
Cref Documentation and User Manual

Mihaela Sighireanu

1 General Presentation

Cref is a static analyzer for programs using dynamic memory. It does mainly
two kids of analysis:

check: The pre/post-condition reasoning on programs annotated with assertions
into a first order logic L speaking about heap structure and content [?].
The analyzer is based on a satisfiability procedure for the logic L which
is translated into a satisfiability problem for theories dealt by the current
SMT solvers.

invgen: The invariant synthesis for “while” loops working on heap. The principle
here is the computation of a fix-point over an abstract domain representing
heaps. The synthesized invariants have a special syntactic form, but they
express both properties on the structure of the heap and the data stored
in the cells of the heap.

Architecture (figure required):

• From annotated C programs to Why we use e.g., Frama-C or Caduceous.

• From annotated Why programs to internal input we use Why and Cref.

• From Cref programs to Interproc programs (with pointer variables trans-
lated into special integer variables).

• The Interproc is called for the computation of the fix-point (library Fix-
point) on abstract domains for heaps (managed using the Apron¡ interface).
One such abstract domain is Sll. It represents heaps for singly linked lists
with data over some numerical domain.

From C to Why: The C programs can be annotated with special comments
defining:

• vocabulary of the logic used to specify pre/post-condition and

• pre/post conditions

1



An existing solution to support such annotations is the Frama-C tool (based on
old Caduceos) combined with the Jessie tool.

The current versions of these tools give a semantics for pointers to records
which is not compatible with what we need. Some compilation work shall be done
here.

From Why to Cref: This step is introduced only to provide a solution to the
problem above. We generate an intermediate program on which operations on
pointers are rewritten in the good semantics. Also, simple “while” loops are
retrieved from the infinite loops of Why.

This phase shall disappear when a direct compilation using Frama-C is done.

From Cref to Interproc: This step is also a temporary glue used to facilitate
the integration of the fix-point computation done in Fixpoint.

Since Interproc input language has only numerical variables, we translate
pointer variables into numerical variables with special names as follows:

• if v is a pointer variable, it becomes ptr v integer variable;

• null pointer becomes ptr null integer variable;

• if v.f is a pointer field access, it becomes ptr v ptr f integer variable;

• if v.f is a data field access, it becomes ptr v dt f integer variable; we
also introduce a new variable ptr v dtp f in order to keep track of the
old values of data fields.

The translation above is not done for a direct interface with Fixpoint. This
interface require to rewrite a translation into a hyper-graph accepted by Fixpoint.

The atomic statements and conditions on pointer variables are translated in
order to obtain a normalized form defined as follows:

• atomic boolean conditions on pointer variables can be only in the form: v
== u, v == null, v.f == u, or v.f == null;

• assignment on pointer variables belongs to: v = null, v = u, v = u.f,
v.f = null, or v.f = u (only if v.f has been put to null before).

This normalized form allows to deal with garbage collection semantics for heaps.
During this translation, the pre-conditions of the code analyzed are trans-

lated into elements of the abstract domain and are given as starting points to
the main engine.

Main engine: The core part is the use of the fix-point computation on the
hyper-graph of the program in conjunction with an abstract domain for heaps.
The abstract domain used are managed using the Apron interface.

2



A External Libraries and Tools

A.1 Interproc

Interproc is a static analyzer of programs with numerical variables based on
abstract interpretation. For this, it uses mainly two engines:

• Apron library for abstract representation of configurations over the numer-
ical variables, and

• Fixpoint module for computation of fix-points of transformers (relations)
given by a hyper-graph of elementary transformers.

The steps of Interproc are the following:

1. Parsing of files giving programs in a little imperative programming lan-
guage with only scalar types (boolean, integer, float) and (recursive) pro-
cedures calls (files spl ???—parsing and AST).

2. Compute an hyper-graph of the program on which nodes are program
control points and hyper-edges are blocks of statements of the program
(files syn2equation, equation, boolexpr).

3. Call the Fixpoint computation forwardly/backwardly on the abstract do-
main chosen by the user (and managed by Apron) (file solving calling
modules Fixpoint and Apron).

The remaining files are used for pretty-printing programs (pSpl syn) and
graphs.

The lacks observed during the use of Interproc:

• Interproc input language does not include an assert statement. Possible
semantics for an assert statement in presence of fix-point computation:
(1) stop the computation if the assertion is not satisfied, or (2) take as
post-condition the assertion.

A.2 Apron

The lacks observed during the use of Apron:

• There is no other mean than syntactic restriction on names of variables to
add attributes to the numerical variables. For example, integer variables
which are symbolic parameters are dealt differently in the PDBM domain
than the normal integer variables.

It would be interesting to have an additional attribute for the type of each
variable; this attribute is interpreted or not by each abstract domain.

3


