
Online Budgeted Maximum Coverage∗

Dror Rawitz†

Bar-Ilan University
Ramat Gan 52900, Israel
dror.rawitz@biu.ac.il

Adi Rosén‡

CNRS and Université de Paris
France

adiro@irif.fr

Abstract

We study the Online Budgeted Maximum Coverage (OBMC) problem. Subsets of a
weighted ground set U arrive one by one, where each set has a cost. The online algorithm has to
select a collection of sets, under the constraint that their cost is at most a given budget. Upon
arrival of a set the algorithm must decide whether to accept or to irrevocably reject the arriving
set, and it may also irrevocably drop previously accepted sets. The goal is to maximize the total
weight of the elements covered by the sets in the chosen collection.

We give a deterministic 4
1−r -competitive algorithm where r is the maximum ratio between the

cost of a set and the total budget, and show that the competitive ratio of any deterministic online
algorithm is Ω(1

1−r). We further give a randomized O(1)-competitive algorithm. We also give a
deterministicO(∆)-competitive algorithm, where ∆ is the maximum weight of a set and a modified
version of it with competitive ratio of O(min{∆,

√
w(U)}) for the case that the total weight of the

elements, w(U), is known in advance. A matching lower bound of Ω(min{∆,
√
w(U)}) is given.

Finally, our results, including the lower bounds, apply also to Removable Online Knapsack.

Keywords: budgeted coverage, maximum coverage, online algorithms, competitive analysis,
removable online knapsack

1 Introduction

The Budgeted Maximum Coverage problem (abbreviated BMC) is the dual of the classical Set
Cover problem. In Set Cover the input consists of a collection of sets S = {S1, . . . , Sm} over the
ground set U = {u1, . . . , un} with cost for each set, and the goal is to find a sub-collection of sets of
minimal cost, whose union covers all the elements in the ground set. In BMC we are, in addition,
given weights for the elements and a budget cap B. The goal is to find a subcollection of the sets
that maximizes the total weight of the union of those sets, under the constraint that the total cost
of the subcollection is at most B. In other words, the goal is to find a subcollection that maximizes
coverage given a knapsack constraint. In fact the Knapsack problem can be viewed as the special
case of BMC in which the sets are pairwise disjoint.

In the Online Budgeted Maximum Coverage problem (OBMC) sets arrive online and the
goal of an online algorithm for this problem is to find (in an online manner) a sub-collection of the sets,
that maximizes the weight of the covered items, while adhering to the budget constraint. Preemption

∗A preliminary version of this paper appeared in the proceedings of ESA 2016 [3636].
†Supported in part by a grant from the Israeli Ministry of Science, Technology, and Space, Israel (French-Israeli

project Maimonide No. 3-10996) and by the Israel Science Foundation (grant No. 497/14).
‡Research supported in part by ANR project NeTOC, and by a French-Israeli grant PHC Maimonide 31768XL.

1

of previously used sets is allowed, but a preempted (or rejected at arrival) set cannot be used again
later. We note that preemption is necessary in order to achieve a bounded competitive ratio for this
problem by a deterministic or randomized online algorithm. BMC has many applications both in
its offline and online versions, such as facility location [3333, 99, 88], where the budget is the number of
facilities, and web streaming [3838], where the budget is the number (or total size) of web objects that
can be stored in memory.

The Budgeted Maximum Coverage problem, as well as its dual problem, the Set Cover
problem, both in their weighted (general costs) and unweighted (unit costs) versions, are funda-
mental, widely studied problems (cf. [2424, 4141]). Even in their unweighted versions they are NP-hard
problems [2121]; approximation algorithms exist for their weighted versions (with approximation ratios
of O(log n) for Set Cover [1414] and e

e−1 for BMC [2929]). These approximation ratios are best possible
unless P = NP [1919, 33]. The online version of the Set Cover problem has been studied in many
variants (see, e.g., [1616, 22, 1212, 3030]). As to the OBMC problem, only the unweighted case has been
studied in the online setting, where a 4-competitive deterministic algorithm is given [3838].

In the present paper we give the first results for the budgeted (i.e., when sets have varying costs)
online maximum coverage problems. We give both upper and lower bounds on the competitive ratio
of deterministic and randomized algorithms for this problem, in terms of a number of parameters of
the instance.

1.1 Our Contributions

We present a deterministic 4
1−r -competitive algorithm, where r , maxi

c(Si)
B is the maximum fraction

of the budget needed for any single set. Our algorithm is inspired by the online algorithms for the
case of unit costs [3838, 44]. However, several new ideas are needed to cope with general costs, such
as working with a fractional solution in the background and rounding it in an online manner to
an integral solution while incurring only a small penalty. Furthermore, the natural algorithm, that
results from reducing the weighted (set costs) case to the unit cost case by duplicating the sets,
does not necessarily yield fractional solutions that can be readily converted to integral ones (i.e.,
many sets are sometimes used fractionally in those fractional solutions). Instead, we give an online
algorithm for the weighted fractional setting that computes a solution which has at most one set used
fractionally. Such solution can be converted to an integral one in an online manner while incurring
only a small penalty (a 1/(1− r) factor).

On the negative side, we show that the competitive ratio of any deterministic online algorithm
for OBMC must depend on r, by showing a lower bound of Ω(1

1−r). Building on our deterministic
algorithms we then also give an O(1)-competitive randomized algorithm for OBMC.

We further give a deterministic (∆+1)-competitive algorithm for OBMC, where ∆ , maxS∈S w(S)
is the maximum weight of a set (defined under the assumption that all element weights are at least
1). Note that for unit weights we have that ∆ is the maximum set size. If w(U), i.e., the total
weight of all elements in the ground set, is known in advance, we show that a slight modification of
that algorithm is O(min{∆,

√
w(U)})-competitive. We give a matching lower bound, namely that

the competitive ratio of any deterministic online algorithm for OBMC is Ω(min{∆,
√
w(U)}), even

for the special case of unit weights. Note that w(U) = n in the unit weights case.

We note that by applying our deterministic upper bounds to the special case of OBMC in which
the sets are pairwise disjoint, we obtain results for the Removable Online Knapsack problem.
This problem is the version of Online Knapsack in which preemption is allowed. Furthermore,
our deterministic lower bounds apply to this problem since they can be obtained using constructions
containing pairwise disjoint sets.

2

1.2 Related Work

In the Maximum Coverage problem the goal is, given an integer parameter k, to cover as many
elements as possible, using at most k sets. In this case the natural greedy algorithm computes
solutions whose weight is within a factor of 1− (1− 1

k)k > 1− 1
e from the optimum (see [3434, 2525, 2424]).

This ratio holds even in the more general case of nonnegative, nondecreasing, submodular set function
maximization [3535, 2020].11 Khuller, Moss and Naor [2929] showed that Maximum Coverage cannot be
approximated to within a factor better than e

e−1 , unless NP ⊆ DTIME(nO(log logn)). Feige [1919] did the
same under the weaker assumption of P 6=NP. Ageev and Sviridenko [11] presented an approximation
algorithm for Maximum Coverage that computes solutions whose weight is within a factor of
1 − (1 − 1

∆)∆ from the optimum, where ∆ is the maximum size of a set. Khuller et al. [2929] showed
that BMC can be approximated to within e

e−1 . Sviridenko [4040] extended this result to maximization
of a monotone submodular set function subject to a budget constraint.

Saha and Getoor [3838] presented a deterministic 4-competitive algorithm for the Online Maxi-
mum Coverage problem. Ausiello et al. [44] analyzed a variant of the above algorithm and showed
that its competitive ratio is strictly less than 4, but that it tends to 4 as k increases. They also
considered the special case of Online Maximum Coverage in which vertices are used to cover
edges (i.e., an element appears in exactly two sets) and provided a simple deterministic 2-competitive
algorithm for the latter that simply chooses the k largest sets seen so far. Ausiello et al. [44] also gave
lower bounds 2 and 3

2 for Online Maximum Coverage and for that special case, respectively, on
the competitive ratio of any deterministic online algorithm. Badanidiyuru [66] and Chakrabarti and
Kale [1313] presented a streaming 4-approximation algorithm for maximizing a monotone submodular
function subject to cardinality constraint. This algorithm can be implemented as an online algo-
rithm. Buchbinder et al. [1010] studied submodular maximization with cardinality constraints which
contain Maximum Coverage as a special case, but they mainly focused on the non-monotone
case. Buchbinder, Feldman, and Schwartz [1111] provided constant competitive ratio algorithms for
online submodular maximization with preemption and a cardinality constraint. They also gave a
deterministic 4-competitive algorithm for the monotone case.

We note that Awerbuch et al. [55] studied a problem they called Online Set Cover. However
they actually consider a variant of Online Maximum Coverage in which the elements arrive in an
online manner, and the sets are revealed during this process. The goal is to cover as many elements
as possible using k sets without preemption, where an element is considered covered only by a set
that contains it which is added to the solution after the arrival of the element. Awerbuch et al. [55]
gave a randomized O(log n log m

k)-competitive algorithm for this problem.

The dual of Maximum Coverage is the classical Set Cover problem. For the unweighted
Set Cover problem, Johnson [2828] and Lovász [3131] showed that the greedy algorithm is an H∆-
approximation algorithm, where Hn the nth harmonic number. This result was generalize by
Chvátal [1414] to the weighted case. Feige [1919] proved a lower bound of (1 − o(1)) lnn on the ap-
proximability of that problem (unless NP ⊆ DTIME(nO(log logn))). In [3737, 33] it was shown that Set
Cover cannot be approximated within a factor of c log n, for some c > 0, unless P=NP. Set Cover
can also be approximated to within a factor of ∆U , maxu∈U | {S : u ∈ S} | [2323, 77]. However, it is
NP-hard to approximate it within ∆U − 1− ε, for any ε > 0, assuming ∆U > 2 [1717], or within 1.36
for ∆U = 2 [1818].

A certain online version of Set Cover was studied by Alon et al. [22]. In this problem the sets
are known in advance, subsets of the elements arrives in an online manner, and the goal is to cover

1A function f is called submodular if f(T) + f(T ′) ≥ f(T ∪ T ′) + f(T ∩ T ′) for every two sets T and T ′ in the
domain of f .

3

all seen elements with a sub collection of sets of minimal cardinality. A deterministic O(logm log n)-
competitive algorithm and a nearly matching lower bound are given in [22] (n is the number of
elements and m the number of sets).

Knapsack is a special case of BMC in which the sets are pairwise disjoint. Knapsack is known
to be NP-hard, but admits an FPTAS [3939, 2626]. Removable Online Knapsack (ROK) is a special
case of OBMC in which the sets are pairwise disjoint. In other words, in ROK items arrive one by
one, each with its load and value. An online algorithm is required to accept or to reject an incoming
item upon arrival, and it is allowed to drop previously accepted items to make room for a new item.
The goal is to maximize the value accrued by the accepted items, under the constraint that their
total load is within a given maximum load. Iwama and Taketomi [2727] considered the special case of
ROK in which the value of and item is equal to its load. They provided a deterministic competitive

algorithm whose ratio is
√

5+1
2 ≈ 1.62, and a matching lower bound. Han, Kawase, and Makino [2222]

and Cygan, Jeż, and Sgall [1515] gave a randomized 2-competitive algorithm and showed that the
competitive ratio of any randomized online algorithm is at least e+1

e . Both lower bounds apply to
OBMC. Non-removable Online Knapsack is the variant in which accepted items cannot be
dropped. In this case the deterministic [3232] and randomized [4242] competitive ratios are known to be
unbounded.

1.3 The Model

An instance of the BMC problem is composed of a weighted ground set U = {u1, . . . , un}, with each
element having a known weight w(ui) ≥ 1 (we define all weights to be at least 1 to avoid arbitrary
scaling of the weights). The instance is further composed of a collection S = {S1, . . . , Sm} of sets,
where Si ⊆ U , for every i. The cost of a set Si is denoted c(Si). Without loss of generality we assume
that the budget cap is 1, and therefore 0 < c(Si) ≤ 1, for every i.

In OBMC the sets of S arrive online, where each set Si is given by the elements that it contains,
as well as its cost, c(Si). When a set arrives the online algorithm has to decide whether to accept it
or to reject it, under the constraint that the currently accepted sets at any given time should have
a cumulative cost not larger than 1. The algorithm can drop a previously accepted set, i.e., extract
it from the currently accepted sets. However, a rejected or dropped set cannot later be re-accepted.
The goal of the online algorithm is to maximize the total weight of the elements covered by the
accepted sets.

Given a set S ⊆ U , we define its weight to be w(S) =
∑

u∈S w(u). Given a sub-collection C ⊆ S,
we define its cost to be c(C) =

∑
S∈C c(S). In addition, we sometimes write w(C) to denote w(∪S∈CS).

Given an instance of the OBMC problem we define ∆ , maxS∈S w(S), i.e., the maximum weight of
a set. Note that for unit weights we have ∆ = maxS∈S |S|. Further we define r , maxi c(Si) to be
the maximum cost of a set.

2 Deterministic Lower Bound

In this section we give lower bounds on the competitive ratio of deterministic online algorithms for
OBMC in terms of three parameters: the number of elements n, the weight of the heaviest set, ∆,
and the maximum cost of a set, r.

We start with our deterministic lower bound in terms of n and ∆.

Theorem 2.1. The competitive ratio of any deterministic online algorithm for OBMC is Ω(min {
√
n,∆}).

Proof. Let alg be any deterministic online algorithm for OBMC. Consider an input sequence con-
taining a collection of subsets of a ground set U that contains k2 unit weight elements, for an arbitrary

4

integer k. We define the input sequence given by an adversary. The input sequence starts with a set
S0, where S0 = {u1, . . . , uk} and c(S0) = 1. If alg does not accept S0, then the sequence terminates.
Otherwise, the sequence continues with S1, S2, . . ., such that Si = {ui} and c(Si) = 1/k2, for i ≥ 1,
until either alg drops S0 or i = k2.

To analyze the competitive ratio of alg, note that, as defined above, there are three options as
to the actual input sequence given by the adversary. We analyze the costs of alg and opt for each
one of these sequences:

• If alg rejects S0, then opt covers k elements using S0 while alg covers nothing.

• If alg accepts S0 and when Si, for some i ≥ 1, arrives, alg drops S0 and (possibly) accepts
Si, then opt covers k elements using S0, while alg covers at most one element.

• If alg accepts S0 and never drops it, then alg covers k elements, while opt covers k2 elements
using S1, . . . , Sk2 .

Hence the competitive ratio of alg is at least k, and the theorem follows, since k =
√
n and

k = ∆.

Next we move to a lower bound in terms of r.

Theorem 2.2. The competitive ratio of any deterministic online algorithm for OBMC is Ω(1
1−r).

In particular, if r = 1 the competitive ratio of any deterministic algorithm is unbounded.

Proof. Let alg be any deterministic online algorithm for OBMC. Let k ∈ N be a sufficiently large
integer with respect to r (as comes out from the calculations below). Consider the following sequence
that contains a collection of subsets of a ground set U of size k3 + 1. First, let S0 = {u0}, w(u0) = 1,
and c(S0) = r. Also, let Si = {ui}, w(ui) = i · k−3, c(Si) = k−1, for every i ∈

{
1, . . . , k3

}
. The

adversary gives the sequence until S0 is dropped (or rejected initially), or continues to give the
sequence until all k3 + 1 sets are given, if S0 is never dropped. To analyze the competitive ratio of
alg, note that, as defined above, there are various options as to the actual input sequence given by
the adversary. We analyze the costs of alg and opt considering several cases as to if and when alg
drops S0:

• alg rejects S0 upon arrival.

In this case, opt covers u0 using S0, while alg covers nothing.

• alg accepts S0 and drops it after the arrival of Si, for some i ∈
{

1, . . . , k2
}

.

In this case,
w(alg) < (1− r + k−1)k · i · k−3 ≤ (1− r + k−1) ,

while w(opt) = 1.

• alg accepts S0 and drops it after the arrival of Si, for some i ∈
{
k2 + 1, . . . , k3

}
.

In this case,
w(alg) < (1− r + k−1)k · i · k−3 = i · (1− r + k−1) · k−2 ,

while
w(opt) ≥ k · (i− k) · k−3 = (i− k) · k−2 .

5

• alg accepts S0 and never drops it.

In this case,
w(alg) < 1 + (1− r)k · k3 · k−3 = 1 + (1− r) · k ,

while
w(opt) ≥ k · (k3 − k) · k−3 = k − k−1 .

In all cases we get a ratio which is Ω(1
1−r).

We can conclude with the following theorem.

Theorem 2.3. Let alg be a c-competitive deterministic online algorithm for OBMC. Then c =
Ω(min{

√
n,∆, 1

1−r}).

We note that the construction in Theorem 2.12.1 can be slightly modified to consist of pairwise
disjoint sets. Hence, the lower bound apply to Removable Online Knapsack.

Theorem 2.4. Let alg be a c-competitive deterministic online algorithm for ROK. Then c =
Ω(min{

√
n,∆, 1

1−r}).

3 O(1
1−r)-competitive Algorithm

In this section we present a deterministic 4
1−r -competitive algorithm for OBMC. In what follows we

assume that r < 1. Otherwise, the competitive ratio of any deterministic algorithm is unbounded
(see Theorem 2.22.2).

Roughly speaking, our algorithm is inspired by the online algorithm for the case of unit costs [3838].
We use a similar greedy rule: a set joins the solution if its marginal benefit, with respect to the current
solution, is high enough. However, in contrast to the unit cost algorithm, we sort the sets in the
current solution by cost effectiveness (to be defined later), and consider only sets that are contained
in the prefix of the sets of the current solution which sums to a cost of at most 1. This prefix may
be fractional, namely there may be a set that is only partly considered, which then complicates both
the algorithm and the analysis. In what follows we define some notations and then present formally
the algorithm.

Definitions and notations. Our algorithm is defined based on an imaginary fractional solution
to the problem that we maintain throughout receiving the input. In this fractional solution, the
algorithm can use only a fraction x(S) ∈ [0, 1] of a given set S, paying only x(S) · c(S), and covering
by set S at most an x(S) fraction of every element v ∈ S. This fractional solution can be defined
using the following variables. In what follows we refer by time i to the time after the algorithm has
processed the ith input set. A variable with a subscript i refers to the value of the variable at time
i.

• xi(S) ∈ [0, 1], for S ∈ S, is the fraction of set S used by the algorithm at time i.

• zi(v, S) ∈ [0, 1], for S ∈ S and v ∈ U , is the fraction of v that is covered by the algorithm using
set S at time i. We set zi(v, S) = 0 if v 6∈ S.

We further define, given any ~zi, for v ∈ U , ẑi(v) ,
∑

S∈S zi(v, S).

6

Algorithm 1: insert(S, ~x, ~z)

1 ~x′ ← ~x; ~z′ ← ~z
2 x′(S)← 1

3 foreach v ∈ U do z′(v, S)←

{
1− ẑ′(v) v ∈ S,
0 v 6∈ S

4 Ŝ ← {S : x′(S) > 0} ; `← |Ŝ|
5 Order the sets in Ŝ by non-increasing value of ρ(~z′, ~x′, S); let Sj1 , Sj2 , . . . , Sj` be the ordering.

6 k ← max
{
k′ ≤ ` :

∑k′−1
i=1 x′(Sji)c(Sji) < 1

}
7 χ← min

{
1−

∑k−1
i=1 x

′(Sji
)c(Sji

)

c(Sik
) , x′(Sik)

}
8 foreach v ∈ Sik do z′(v, Sik)← χ

x′(Sik
) · z

′(v, Sik)

9 x′(Sik)← χ
10 for i = k + 1 to ` do
11 x′(Sji)← 0
12 foreach v ∈ U do z′(v, Sji)← 0

13 return (~x′, ~z′)

The (fractional) optimization problem can now be defined by the following linear program:

max
∑

v∈U ẑ(v) · w(v)
s.t.

∑
S∈S x(S) · c(S) ≤ 1

ẑ(v) ≤ 1 ∀v ∈ U
z(v, S) ≤ x(S) ∀v ∈ U, S ∈ S,
x(S) ∈ [0, 1] ∀S ∈ S
z(v, S) ≥ 0 ∀v ∈ U, S 3 v
z(v, S) = 0 ∀v ∈ U, S 63 v

Before presenting the algorithm we need the following further notations.

• w(~z) ,
∑

v ẑ(v)w(v), i.e., the total weight covered in a solution defined by the matrix ~z.

• ρ(~z, ~x, S) ,
∑

v z(v,S)w(v)
x(S)c(S) , if x(S) > 0, and ρ(~z, ~x, S) , 0, otherwise. That is, ρ(~z, ~x, S) stands

for the total weight covered by set S in a solution defined by the matrix ~z, divided by the
“actual cost” paid for S. We call this quantity the efficiency of set S with respect to the
solution (~z, ~x).

3.1 The Algorithm

Our algorithm maintains two variables ~z and ~x, corresponding to the variables by the same names
described above, and which represent a current fractional (imaginary) solution held by the online
algorithm. As the algorithm is an online algorithm, we allow it to increase z(·, S) and x(S) only
when set S arrives.

We first define a procedure insert that we use in the algorithm. This procedure takes a set S
and inserts it into the current solution represented by the variables z and x. This changes the values
of z and x to represent the new solution.

7

Algorithm 2: α-greedy; operations when set Si arrives.

1 ~x′ ← ~x, ~z′ ← ~z
2 x′(Si)← 1

3 z′(v, Si)←
{

1− ẑ(v) if v ∈ Si
0 otherwise

4 if ρ(~z′, ~x′, Si) > α · w(~z) then (~x, ~z)← insert(Si, ~x, ~z)

We can now define the online algorithm, that we call α-greedy, for any α > 1. The optimal value
for α will be defined later in the analysis.

α-greedy. We initialize the two (vector) variables ~z ← ~0, ~x ← ~0. Then, for every set Si that
arrives, we use the operations defined in the pseudocode in Algorithm 22.

At any given time, the solution held by the online (regular, integral) algorithm consists of all the
sets S for which x(S) = 1. As we later prove, the algorithm has, at any given time, at most one set
S “used fractionally”, i.e., with x(S) ∈ (0, 1).

We claim that the algorithm is a well defined online algorithm for our problem. That is, that

1. the algorithm accepts a set only when this set arrives, i.e., a set that is not accepted when it
arrives, or accepted but subsequently dropped, cannot later be part of the solution; and

2. the solution held by the algorithm at any given time is feasible, i.e., the total budget used by
the algorithm is at most 1 at any given time.

To see that these two points hold observe that all the changes in the variables held by the algorithm
are done in procedure insert. Procedure insert assigns a value of 1 to variable x′(S) only for S
which is the inserted set: an explicit assignment of 1 is only done in Line 11, and in Line 99 the value
of x′(Sik) cannot grow compared to the previous round. This proves point (1). Point (2) requires a
bit more of formalism, which is given in the proof of the following lemma.

Lemma 3.1. For any time i,
∑

j∈Oi
c(Sj) ≤ 1, where Oi = {j : xi(Sj) = 1}.

Proof. We prove this lemma by induction on i. For the base of the induction, i.e., when i = 0, we
have that ~x0 = ~0. It follows that O0 = ∅ and we are done. For the inductive step, we assume that
the claim is true for i − 1, for i ≥ 1 and prove it for i. If insert is not called during iteration i,
then xi = xi−1 and Oi = Oi−1, and the claim follows from the inductive hypothesis. If insert is
activated, then xi is constructed such that xi(Sji) = 0 if ji > k and

∑k
i=1 xi(Sji)c(Sji) ≤ 1. Hence∑

j∈Oi
c(Sj) ≤ 1.

We now give two technical claims which we use in the analysis. The first claim is immediate from
the code of insert.

Claim 3.2. The efficiency of a given set S remains the same throughout the period when x(S) > 0.

The next claim says that at any time i, there may be at most one set S such that x(S) ∈ (0, 1),
and that if such set exists then the whole budget is used. Furthermore, if such set exists then that
set is the one with minimum efficiency among the sets with non-zero x-coefficient. We note that
these properties of our algorithm are the properties that allow one to obtain in an online manner
an integral solution, and that a simple, natural reduction of the weighted fractional case to the
unweighted case does not yield an algorithm with such properties.

8

Claim 3.3. Let S+
i = {S : xi(S) > 0}. There is at most one set S ∈ S+ such that x(S) < 1. If such

a set S exists then

1.
∑

S∈S+i
xi(S)c(S) = 1; and

2. ρ(~zi, ~xi, S) ≤ ρ(~zi, ~xi, S
′), for any S′ ∈ S+ \ {S}.

Proof. We prove the claim by induction on i. For the basis of the induction, i.e., for i = 0, the claim
is trivial in the empty sense. We now assume that the claim holds for i− 1, for i ≥ 1, and we prove
it for i.

If insert is not invoked during iteration i, then the claim clearly holds by the induction hypoth-
esis. If procedure insert is invoked we have that (according to Line 3 of α-greedy)

ρ(~z′, ~x′, Si) > α · w(zi−1) = α ·
∑

S∈S+i−1

ρ(~zi−1, ~xi−1, S) · xi−1(S) · c(S) .

We now consider two cases. The first case is when a set S with xi−1(S) ∈ (0, 1) exists. In that case,
by the induction hypothesis we have that

∑
S∈S+i−1

xi−1(S)c(S) = 1. It follows that

ρ(~z′, ~x′, Si) > min
S∈S+i−1

{ρ(~zi−1, ~xi−1, S)}

(recall that α > 1), and therefore the new set Si is not the last set in the non-increasing order of
efficiency defined in Line 55 of procedure insert. Points (1) and (2) for time i therefore follow from
the code of insert and the induction hypothesis of point (2). The second case is when there is no
set S with xi−1(S) ∈ (0, 1). In that case the code of insert directly guarantees both points (1) and
(2) for time i.

3.2 Competitive Analysis

We analyze the competitive ratio of the algorithm using a charging scheme argument. We first
describe the scheme in general terms – more details are given in the following paragraphs. Let
opt be an optimal solution, i.e., an optimal collection of sets. As the sets of opt arrive, each new
element u that is covered by opt is allotted w(u) monetary units (or simply money). We show that
the allotted money can be moved between elements of U such that all the money is allotted to the
items covered by alg, and such that each element v that is covered by alg has at most 4

1−r · w(v)

amount of money. This gives an upper bound of 4
1−r on the competitive ratio.

We now formally define the charging scheme. Let optk = opt ∩ {S1, . . . , Sk}. If Si ∈ opt,
let Fi , Si \ ∪S∈opti−1S, i.e., Fi contains all the elements covered by opt that, when Si arrives,
are covered for the first time by opt (according to the order of arrival of the sets). When a set
Si ∈ opt arrives, each element u ∈ Fi is allotted w(u) money. The money that is allotted this way is
always held by items covered by alg, and may sometimes be moved between items covered by alg;
furthermore this money is partitioned into blue money and red money. We denote by bluei(v) and
by redi(v) the amount of blue and red money, respectively, held by v ∈ U at time i.

Intuitively, after the arrival of Si, w(v) money is created for any element v ∈ Fi. This amount
is partitioned into blue money and red money: the amount of blue money is proportional to the
coverage of v by the current solution, and the rest is red money. Blue money stays with v, while
red money is distributed among the currently covered items proportionally to their contribution to
the total weight of the solution. Moreover, when the coverage of an element drops, it gives both

9

money types to currently covered items, again proportionally to the contribution to the solution.
The greedy nature of the algorithm makes sure that both money types can be bounded.

Now, the rules that govern the allotment and movement of the money are the following rules,
applied when a set Si arrives.

• Transfer of money. This rule is applied if the “then” part of Line 3 of α-greedy is reached,
i.e., if procedure insert is invoked. In this case elements that lost coverage relinquish part
of their money, and this money is transferred to elements that gain coverage. Let ẑ′i(v) ,∑i−1

j=1 zi(v, Sj) and Zi , {v : ẑ′i(v) < ẑi−1(v)}. That is, we look at the coverage of an item v by
all but the last arriving set, and observe if this coverage reduced during the course of iteration
i.

1. Out-transfer of money. For each v ∈ Zi let δv = (1 − ẑ′i(v)
ẑi−1(v)). We remove from v an

amount of Rv red money which is a δv-fraction of its current red money, and an amount
of Bv blue money which is a δv-fraction of its current blue money.

2. In-transfer of money. These total amounts of removed red and blue money are
distributed to the various red and blue money variables of u ∈ Si proportionally to
zi(u, Si) · w(u). That is, each element u ∈ Si gets additional zi(u,Si)·w(u)∑

v∈Si
zi(v,Si)·w(v) ·

∑
v∈Zi

Rv

red money, and gets additional zi(u,Si)·w(u)∑
v∈Si

zi(v,Si)·w(v) ·
∑

v∈Zi
Bv blue money.

• Creation of new money. If Si ∈ opt, w(v) money is distributed for each v ∈ Fi as follows:

1. v gets ẑi(v)w(v) newly created blue money; and

2. a total amount of Ri(v) = (1− ẑi(v))w(v) red money is created, and distributed among the
items u currently covered by the algorithm, i.e., each element u ∈ U gets additional red
money in the amount of Ri(v) ẑi(u)w(u)

w(~zi)
(i.e., the red money is distributed proportionally

to the contribution of each element to the total weight of the current solution).

We now prove upper bounds on the amount of red and blue money held by any element at any
given time. We start with a technical claim. In the next lemma we show that if Si is accepted, then
the amount of coverage provided by set Si is more than α times the coverage lost due to the sets (or
part of sets) pushed out.

Lemma 3.4. Assume that xi(Si) > 0. Then,

ρ(~zi, ~xi, Si) > α ·
∑

j<i

∑
u∈U w(u)[zi−1(u, Sj)− zi(u, Sj)]

xi(Si)c(Si)
.

Proof. Since xi(S) > 0 we know that ρ(~zi, ~xi, Si) =
∑

u∈U (1−ẑi−1(u))w(u)

c(Si)
> α ·w(zi−1) and that insert

was invoked. Consider what happens to the solution (~zi−1, ~xi−1) during the invocation of insert at
iteration i. Some sets do not lose coverage (i.e., sets S for which xi(S) = xi−1(S) = 1). Other sets
may leave the cover and their cover is lost (i.e., xi−1(S) > xi(S) = 0). In addition, by Claim 3.33.3,
there may be at most one set that partly leaves the cover, and so it both retains and loses coverage
(i.e., xi−1(S) > xi(S) > 0). Define Yi , {Sj : xi−1(Sj) > xi(Sj)}, namely Yi contains the sets that
lose coverage due to the invocation of insert during the ith iteration.

If no coverage is lost during iteration i, namely if Yi = ∅ (or Zi = ∅), then∑
j<i

∑
u∈U

w(u)[zi−1(u, Sj)− zi(u, Sj)] = 0 ,

10

and we are done since xi(S) > 0 implies that ρ(~zi, ~xi, Si) > 0.

If Yi 6= ∅, then by Claim 3.33.3 and the code of insert it follows that ρ(zi−1, xi−1, S) ≤ ρ(zi, xi, S
′),

for every S ∈ Yi and S′ such that xi(S
′) > 0. In words, the efficiency of the sets that retain coverage

is at least as high as the efficiency of the sets that lost coverage. As mentioned above, observe that
there may be at most one set Sj , such that Sj ∈ Yi and xi(Sj) > 0. Define

ρimin , min {ρ(~zi−1, ~xi−1, Sj) : xi(Sj) > 0, j < i}
ρ(Yi) , max {ρ(~zi−1, ~xi−1, Sj) : Sj ∈ Yi} ,

and we have that ρ(Yi) ≤ ρimin.

Define WL
i to be the total weight of lost coverage during the ith iteration and define WR

i to be
the total weight of retained coverage at the ith iterations. That is, define:

WL
i ,

∑
j<i

∑
u∈U

w(u)[zi−1(u, Sj)− zi(u, Sj)]

WR
i ,

∑
j<i

∑
u∈U

w(u)zi(u, Sj)

Observe that w(~zi−1) = WL
i + WR

i . Also, recall that ρ(~zi, ~xi, Sj) = ρ(~zi−1, ~xi−1, Sj), for j < i and
xi(Sj) > 0 due to Claim 3.23.2. We have that

WR
i =

∑
j<i

ρ(~zi−1, ~xi−1, Sj)xi(Sj)c(Sj) ≥ ρimin

∑
j<i

xi(Sj)c(Sj) ,

and

WL
i =

∑
j<i

ρ(~zi−1, ~xi−1, Sj)[xi−1(Sj)c(Sj)− xi(Sj)c(Sj)]

=
∑
Sj∈Yi

ρ(~zi−1, ~xi−1, Sj)[xi−1(Sj)c(Sj)− xi(Sj)c(Sj)]

≤ ρ(Yi)
∑
Sj∈Yi

[xi−1(Sj)c(Sj)− xi(Sj)c(Sj)]

= ρ(Yi)
∑
j<i

[xi−1(Sj)c(Sj)− xi(Sj)c(Sj)]

≤ ρimin

1−
∑
j<i

xi(Sj)c(Sj)


≤WR

i ·
1−

∑
j<i xi(Sj)c(Sj)∑

j<i xi(Sj)c(Sj)
.

It follows that

w(~zi−1) = WL
i +WR

i ≥WL
i +WL

i ·
∑

j<i xi(Sj)c(Sj)

1−
∑

j<i xi(Sj)c(Sj)
=

WL
i

1−
∑

j<i xi(Sj)c(Sj)
.

Now since Yi 6= ∅, we have that insert decreased coverage of at least one set and by the code of
insert this implies that

∑
S xi(S)c(S) = 1. Hence we have that

w(~zi−1) ≥ WL
i

xi(Si)c(Si)
,

and the lemma follows.

11

We are now ready to give in the next lemma an upper bound on the amount of blue money that
is allotted to any element u ∈ U at any given time.

Lemma 3.5. At any given time i and for every u ∈ U , bluei(u) ≤ w(u)ẑi(u) · α
α−1 .

Proof. In this proof we consider separately new blue money, that was not transferred yet, and old
blue money, that was transferred at least once. Observe that for each element u ∈ U there is at most
one index j such that u ∈ Fj . We denote this index by f(u). We prove by induction on i that at
any given time i and for every u ∈ U , we have that

1. blue-oldi(u) ≤ w(u)ẑi(u) · 1
α−1 , and

2. blue-newi(u) ≤

{
0 i < f(u),

w(u)ẑi(u) i ≥ f(u).

Observe that the lemma follows from the above two inequalities.

For i = 0, i.e., before the first input set arrives, the claims hold as there is no (blue) money.
We now prove the claims for time i ≥ 1, assuming that the claims hold for time i − 1. We analyze
the changes in blue-oldi(·) and blue-newi(·) taking into account one by one, in their order, the
operations of the charging scheme defined above. Recall that ẑ′i(v) ,

∑i−1
j=1 zi(v, Sj) and that Zi ,

{v : ẑ′i(v) < ẑi−1(v)}, and observe that the out-transfer and in-transfer phases are performed only if
procedure insert is invoked.

• Out-transfer of money. Blue money (old or new) is removed from elements u ∈ Zi. For such

an element u we have at the end of the out-transfer phase that bluei(u) = bluei−1(u) · ẑ′i(u)
ẑi−1(u) .

By the induction hypothesis this is at most

blue-oldi(u) ≤ blue-oldi(u) · ẑ′i(u)

ẑi−1(u)
≤ w(u)ẑi−1(u) · 1

α− 1
· ẑ′i(u)

ẑi−1(u)
= w(u)ẑ′i(u) · 1

α− 1

and

blue-newi(u) ≤ blue-newi(u) · ẑ′i(u)

ẑi−1(u)
≤ w(u)ẑi−1(u) · ẑ′i(u)

ẑi−1(u)
= w(u)ẑ′i(u) ,

for i > f(u), and blue-newi(u) = 0, otherwise.

For u ∈ U \ Zi, blue-oldi(u) = blue-oldi−1(u) and blue-oldi(u) = blue-oldi−1(u). Using the
induction hypothesis, at the end of the out-transfer phase, the same bound holds for u ∈ U \Zi
as well.

• In-transfer of money. First notice that there is no in-transfer of new blue money.

Each element u ∈ Si gets old blue money in the amount of

zi(u, Si) · w(u)∑
v∈Si

zi(v, Si) · w(v)
·
∑
v∈Zi

(
1− ẑ′i(v)

ẑi−1(v)

)
bluei−1(v) .

By the inductive hypothesis this is at most

zi(u, Si) · w(u)∑
v∈Si

zi(v, Si) · w(v)
·
∑
v∈Zi

(ẑi−1(v)− ẑ′i(v)) · w(v) · α

α− 1
,

12

and by Lemma 3.43.4 it follows that this is at most

zi(u, Si) · w(u)∑
v∈Si

zi(v, Si) · w(v)
· 1

α− 1
· ρ(~zi, ~xi, Si)xi(Si)c(Si) = zi(u, Si) · w(u) · 1

α− 1
.

Hence, using the upper bound on blue-oldi(u) at the end of the out-transfer phase, we have
that at the end of in-transfer phase:

blue-oldi(u) ≤ w(u)ẑ′i(u) · 1

α− 1
+ w(u)zi(u, Si) ·

1

α− 1
= w(u)ẑi(u) · 1

α− 1
.

Since no transfer of new blue money occurs by the scheme, it holds at the end of the out
transfer phase, like at the end of the in-transfer phase that:

blue-newi(u) ≤

{
0 i− 1 < f(u),

w(u)ẑ′i(u) i− 1 ≥ f(u).

• Creation of new money. If Si ∈ opt, then any u ∈ Fi receives ẑi(u)w(u) new blue money.
Observe that for such u, f(u) = i. Hence, using our claims as to the end of the in-transfer
phase, the inductive claim holds at the end of the creation-of-new-money phase.

We now give an upper bound on the amount of red money an element may have.

Lemma 3.6. At any given time i and for every u ∈ U , redi(u) ≤ w(u)ẑi(u) · α · c(opti).

Proof. We prove the claim by induction on i. For i = 0, i.e., before the first input set arrives, the
claim holds as there is no (red) money. We now prove the claim for time i ≥ 1, assuming that the
claim holds for time i− 1. We analyze the changes in redi(·) taking into account one by one, in their
order, the operations of the charging scheme defined above. Recall that ẑ′i(v) ,

∑i−1
j=1 zi(v, Sj) and

Zi , {v : ẑ′i(v) < ẑi−1(v)}, and observe that the out-transfer and in-transfer phases are performed
only if procedure insert is invoked.

• Out-transfer of money. Red money is removed from items u ∈ Zi. For such u we have at
the end of the out-transfer phase that

redi(u) = redi−1(u) · ẑ′i(u)

ẑi−1(u)
≤ w(u)ẑi−1(u) · α · c(opti−1) · ẑ′i(u)

ẑi−1(u)
= w(u)ẑ′i(u) · α · c(opti−1)

where the inequality is due to the induction hypothesis. For u ∈ U \ Zi, redi(u) = redi−1(u)
and using the induction hypothesis, at the end of the out-transfer phase, the same bound holds
for u ∈ U \ Zi as well.

• In-transfer of money. The proof for this phase formalizes the following rather simple argu-
ment, roughly stated in what follows. The cost of the sets that are pushed out during iteration
i is at most the cost used for the new set Si inserted into the current solution. On the other
hand the efficiency of Si is at least as high as the efficiency of the sets that are pushed out.
Therefore, and using the induction hypothesis, we have that the items (or parts of items) cov-
ered by set Si can take upon themselves all the red money discarded from the pushed-out sets.
We now give the formal proof.

13

We first give an upper bound on the total amount of red money that is transferred to the
elements of Si during the in-transfer phase. We denote this quantity by R.

R =
∑
v∈Zi

Rv =
∑
v∈Zi

(1− ẑ′i(v)

ẑi−1(v)
)redi−1(v)

=
∑
v∈Zi

redi−1(v)

ẑi−1(v)

i−1∑
j=1

(zi−1(v, Sj)− zi(v, Sj))

≤ α · c(opti−1)
∑
v∈U

w(v)

i−1∑
j=1

(zi−1(v, Sj)− zi(v, Sj))

= α · c(opti−1)
i−1∑
j=1

∑
v∈U

w(v)zi−1(v, Sj)
xi−1(Sj)− xi(Sj)

xi−1(Sj)

= α · c(opti−1)
i−1∑
j=1

ρ(~zi−1, ~xi−1, Sj)c(Sj)(xi−1(Sj)− xi(Sj)) ,

where the inequality follows by the induction hypothesis.

Recall that Yi , {Sj : xi−1(Sj) > xi(Sj)}. Observe that by the code of insert it follows that for
Sj ∈ Yi, ρ(~zi−1, ~xi−1, Sj) ≤ ρ(~zi, ~xi, Si) and that

∑
Sj∈Yi c(Sj)·(xi−1(Sj)−xi(Sj)) ≤ c(Si)xi(Si).

Therefore the total amount of red money transferred is

R ≤ α · c(opti−1) · ρ(~zi, ~xi, Si)c(Si)xi(Si) = α · c(opti−1) ·
∑
v∈Si

w(v)zi(v, Si) .

An element u ∈ Si therefore gets additional red money in the amount of

zi(u, Si) · w(u)∑
v∈Si

zi(v, Si) · w(v)
·R ≤ α · c(opti−1) · zi(u, Si) · w(u)

(and an element u /∈ Si does not get any additional red money during the in-transfer phase).
Using the fact that zi−1(u, Si) = 0, and our claim on an upper bound on redi(·) at the end
of the in-transfer phase, we conclude that at the end of the in-transfer phase, for any u ∈ U ,
redi(u) ≤ w(u)ẑi(u) · α · c(opti−1).

• Creation of new money. If Si ∈ opt then each element u ∈ U gets additional red money in
the amount of R′ · ẑi(u)w(u)

w(~zi)
, where R′ =

∑
v∈Fi

(1− ẑi(v))w(v) (recall that Fi , Si\∪S∈opti−1S).
We consider two cases depending whether or not procedure insert was activated.

If insert is not invoked for Si, then we have that

R′ =
∑
v∈Fi

(1− ẑi(v))w(v) =
∑
v∈Fi

(1− ẑi−1(v))w(v) ≤
∑
v∈Si

(1− ẑi−1(v))w(v)

≤ α · w(zi−1)c(Si) (1)

= α · w(zi)c(Si) , (2)

where (11) follows from the fact that procedure insert is not invoked only if the condition
on Line 3 of α-greedy fails, and (22) follows since no change in ~z occurs in iteration i. We

14

therefore have that in this case during the creation of new money phase each element u ∈ U
gets additional red money in the amount of at most ẑi(u)w(u)αc(Si).

We now consider the case where insert is invoked. Observe that new red money is created
both if xi(Si) ∈ (0, 1) and if there is at least one set S ∈ Yi. (Recall that Yi = {Sj :
xi−1(Sj) > xi(Sj)}.) If at least one of these two conditions occurs then by the code of insert∑

S c(S)xi(S) = 1.

By the code of insert we also have that for v ∈ Si,

1− ẑi(v) = 1− ẑi−1(v)− zi(v, Si) +
∑
Sj∈Yi

[zi−1(v, Sj)− zi(v, Sj)] .

We thus have that

R′ =
∑
v∈Fi

(1− ẑi(v))w(v)

≤
∑
v∈Si

(1− ẑi(v))w(v)

=
∑
v∈Si

w(v) ·

1− ẑi−1(v)− zi(v, Si) +
∑
Sj∈Yi

[zi−1(v, Sj)− zi(v, Sj)]


≤
∑
v∈U

w(v) · [1− ẑi−1(v)− zi(v, Si)] +
∑
v∈U

w(v) ·
∑
Sj∈Yi

[zi−1(v, Sj)− zi(v, Sj)]

=
∑
v∈U

w(v) ·
[
zi(v, Si)

xi(Si)
− zi(v, Si)

]
+
∑
v∈U

w(v)
∑
Sj∈Yi

[
zi−1(v, Sj)− zi−1(v, Sj)

xi(Sj)

xi−1(Sj)

]

=
∑
v∈U

w(v) · zi(v, Si)(1− xi(Si))
xi(Si)

+
∑
v∈U

w(v)
∑
Sj∈Yi

zi−1(v, Sj) ·
xi−1(Sj)− xi(Sj)

xi−1(Sj)

=
1− xi(Si)
xi(Si)

∑
v∈U

w(v) · zi(v, Si) +
∑
Sj∈Yi

xi−1(Sj)− xi(Sj)
xi−1(Sj)

∑
v∈U

w(v) · zi−1(v, Sj)

= ρ(~zi, ~xi, Si)c(Si)(1− xi(Si)) +
∑
Sj∈Yi

ρ(~zi−1, ~xi−1, Sj)c(Sj)(xi−1(Sj)− xi(Sj)) ,

where the third equality follows directly from the code of insert, and the last equality follows
from the definition of ρ(~z, ~x, S).

Now observe that by the code of insert and by Claim 3.33.3, and since
∑

S c(S)xi(S) = 1 (which
follows since new red money is created iteration i), we have that

–
∑

Sj∈Yi c(Sj) · (xi−1(Sj) − xi(Sj)) ≤ xi(Si)c(Si). (Informally, the total amount of cost

pushed out when Si is inserted is at most the cost used for Si.)

– ρ(~zi−1, ~xi−1, S
′) ≤ ρ(~zi, ~xi, S), for every S′ ∈ Yi, and S such that xi(S) > 0, and therefore

ρ(~zi−1, ~xi−1, S
′) ≤ w(~zi), for every S′ ∈ Yi.

– If xi(Si) ∈ (0, 1), then ρ(~zi, ~xi, Si) ≤ ρ(~zi, ~xi, S), for every set S such that xi(S) = 1, and
therefore ρ(~zi, ~xi, Si) ≤ w(~zi).

15

Notice that ρ(~zi, ~xi, Si)(1 − xi(Si)) ≤ w(~zi)(1 − xi(Si)), since either ρ(~zi, ~xi, Si) ≤ w(~zi) or
1− xi(Si) = 0. Hence

R′ ≤ w(~zi) ·

(1− xi(Si))c(Si) +
∑
Sj∈Yi

c(Sj) · (xi−1(Sj)− xi(Sj))

 ≤ w(~zi)c(Si) .

We therefore have that during the creation of new money phase, for the case when insert is
invoked, each element u ∈ U gets additional red money in the amount of at most ẑi(u)w(u)c(Si).

We thus get that in any of the two cases (whether insert is invoked or not), at the end of
iteration i, for any u ∈ U , redi(u) ≤ w(u)ẑi(u) · α · c(opti) (recall that α > 1).

Using Lemmas 3.53.5 and 3.63.6 we now give a lower bound on the weight of the fractional solution
(~z, ~x).

Lemma 3.7. Let α = 2. Then, w(~z) ≥ 1
4w(∪S∈optS) at termination.

Proof. First observe that the total amount of blue and red money created during the course of the
run is equal to the weight of the elements covered by opt, and that all created money remains in
the system, held by the various elements u ∈ U , until the end of the run. We therefore compare the
total amount of money held at the end by the elements u ∈ U , to the weight of the elements covered
by the online algorithm.

Let n be the number of sets in the input sequence. Since c(opt) = c(optn) ≤ 1, we have,
for α = 2 and using Lemma 3.53.5 and Lemma 3.63.6, that for each u ∈ U , bluen(u) + redn(u) ≤
w(u)ẑn(u) · (α+ α

α−1) = w(u)ẑn(u) · 4.

We now give a lower bound on the weight of the (integral) solution returned by the online
algorithm, in terms of the value of the fractional solution (~z, ~x).

Lemma 3.8. Let algi be the integral solution returned by the online algorithm after processing set
Si. Then, w(∪S∈algi) ≥ (1− r) · w(~zi).

Proof. By definition we have that algi = {S : xi(S) = 1}. Each such set (fully) covers all its
elements, hence w(∪S∈algi) ≥

∑
u

∑
S∈algi

w(u)zi(u, S). By Claim 3.33.3 there may be at most one set
S′ such that xi(S

′) ∈ (0, 1). If such a set does not exists, then w(ẑi) =
∑

u

∑
S∈algi

w(u)zi(u, S),
and we are done. If there exists a set S′ such that xi(S

′) ∈ (0, 1), then by Claim 3.33.3 we have that∑
S∈algi

c(S) = 1 − xi(S′)c(S′) > 1 − c(S′). Also, due to Claim 3.33.3, ρ(~zi, ~xi, S
′) ≤ ρ(~zi, ~xi, S), for

any S ∈ algi. Therefore

w(∪S∈algi) ≥
∑

S∈algi

∑
u

w(u)zi(u, S) ≥ 1− c(S′)
c(S′)

·
∑
u

w(u)zi(u, S
′) ≥ 1− r

r
·
∑
u

w(u)zi(u, S
′) .

(Recall that r is the highest set-cost appearing in the input sequence). It follows that w(∪S∈algi) ≥
(1− r) ·

∑
S∈algi∪{S′}

∑
uw(u)zi(u, S) = (1− r) · w(~zi).

It remains to give an upper bound on the competitive ratio of the algorithm.

Theorem 3.9. Algorithm 2-greedy is 4
1−r -competitive.

Proof. By Lemma 3.73.7 we have that w(~z) ≥ 1
4w(∪S∈optS) at termination. By Lemma 3.83.8 the total

weight of the elements covered by the online algorithm is at least (1− r) · w(~z).

16

4 O(1)-competitive Randomized Algorithm

In this section we give a randomized online algorithm with an O(1) competitive ratio. The algorithm
is based on the deterministic 4

1−r -competitive algorithm from Section 33.

The algorithm is a barely random algorithm that chooses to run one of the following two algo-
rithms, the first with probability 1

4 and the second with probability 3
4 :

1. Always keep a single set Sj , which is the set with the highest weight seen so far.

2. Run algorithm α-greedy of Section 33, with α = 2, only on sets with cost at most 1
3 .

It remains to analyze the competitive ratio.

Theorem 4.1. There is an 8-competitive randomized online algorithm for OBMC.

Proof. Let opt be an optimal solution, and define opt> = {S ∈ opt : c(S) > 1
3} and opt≤ = {S ∈

opt : c(S) ≤ 1
3}. Observe that |opt>| ≤ 2.

If at a certain time Sj is the set with the highest weight seen so far, then w(Sj) ≥ w(S), for every
S ∈ opt>. Hence w(Sj) ≥ 1

2 · w(∪S∈opt>S). Moreover, the ratio of α-greedy is 4
1−1/3 = 6 with

respect to sets whose cost is at most 1
3 . Since opt≤ is a solution with respect to sets whose cost is

at most 1
3 , we have that the weight of a solution computed by α-greedy is at least 1

3 ·w(∪S∈opt≤S).

It follows that

E[w(alg)] ≥ 1

4
·
w(∪S∈opt>S)

2
+

3

4
·
w(∪S∈opt≤S)

6
=
w(opt)

8
.

We note that Han, Kawase, and Makino [2222] and Cygan, Jeż, and Sgall [1515] showed that the
competitive ratio of any randomized online algorithm for ROK is at least e+1

e , and this lower bound
applies to OBMC.

5 O(∆)-competitive Algorithm

In this section we present an O(∆)-competitive algorithm for OBMC. Given an OBMC instance we
define a bipartite graph G = (S, U,E), where (S, u) ∈ E if and only if u ∈ S. Given a collection
of sets S ′, let G[S ′] be the subgraph of G that is induced by S ′ and U . The algorithm is based on
computing maximum cardinality matchings between sets (S ′, the left side of G) and elements (U ,
the right side of G). Let MaxMatch be an algorithm that solves the Maximum Cardinality
Matching problem in bipartite graphs.

The OBMC algorithm works as follows. Upon arrival of a set Si, i ≥ 1, the algorithm constructs
a solution Si using the previous solution Si−1 (we initialize S0 = ∅). The algorithm looks for an
element to be matched to Si, where Si takes precedence over sets that cost more than c(Si). This
is done as follows. First a maximum matching is computed for the collection of sets that includes
those sets in the already-computed solution that have cost at most c(Si), and Si. If it is impossible
to match all these sets, or their total cost exceeds 1, Si is rejected, and the current solution remains
unchanged. Otherwise Si is accepted, and all the sets in the already-computed solution that have cost
at most c(Si) are not dropped. In the latter case the algorithm then tries to extend the matching by
assigning an element to those sets in Si−1 that cost more than c(Si). Such a set Sj is dropped if a
matching cannot be obtained or if the total cost exceeds 1. Algorithm 33 shows a formal pseudo-code
of this algorithm.

17

Algorithm 3: Match; operations when set Si arrives.

1 Si ← {S ∈ Si−1 : c(S) ≤ c(Si)}
2 M ← MaxMatch(G[Si ∪ {Si}])
3 if |M | = |Si ∪ {Si}| then
4 if c(Si ∪ {Si}) ≤ 1 then
5 Si ← Si ∪ {Si}; Mi ←M
6 S ′i ← Si−1 \ Si
7 while S ′i 6= ∅ do
8 j ← argminj {c(Sj) : Sj ∈ S ′i}
9 S ′i ← S ′i \ {Sj}

10 M ← MaxMatch(G[Si ∪ {Sj}])
11 if |M | = |Si ∪ {Sj}| then
12 if c(Si ∪ {Sj}) ≤ 1 then
13 Si ← Si ∪ {Sj}; Mi ←M

14 else
15 Si ← Si−1; Mi ←Mi−1

16 else
17 Si ← Si−1; Mi ←Mi−1

In what follows alg denotes the collection of sets that is output by the algorithm. We first prove
that the solution is feasible.

Lemma 5.1. c(alg) ≤ 1.

Proof. We prove by induction on i that after each iteration we have c(Si) ≤ 1. The base case is
trivial, since S0 = ∅. For the inductive step, assume that c(Si−1) ≤ 1. Si is initially a subset of Si−1

(Line 11) and therefore it is feasible at this stage due to the inductive hypothesis. Furthermore, we
add sets to Si only if the budget constraint is not violated (Lines 44 and 1212).

We now show that the number of sets in the solution never decreases, and may increase by at
most one set in any step.

Lemma 5.2. |Si−1| ≤ |Si| ≤ |Si−1|+ 1, for every i > 0.

Proof. The second inequality is obvious as the sets that the algorithm is trying to include in Si are
Si−1 ∪ {Si}. As to the first inequality, observe that if Si is rejected, then Si = Si−1. Furthermore, if
Si is taken into Si, then at most one set from Si−1 is dropped and not taken into Si.

To see the latter claim, observe that c(Si) is less than the cost of any set considered in S ′i when
it is initially defined (Line 99). Hence, since Si was feasible, only the last, most expensive, set in S ′i
could fail the test of Line 1212 (i.e., if a set fails the test of Line 1212, no further set will fail either the
test of Line 1111, or the test of Line 1212.) Furthermore, if one set from S ′i fails the test of Line 1111, then
no further set will fail the test of Line 1212.

In addition, we show that if a set Sj fails the test of Line 1111 during the ith iteration, no further
set Sj′ ∈ S ′i will fail the test of Line 1111 during the ith iteration. Let Sj be the first set that fails
the test of Line 1111 during the ith iteration (if such a set exists). We consider two matchings: the

18

value of Mi when set Sj failed the test of Line 1111 (i.e., the matching which matches the sets of the
current Si), and the matching induced by Mi−1 on the sets in Si∪{Sj}. Construct a path as follows.
Start with ` = 0 and T0 = Sj . If T` = Si stop, and otherwise increase ` by 1, move to the element
u`+1 that is assigned to T` by Mi−1. From u` move to the set that is assigned to it by Mi. Such a
set exists, since otherwise there exists an augmenting path for Sj with respect to Mi. Since a cycle
cannot be formed, the path must terminate at Si. It follows that Mi may be extended to a matching
of Si−1 \ {Sj} ∪ {Si} by matching the sets that are on the above path as in Mi and the rest of the
sets as in Mi−1. Therefore, no further set Sj′ ∈ S ′i will fail the test of Line 1111.

Observation 5.3. | ∪S∈alg S| ≥ |alg|.

Let opt denote an optimal collection of sets. We partition opt \ alg into two collections. Let τ
be the cost of the cheapest set that was either rejected upon arrival due to the budget constraint, or
dropped later due to the budget constraint. More formally, define

τ1 = min{{c(Si) : Si was rejected by Line 44 at the ith iteration} ∪ {∞}} ,
τ2 = min{{c(Si) : Si was dropped by Line 1212 at the jth iteration} ∪ {∞}} ,
τ = min{τ1, τ2} ,

and define

opt′ = {S ∈ opt \ alg : c(S) < τ} ,
opt′′ = {S ∈ opt \ alg : c(S) ≥ τ} .

The next two lemmas essentially give the upper bound on the competitive ratio of the algorithm.
The first lemma shows that the elements that are covered by the sets in opt′ are covered by the sets
in alg.

Lemma 5.4. ∪S∈opt′S ⊆ ∪S∈algS.

Proof. We prove by induction on i that if j ≤ i and c(Sj) < τ , then Sj ⊆ ∪S∈SiS. The base case of
i = 1 is trivial since S1 = {S1}. For the inductive step, assume that the claim holds for i− 1.

Consider first the case that Si is rejected. Then Si = Si−1. If c(Si) ≥ τ the claim holds by the
induction hypothesis. If c(Si) < τ , by the definition of τ Si must have been rejected by the test of
Line 33. It follows that all the elements of Si are covered by Mi−1, i.e., by the sets of Si−1, and the
claim holds by the induction hypothesis.

Now consider the second case when Si is accepted. If no set Sj ∈ Si−1 is dropped we are done.
Assume then that a set Sj , for j < i, is dropped. If c(Sj) ≥ τ , then we are done. Otherwise, by
the definition of τ , it must be that Sj is dropped due to Line 1111. In this case, all elements of Sj are
matched by sets in Mi, and the claim holds by the induction hypothesis.

Next we show that the size of opt′′ is bounded from above by the size of alg.

Lemma 5.5. |opt′′| ≤ |alg|.

Proof. If opt′′ = ∅, then we are done. Otherwise, let Sj ∈ opt′′ be the least costly set in opt′′. By
the definition opt′′, there exists an index i ≥ j such that during the ith iteration set Sj is either
rejected or dropped by a budget constraint (i.e., it does not pass the test of either Line 1212 or Line 44).

If Sj fails the budget test of Line 1212 during iteration i, for i > j, it follows that
∑

S∈Si c(S) +
c(Sj) > 1 and c(S) ≤ c(Sj) for every, S ∈ Si (see proof of Lemma 5.25.2). Hence, c(Sj) > 1/(|Si|+ 1),

19

and due to Lemma 5.25.2, it follows that c(Sj) > 1/(|alg| + 1). On the other hand, if Sj is rejected
upon arrival by Line 44, then it follows that

∑
S∈Sj c(S) + c(Sj) > 1 and c(S) ≤ c(Sj) for every,

S ∈ Sj , where Sj is as it was initialized in Line 11. Hence, c(Sj) > 1/(|Sj | + 1), and since Sj may
only increase in size during the iteration, we have also that c(Sj) > 1/(|Sj | + 1) at the end of the
iteration. As in the previous case, we have that c(Sj) > 1/(|alg|+ 1) by Lemma 5.25.2.

Since c(Sj) > 1/(|alg|+1), it follows that |opt′′|· 1
|alg|+1 < c(opt′′) ≤ 1. Thus |opt′′| < |alg|+1,

and the lemma follows.

It remains to give an upper bound on the competitive ratio of Algorithm Match.

Theorem 5.6. Algorithm Match is (∆ + 1)-competitive.

Proof. We have that

w(∪S∈optS) ≤ w(∪S∈(opt∩alg)∪opt′S) + w(∪S∈opt′′S) (3)

≤ w(∪S∈algS) + w(∪S∈opt′′S) (4)

≤ w(∪S∈algS) + |opt′′| ·∆ (5)

≤ w(∪S∈algS) + |alg| ·∆ (6)

≤ (∆ + 1) · w(∪S∈algS) , (7)

where (33) is since opt \ alg = opt′ ∪ opt′′, (44) follows from Lemma 5.45.4, (55) follows from the
definition of ∆, (66) is due to Lemma 5.55.5, and (77) is due to Observation 5.35.3 and the assumption that
the weight of an element is at least 1.

5.1 w(U) is known in advance

We obtain a deterministic algorithm by running algorithm Match with the additional rule that if
a set Si with w(Si) ≥

√
w(U) arrives, then we drop all currently taken sets, take set Si, and never

change further the solution (i.e., the final output solution is {Si}).
Observe that if there exists a set Si ∈ S with w(Si) ≥

√
w(U), then the total weight of the

elements in the sets of alg is at least
√
w(U), while the total weight of the elements in the sets of

opt is at most w(U). If no such set exists then alg is equivalent to Match which is (∆ + 1) <
(
√
w(U) + 1)-competitive. This leads to the following result.

Theorem 5.7. There exists a deterministic online algorithm whose competitive ratio is O(min{∆,
√
w(U)},

provided that w(U) is known in advance.

Note that for the unit-weight case w(U) equals n, and we thus get an O(min{∆,
√
n})-competitive

deterministic algorithm for this case.

6 Conclusion

We have studied the Online Budgeted Maximum Coverage problem. We presented a determin-
istic online algorithms in terms of three parameters of the given instance, and we gave deterministic
matching lower bounds bases on these parameters. Both our upper and lower bounds on the deter-
ministic competitive ratio apply to Removable Online Knapsack which is the preemptive version
of the Online Knapsack problem. We also provided a randomized O(1)-competitive algorithm.
which is based on the one of our deterministic online algorithms.

We briefly mention some possible future research directions. It would be interesting to design an
O(
√
w(U))-competitive deterministic algorithm that does not require advance knowledge of w(U),

20

and to devise a single deterministic algorithm that obtains as a competitive ratio the minimum of all
deterministic competitive ratios shown in this paper. In addition, it would be interesting to extend
the results to the online monotone submodular maximization subject to a budget constraint.

Acknowledgments

We would like to thank an anonymous referee for improving the lower bound to Ω(1/(1− r)). (The
lower bound that appeared in the conference version [3636] was Ω(1/

√
1− r).) We also thank the

referee for a suggestion that lead to an improvement in the constant randomized competitive ratio.

References

[1] A. A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing algorithms
with proven performance guarantee. Journal of Combinatorial Optimization, 8(3):307–328, 2004.

[2] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. The online set cover problem.
SIAM Journal on Computing, 39(2):361–370, 2009.

[3] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-restrictions. ACM
Transactions on Algorithms, 2(2):153–177, 2006.

[4] G. Ausiello, N. Boria, A. Giannakos, G. Lucarelli, and V. T. Paschos. Online maximum k-
coverage. Discrete Applied Mathematics, 160(13-14):1901–1913, 2012.

[5] B. Awerbuch, Y. Azar, A. Fiat, and F. T. Leighton. Making commitments in the face of
uncertainty: How to pick a winner almost every time. In 28th Annual ACM Symposium on the
Theory of Computing, pages 519–530, 1996.

[6] A. Badanidiyuru. Buyback problem - approximate matroid intersection with cancellation costs.
In 38th Annual Intl. Colloquium on Automata, Languages and Programming, volume 6755 of
LNCS, pages 379–390, 2011.

[7] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted vertex
cover problem. Journal of Algorithms, 2:198–203, 1981.

[8] O. Berman, D. Bertsimas, and R. C. Larson. Locating discretionary service facilities, ii: Maxi-
mizing market size, minimizing inconvenience. Operations Research, 43(4):623–632, 1995.

[9] O. Berman, R. C. Larson, and N. Fouska. Optimal location of discretionary service facilities.
Transportation Science, 26(4):201–611, 1992.

[10] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. Submodular maximization with cardi-
nality constraints. In 25th Annual ACM-SIAM Symp. on Discrete Algorithms, pages 1433–1452,
2014.

[11] N. Buchbinder, M. Feldman, and R. Schwartz. Online submodular maximization with preemp-
tion. ACM Transactions on Algorithms, 15(3):30:1–30:31, 2019.

[12] N. Buchbinder and J. Naor. Online primal-dual algorithms for covering and packing. Math.
Oper. Res., 34(2):270–286, 2009.

21

[13] A. Chakrabarti and S. Kale. Submodular maximization meets streaming: Matchings, matroids,
and more. In 17th Intl. Conference on Integer Programming and Combinatorial Optimization,
volume 8494 of LNCS, pages 210–221, 2014.

[14] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations Re-
search, 4(3):233–235, 1979.

[15] M. Cygan, L. Jeż, and J. Sgall. Online knapsack revisited. Theory of Computing Systems, 2016.
To appear.

[16] M. Demange and V. T. Paschos. On-line vertex-covering. Theoretical Computer Science, 332(1–
3):83–108, 2005.

[17] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered PCP and the hardness of
hypergraph vertex cover. SIAM Journal on Computing, 34(5):1129–1146, 2005.

[18] I. Dinur and S. Safra. The importance of being biased. In 34th Annual ACM Symposium on
the Theory of Computing, pages 33–42, 2002.

[19] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–652,
1998.

[20] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. Analysis of approximation algorithms for
maximizing submodular set function II. Mathematical Programming Study, 8:73–87, 1978.

[21] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

[22] X. Han, Y. Kawase, and K. Makino. Randomized algorithms for online knapsack problems.
Theoretical Computer Science, 562:395–405, 2015.

[23] D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems.
SIAM Journal on Computing, 11(3):555–556, 1982.

[24] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problem. PWS Publishing
Company, 1997.

[25] D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in problems of maximum
k-coverage. Naval Research Logistics, 45(6):615–627, 1998.

[26] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subset
problems. Journal of the ACM, 22(4):463–468, 1975.

[27] K. Iwama and S. Taketomi. Removable online knapsack problems. In 29th Annual Intl. Col-
loquium on Automata, Languages and Programming, volume 2380 of LNCS, pages 293–305,
2002.

[28] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, 9:256–278, 1974.

[29] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Information
Processing Letters, 70(1):39–45, 1999.

22

[30] D. Komm, R. Královic, and T. Mömke. On the advice complexity of the set cover problem. In
7th International Computer Science Symposium in Russia, pages 241–252, 2012.

[31] L. Lovász. On the ratio of optimal integeral and fractional solutions. Discrete Mathematics,
13:383–390, 1975.

[32] A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems. Math. Pro-
gram., 68:73–104, 1995.

[33] N. Megiddo, E. Zemel, and S. L. Hakimi. The maximum coverage location problem. SIAM
Journal on Algebraic and Discrete Methods, 4(2):253–261, 1983.

[34] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, Inc., 1988.

[35] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions I. Mathematical Programming, 14(1):265–294, 1978.

[36] D. Rawitz and A. Rosén. Online budgeted maximum coverage. In 24th Annual European
Symposium on Algorithms, volume 57 of LIPIcs, pages 73:1–73:17, 2016.

[37] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant error-
probability PCP characterization of NP. In 29th Annual ACM Symposium on the Theory of
Computing, pages 475–484, 1997.

[38] B. Saha and L. Getoor. On maximum coverage in the streaming model & application to multi-
topic blog-watch. In SIAM International Conference on Data Mining, pages 697–708, 2009.

[39] S. Sahni. Approximate algorithms for the 0/1 knapsack problem. Journal of the ACM, 22(1):115–
124, 1975.

[40] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack con-
straint. Operations Research Letters, 32(1):41–43, 2004.

[41] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin Heidelberg New York, 2001.

[42] Y. Zhou, D. Chakrabarty, and R. M. Lukose. Budget constrained bidding in keyword auc-
tions and online knapsack problems. In 4th international Workshop on Internet and Network
Economics, volume 5385 of LNCS, pages 566–576, 2008.

23

	Introduction
	Our Contributions
	Related Work
	The Model

	Deterministic Lower Bound
	O(11-r)-competitive Algorithm
	The Algorithm
	Competitive Analysis

	O(1)-competitive Randomized Algorithm
	O()-competitive Algorithm
	w(U) is known in advance

	Conclusion

