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Abstract

We propose a subclass of timed game automata
(TGA), called Task TGA, representing networks of
communicating tasks where the system can choose when
to start the task and the environment can choose the
duration of the task. We search to solve finite-horizon
reachability games on Task TGA by building strategies
in the form of Simple Temporal Networks with Uncer-
tainty (STNU). Such strategies have the advantage of
being very succinct due to the partial order reduction
of independent tasks. We show that the existence of
such strategies is an NP-complete problem. A practical
consequence of this result is a fully forward algorithm
for building STNU strategies. Potential applications of
this work are planning and scheduling under temporal
uncertainty.

1 Introduction

Timed Game Automata (TGA) model has been in-
troduced in [21] in order to represent open timed sys-
tems, and is nowadays extensively studied both from
a theoretical and applied viewpoints. As usual in the
game theory, main problems for timed games are (1)
search for winning strategies that allow to the pro-
tagonist player (or the controller) to reach his or her
aims whatever the opponent player (or the environ-
ment) does, and (2) search for winning states (from
which such a strategy exists). A winning strategy can
be interpreted as a control program that respects its
specification (or maximizes some value function) for
any actions of the environment, and for this reason
game-solving for TGA is often referred to as controller
synthesis. Such a synthesis finds applications to, e.g.,
industrial plants [24], robotics [1], or multi-media doc-
uments [17].

A large class of applications of timed games, relevant
to this work, is scheduling and planning under tempo-
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ral uncertainty (see [3, 12]). For this kind of applica-
tions, the protagonist masters all the behaviour of the
system, except the durations of its actions. The aim
is to ensure a good functioning of the system for any
timing (decided by the opponent/environment player
in some predefined bounds). Thus a strategy is a con-
trol program, schedule or plan robust to timing varia-
tions in the controlled process. During the last decade,
the planning community has developed several tech-
niques for timed planning problems. These techniques
(e.g., [18]) are based on constraint programming and
give good performances in practice.

On the other hand, during first years of timed
games, a major difficulty was related to the fast state
explosion and non-scalability of algorithms and tools.
Theoretically, this is not surprising since the upper
bound complexity of solving reachability games on
TGA has been proved EXPTIME [16]. But the main
reason of these bad performances was that most al-
gorithms explored (in a backward way [21, 2], or in
a mixed one [24]) almost all the huge symbolic state
space of the timed game automaton. Four years ago, an
important practical progress in timed strategy synthe-
sis has been attained by Cassez et al. [9], who adapted
to the timed case a forward on-the-fly game-solving
algorithm from [19], and implemented the resulting al-
gorithm in the tool Uppaal-Tiga [7]. This tool has
a performance comparable to reachability analysis of
timed automata, and thus makes timed game solv-
ing only as difficult as timed verification. However,
in many practical cases, even this solution is not al-
ways satisfactory. One issue is still the state explosion
preventing the tool from finding a strategy. Another
issue is a big size and complexity of the strategy syn-
thesized. It is often too heavy to be deployed on the
controller. For distributed systems, the controller has
to be centralized because the strategy obtained is diffi-
cult to distribute. Partial order based methods [8, 20]
could help, but as far as we know, they have not yet
been applied to timed games.

In this paper, we give a formal explanation of the
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good results obtained by the planning community by
(1) identifying a game model for the timed planning
problems and by (2) showing that the complexity of
solving such games becomes NP-complete if we search
to build strategies of a special form. As a conse-
quence, we obtain a fully forward algorithm for solv-
ing timed games by building compact and easy to dis-
tribute strategies.

More precisely, we consider games played on a spe-
cial kind of TGA, so-called task timed game automata
(TTGA). Such an automaton is a parallel composition
of several TGA called tasks. In every task, the con-
troller executes a (possibly infinite) sequence of steps.
At each step, the controller decides when to launch
some actions whose durations are chosen by the envi-
ronment and it waits the end of actions launched before
starting the next step. Figure 1 gives an example of a
TTGA with five tasks. The task Move repeats three
steps infinitely, at each step the controller launches one
action using the controllable transition (solid arrow);
the duration of this action is chosen by the environment
in the interval given on the uncontrollable transition
(dashed arrow). Notice that, in our games, the envi-
ronment (the opponent player) has no discrete choice,
it determines only some durations. The controller has
only the choice of the task to execute, but tasks can-
not do discrete choices. The aim of the controller is to
reach some set of goal states before some deadline (the
horizon of the game), and never leave the set of safe
states until this goal.

For such games, we will consider strategies of a cer-
tain form. First, we disallow “conditional moves”, i.e.,
the discrete choices of the controller are fixed, and the
only way that it reacts to the choices of the environ-
ment is by adapting the time at which it launches its
actions. This requirement limits somewhat the power
of the controller. For example, we are not able to ob-
tain optimality like in [2] because this needs conditional
schedulers. Second, instead of a memory-less strategy
saying for each state what to do (like in almost all the
papers/tools on timed games), we represent a strategy
by a compact data structure, called STNU [25], and
a computational procedure saying for every game his-
tory what are possible next moves for the protagonist.
In [1] we show that such a strategy is, by its nature, a
more complex object than the usual “state feedback”
(or memory-less), but it is in most cases smaller wrt
the number of transitions needed to reach the goal,
more permissive wrt the number of runs included, and
easier to distribute in a multi-component timed system
(although some parts of the execution shall be central-
ized).

Related work. A data structure similar to STNU,
called event zones, has been used in [20] for the verifi-
cation of timed automata. STNU extend event zones
with uncontrollable edges. The IxTeT planner [14]
uses the STNU data structure and an A∗-like search al-
gorithms to obtain STNU plans from constraint-based
specification. Our work gives a TGA model sufficient
and yet more expressive for modeling pure1 timed plan-
ning problems considered by IxTeT. Moreover, the
completeness of the algorithm used by IxTeT, even for
pure timed planning problems, has been a conjecture.
We provide here a proof of this conjecture. Finally, our
work fulfills the study of the relation between STNU
and TGA started by Vidal in [26]. In his work, Vi-
dal shows that TGA are more expressive than STNU
and provides a semantics for the execution of STNU
strategies in terms of reachability games on TGA.

2 Task Timed Game Automata

A TTGA is the parallel composition of a finite set of
special TGA called tasks. In each task, the transitions
form a sequence with a (possibly empty) final cycle.
The sequence of transitions is built from subsequences
where a controllable transition is followed by zero or
more uncontrollable transitions. These subsequences
model a step of the controller starting zero or more
tasks with uncontrollable durations but with totally
ordered finishing times. When executing a controllable
transition, a task may synchronize with its peers only
by inspecting their location.

First, let us recall the classical definition of TGA.
Let X be a finite set of clocks with values in R≥0.
We note by B(X) the set of rectangular constraints on
variable in X which are possibly empty conjuncts of
atomic constraints of the form x ∼ k where k ∈ N,
∼∈ {<,≤,≥, >}, and x ∈ X. A constraint in B(X)
defines an interval in R≥0 for any x ∈ X.

Definition 2.1 [21] A Timed Game Automata (TGA)
is a tuple A = (L, `0, X,E, Inv) where L is a finite set
of locations, `0 ∈ L is the initial location, X is a finite
set of real-valued clocks, E ⊆ L×B(X)×{c, u}×2X×L
is a finite set of controllable (label c) and uncontrollable
(label u) transitions, Inv : L → B(X) associates to
each location its invariant.

For simplicity, this classical definition does not include
discrete variables. However, TGA can be extended
with discrete variables whose values can be tested and
assigned in transitions. Also, TGA can be composed in
parallel to form networks of TGA. The synchronization

1IxTeT models are in fact hybrid since they may relate timed
variables (clocks) and discrete variables.

2



1

2

3

4

5

6

Move

Arm@1

x1 ∈ [3, 4]

Arm@1 x1 ∈ [5, 6]

Arm@1

x1 ∈ [1, 2]

1

2

3

4

Arm

x2 ∈ [2, 4]

x2 ∈ [1, 3]

1

2

3

Pic

Move@3&
Arm@3

x3 ∈ [3, 6]

1

2

3

Com

Vw@3&
Move@1

x4 ∈ [8, 10]

1

2

3

4

Vw

x5 ∈ [0, 0]

x5 ∈ [20, 30]

x5 ∈ [40, 50]

Figure 1. TTGA network for the Explore rover.

between parallel TGA can be done using shared clocks
or discrete variables.

Then, a TTGA is a network of TGA where (1) each
TGA has a special form, called task, (2) the clocks
are not shared between parallel tasks, and (3) the syn-
chronization is done only using location constraints. A
location constraint i@[m,n] requires that the task i is
in any location between locations m and n. Let I be a
finite set of tasks identifiers. We denote by I(I) the set
of possibly empty conjunctions of locations constraints
over the set of tasks I. Wlog, we consider that all loca-
tion constraints in I(I) are well formed, i.e., they refer
to existing locations in these tasks.

Definition 2.2 A task timed game automaton
(TTGA) is a finite set of tasks, A = ||i∈ITi, each task
Ti being a tuple (Li, `

0
i , xi, Ei) where Li is a finite set

of locations, `0i ∈ Li is the initial location, xi is the
local clock, and Ei : Li ⇀ I(I\{i})×B(xi)×{c, u}×Li

is a finite set of transitions satisfying the following
constraints:

(i) (chain or lasso) at most one location has no suc-
cessor by Ei, i.e., |Li| − 1 ≤ |Dom(Ei)|,

(ii) (no synchronization for the environment) for any
transition ` 7→ (gd, gx, u, `′) ∈ Ei the constraint gd

is empty (true),

(iii) (no time blocking for the environment) for any two
consecutive transitions ` 7→ (gd, gx, a, `′) and `′ 7→
(g′d, g

′
x, a′, `′′) s.t. a = u, gx defines an interval in

R≥0 which precedes the interval defined by g′x.

Compared to TGA, tasks have only one clock and
a transition relation of a special form (partial func-
tion). Moreover, it follows from (i) that a task is either
a finite sequence (when |Li| − 1 = |Dom(Ei)|) or a
sequence with a final cycle (when |Li| = |Dom(Ei)|).
For this reason, we will denote locations ` ∈ Li by a

natural number representing the size of the shortest
path between `0i and `; by convention, we denote `0i by
1. The transitions of tasks have a (discrete) location
constraint, but no set of clocks to be reset. Instead,
this set is implicitly determined by the kind of transi-
tions, since xi is reset iff the transition is controllable.
Another implicit definition in tasks is the invariant la-
beling for locations, Inv. For any ` ∈ Li, the invari-
ant of ` is implicitly xi ≤ M , where M is the upper
bound of the interval defined by the timed guard gx

in the transition ` 7→ (gd, gx, a, `′) in Ei (or empty if
such transition does not exists). With this implicit def-
inition for Inv, the constraint (iii) ensures that when
the environment executes an uncontrollable transition,
it can not be blocked by the invariant of the target
location. Moreover, uncontrollable transitions are exe-
cuted in a strict sequence and a controllable transition
is executed after the termination of all previous uncon-
trollable transitions. This constraint has an important
consequence: the cycle of a task shall contain at least
one controllable transition to reset the clock. Wlog, we
will suppose that cycles always start with a controllable
transition. Also, like for TGA, we consider only tasks
with non-Zeno cycles.

Since TTGA is a subclass of networks of TGA, we
omit the definition of its semantics (see [4] for details).
We only recall some notions needed to define game se-
mantics. A run ρ of a TGA is a sequence of alternat-
ing time and discrete transitions also represented by a
timed words (a1, τ1) . . . (am, τm) where a1, . . . , am are
discrete transitions executed at the global time given
respectively by τ1, . . . , τm and such that when i ≤ j
then τi ≤ τj . We denote by ρ[0], ρ[i], and last(ρ) the
first state2, the (i+1)th state (i.e., after the ith discrete
action), and resp. the last state of a run ρ. Runs(A, s)
denotes the set of runs of A starting in state s.

2A state of an automaton is given by the locations of compo-
nents and valuations of clocks.

3



Example 2.1 Our running example is an instance of
the Explore system inspired from a Mars rover [5]. The
rover explores an initially unknown environment and
it can (a) move with the cameras pointing forward; (b)
move the cameras (fixed to an arm); (c) take pictures
(while still) with the cameras pointing downward, and
(d) communicate (while still). The mission of the rover
is to navigate in order to take pictures of predefined lo-
cations, to communicate with an orbiter during prede-
fined visibility windows, and to return to its initial loca-
tion before 14 hours. There is a lot of temporal uncer-
tainties, especially in the duration of moves and com-
munications. A TTGA model of this rover is given on
Figure 1. Task Move models navigation between three
predefined locations reached in locations 1, 3, resp. 5.
Task Pic models taking a picture at the second location.
Task Arm models arm moving between two positions:
forward (location 1) and downward (location 3). Task
Com models the communication with an orbiter when
the rover is at the first location (the base) and the vis-
ibility window is active. Task Vw models the visibility
window whose start and end are controlled by the en-
vironment and it is active in location 3.

3 Simple Games

The games we consider on TTGA belong to a special
subclass of reachability games. We first provide general
definitions about reachability games [15].

A reachability game structure is a tuple G =
(A, I,G,S) where A is an automaton with edges la-
beled by controllable and uncontrollable actions, an
initial state I in A, a goal set of states G, and a safe
set of states S. The game starts in the initial state I
and, in every state, the controller and the environment
choose between waiting or taking a transition they con-
trol. The state evolves according to these choices. If
the current state is not in S, then the environment
wins. If the current state is in G, then the controller
wins. Solving a game G consists in finding a strategy f
such that the automaton A starting from I and super-
vised by f satisfies at any point the constraints in S
and reaches G. A special class of reachability games are
finite horizon games where the game stops after some
finite horizon B. In TCTL, this means that A super-
vised by f satisfies the formula I ∧ A[S U≤B (S ∧ G)].

In this work, we consider a finite horizon reachability
game defined as follows:

Definition 3.1 A simple game is a finite horizon
game G = (A, I,G,S) such that:
– A is a TTGA and I is its initial state,
– G is specified using a (non empty) conjunction of lo-
cation constraints i@[m,n] saying that any location of
task i between m and n is part of the goal,

– S is specified using a conjunction of constraints of
the form:
◦ i@[m,n] =⇒ j@[k, `] (embedding) which requires

that if task i is in a location in [m,n] then task j is in
a location in [k, `], and
◦ i@[m,n] ] j@[k, `] (mutex) which requires mutual

exclusion between locations in [m,n] of task i and loca-
tions in [k, `] of task j.

Wlog, we consider that safety and goal constraints are
minimal, i.e., all redundant conjuncts are eliminated.

Example 3.1 G for the Explore example is specified
by the constraint:

γ = Move@1 ∧ Pic@3 ∧ Com@3
specifying that the rover has to take the picture, to com-
municate with the orbiter, and to return at its initial
location. The horizon is B = 14 and the set S is given
by the constraint δ below. In δ, the first two conjuncts
forces the rover to take the picture (Pic@2) when the
arm is downward (Arm@3) and the rover is still at the
second location (Move@3); the next conjuncts ask that
rover is moving (Move at locations 2, 4, or 6) with the
arm oriented forwardly (Arm@1).

δ = (Pic@2 =⇒ Arm@3) ∧ (Pic@2 =⇒ Move@3)∧∧
`∈{2,4,6}(Move@` =⇒ Arm@1)∧

(Com@2 =⇒ Move@1) ∧ (Com@2 =⇒ Vw@3)

4 Strategies and STNU

We first recall some definitions concerning strate-
gies. A strategy for a controller playing a game G is a
relation f between Runs(A, I) and the set of control-
lable transitions in A extended with a special symbol
λ. Its semantics is given by the following three rules:
(1) if (ρ, λ) ∈ f , the controller may wait in the last
state of ρ, (2) if (ρ, e) ∈ f , the controller may take the
controllable transition e in the last state of ρ, (3) if ρ
is not related by f , the controller has no way to win
for ρ with the strategy f . Given a strategy f , we de-
fine the plays of f , plays(f), to be the set of runs that
are possible when the controller follows the strategy f .
Given a reachability game structure G, a strategy f is
a winning strategy for the game G if for all ρ ∈ plays(f)
such that ρ[0] ∈ I, there exists a position i ≥ 0 such
that ρ[i] ∈ G, and for all positions 0 ≤ j ≤ i, ρ[j] ∈ S.

4.1 STNU

For finite horizon games, the winning strategies have
a finite representation (in absence of Zeno runs). A
compact way to represent such strategies is the Sim-
ple Temporal Network with Uncertainties (STNU) [25].
We present shortly STNU, further details can be found
in [25, 23].
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An STNU is a weighted oriented graph in which
edges are divided into two classes: controllable (or
requirement) edges and uncontrollable (or contingent)
edges. The weights on edges are non-empty intervals in
R. The nodes in the graph represent (discrete) events,
called time-points. The edges correspond to (interval)
constraints on the durations between events. The time-
points which are target of an uncontrollable edge are
controlled by the environment, subject to the limits
imposed by the interval on the edge. All other time-
points are controlled by the controller, whose goal is to
satisfy the bounds on the controllable edges.

Definition 4.1 An STNU Z is a 5-tuple
〈N,E, C, l, u〉, where N is a set of nodes, E is a
set of oriented edges, C is a subset of E containing
controllable edges, and l : E → R ∪ {−∞} and
u : E → R ∪ {+∞} are functions mapping edges into
extended real numbers that are the lower and upper
bounds of the interval of possible durations. Each
uncontrollable edge e ∈ E\C is required to satisfy
0 ≤ l(e) < u(e) < ∞. Multiple uncontrollable edges
with the same finishing points are not allowed.

Each STNU is associated with a distance graph [11]
derived from the upper and lower bound constraints.
An STNU is consistent iff the distance graph does not
contain a negative cycle, and this can be determined
by a single-source shortest path propagation such as in
the Bellman-Ford algorithm [10].

Choosing one of the allowed durations for each edge
in an STNU Z corresponds to a schedule of time-points
and gives a distance graph which can be checked for
consistency. Then schedules of Z represent finite runs
over the events in Z. Choosing one of the allowed du-
rations for each uncontrollable edge in an STNU Z de-
termines a family of distance graphs called projections
of Z. Each projection determines a set of finite runs
where uncontrollable time-points are executed always
at the same moments. An execution strategy f for an
STNU Z is a partial mapping from projections of Z
to schedules for Z such that for any choice p of execu-
tion time for uncontrollable time-points, f assigns an
execution time for all time-points in Z such that (1) if
the time-point is uncontrollable, the execution time is
equal to one chosen in p, and (2) if the time-point is
controllable, the execution time satisfies the constraints
on edges in Z. An execution strategy is said viable if it
produces a consistent schedule for any projection of Z.
So an STNU represents several execution strategies.

Various types of execution strategies have been de-
fined in [25]. We consider here the dynamic execution
strategies which assign a time to each controllable time-
point that may depend on the execution time of uncon-
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[0,2]
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Figure 2. STNU (a) DC but not reduced, (b) re-
duced wrt shortest path, (c) reduced wrt DC,
(d) not DC.

trollable edges in the past, but not on those in the fu-
ture (or present). An STNU is dynamically controllable
(DC) if it represents a dynamic execution strategy. For
this reason, we call in the following an STNU strategy
an STNU having the DC property.

Definition 4.2 An STNU strategy Z is winning if any
schedule of Z is a winning run.

In [23, 22] is shown that the DC property is
tractable, and that a polynomial (O(n5) with n = |N |)
algorithm exists defined as follows:

procedure ΠDC (STNU Z) returns Z ′ or ⊥

The algorithm applies iteratively on Z a set of rewrit-
ing rules including the ones in the shortest path al-
gorithm [10]. These rules introduce controllable edges
and tighten the bounds of controllable edges in the in-
put STNU. The algorithm returns the rewritten STNU
Z ′ if it is DC, or an empty STNU ⊥ otherwise.

Figure 2 shows four STNU with the same nodes and
edges, but with different labels and properties (uncon-
trollable edges are represented by dashed arrows).

4.2 Interfacing STNU with simple games
In order to be a strategy for a simple game G, an

STNU shall speak about the transitions of the TTGA
A done before reaching some goal state in G. We for-
malize here this relation by defining (1) the interface
of a game G and (2) the satisfaction relation between
an STNU and a game interface.

Intuitively, the interface of a simple game is an
STNU containing a time-point for each transition of the
game that can take place until the horizon of the game
is reached; these time-points are related with edges la-
beled by the timing constraints in the TTGA of the
game. For tasks with cycles, a transition may appear
several times until the game end. Due to the special
form of tasks, we can unfold these tasks and compute
(see [4] for details) for each transition m of a task i its
maximal number of occurrence in the horizon B, de-
noted by µ(i)(m) ≥ 0. Thus, we can identify each tran-
sition e that can be executed during the game horizon
by a triple (i,m, u) where i ∈ I is the identifier of the
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task owning e, m ∈ Li is the source location of e, and
u ∈ [1, µ(i)(m)] is the occurrence number computed
for e. In the following, we denote by prec(i,m, u) the
transition preceding (i,m, u) in the unfolding of task
i. Similarly, precc(i,m, u) denotes the last controllable
transition before (i,m, u) in the unfolding of task i.
If no such preceding transition exists, both notations
return (i, 0, 1).

The interface of a simple game G with horizon B is
an STNU ZG = 〈NG, EG, CG, lG, uG〉 and a labeling of
time-points σG : I × N× N→ NG defined as follows:
– NG contains two special time-points t0 and tG corre-
sponding respectively to the initial moment and to the
goal moment. These two time-points are related by an
edge (t0, tG) ∈ CG labeled by [0, B] to model the finite
horizon constraint of the game. Since the time-point
t0 is the initial moment on all tasks, it is labeled by
(i, 0, 1) for any i ∈ I.
– For each task i and each transition m of i, NG con-
tains a number of time-points given by µ(i)(m).
– EG relates the nodes in NG wrt timing constraints
and ordering of transitions in A. For example, a tran-
sition e = m 7→ (gd, gx, a, n) in some task i defines

in EG a first set of edges {precc(i,m, u)
Igx−−−→(i,m, u) |

1 ≤ u ≤ µ(i)(m)} where Igx is the interval on the local
clock defined by gx. This set is included in CG iff a = c;
it models the timing constraint gx which defines a de-
lay from the last reset of the local clock. The second
set of edges defined by e is {(i,m, u) [0,+∞)−−−−−→(i, n, u) |
1 ≤ u ≤ µ(i)(m)} ⊂ CG and it models the ordering of
transitions starting from m and n in task i.

Example 4.1 Figure 3 gives the interface of the game
considered in Example 3.1. The time-points are put in
clusters recalling the task owning the transitions repre-
sented by these time-points. Controllable edges without
labeling intervals are implicitly labeled by [0,+∞).

The interface is the “largest” STNU for G wrt the
time-points represented and the constraints on edges,
but it can not represent a strategy for G because nei-
ther goal nor safety constraints are satisfied. In fact,
the interface is used as a sanity check for candidate
STNU strategy: a candidate strategy shall contain a
“consistent” subset of time-points and edges in the in-
terface of G. Formally, an STNU Z = 〈N,E, C, l, u〉
is said to satisfy the interface (ZG, σG) of a game G,
denoted by Z |= G, iff (1) N contains t0 and tG, (2) N
contains a subset of NG closed by the precedence rela-
tion, i.e., if the time-point (i,m, u) is in N then all its
predecessors in the unfolding of i are also present, and
(3) the edges defined in EG between the nodes in N
are also defined in E with the same kind (controllable

Move

Pic

Arm

Com

Vw

t0

tG

[0,14]

[0,0]

[3,4] [5,6] [1,2] [3,4] [5,6]

[3,6]

[2,4] [1,3] [2,4]
..3 times...

[1,3] [2,4]

[8,10]

[20,30]
[40,50]

Figure 3. Interface for the Explorer game with
horizon B = 14.

or uncontrollable) and the same labeling intervals for
uncontrollable edges; for controllable edges, the label-
ing interval in Z shall be included in the corresponding
one in ZG. Intuitively, Z satisfies the interface of the
game G if it puts exactly the same constraints as ZG

on common uncontrollable edges and it may squeeze
the constraints on controllable edges.

5 Computing STNU Strategies

We consider the following two problems for simple
games G with horizon B given in unary:

G-Solve: Decide if a winning strategy exists for G.

G-Solve-STNU: Decide if a winning STNU strategy
exists for G.

Our first result is that, despite the simplicity of the
game considered, the problem of finding strategies for
such games is still NP-hard.

Theorem 5.1 The G-Solve problem is NP-hard.

Proof: The proof consists in reducing the Clique-
Cover problem [13] to the synthesis of a strategy for
simple games. An instance of the CliqueCover prob-
lem is an integer k and an undirected graph P = (V,E)
with n vertices (|V | = n) numbered 1 to n. The
CliqueCover problem is to decide whether a graph
can be partitioned into k cliques. We explain how to
reduce this problem to Gk-Solve problem, where Gk is
a simple game. The TTGA of Gk is built as follows: for
each vertex i ∈ [1, n] of P , we define a task indexed by i

with the form: 1 xi≥0,c,{xi}−−−−−−−−→ 2 0≤xi<1,u,{}−−−−−−−−−→ 3. The set
S of Gk is specified by

∧
(i,j) 6∈E i@2 ] j@2, i.e., for each
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Require: STNU Z s.t. Z |= G.
Ensure: Returns true if Z is a winning strategy for G.
1: Z ← Z ∪ ZG

2: Ẑ ← ΠDC(Z)
3: if Ẑ = ⊥ then
4: return false
5: end if
6: return Ẑ |= shapeGoal and Ẑ |= shapeSafe

Figure 4. Test for winning STNU strategy.

pair of vertices (i, j) such that there is no edge in E
between i and j we ask mutual exclusion between the
locations 2 of the corresponding tasks. The set G of Gk

is specified by ∧ii@3, i.e., all tasks shall reach location
3. The horizon of Gk is fixed to k. It follows (details
in [4]) that P can be covered by k cliques or less iff
the instance of the Gk-Solve problem has a strategy to
win. Moreover, an STNU strategy can be built for Gk.
2

A direct consequence of the proof above is:

Corollary 5.1 The G-Solve-STNU problem is NP-
hard.

The upper bound of complexity for G-Solve is given
by the upper bound of solving reachability game prob-
lems for TGA, i.e., EXPTIME in [16]. This tight upper
bound is obtained for general TGA with safety games
and state based (memory less) strategies.

The following theorem says that this upper bound
decreases for G-Solve-STNU problems to NP.

Theorem 5.2 The G-Solve-STNU problem is NP-
complete.

Proof idea. We show that it exists a correct and com-
plete polynomial test to check that an STNU strategy
Z satisfying the interface of a simple game G is a win-
ning STNU strategy. Then, the theorem follows since
for a horizon B given in unary, the description of a
candidate STNU strategy is polynomial in the number
of transitions in G and in the horizon B (Lemma 5.2).

The polynomial test is given on Figure 4. First (line
1), Z is filled with the missing time-points and edges
in the interface of G thus obtaining a new STNU Z.
Second (line 2), the DC algorithm is applied on Z to
test its dynamic controllability and to compute its re-
duced form. Third (line 6), Ẑ is tested for satisfaction
of goal and safety constraints in G. This test is done
by searching in Ẑ a set of edges (called shapes) for each
goal constraint in G, for each discrete guard on control-
lable transitions of the TTGA of G, and for each safety
constraint in S.

The technical point in the proof is the definition
of shapes such that the test is correct and complete.
A shape is a positive boolean composition of prece-
dence relations between two time-points. A time-point
t precedes the time-point t′ in an STNU Z, denoted by
Z ` t ≺ t′, iff Z contains an edge from t to t′ labeled
by an interval included in (0,+∞). For example, the
shape used to test that the goal constraint i@[m,n] is
satisfied by Ẑ is prec(i,m, u) ≺ tG ∧ tG ≺ (i, n, u) (see
Figure 5). The test succeeds if such shape exists in
Ẑ for some u. To test safety constraint and discrete

tG

prec(i,m,u)

(i,n,u)

i

Figure 5. Shape for goal constraint i@[m,n].

guards on transitions, the shapes shall be carefully de-
fined in order to obtain completeness. For example,
the shape for a constraint i@[m,n] =⇒ j@[k, l] is the
disjunction of three cases which are not disjoint (see
Figure 6). Intuitively, the constraint is satisfied if for
any occurrence u of transitions in task i leading to
location m (time-point prec(i,m, u)) and leaving the
location n (time-point (i, n, u)) there exists an occur-
rence u′ of the transition in task j leading to location
k (time-point prec(j, k, u′)) and leaving the location
l (time-point (j, l, u′)) such that one of the following
cases holds:
(i) the safety constraint is entirely satisfied since
prec(j, k, u′) precedes prec(i,m, u) and (i, n, u) pre-
cedes (j, l, u′),
(ii) the safety constraint is satisfied at the beginning of
the interval [m,n] for i but nothing is asked for the end
because the goal (time-point tG) is reached before the
end of the interval j@[k, l]; indeed, the game semantics
asks that safety constraints are satisfied until the goal
is reached but not beyond,
(iii) the safety constraint is not satisfied because the
considered time-points are after the goal.

The correctness proof follows easily from the def-
inition of shapes. The completeness is based on the
convexity of the STNU strategies and the fact that
the shapes defined can not exclude correct but convex
STNU. The full proof is given in [4].

To finish the proof, we compute the complexity of
the proposed algorithm. If the horizon B is given in
unary, the number of points in the interface of G is
polynomial, so the first two steps of the algorithm (lines

7



(a) (b) (c)

tG

prec(i,m,u)

prec(j,k,u’)
i i ij jj

prec(i,m,u)

prec(j,k,u’)

(j,l,u’)

(i,n,u)

prec(i,m,u)

(j,l,u’)

tG

Figure 6. Shape for safety constraint i@[m,n] =⇒ j@[k, l].

1–2) are also polynomial (DC is polynomial in the num-
ber of time-points in Z̃). Testing shapes (line 5) is also
polynomial. Indeed, to test the satisfaction of some
constraint (in guards, goal, or safety), one has to find
a set of edges of constant size (the shape) in the STNU.
But the number of edges in STNU is quadratic wrt the
number of nodes, so we obtain the following result:

Lemma 5.1 Given an STNU Z satisfying the inter-
face of a game G, the problem of deciding if Z is a
winning strategy for G is in PTIME.

Now, let us compute the size of a representation for
STNU that are candidate strategies for a game G. If
the TTGA of G has n transitions, the maximal num-
ber of time-points in the interface of G is n × B + 2,
limit reached when each transition takes one time unit.
Then, the maximal number of edges that has to be
specified for the STNU candidate is O(n2×B2). Each
of these edges is labeled by an interval given by two
integer numbers. However, these numbers are limited
by the horizon B.

Lemma 5.2 The size of describing a candidate STNU
strategy for a game G is O(n2 × B3) where n is the
number of transitions in the network N and B is the
horizon of the game.

6 Algorithm for solving simple games

The proof of Theorem 5.2 gives also the sufficient
conditions for an STNU to be a winning strategy for
a simple game G: (1) it has to satisfy the interface
of G, (2) it has to be DC, and (3) its reduced form
by ΠDC has to implement some precedence relations
(i.e., some shape) for each time-point concerned by a
guard, goal, or safety constraint. The last condition
defines a combinatorial space W for building winning
STNU strategies: each strategy represents a choice of
the shapes implementing the constraints of G for each
time-point in the interface of G.

Therefore, we propose a fully forward algorithm for
building winning STNU strategy, called in the following

Win STNU, which does a backtracking search in the
combinatorial space W. The algorithm starts with the
STNU interface of G, ZG (see Section 4.2). For each
choice step in W, it builds a partial solution by adding
to ZG the controllable edges given by the shape chosen.
The algorithm may use ΠDC as a selection (cut off)
test for the partially built solutions. Otherwise, when
all choices are done, ΠDC is applied to test the DC
property of the solution built.

Win STNU does not find all winning strategies of G
but only “standard” ones, i.e., STNU strategies which
contain all the time-points of the interface and have
maximal intervals on controllable transitions (see [4]).
Moreover, the number of time-points of a solution is
bounded by B times the number of transitions in G.
The properties of our algorithm are summarized by the
following proposition which proof is given in [4].

Proposition 6.1 The algorithm Win STNU is cor-
rect and complete wrt standard STNU strategies. It
builds solutions of size (number of nodes and edges)
quadratic in the size of the game.

7 Conclusion

We define a class of timed games for which search-
ing winning strategies in STNU form is NP-complete.
As a corollary, we obtain a fully forward algorithm
for solving the finite horizon reachability timed games.
This algorithm builds STNU strategies which are finite
memory strategies with no discrete choices but includ-
ing several orderings between independent actions of
the controller. Moreover, the size of these strategies
is small, i.e., quadratic in the size of the game. Fur-
ther works focus on providing a good implementation
of our algorithm and on comparing the strategies ob-
tained using other criteria, e.g., their volume [6].
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