ is modeled by:

x∈ ℓ →֒ y1 ∈ ℓ′,y2 ∈ ℓ0 :

Id(x) = Id(y1)∧
(n̂

i=1

γi(y1) = γi(x)
)
∧

^

loc∈L

∀t ∈ loc. ¬(Id(y2) = Id(t))

and the modeling of other actions (such as local/global variables assignments) can be
modified accordingly in order to propagate the process identity through the transition.
Notice that process identities are different from token values. Indeed, in some cases
(e.g., for modeling value passing as described below), we may use different tokens (at
some special places representing buffers for instance) corresponding to the sameId.

Locks: Locks can be simply modeled using global variables storing the identity of the
owner process, or a special value (e.g.−1) if it is free. A process who acquires the lock
must check if it is free, and then write his identity:

x1 ∈ ℓ,x2 ∈ lock →֒ y1 ∈ ℓ′,y2 ∈ lock : α(x2) =−1∧α(y2) = Id(x1)∧ ...

To release the lock, a process assigns−1 to the lock, which can be modeled in a similar
way. Other kinds of locks, such as reader-writer locks, can also be modeled in our
framework (see Appendix E). The modeling of such locks when the number of readers
and writers can be arbitrarily large requires the use of universal quantification in guards.

Value passing, return values:Processes may pass/wait for values to/from other pro-
cesses with specific identities. They can use for that sharedarrays of data indexed by
process identities. Such an arrayA can be modeled in our framework using a special
place containing for each process a token. Initially, this place is empty, and whenever
a new process is created, a token with the same identity is added to this place. Then,
to model that a process read/write onA[i], we use a transition which takes from the
place associated withA the token withId equal toi, read/modifies the value attached

with this token, and put the token again in the same place. Forinstance, an assignment

actionℓ
A[k]:=e
−−−−−→ℓ′ executed by some process is modeled by the transition:

x1 ∈ ℓ,x2 ∈ A →֒ y1 ∈ ℓ′,y2 ∈ A :

Id(x1) = Id(y1)∧
(n̂

i=1

γi(x1) = γi(y1)
)
∧ Id(x2) = k∧α(y2) = e∧ Id(y2) = Id(x2)

Notice that, while it is possible to model usingCPNs systems manipulating parametric-
size arrays (using multisets of tokens with integer colors), we cannot express in the
decidable fragmentΣ2 of CML the fact that a multiset indeed encodes an array of el-
ements indexed by integers in some given interval. The reason is that, while we can
express inΠ1 the fact that each token has a unique color in the interval, weneed to use
Π2 formulas to say that for each color in the interval there exists a token with that color.
Nevertheless, for the verification of safety properties andchecking invariants, it is not
necessary to require the latter property.

6 Computing post and pre images

We prove hereafter closure properties ofCML fragments under the computation of im-
mediate successors and predecessors forCPNs. The main result of this section is:

Theorem 3. Let S be aCPN[Σn], for n∈ {1,2}. Then, for every closed formulaϕ in
the fragmentΣn of CML, it is possible to construct two closed formulasϕpost andϕpre

in the same fragmentΣn such that[[ϕpost]] = postS([[ϕ]]) and[[ϕpre]] = preS([[ϕ]]).

We give hereafter a sketch of the proof. Letϕ be a closed formula, and letτ be
a transition−→x ∈ −→p →֒ −→y ∈ −→q : ψ of the systemS. W.l.o.g., we suppose thatϕ and
ψ are in special form. We define hereafter the formulasϕpost andϕpre for this single
transition. The generalization to the set of all transitions is straightforward.

The construction of the formulasϕpost andϕpre is not trivial because our logic does
not allow to use quantification over places and color mappings (associated with coloring
symbols). Intuitively, the idea is to express first the effect of deleting/adding tokens, and
then composing these operations to compute the effect of a transition.

Let us introduce two transformations⊖ and⊕ corresponding to deletion and cre-
ation of tokens. These operations are inductively defined onthe structure of special
form formulas in Table 1.

The operation⊖ is parameterized by a vector−→z of token variables to be deleted, a
mappingloc associating with token variables in−→z the places from which they will be
deleted, and a mappingcol associating with each coloring symbol inΓ and each token
variable in−→z a fresh color variable inC. Intuitively,⊖ projects a formula on all vari-
ables which are not in−→z . Rule⊖1 substitutes in a color formulaξ(

−→t) all occurences
of colored tokens in−→z by fresh color variables given by the mappingcol. A formula
x = y is unchanged by the application of⊖ is the token variablesx andy are not in−→z ;
otherwise, rule⊖2 replacesx = y by true if it is trivially true (i.e., we have the same
variable in both sides of the equality) or by false ifx or y is in −→z . Indeed, each token

variable in−→z represents (by the semantics ofCPN) a different token, and since this
token is deleted by the transition rule, it cannot appear in the reached configuration.
Rules⊖3 and⊖4 are straightforward. Finally, rule⊖5 does a case splitting according to
the fact whether a deleted token is precisely the one referenced by the existential token
quantification or not.

The operation⊕ is parameterized by a vector−→z of token variables to be added and a
mappingloc associating with each variable inz∈−→z a place (in which it will be added).
Intuitively, ⊕ transforms a formula taking into account that the added tokens by the
transition were not present in the previous configuration (and therefore not constrained
by the original formula describing the configuration beforethe transition). Then, the
application of⊕ has no effect on color formulasξ(

−→t) (rule ⊕1). When equality of
tokens is tested, rule⊕2 takes into account that all added tokens are distinct and different
from the existing tokens. For token quantification, rule⊕5 says that quantified tokens
of the previous configuration cannot be equal to the added tokens.

Then, we defineϕpost to be the formula:

∃−→y ∈ −→q . ∃−→c .
(
(ϕ∧ψ)⊖ (−→x ,−→x 7→ −→p ,Γ 7→ (−→x 7→ −→c))

)
⊕ (−→y ,−→y 7→ −→q)

In the formula above, we first delete the tokens corresponding to−→x from the current
configurationϕ intersected with the guard of the ruleψ. Then, we add tokens corre-
sponding to−→y . Finally, we close the formula by quantifying existentially the color
variables and the token variables corresponding to the added tokens.

Similarly, we defineϕpre to be the formula:

∃−→x ∈ −→p . ∃−→c .
(
(ϕ⊕ (−→x ,−→x 7→ −→p))∧ψ

)
⊖ (−→y ,−→y 7→ −→q ,Γ 7→ (−→y 7→ −→c))

For predecessor computation, we add to the current configuration the tokens represented
by the left hand side of the rule−→x in order to obtain a configuration on which the guard
ψ can be applied. Then, we remove the tokens added by the rule using token variables
−→y . Finally, we close the formula by quantifying existentially the color variables and the
token variables corresponding to the added tokens. It is easy to see that ifϕ andψ are
in a fragmentΣn, for anyn≥ 1, then both of the formulasϕpost andϕpre are also in the
same fragmentΣn.

Corollary 1. Let S be aCPN[Σ1]. Then, for every formulaϕ in Π1, it is possible to
construct a formulaϕp̃re also inΠ1 s.t. [[ϕp̃re]] = p̃reS([[ϕ]]).

7 Applications in Verification

We show in this section how to use the results of the previous section to perform various
kinds of analysis. Let us fix for the rest of the section a colored tokens logicL with a
decidable satisfiability problem, and aCPN Sdefined overL and the logicCML(L).

7.1 Pre-post condition reasoning

Given a transitionτ in Sand given two formulasϕ andϕ′, 〈ϕ,τ,ϕ′〉 is a Hoare triple if
whenever the conditionϕ holds, the conditionϕ′ holds after the execution ofτ. In other

⊖1 : ξ(
−→t)⊖ (−→z ,loc,col) = ξ(

−→t)[col(γ)(z)/γ(z)]γ∈Γ,z∈−→z

⊖2 : (x = y)⊖ (−→z ,loc,col) =

x = y if x,y 6∈ −→z
true if x≡ y
false otherwise

⊖3 : (¬ϕ)⊖ (−→z ,loc,col) = ¬(ϕ⊖ (−→z ,loc,col))

⊖4 : (ϕ1∨ϕ2)⊖ (−→z ,loc,col) = (ϕ1⊖ (−→z ,loc,col))∨ (ϕ2⊖ (−→z ,loc,col))

⊖5 : (∃x∈ p. ϕ)⊖ (−→z ,loc,col) = ∃x∈ p. (ϕ⊖ (−→z ,loc,col))∨
W

z∈−→z :loc(z)=p(ϕ[z/x])⊖ (−→z ,loc,col)

⊕1 : ξ(
−→t)⊕ (−→z ,loc) = ξ(

−→t)

⊕2 : (x = y)⊕ (−→z ,loc) =

x = y if x,y 6∈ −→z
true if x≡ y
false otherwise

⊕3 : (¬ϕ)⊕ (−→z ,loc) = ¬(ϕ⊕ (−→z ,loc))

⊕4 : (ϕ1∨ϕ2)⊕ (−→z ,loc) = (ϕ1⊕ (−→z ,loc))∨ (ϕ2⊕ (−→z ,loc))

⊕5 : (∃x∈ p. ϕ)⊕ (−→z ,loc) = ∃x∈ p. (ϕ⊕ (−→z ,loc))∧
V

z∈−→z :loc(z)=p¬(x = z)

Table 1.Definition of the⊕ and⊖ operators.

words, we must havepostτ([[ϕ]]) ⊆ [[ϕ′]], or equivalently thatpostτ([[ϕ]])∩ [[¬ϕ′]] = /0.
Then, by Theorem 3 and Theorem 2 we deduce the following:

Theorem 4. If S is aCPN[Σ2], then the problem whether〈ϕ,τ,ϕ′〉 is a Hoare triple is
decidable for every transitionτ of S, every formulaϕ ∈ Σ2, and every formulaϕ′ ∈Π2.

7.2 Bounded reachability analysis

An instance of the bounded reachability analysis problem isa triple (Init ,Target,k)
whereInit andTarget are two sets of configurations, andk is a positive integer. The
problem consists in deciding whether there exists a computation of length at mostk
which starts from some configuration inInit and reaches a configuration inTarget. In
other words, the problem consists in deciding whetherTarget∩

S

0≤i≤kposti
S(Init) 6= /0,

or equivalently whetherInit ∩
S

0≤i≤kprei
S(Target) 6= /0. The following result is a direct

consequence of Theorem 3 and Theorem 2.

Theorem 5. If S is a CPN[Σ2], then, for every k∈ N, and for every two formulas
ϕI ,ϕT ∈ Σ2, the bounded reachability problem([[ϕI]], [[ϕT]],k) is decidable.

7.3 Checking invariance properties

An instance of theinvariance checking problemis given by a pair of sets of configura-
tions (colored markings)(Init , Inv), and consists in deciding whether starting from any
configuration inInit , every computation ofS can only visit configurations inInv, i.e.,
S

k≥0postk
S(Init) ⊆ Inv. This problem is of course undecidable in general. However,a

deductive approach using inductive invariants (provided by the user) can be adopted.
We show that our results allow to automatize the steps of thisapproach.

A set of configurationsM is an inductive invariantif postS(M) ⊆M, or equiva-
lently, if M⊆ p̃reS(M). By Theorem 3 and Theorem 2, we have:

Theorem 6. If S is aCPN[Σ2], then for every formulaϕ in B(Σ1), the problem of check-
ing whetherϕ defines an inductive invariant is decidable.

The deductive approach for establishing an invariance property considers theinduc-
tive invariance checking problemgiven by a triple(Init , Inv,Aux) of sets of configura-
tions, and which consists in deciding whether (1)Init ⊆Aux, (2)Aux⊆ Inv, and (3)Aux
is an inductive invariant. Indeed, a (sound and) complete rule for solving an invariance
checking problem(Init , Inv) consists in finding a set of configurationsAuxallowing to
solve the inductive invariance checking problem(Init , Inv,Aux). The following result
follows directly from Theorem 3, Theorem 2, and the previoustheorem.

Theorem 7. If S is aCPN[Σ2], then the inductive invariance checking problem is de-
cidable for every instance([[ϕInit]], [[ϕ]], [[ϕ′]]) whereϕInit ∈ Σ2, andϕ,ϕ′ ∈ B(Σ1).

Of course, the difficult part in applying the deductive approach is to find useful
auxiliary inductive invariants. One approach to tackle this problem is to try to com-
pute the largest inductive invariant included inInv which is the set

T

k≥0 p̃re
k
S(Inv).

Therefore, a method to derive auxiliary inductive invariants is to try iteratively the sets
Inv, Inv∩ p̃reS(Inv), Inv∩ p̃reS(Inv)∩ p̃re

2
S(Inv), etc. In many practical cases, only few

strengthening steps are needed to find an inductive invariant. (Indeed, the user is able
in general to provide accurate invariant assertions for each control point of his system.)
The result below implies that the steps of this iterative strengthening method can be
automatized whenCPN[Σ1] models andΠ1 invariants are considered. This result is a
direct consequence of Corollary 1.

Theorem 8. If S is aCPN[Σ1], then for every formulaϕ in Π1 and every positive integer
k, it is possible to construct a formula inΠ1 defining the set

T

0≤i≤k p̃re
i
S([[ϕ]]).

We show in the full paper the applicability of our framework on a nontrivial ex-
ample. We present the verification of a Reader-Writer lock for an unbounded number
of processes using the inductive invariant checking approach. This example has been
considered in [28] for a fixed number of processes.

8 Conclusion

We have presented a framework for reasoning about dynamic/parametric networks of
processes manipulating data over infinite domains. We have provided generic mod-
els for these systems and a logic allowing to specify their configurations, both being
parametrized by a logic on the considered data domain. We have identified a fragment
of this logic having a decidable satisfiability problem and which is closed underpost

andpre image computation, and we have shown the application of these results in veri-
fication.

The complexity of the decision procedure and of thepost/pre computation is ex-
ponential in the size of the formula, and more precisely in the number of quanti-
fied variables. However, formulas which appear in the analysis of systems such as
parametrized/dynamic networks (such as assertions expressing invariants at each partic-
ular control location) are naturally in special form (see definition in Section 2.3) where
each token variable is bound to a unique place (this allows toavoid the case splitting
according to all possible mappings between token variablesand places), and moreover,
new token variables introduced by post/pre computations are of a fixed small number
(the number of synchronized processes by the considered transition which is in general
equal to two). These facts reduce significantly the complexity in practice.

Our framework allows to deal in a uniform way with all classesof systems ma-
nipulating infinite data domains with a decidable first-order theory. In this paper, we
have considered instantiations of this framework based on logics over integers or reals
(which allows to consider systems with numerical variables). Different data domains
can be considered in order to deal with other classes of systems such as multithreaded
programs where each process (thread) has an unbounded stack(due to procedure calls).
We will address in more details the issue of applying our framework to the verification
of multithreaded programs in a forthcoming paper. Our future work includes also the
extension of our framework to other classes of systems and features such as dynamic
networks of timed processes, networks of processes with broadcast communication,
interruptions and exception handling, etc.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. InProc. of LICS’96, pages 313–321, 1996.

2. P. A. Abdulla and G. Delzanno. On the Coverability Problemfor Constrained Multiset
Rewriting. InProc. of AVIS’06, Satellite workshop of ETAPS’06, Vienna, Austria, 2006.

3. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A Survey of Regular Model Check-
ing. In Proc. of CONCUR’04, volume 3170 ofLNCS. Springer, 2004.

4. Parosh Aziz Abdulla and Bengt Jonsson. Verifying networks of timed processes (extended
abstract). In Bernhard Steffen, editor,Proc. of TACAS’98, volume 1384 ofLNCS, pages
298–312. Springer, 1998.

5. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric reasoning
about counter and clock systems. InProc. of CAV’00. LNCS 1855, 2000.

6. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L.D. Zuck. Parameterized Verification with Au-
tomatically Computed Inductive Assertions. InProc. of CAV’01, volume 2102 ofLNCS.
Springer, 2001.

7. Bernard Boigelot.Symbolic Methods for Exploring Infinite State Space. PhD thesis, Faculté
des Sciences, Université de Liège, volume 189, 1999.

8. M. Bojanczyk, C. David, A. Muscholl, Th. Schwentick, and L. Segoufin. Two-variable logic
on data trees and XML reasoning. InProc. of PODS’06. ACM, 2006.

9. M. Bojanczyk, A. Muscholl, Th. Schwentick, L. Segoufin, and C. David. Two-variable logic
on words with data. InProc. of LICS’06. IEEE, 2006.

10. E. Börger, E. Grädel, and Y. Gurevich.The Classical Decision Problem. Perspectives of
Mathematical Logic. Springer-Verlag, 1997. Second printing (Universitext) 2001.

11. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-
cation to model-checking. InProc. of CONCUR’97, volume 1243 ofLNCS, pages 135–150.
Springer, 1997.

12. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking. InProc. of
CAV’04, volume 3114 ofLNCS. Springer, 2004.

13. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking. InProc. of
CAV’00, volume 1855 ofLNCS. Springer, 2000.

14. A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framework for reasoning about dy-
namic networks of infinite-state processes. Technical Report 2007-01, LIAFA lab, January
2007. Available athttp://www.liafa.jussieu.fr/∼abou/publis.html.

15. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks
of pushdown systems. InProc. of CONCUR’05, volume 3653 ofLNCS. Springer, 2005.

16. A. Bouajjani and T. Touili. On computing reachability sets of process rewrite systems. In
Proc. of RTA’05, volume 3467 ofLNCS. Springer, 2005.

17. Ahmed Bouajjani. Languages, Rewriting systems, and Verification of Infinte-State Systems.
In Proc. of ICALP’01, volume 2076 ofLNCS. Springer Pub., 2001.

18. M. Bozzano and G. Delzanno. Beyond Parameterized Verification. InProc. of TACAS’02,
volume 2280 ofLNCS, Grenoble, France, 2002. Springer Pub.

19. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidableabout arrays ? InProc. of
VMCAI’06, volume 3855 ofLNCS. Springer, 2006.

20. E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks.TOPLAS, 19(5),
1997.

21. G. Delzanno. An assertional language for the verification of systems parametric in several
dimensions.Electr. Notes Theor. Comput. Sci., 50(4), 2001.

22. G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards the automated verification of multi-
threaded java programs. InTACAS, volume 2280 ofLNCS, pages 173–187. Springer, 2002.

23. S. Demri and R. Lazic. LTL with the freeze quantifier and register automata. InProc. of
LICS’06. IEEE, 2006.

24. E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic infinite-state
systems. InLICS’98. IEEE, 1998.

25. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. InProceedings
of LICS ’99, pages 352–359. IEEE Computer Society, 1999.

26. A. Finkel and J. Leroux. How to compose presburger-accelerations: Applications to broad-
cast protocols. InProc. of FST&TCS’02, volume 2556 ofLNCS. Springer, 2002.

27. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!Theor. Com-
put. Sci., 256(1-2):63–92, 2001.

28. C. Flanagan, S.N. Freund, and S. Qadeer. Thread-modularverification for shared-memory
programs. InProc. of ESOP’02, pages 262–277. LNCS 2305, 2002.

29. S. M. German and P. A. Sistla. Reasoning about systems with many processes.JACM, 39(3),
1992.

30. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. InProc.
of CAV’98, volume 1427 ofLNCS. Springer, 1998.

31. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network
invariants. InProc. Intern. Workshop on Automatic Verification Methods for Finite State
Systems. LNCS 407, 1989.

A Proof of Theorem 1

We reduce the halting problem of a Turing machine to the satisfiability problem of
CML[P,OL]. Let us describe informally how we encode computations of a given Tur-
ing machine: A computation is a sequence of tape configurations, each of them being a
sequence of symbols. Then, we associate a different to tokenwith each position of each
configuration in the computation. we associate with each of these tokens two integer
colors:stepcorresponding to the the position number of its corresponding configura-
tion in the computation (i.e., to ordering number of the computation step corresponding
to the configuration), andcell corresponding to its position number in its own config-
uration. The other informations we need to associated with these tokens are the tape
symbol, whether it corresponds to the position of the head ofthe machine, and in this
case, the control state of the machine. These informations range over finite sets and
therefore can be encoded using a finite number of different places. For instance, a token
x in the placeA Head q encodes a cell carrying the letterA and which corresponds to
the position of the head of the machine, and the state of the machineq. We show that
we can encode valid succession of configurations usingΠ2 formulas.

Let M = (Q,Γ,B,qf ,∆) be a turing machine, whereQ is a finite set of state,Γ is the
finite tape alphabet containingB the default blank symbol,qf is the final state, and∆ is
the transition relation. Without loss of generality we suppose that the machine has no
deadlocks, and once it reach the final state it stops.

We define the setP of places to be the productΓ×{Head,Nohead}×Q. In order
to describe the encoding of the transition of the machine, weneed to introduce the
following notations:

Head q(x) ::=
_

A∈Γ
A Head q(x)

Head(x) ::=
_

q∈Q

Head q(x)

Blank(x) ::=
_

q∈Q

B Head q(x)∨
_

q∈Q

B NotHeadq(x)

SameLetterPassive(x,y) ::=
^

A∈Γ,q∈Q

A NotHeadq(x)⇔ A NotHeadq(y)

SameLetterActivate(x,y) ::=
^

A∈Γ,q∈Q

A NotHeadq(x)⇔
_

p∈Q

A Head p(y)

Then, we give hereafter the encoding of a run of the machine starting from the
initial configuration and reaching the control stateqf . The encoding is given by the
conjunction of several formulas we define below.

Initially (i.e., at the first step), all the cells in the tape contain the blank symbol, the
machine is in the stateq0 and the head is at the left most position of the tape (i.e., cell
number 0). This is expressed by the following formula:

Init ::= (∀x.step(x) = 0⇒ Blank(x))∧∃x.step(x) = cell(x) = 0∧Head q0(x)

Then, we need to require that there is a complete and sound encoding of each tape (at
every computation step) :

Tapes::= (∀x. ∀n. ∃y. step(x) = step(y)∧cell(y) = n)

∧∀x,y. (step(x) = step(y)∧cell(x) = cell(y))⇒ x = y

and that at each step there is at most one cell corresponding to the position of the
head:

OneHeadperStep::= ∀x,y.(Head(x)∧Head(y))⇒ step(x) 6= step(y)

Moreover, we need to require that each step is followed by another one:

Liveness::= ∀x.∃y.step(y) > step(x)

and that the computation reaches at some step the final state:

Acceptance::= ∃x.Head qf (x)

Now, it remains to encode a transition step, i.e., to requirethat every two successive
configurations correspond to a valid transition in the machine. Consider the case of a
transition of the form: if the machine is at statep, it reads a symbola on the tape, writes
b at the same position, moves its head to the left, and goes to stateq. (The other cases
can be handled in a similar way.)

Informally we use token variablet1,t2,t3 as follows :t1 corresponds to the holder of
the head and carry the lettera and the statep, t3 represents the cell that replacest1 in the
next step and carry the letterb, andt2 corresponds the cell which is just to the left oft3,
that is the next holder of the head and of the stateq. The variablet4 is used to express
thatt1 andt2 belong to consecutive steps. The variablesx andy express that all cells of
the tape different fromt1,t2,t3 remain the same.

∀t1,t2,t3 [a Head p(t1) ∧
step(t1) < step(t3)∧¬∃t4. (step(t1) < step(t4) < step(t3))∧cell(t3) = cell(t1)
∧step(t3) = step(t2)∧¬∃t4. cell(t2) < cell(t4) < cell(t3)
]⇒ b NotHead(t3)∧Head q(t2)
∧∀x,y. [step(x) = step(t1)∧step(y) = step(t2)∧cell(x) = cell(y)∧y 6= t3]
⇒ (SameLetterPassive(x,y)∧y 6= t2)∨ (y = t2∧SameLetterActivate(x,y))

B Proof of Theorem 2

We reduce the satisfiability problem ofΣ2 formulas to the satisfiability problem ofΣ0

formulas (which correspond to formulas in the token color logic which is supposed to
has a decidable satisfiability problem).

We prove first that the fragmentΣ2 has the small model property, i.e., every satis-
fiable formulaϕ in Σ2 has a model of a bounded size (where the size is the number of
tokens in each place). Letϕ be a closed formula inΣ2 in prenex form∃−→x . ∃−→z . ∀−→y . φ

where−→x ,−→y are token variables and−→z color variables, and let us assume that all vari-
ables are different.

Suppose that there is a colored marking〈M,µ〉 which satisfiesϕ. This means that
there exist a vector of tokens−→t (resp. of colors−→c) and a mappingθ (resp.δ) associat-
ing these tokens (resp. colors) to the variables−→x (resp.−→z) such that〈M,µ〉 |=θ,δ ∀

−→y .φ.
It is easy to see that, for every universally quantified formula, that if it is satisfied

by a marking, it is also satisfied by all its submarkings (w.r.t inclusion ordering). Let
〈M′,µ′〉 be the finite colored marking defined as the restriction of〈M,µ〉 to tokens and
colors in the vectors−→t and−→c . Then clearly, we have〈M′,µ′〉 |=δ,θ ∀

−→y .φ, and therefore
we have〈M′,µ′〉 |= ∃−→x .∃−→z .φ.

This shows a small model property for the fragmentΣ2 : every satisfiable formula
ϕ = ∃−→x .∃−→z ∀−→z .φ has a model of size less or equal than|−→x |. However this fact does not
imply the decidability of the satisfiability problem since the color domains are infinite.

Nevertheless, we show that it is possible to reduce the satisfiability problem fromΣ2

to Σ1. We denote by[−→y →−→x] the set of mappingsσ from elements of−→y to elements
of −→x . Since the model〈M′,µ′〉 is finite, the fact that〈M′,µ′〉 |=δ,θ ∀

−→y .φ is equivalent
to the fact that

〈M′,µ′〉 |= ∃−→x . ∃−→z .
^

σ∈[−→y→−→x]

φ[−→y ← σ(−→y)]

Finally let us show that the satisfiability problem can be reduced fromΣ1 to Σ0.
Consider a formulaϕ = ∃−→x .φ.

First, we do the following transformations: (1) we eliminate token equality by enu-
merating all the possible equivalent classes for equality between the finite number of
variables in−→x , (2) we eliminate formulas of the formp(x) by enumerating all the pos-
sible mappings from a token variablex to a place, and (3) we replace terms of the form
γ(x) by fresh color variables. Let us describe more formally these transformations.

Let B(−→x) be the set of all possible equivalence classes (w.r.t. to theequality rela-
tion) over elements of−→x : an elemente in B(−→x) is a mapping from−→x to−→x that gives
a single representant for each class.

Clearlyϕ is equivalent to
_

e∈B(−→x)

∃−→ye.
^

i 6= j

(yi 6= y j)∧ φ̃e(
−→ye)

where−→ye is e(−→x) andφ̃e is build fromφ by giving to equalitiesxi = x j the value true iff
the representante(xi) ande(x j) are the same.

Similarly, we eliminate from̃φe the occurences of formulasp(xi). We already have
defined the notation[−→x → P] to be the set of all the mappings from elements in−→x to
elements inP. We have an equivalent formula :

_

e∈B(−→x)

_

σ∈[−→ye→P]

∃−→ye.
^

i 6= j

(yi 6= y j)∧
−→ye ∈

−→pσ∧ φ̄e,σ(−→ye)

where−→pσ is the value of the mappingσ(−→ye), andφ̄e,σ is built from φ̃e by replacing each
occurence ofp(y) by true iff σ(y) = p.

Finally, for each coloring symbolγ ∈ Γ and each token variabley in the vector−→ye,
we define a color variablesγ,y, and we let−→s to be a vector containing all such color
variables.

It is now easy to see that the formula

∃−→ye.
^

i 6= j

(yi 6= y j)∧
−→ye ∈

−→pσ∧ φ̄e,σ(−→ye)

is satisfiable iff the followingΣ0 formula

∃−→s . φ̄σ,e[γ(y)← sγ,y]γ∈Γ,y∈−→ye

is satisfiable. Therefore, the satisfiability problem ofΣ2 can be reduced to satisfiability
problem ofΣ0, which is a decidable problem by hypothesis.

C Reader-Writer lock: An example of modeling

Reader-writer is a classical synchronisation scheme used in operating systems or other
large scale systems. Several readers and writers work on common data. Readers may
read data in parallel but they are exclusive with writers. Writers can only work in ex-
clusive mode with other threads.Reader-writer lockis used to implement such kind of
synchronization. Readers have to acquire the lock inread mode, and writers inwrite
mode.

The implementation in Java of atomic operations for acquireand release in read and
write mode is classical. This implementation uses anintegerw to identifies the thread
holding the lock in write mode or -1 if no such thread exists (threads identifiers are
suppsed to be positive integers). Also, aninteger setr is used to store the identifiers of
all threads holding the lock in read mode. Acquire and release operations are accessing
variables w and r in mutual exclusion.

Our model of reader-writer lock follows the implementationabove. The (global)
lock variable is modeled by a placerw where each token represents a thread using the
lock (i.e., it has acquired but not yet released the lock). Each token inrw has two colors:
ty gives the type of the access to the lock (read or write), andId gives the identifier of
the thread represented by the token. TheId color is useful to ensure that the releasing
of a lock is done by the thread which acquired it. Since acquire and release should be
atomic operations, we model them by single transitions (seeTable C).

Let consider the program using the reader-writer lock givenin Table C. It consists
on several Reader and Writer threads, a global reader-writer lock variable l, a global
variable x, and a local variable y for Reader threads. Writerthreads change the value
of the global variable x after acquiring in write mode the lock. Reader threads are set-
ting their local variable y to a value depending on x after acquiring in read mode the
lock. (Let us assume that for example the variables range over the domain of positive
integers.) Each thread has an unique identifier representedby the pid local variable.

For this program, the safety property to verify is the absence of race on variable x:
value ofx should not change while the lock is held in read mode, i.e., a reader thread at
line 3 has a value of local variable y equal to f (x).

t h r e a d s W r i t e r :
1 : l . a c q w r i t e (p i d) ;
2 : x = g (x) ;
3 : l . r e l w r i t e (p i d) ;
4 :

t h r e a d s Reader :
1 : l . a c q re a d (p i d) ;
2 : y = f (x) ;
3 : l . r e l r e a d (p i d) ;
4 :

Table 2.Example of program using reader-writer lock.

The CPN model corresponding to this program is given in Table C. We use the
logic DL as colored tokens logic. To each control point we associate aplace (e.g., place
r3 for control point corresponding to line 3 of Reader threads) and a transition (e.g.,
transitionr3 for statement at line 3 of Reader threads). The global variable x is modeled
as explained in previous section: we have a placepx containing an unique token which
color α stores the current value of x. With each token in the places corresponding to
Reader control points we associate a colory to model the local variable y. We denote
by Γ(t ′,t) the (conjunctive) formula expressing thatt ′ andt have the same colors. It can
be observed that the obtained model is aCPN[Σ2].

w1 : t ∈w1 →֒ t ′ ∈ w2, l ′ ∈ rw
: ¬(∃z∈ rw. true) ∧ Id(l ′) = Id(t) ∧ ty(l ′) = W ∧ Γ(t ′,t)

w2 : t ∈ w2,tx ∈ px →֒ t ′ ∈ w3,t ′x ∈ px

: α(t ′x) = g(α(tx)) ∧ Γ(t ′,t)

w3 : t ∈ w3, l ∈ rw →֒ t ′ ∈ w4
: Id(l) = Id(t) ∧ ty(l) = W ∧ Γ(t ′,t)

r1 : t ∈ r1 →֒ t ′ ∈ r2, l ′ ∈ rw
: ¬(∃z∈ rw. ty(z) = W) ∧ Id(l ′) = Id(t) ∧ ty(l ′) = R ∧ Γ(t ′,t)

r2 : t ∈ r2,tx ∈ px →֒ t ′ ∈ r3,t ′x ∈ px

: y(t ′) = f (α(tx)) ∧ Id(t ′) = Id(t) ∧ Γ(t ′x,tx)

r3 : t ∈ r3, l ∈ rw →֒ t ′ ∈ r4
: Id(l) = Id(t) ∧ ty(l) = R ∧ Γ(t ′,t)

Table 3.Model of reader-writer lock.

The race-free property that the system must satisfy can be expressed by the follow-
ing Π1 formula:

RF ≡ ∀t ∈ r3. ∀tx ∈ px. y(t) = f (α(tx))

Actually, in order to establish the invariance of the property above, it must be
strengthened by other auxiliary properties:

– Placepx contains a single token:

Ax ≡ ∀x,x
′ ∈ px. x = x′

– Reader-writer lock is either kept by a set of readers or by a unique writer:

RW≡ ∀u,u′ ∈ rw. (ty(u) = ty(u′)) ∧ (ty(u) = W =⇒ u = u′)
∧ (ty(u) = R∨ ty(u) = W)

– For all threads in placesw2 andw3 of the Writer, the tokens in the lock place have
the same identities and are of writer type:

RWw ≡ ∀w∈ {w2,w3}. ∀lw ∈ rw. Id(w) = Id(lw)∧ ty(lw) = W

– If threads exist in placesr2 andr3 of the Reader, then there is a token in the lock
place with reader type:

RWr ≡ (∃r ∈ {r2, r3}. true) =⇒ (∃lr ∈ rw. ty(lr) = R)

It can be seen that all the formulas above are in the fragmentB(Σ1).

We show in Section E how to check these properties on the modelgiven in Table C.

D Reader-writer lock: An example of Post image computation

Consider the reader-writer example of Section C. We show hereafter the computation
of thepost-image of theRW property w.r.t. the transitionw1.

First, we instantiate theφpost formula given in the proof of Theorem 3 usingRW for
the initial closed formulaφ, and the side condition of transitionw1 for ψ. The colorId
of the tokent deleted byw1 is mapped to a new color variableIdt . Colors symbols not
used for the deleted tokens (e.g.,ty andα for t andt ′) are not mapped to color variables.

postw1
(RW) ≡ ∃t ′ ∈ w2, l ′ ∈ rw. ∃Idt . [RW∧¬(∃z∈ rw. true)∧ Id(l ′) = Id(t)

∧ty(l ′) = W∧ Id(t ′) = Id(t)
]⊖ (t ∈ w1, Id(t) 7→ Idt))
⊕ (t ′ ∈ w2, l ′ ∈ rw)

Next, we apply the definition of⊖ and⊕ operators, mainly rules⊖1, ⊖5, and⊕5. For
example, by applying rule⊕5 on formula∃z∈ rw.true for added tokenl ′ ∈ rw, we
obtain∃z∈ rw. true∧z 6= l ′.

postw1
(RW) ≡ ∃t ′ ∈w2, l ′ ∈ rw. ∃Idt . RW′(l ′)∧¬(∃z∈ rw. z 6= l ′)

∧Id(l ′) = Idt ∧ ty(l ′) = W∧ Id(t ′) = Idt

where:

RW′(l ′) ≡ ∀u,u′ ∈ rw. (ty(u) = ty(u′)∧ (ty(u) = W =⇒ u = u′)
∧ (ty(u) = R∨ ty(u) = W))
∨u′ = l ′∨u = l ′

To obtain this result, we applied the following property of the special form universal
quantification:(∀x ∈ p. φ(x))∨ φ′ ↔ (∀x ∈ p. φ(x)∨ φ′) with x 6∈ FreeVars(φ′). The
resulting formula is in theΣ2 fragment.

postw1
(RW) ≡ ∃t ′ ∈ w2, l ′ ∈ rw. ∃Idt . ∀u,u′,z.

(¬rw(u)∨¬rw(u′)∨

(ty(u) = ty(u′)∧ (ty(u) = W =⇒ u = u′)∧ (ty(u) = R∨ ty(u) = W))

∨u′ = l ′∨u = l ′)

∧(¬rw(z)∨z= l ′)∧ Id(l ′) = Idt ∧ ty(l ′) = W∧ Id(t ′) = Idt

The computation of thepost-image w.r.t. other transitions of the model is given in
Section E.

E Reader-writer lock example

We illustrate here the use of our framework by showing that itis possible to carry out
an invariant proof within the decidable fragment of ourCML logic. The proof presented
here has been done manually following the construction presented in the paper, and
therefore, our results can be used to automatize each of its steps.

We consider the example of Reader-Writer lock introduced inSection 7, and we
prove thatI ≡ (Ax∧RW∧RWw∧RWr ∧RF) is an invariant property for theCMRS model
given in Table C. Consequently, we show that the corresponding program is free of data
races on variablex.

Let us recall from Section C each component of the invariant formula above:

Ax ≡ ∀x,x
′ ∈ px. x = x′

RW≡ ∀u,u′ ∈ rw. (ty(u) = ty(u′))∧ (ty(u) = R∨ ty(u) = W)
∧(ty(u) = W =⇒ u = u′)

RWw ≡ ∀w∈ {w2,w3}. ∀lw ∈ rw. Id(w) = Id(lw)∧ ty(lw) = W

RWr ≡ (∃r ∈ {r2, r3}. true) =⇒ (∃lr ∈ rw. ty(lr) = R)

RF ≡ ∀a∈ r3,tx ∈ px. y(a) = f (α(tx))

Transitionw1 of the writer models the writer acquiring the lock in write mode. The
post-image ofI through this rule is given by Theorem 8.1:

postw1
(I) ≡ ∃t ′ ∈ w2. ∃l ′ ∈ rw. ∃Idt .

[Ax∧RW∧RWw∧RWr ∧RF

∧¬(∃z∈ rw. true)∧ Id(l ′) = Id(t)∧ ty(l ′) = W∧ Id(t) = Id(t ′)

]⊖ (t ∈w1, Id(t) 7→ Idt)

⊕ (t ′ ∈ w2, l ′ ∈ rw)

We apply the definition given in Table 1 for⊕ and⊖ operations.

postw1
(I) ≡ ∃t ′ ∈ w2. ∃l ′ ∈ rw. ∃Idt .

Ax∧RW′(l ′)∧RW′w(t ′, l ′)∧RW′r (l
′)∧RF

∧(∀z∈ rw. z= l ′)∧ Id(l ′) = Idt ∧ ty(l ′) = W∧ Idt = Id(t ′)

where we denote byφ(v) a formulaφ where variablev is free, and the subformula used
are defined by:

RW′(l ′) ≡ ∀u,u′ ∈ rw. (ty(u) = ty(u′)∧ (ty(u) = R∨ ty(u) = W)
∧ (ty(u) = W⇒ u = u′))
∨u = l ′∨u′ = l ′

RW′w(t ′, l ′) ≡ ∀w∈ {w2,w3}. ∀lw ∈ rw. (Id(w) = Id(lw)∧ ty(lw) = W)
∨(lw = l ′)∨ (w = t ′)

RW′r (l
′) ≡ (∃r ∈ {r2, r3}. true) =⇒ (∃lr ∈ rw. ty(lr) = R∧ lr 6= l ′)

Due to the special form of formula (all tokens are localized), the formula corresponding
to thepost-image increases reasonably (6 atomic formula are added). Using the fact
that subformulasAx andRF do not contain free variables, we obtain the simpler formula
below:

postw1
(I) ≡ Ax∧RF∧P

whereP≡ ∃t ′ ∈ w2. ∃l ′ ∈ rw. ∃Idt .

RW′(l ′)∧RW′w(t ′, l ′)∧RW′r (l
′)

∧(∀z∈ rw. z= l ′)∧ Id(l ′) = Idt ∧ ty(l ′) = W∧ Idt = Id(t ′)

In order to prove thatpostw1
(I) =⇒ I is valid, we check the satisfiability of the formula

postw1
(I)∧¬I . We simplify this formula by removing subformula appearingin positive

and negative form:

postw1
(I)∧¬I ≡ Ax∧RF∧P∧ (¬Ax∨¬RF∨¬RW∨¬RWw∨¬RWr)

≡ Ax∧RF∧P∧ (¬RW∨¬RWw∨¬RWr)

≡ (Ax∧RF∧P∧¬RW)

∨(Ax∧RF∧P∧¬RWw)

∨(Ax∧RF∧P∧¬RWr)

In the following, we show how the second disjunct is proven tobe unsatisfiable. For the
other disjuncts, the reasoning is very similar. First, we compute its prenex form: some
quantified variables are renamed in order to have unique names for each quantified

variables; then, we move quantifiers behind the formula.

Ax∧RF∧P∧¬RWw

≡ ∃t ′ ∈w2. ∃l ′ ∈ rw. ∃w′ ∈ {w2,w3}. ∃l ′w ∈ rw. ∃Idt .

Ax∧RF∧RW′(l ′)∧RW′w(t ′, l ′)∧RW′r (l
′)

∧(∀z∈ rw. z= l ′)∧ Id(l ′) = Idt ∧ ty(l ′) = W∧ Idt = Id(t ′)
∧(Id(w′) 6= Id(l ′w)∨ ty(l ′w) 6= W)

≡ ∃t ′ ∈w2. ∃l ′ ∈ rw. ∃w′ ∈ {w2,w3}. ∃l ′w ∈ rw. ∃lr ∈ rw. ∃Idt .

∀x,x′ ∈ px. ∀a∈ r3. ∀tx ∈ px. ∀u,u′ ∈ rw

∀w∈ {w2,w3}. ∀lw ∈ rw. ∀r ∈ {r2, r3}. ∀z∈ rw.

(x = x′)∧y(a) = f (α(tx))
∧((ty(u) = ty(u′)∧ (ty(u) = R∨ ty(u) = W)∧ (ty(u) = W =⇒ u = u′)
∨u = l ′∨u′ = l ′)
∧((Id(w) = Id(lw)∧ ty(lw) = W)∨ (lw = l ′)∨ (w = t ′))
∧(ty(lr) = R∧ lr 6= l ′)
∧z= l ′∧ Id(l ′) = Idt ∧ ty(l ′) = W∧ Idt = Id(t ′)
∧(Id(w′) 6= Id(l ′w)∨ ty(l ′w) 6= W)

Second, we reduce theΣ2 formula above to aΣ1 formula. The procedure defined by
the proof of Theorem 4.1. generates 21∗34∗1 = 162 conjuncts from the elimination of
universally quantified variables. However, the conjuncts obtained are very simple be-
cause a lot of subformulas produced by this procedure are identities of (same) variable,
which may be replaced by their truth value and so simplify theconjunct. It can be seen
that the formula is unsatisfiable because it says that (1) alltokens inrw are equal tol ′

in subformula∃l ′ ∈ rw...∀z∈ rw.... ...∧ (z= l ′)... and (2) there exists a token inrw,
lr which is not equal tol ′. Clearly (1) and (2) are in contradiction, so the formula is
unsatisfiable.

The transitionw2 of the writer models the writer mutating variablex. The post-
image ofI through this transition is:

postw2
(I) ≡ ∃t ′ ∈ w3. ∃t ′x ∈ px. ∃Idt ,αx.

[Ax∧RW∧RWw∧RWr ∧RF

∧α(t ′x) = g(α(tx))∧ Id(t ′) = Id(t)

]⊖ (t ∈ w2,tx ∈ px, Id(t) 7→ Idt ,α(tx) 7→ αx)

⊕ (t ′ ∈ w2,t ′x ∈ px)

We apply the definition given in Table 1 for⊕ and⊖ operations and explicit subformu-
las changed by these operations.

postw2
(I) ≡ ∃t ′ ∈w3. ∃t ′x ∈ px. ∃Idt ,αx.

A′x(t
′
x)∧RW∧RW′w(t ′, Idt)∧RWr ∧RF′(t ′x,αx)

∧α(t ′x) = g(αx)∧ Id(t ′) = Idt

whereA′x(x
′) ≡ ∀x1,x

′
1 ∈ px. (x′1 = t ′x∨x1 = t ′x)

RW′w(t ′, Idt) ≡ (∀w∈ {w2,w3}. (∀lw ∈ rw. (Id(w) = Id(lw)∧ ty(lw) = W))
∨(w3(w)∧w = t ′))

∧ (∀lw ∈ rw. Idt = Id(lw)∧ ty(lw) = W)

RF′(t ′x,αx) ≡ ∀a∈ r3,tx ∈ px.(y(a) = f (α(tx))∨ tx = t ′x)∧y(a) = f (αx)

Using the fact that subformulasRW andRWr do not contain free variables, we obtain
the simpler formula below:

postw2
(I) ≡ RW∧RWr ∧P

whereP≡ ∃t ′ ∈w3. ∃t ′x ∈ px. ∃Idt ,αx. A′x(t
′
x)∧RW′w(t ′, Idt)∧RF′(t ′x,αx)

∧α(t ′x) = g(αx)∧ Id(t ′) = Idt

In order to prove thatpostw2
(I) =⇒ I is valid, we check the satisfiability of the for-

mulapostw1
(I)∧¬I , which may be simplified by eliminating subformula appearing in

positive and negative form as follows:

postw2
(I)∧¬I ≡ RW∧RWr ∧P∧ (¬Ax∨¬RF∨¬RWw)

≡ (RW∧RWr ∧P∧¬Ax)

∨(RW∧RWr ∧P∧¬RF)

∨(RW∧RWr ∧P∧¬RWw)

It can be shown that each disjunct is unsatisfiable. For example, we consider the third
disjunct which may be written as follows:

RW∧RWr ∧P∧¬RWw

≡ (∀u,u′ ∈ rw. (ty(u) = ty(u′))∧ (ty(u) = R∨ ty(u) = W)∧ (ty(u) = W =⇒ u = u′))

∧ RWr

∧ (∃t ′ ∈ w3. ∃t ′x ∈ px. ∃Idt ,αx. A′x(t
′
x)∧RF′(t ′x,αx)

∧(∀w∈ {w2,w3}. (∀lw ∈ rw. (Id(w) = Id(lw)∧ ty(lw) = W))
∨(w3(w)∧w = t ′))

∧(∀lw ∈ rw. Idt = Id(lw)∧ ty(lw) = W)

∧α(t ′x) = g(αx)∧ Id(t ′) = Idt)

∧ ¬(∀w∈ {w2,w3}. ∀lw ∈ rw. Id(w) = Id(lw)∧ ty(lw) = W)

which can be proved by our method as been unsatisfiable. The reason is that¬RWw is
in contradiction with the subformulaRW′w(t ′, Idt)∧ Id(t ′) = Idt of P.

The transitionw3 models the releasing of the lock. Thepost-image ofI through this
rule is:

postw3
(I) ≡ ∃t ′ ∈w4. ∃Idt , Idl ,tyl .

[Ax∧RW∧RWw∧RWr ∧RF

∧ Id(t) = Id(l)∧ ty(l) = W∧ Id(t ′) = Id(t)

]⊖ (t ∈ w3, l ∈ rw, Id(t) 7→ Idt , Id(l) 7→ Idl ,ty(l) 7→ tyl)

⊕ (t ′ ∈ w4)

≡ ∃t ′ ∈w4. ∃Idt , Idl ,tyl .

Ax∧RW′(tyl)∧RW′w(Idt , Idl ,tyl)∧RW′r (Idl ,tyl)∧RF

∧Idt = Idl ∧ tyl = W∧ Id(t ′) = Idt

whereRW′(tyl) ≡ (∀u,u′ ∈ rw. (ty(u) = ty(u′))∧ (ty(u) = R∨ ty(u) = W)∧
(ty(u) = W =⇒ u = u′))

∧(∀u′ ∈ rw. (tyl = ty(u′))∧ (tyl = R∨ tyl = W)∧
(tyl = W =⇒ f alse))

∧(tyl = tyl)∧ (tyl = R∨ tyl = W)∧ (tyl = W =⇒ true)

RW′w(Idt , Idl ,tyl) ≡ (∀w∈ {w2,w3}. ∀lw ∈ rw. Id(w) = Id(lw∧ ty(lw) = W)

∧ (∀lw ∈ rw. Idt = Id(lw)∧ ty(lw) = W)

∧ (Idt = Idl ∧ tyl = W)

RW′r (Idl ,tyl) ≡ ¬(∃r ∈ {r2, r3}. true)∨ (∃lr ∈ rw. ty(lr) = R)∨ (tyl = R)

Using the same reasoning than for previous transitions, it can be shown thatpostw3
(I)

is included inI .
At this point, we shown thatI is an invariant of the writer rules. Showing thatI is

an invariant bypost-images of reader transitions is very similar.

