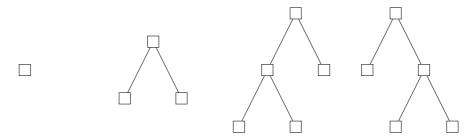
Langages formels, calculabilité et complexité TD1

26 septembre 2014

Exercice 1 Récurrence structurelle (base)

Un arbre d-aire complet est un arbre enraciné ordonné dont chaque nœud intérieur a éxactement d enfants. Voici des exemples d'arbres binaires (2-aires) complets :



- 1. Donner une définition par récurrence structurelle de l'ensemble des arbres d-aires complets.
- 2. Quels sont les nombres de nœuds possibles d'un arbre d-aire complet? Démontrer par récurrence structurelle.
- 3. Quelles sont les cardinalités des répartitions possibles en feuilles et nœuds intérieurs d'un arbre d-aire complet? Démontrer par récurrence structurelle.
- 4. Trouver et démontrer par récurrence structurelle une borne inférieure et une borne supérieure sur le nombre de nœuds d'un arbre *d*-aire complet de hauteur *h*.

Exercice 2 Automates (base)

Trouver des automates finis pour les langages suivants :

- 1. Les mots sur l'alphabet $\{a,b\}$ contentant le facteur aab ou aaab.
- 2. Les mots sur l'alphabet $\{a,b\}$ contentant un nombre pair de a et un nombre impair de b.
- 3. Les mots sur l'alphabet {a} dont la longueur est un multiple de 3.
- 4. Pour tout $d \in \mathbb{N}$, les mots sur l'alphabet $\{a\}$ dont la longueur est un multiple de d.
- 5. Les représentations binaires des entiers positifs pairs.
- 6. Pour tout $d \in \mathbb{N}$, les représentations binaires des entiers positifs qui sont multiples de d.
- 7. Pour tout $c, d \in \mathbb{N}$, les représentations binaires des entiers positifs ayant la forme $c + k \cdot d$ avec $k \in \mathbb{N}$.

Exercice 3 Mots (avancé)

Deux mots v et w sont dits conjugués s'il existe x et y tels que v = xy et w = yx.

- 1. Montrer que cette relation est une relation d'équivalence.
- 2. Soient x et y non-vide. Montrer l'équivalence de :

- a) xy = yx
- b) Il existe $k, l \in \mathbb{N}$ tels que $x^k = y^l$.
- c) Il existe un mot z et $k, l \in \mathbb{N}$ tels que $x = z^k$ et $y = z^l$.

Exercice 4 Mots infinis périodiques (avancé)

Un mot infini w sur un alphabet Σ est une série infinie $(w_n)_{n\geq 0}$ d'éléments de Σ . Le mot w est périodique s'il existe un entier strictement positif p tel que $w_{n+p}=w_n$ pour tout $n\geq 0$. Dans ce cas, p est une période de w.

1. Soient p et q deux périodes d'un mot infini périodique w. Montrer que pgcd(p,q) est une période de w. En particulier, l'ensemble des périodes de w est de la forme $p_0 \cdot \mathbb{N}$ où p_0 est sa période minimale.

Un mot infini w est ultimement périodique s'il existe un entier strictement positif p et un entier positif N_p tel que $w_{n+p} = w_n$ pour tout $n \ge N_p$. Dans ce cas, p est une période ultime de w et N_p une prépériode de w correspondante à p.

- 2. Soient p et q deux périodes ultimes d'un mot infini ultimement périodique w. Montrer que pgcd(p,q) est une période ultime de w.
- 3. Montrer que l'ensemble des prépériodes d'un mot w est independant de la période ultime p.

Un mot infini w est uniformément récurrent si pour tout facteur fini v il existe un entier positif n_v tel que v est un facteur de tout facteur de w de longeur n_v . Autrement dit, tout facteur est uniformément contenu dans w.

4. Montrer que tout mot périodique est uniformément récurrent. Un mot ultimement périodique est-il nécessairement uniformément récurrent?

Le mot de Thue-Morse τ est defini par la récurrence $\tau_0=0$, $\tau_{2n}=\tau_n$ et $\tau_{2n+1}=1-\tau_n$. Il est donc un mot sur l'alphabet $\{0,1\}$. On a $\tau_n=0$ si et seulement si le nombre de 1 dans la répresentation binaire de n est pair.

- 5. Montrer que le mot de Thue-Morse est uniformément récurrent.
- 6. Montrer que le mot de Thue-Morse n'est pas ultimement périodique.