Synchronous programming

Critical Real Time Embedded Software

David Lesens
Wednesday, 06 October 2010

8h MARDI
. 8h30
Synchronous programming
. Sh
* Eugene Asarin 5
=Mehdi Dogguy § % | In30 I
tn 0
E'a 1Oh Prog Synchrone
g CM/TD/TP
a 10h30H E Asarin, Lesens et
M.Dogguy Pre
11h Script sen
= David Lesens @ASTRlUM #43e ¢
| 11h30
..12h
12h30

Overview

= Critical real-time embedded software
= Principles of the approach

= |ntroduction &
= Formal semantics &
= SCADE

= Model validation

19 19

19 149

Where can we find software?

= \Windows, Linux

= PowerPoint
= [atex Software is everywhere... I

= Compilers
» Mathematical software (e.g. computation of 1)
= Mobile phone

= Space Are all these pieces of
* Nuclear plant software the same?
= Airplane

There Is software and software

Our topic is

= Critical
= Real Time
= Embedded

Software

What is embedded software?

= \Windows, Linux

= PowerPoint

The software has its own objective

Mobile phone

" Latex We can “buy” the software
= Compilers
» Mathematical software (e.g. computation of)

Space launcher
Nuclear plant

The software is part of the system
We can only “buy” the system

Airplane

Compute the first 10,000 digits of Pi

56

17872 14684

33446 85035 26

25720 101
01671 13900 98488 24012
64024 74964 73263 91419

63698 074:

43904 51244

rmiaoane

258

0 62222 47715
56951 62306 € 9 7

601

46414 428;
43415 95625 8

9584

90055 61484 2
13408 41486
28508 55562

6476 69149 0556
1

4 21624 84301 40

59009 946
89301 6
06353

74
41354 73573 95231
9 95 3

206 63421

14215

3718 0

01100

98444

014163149
a5

39049 75008
5189
15420

41

4 15961 311
22057 50596 83440 8¢

Real time?

= Transformational systems } e.g. Mathematical

= |nputs available on execution start .
P computation

= Qutputs delivered on execution end

= Interactive systems } e.g. Windows,

= React to their environment

= To their own speed Powerpoint

= Reactive systems e.g. Control /
= React to their environment Command of a
» To a speed imposed by the environment spacecraft

Critical? What does it mean?

y problem has been s been shut down to prevent damage
0 your computer.

JRIVER_IRQL_NOT_LESS_OR_EQUAL
op error screen,

again, follow

theck to make sure any new hardware o is properly installed.
tf this a new ins lation, ask your re or software manufacturer
“or any windows update

(f problems continue, disable or remove any newly installed hardware
wr software. Disable BIOS memory options such as caching or shadowing.
(f you need to use safe Mode to remove or disable compon , restart

press F8 to select Advanced Startup options, and then
de.

rechnical information:

% STOP: Ox00000001 (OX0000000C, OX 00002, 0x0000 0,0 BSAS9)

tamp 3dd99leb

hnical support group for further

Critical? What does it mean?

Intuitively, a critical system is a system which failure
can have severe impacts

= Nuclear

= Aeronautic

= Automotive

» Railway

= Space

Software criticality levels

Standards define precisely software criticality levels:

For instance:
»DO178B and DO178C for airborne systems

» ECSS for space systems
= European Committee for Space Standardization

Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or
A whose anomalous behaviour could cause or contribute to a
system failure resulting in: Catastrophic consequences

Software that if not executed, or if not correctly executed, or
B whose anomalous behaviour could cause or contribute to a
system failure resulting in: Critical consequences

Software that if not executed, or if not correctly executed, or
C whose anomalous behaviour could cause or contribute to a
system failure resulting in: Major consequences

Software that if not executed, or if not correctly executed, or
D whose anomalous behaviour could cause or contribute to a
system failure resulting in: Minor or Negligible consequences

Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or
A whose anomalous behaviour could cause or contribute to a
system failure resulting in: Catastrophic consequences

Software that if not executed, or if not correctly executed, or
B whose anomalous behaviour could cause or contribute to a
system failure resulting in: Critical consequences

Software that if not executed, or if not correctly executed, or
Cc whose anomalous behaviour could cause or contribute to a
system failure resulting in: Major consequences

Software that if not executed, or if not correctly executed, or
D whose anomalous behaviour could cause or contribute to a
. system failure resulting in: Minor or Negligible consequences

Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or

A who omalous behaviour could cause or contribute to a
(system failurexesulting in: Catastrophic consequences

Software that if not executed, or if not correctly executed, or

B who omalous behaviour could cause or contribute to a
(system failurexesulting in: Critical consequences

Software that if not executed, or if not correctly executed, or

C who omalous behaviour could cause or contribute to a
(system failurexesulting in: Major consequences

Software that if not executed, or if not correctly executed, or

D who omalous behaviour could cause or contribute to a
. (system failurexesulting in: Minor or Negligible consequences

|

Software criticality categories ECSS-Q-80C

Software that if not executed, or if not correctly executed, or

A whose anomalous behaviour could ¢ contribute to a
system failure resulting i atastrophic consequences

Software that if not executed, or if not correctly executed, or

B whose anomalous behaviour could or contribute to a
system failure resulting i ritical consequences

Software that if not executed, or if not correctly executed, or

C whose anomalous behaviour co or contribute to a
system failure resulting i ajor consequences

Software that if not executed, or if not correctly executed, or

D whose anomalous behaviour could ¢ ribute to a
. system failure resulting i inor or Negligible consequence I

ECSS-Q-40B
[Geveriy [consequence

Catastrophic [i) loss of life, life-threatening or permanently disabling injury or
hazards occupational illness, loss of an element of an interfacing
manned flight system;

i) loss of launch site facilities or loss of system;
iii) severe detrimental environmental effects.

Critical i) temporarily disabling but not life-threatening injury, or
hazards temporary occupational illness;

i) major damage to flight systems or loss or major damage to
ground facilities;

iii) major damage to public or private property; or
iv) major detrimental environmental effects

Marginal minor injury, minor disability, minor occupational iliness, or
hazards minor system or environmental damage
Negligible less than minor injury, disability, occupational iliness, or less

hazards than minor system or environmental damage

| o 7= Crmearsystem = SyreTmonoTs programmmg s |

ECSS-Q-40B

Catastrophid({i) loss of life, lije-threatening or permanently disabling injury or
hazards i illness, loss of an element of an interfacing
manned flight system;
i) loss of launch site facilities or loss of system;
iii) severe detrimental environmental effects.
Critical i — - life-threatening injury, or
hazards <temporary occupational illness;

i) major damage
ground facilities;
iii) major damage to public or private property; or

iv) major detrimental environmental effects

Marginal (minor injur inor disability, minor occupational iliness, or

0 mght systems or loss or major damage to

hazards min vironmental damage
Negligible less than minor iMability, occupational illness, or less

hazards than minor system or environmental damage

| oo e 7= Crmearsystem = SyreTmonows progrEmmmg s |

DO178B differs lightly from the ECSS

Catastrophic [Failure conditions which would prevent continu!d safe flight and Ianding !

Hazardous / |Failure conditions which would reduce the capability of the aircraft or the ability of
Severe-Major |the crew to cope with adverse operating conditions to the extent that there would
be:

(1) a large reduction in safety margins or functional capabilities,

(2) physical distress or higher workload such that the flight crew could not be relied
on to perform their tasks accurately or completely, or

(3) adverse effects on occupa@ng serious or potentially fatal i@

small number of those occupants

Major Failure conditions which would reduce the capability of the aircraft or the ability of
the crew to cope with adverse operating conditions to the extent that there would
be, for example, a significant reduction in safety margins or functional capabilities, a
significant increase in crew workload or in conditions impairing crew efficiency, or
discomfort to occupants, possibly including injuries

Minor Failure conditions which would not significantly reduce aircraft safety, and which
would involve crew actions that are well within their capabilities. Minor failure
conditions may include, for example, a slight reduction in safety margins or
functional capabilities, a slight

No Effect Failure conditions which do not affect the operational capability of the aircraft or
increase crew workload

Wikipedia

Vocabulary

= Security
= is the degree of protection against danger, loss, and criminals.

= Reliability
= is the ability of a person or system to perform and maintain its
functions in routine circumstances, as well as hostile or
unexpected circumstances.

= Safety

= is the state of being "safe" (from French sauf), the condition of
being protected against [...] consequences of failure, damage,
error, accidents, harm or any other event which could be
considered non-desirable. It can include protection of people or
of possessions.

Wikipedia

Safety & Security in Software Engineering

» The key difference between security and reliability is
that security must take into account the actions of
people attempting to cause destruction.

Safety
= The software must not harm the world

Security
= The world must not harm the software

Example 1: The First “Computer Bug”

Photo # NH 96566-KN First Computer "Bug", 1945
2

94 =

&t | Oadkamw shavicl {/17 9.007 47 005

Jvop 4 ;wg.rﬂ = tnphim S 9.087 BYL UFT coruh
Boe (03 e -ne | LTl) 7645 725055 (.0)

B33 PRO > 2. 1iayreys
Conck 2./3067ewi \

RIS G-r e 033 .fg..,la ;,ru..J ST‘)J Jesd” WERL
im © o tnew gmd - |

i ED j‘j’g‘r‘!‘r—} Cosnnq lmpj{‘pl(fnng r_ku.l;)

lhonbed! IR

1S4y

R-ﬁt *7"3 PQF\@L‘ F
kMaTc) V' re\m\

i‘\r_\ﬁ" 0.<-+||. t'_ﬁ .;‘ O'{ bq L¢|h {uu.nl
TEF/00 Gadampd sbadd]. 1 i
ue J_-w\A ﬂ,,gmn

Example 2: The Patriot Missile Failure

On February 25, 1991, during the Gulf War, an AcaariPatriot
Missile battery in Dharan, Saudi Arabia, failedrack and
intercept an incoming Iragi Scud missile. The Sstudck an
American Army barrackssilling 28 soldiers and injuring around
100 other people A report of the General Accounting office,
GAO/IMTEC-92-26, entitledPatriot Missile Defense: Software
Problem Led to System Failure at Dhahran, Saudi Arabia

reported on the cause of the failure. It turnstbat the cause was
aninaccurate calculation of the tinsence bootlue to computer
arithmetic errors

Failure in space

Trident Sea launch

Overview

= Critical real-time embedded software

= Principles of the approach
® Introduction
= Formal semantics

= SCADE
= Model validation

19 |9

14 18

19 9

NASA's Climate Orbiter was lost September 23, 1999,
due to asoftware bug

One engineering team usedetric units
while another usedEnglish units

Why is System (to Software) Engineering
complicated?

Thermal control

Communlcanon

Power

> Spacecraft desjn# manageme

e
Software
development

Mission
manageme

14

The V development cycle

System
\n/:_::> qualification

System
gy

Validation tests

Subsystem
validation

Integration tests / sypsystem
integration

testing

ary tests
Unitary
testing

Software
development

Costs of critical software development

» Specification 10%
= Design 10%
= Development/TU 25%
» |ntegration tests 5%

= Validation 50%

15

Late detection of errors

Subsys
integrati
testing

Unitary
testino

tem

on
Delay for
the error
detection

Cost of error correction

Cost of
error
correction

’
~ .. .=" Putmore effort
on early phases

Phase of error
discovery

16

Verification with model driven engineering

System
\n/:_::> qualification
System
gy
» Software
validation
Software
/ integration
testing

Unitary
testing

Early
detection
of errors

Automatic
code generation

Formal Model Driven Engineering shall
allow

= An early verification of the specification
via a strong and intuitive semantic ensuring
= Consistency
= Completeness
= Non ambiguity
= A behavioural validation within a simulation
environment

= Automatic generation of certified code
» Formal proof

17

Overview

= Critical real-time embedded software

» Principles of the approach
= |[ntroduction
= Formal semantics

= SCADE
= Model validation

(9 9

19 (9

&

4|

There are two ways of constructing a
software design. One way is to make it so
simple that there are obviously no
deficiencies. And the other way is to make
it so complicated that there are no
obvious deficiencies.

Professor C. A. R. Hoare

The 1980 Turing award lecture

18

Formal semantics of programming
languages

Wikipedia | %t

rigorous mathematical study of the

models of computation

In theoretical computer science, formal
semantics is the field concerned with the

meaning of programming languages and

Syntax

* |s it only what you say that matters?
= And not so much how it is said?

= A good syntax shall be
» Clear
= Unambiguous
® Intuitive

19

Statement groups
*|n C, C++, Java

if (light == re@ Legal statement

{ . No warning
Cancel_lift_off();

} The call to

Cancel_lift_off
Is always executed

*In Ada
if light = red th@ _ llegal statement
_ Cancel_lift_off; No compilation

end if;

Named notation

= |In C, C++, Java

struct date {
int day, month, year;

1

= |In Ada

type Date is
record
Day, Month, Year : Integer;
end record;

20

Named notation
= |In C, C++, Java

struct date today = {12, 1, 5 };\ What does it mean?

= |In Ada

Today: Date := (Day => 12, Month => 1, Year =>5);

Notation usable also for function call

Using distinct types

= |n C++

int badcount, goodcount;
int b_limit, g_limit;

badcount++;
if (badcount == b_limit) {

goodcount++;

if (goodcount = Do we really mean that?

21

Using distinct types

= |n Ada

type Goods is new Integer;
type Bads is new Integer;
badcount, b_limit : Goods
goodcount, g_limit: Bads

*Strong typing is a
good rule of

badcount := badcount+1; critical software

if badcount = b_limit then

goodcount := goodcount+1;

if goodcount en lllegal

Bad typing
Lossomio s Master - criical System - Svnchvonous progremmismvd LESENs

Formal languages

= Programming languages are more or less formal
= Ada is more formal than Java
= Java is more formal than C++
= C++ is more formal than C
= C is more formal than Matlab

The risk of errors is less important with a formal
language

case State is
when Statel =>
Guardl := X< 3;
Guard2 := X > 3;
if (EVENT1 and (Guardl or Guard?2)) then|
if (Guardl) then
X:=5;
State := State2;
else
if (Guard2) then
X :=6;
end if;
State := State3;
end if;
end if;
when State2 =>
if (EVENT1) then
X:=7;
State := Statel;
end if;
when State3 =>
if (EVENT1 and EVENT1) then
X:=8;
State := Statel;
end if;

An other very
simple example

Simple? Yes...

But what does
this piece of code do?

Code (even Ada)
IS not an adequate way
to communicate
with system engineer

end case;

The same very simple example

= e

EVENT! _~"%=T:
last %> 3 _~7 H=6
last M3 7 M= A

A graphical language
with a high level of abstraction
facilitates the communication

23

Overview

= Critical real-time embedded software &
» Principles of the approach s
= |ntroduction =
= Formal semantics &
= SCADE &
= Model validation &

Overview

= Synchronous model &
= Introduction to the Scade language s
» Editing a Scade model &
= Activation conditions &
= Automata &
= Arrays &
= |[terations &
= Global flows: Sensors and probes &
= Genericity &

24

Wikipedia | %1

Need of deterministic algorithm

* In computer science, a deterministic algorithm is an
algorithm which, in informal terms, behaves
predictably

= Given a particular input, it will always produce the
same output, and the underlying machine will
always pass through the same sequence of states

Wikipedia | %t

Determinism and ECSS

ECSS-Q-80C
»6.2.3 Handling of critical software
»6.2.3.2 The supplier shall define and apply

measures to assure the dependability and safety of
critical software. These measures can include:

= prohibiting the use of language commands and features that
are unpredictable;

= yse of formal design language for formal proof

25

Synchronous languages

Semantics = synchronous hypothesis

» Existence of a global clock
= Software cyclically activated
= Inputs read at the cycle beginning
= Outputs delivered at cycle end
(read / write forbidden during the cycle)

» The cycle execution duration shall theoretically be null
=>» No cycle overflow
= Mono-tasking
Ensures the determinism

Asynchronous versus synchronous

Start of an End of an
execution cycle execution cycle
Asynchronous
system
Inputs can be I l I Outputs can be
received at any time | I O I O emitted at any time
' A
Synchronous
system /‘ Outputs are
emitted
Inputs shall be
available at I 9 atcycle end
cycle start

26

Overview

» Synchronous model &
= Introduction to the Scade language &
» Editing a Scade model &
= Activation conditions &
= Automata &«
= Arrays &
= [terations &
» Global flows: Sensors and probes s
= Genericity &

SCADE
“Safety Critical Application Development Environment”

= A textual language: Lustre _SQ%Q,QE

= Formal language for reactive synchronous system -
= A graphical language

= Semantics equivalence SCADE < Lustre

= Adapted to data flow and automata
= A software toolbox

= Graphical editor, simulator, proof tool

= Automatic documentation and certified code generation

= Synchronous approach

27

Interactive'
Batch I

Syntax &
Semantics
checker

Simulator

Documentation

generator

Model Test
Coverage

Traceability
tool

Time in Scade

= Global clock (known by all processes)
= Time = discrete sequence of tick t, t;, t,, etc.
= At each tick t; a cycle is running
= Variable = flow which takes at each tick a unique
value
Example: integer variable x

28

Operators

= An operator acts on flows of values (and not on
values)

Example

= Operator « + »: int, x int, = int,

Temporal operators

* The “PRE" operator takes as input a data flow (i.e. a
variable) and returns its value at the previous tick.
At initial tick, its value is undefined.

= The “>” operator takes as input an initialisation
value and a data flow of the same type. It returns an
identical data flow, except for the initial value.

29

Example

t, t,

X 5 8 2 3 13 5
™

PRE x @ 5) 8 2 @ 13
N

~TRE x 9 5 8 2 3 13

“Follow by” operator
FBY(x, n, init) = init> (PRE (PRE ... x))

n times

X 5 8 2 3 13 5
O\\
9 -> PRE x 9 5 8 E\ 3 13
N
2

FBY(X,3€_>/-® 9 9 5 @

30

SCADE at a glance: Data Flow

Data flows \
Inputs
on the left ’\) /‘ Outputs

L on the right
1 Y] >T

c1 ¥>z

L_ocal L\ : Imported
variables O o S operator
Procedure call /

Textual versus graphical

(%, y)=A0;
B(x,y);
C(y)

31

Addition fEs—=1 |

Basic operations (1/2) .

-

Subtraction |

Less ——x}——
~_ Multiplication ||

R e R —
ﬂ >05
Less or equal ’\\ L
v <} Division I\\\
Greater |\~ -

':’E—Wlnteger division I

Greater or equal
‘ r}&)—> Modulo 4

Different f\~\ 1
=S Unary minus [~

==
Convert to real |‘
Equal I/ \{E S o0

Basic operations (2/2)

I D > o1 i D > o
12 >— 12 >—
13) > o2 s —'D > 02
Not '\
Mutual exclusion }\ " >0 S o
n {#}———>= Different &2@— o2
12 >—.
13 il > 02 2 >—%—~> o3

Equal I/

“Mutual exclusion” operator
#: bool x bool x ... x boo> bool Returns true
= ~ ~ If at most one of its
ntimes inputs is true
el e2 e3 #(el, e2, e3)
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Delays

Generally
not used

Input |‘\ |

initial value | .

I3l
L
m 1 Delay

33

Node and function
y=f(x)

Function and nodes are represented by a rectangle

= A node has an internal state
= A function has no internal state

Input parameters
on the left \

&|

General Declarstion | TypeVariables | Comment | Note 4]

€ Node & Function

™ Imported Source fle:
Sombol i [as]
Note Categony:

Output parameters
on the right

Imported function / node

= Imported function

extern void C(
bool Y);

» Imported node

extern voidC_reset
outC_C *outC);
extern voidC(

|

General Declaration | TypeVarlablesl Commentl Mate 4%

© Node & Function

[# lmporied Saurce fle:
Symbol e

Mate Category: I

£

General Declarahun|TypeVariahles| Comment | Note 4| »

' Node " Function

[mperted Source file:
Symbal file;

Note Category. |

Context to be defined by the develop

34

Data structure

[— Xp Xp := DTG_data.Xp
DTG Data DT Xm Xm := DTG_data.Xm
- i —— Yp Yp := DTG_data.Yp
a _ Ym Ym :=DTG_data.Ym
Xp ——; | DTG_data.Xp := Xp
Xm DT DTG Data DTG_data.Xm := Xm
Yp —— - DTG_data.Yp := Yp
— Ym DTG _data.Ym:=Ym

—>
>

Output

LD

Local_v ariable

LD

Local_v ariable

Input >
_> Output
D Local_variable

Local_variable [>

Variables representation

|_

Input Local_variable

[>—

Local_v ariable Output

[Properties |
General | Desaription | Document SCADE | Page Fomat |

Diefault model file: est.xscade] _I
Semartic: ero fle: Tester _I
Note type fles [rscadE Doty .|

& version: [ouentverson 7]

‘ r ﬂew’fanable symbals
[Properties |

Input >—D Local_variable

Local_variable M Output

General | Desaription | Document SCADE | Page Fomat |
<L iscade
Semantic enonfler | Test e

Note type files: $ISCADE)lib/Defaulity aty ..
grsion: curent version -

Diefault model file: Tes

¥ Mewprariable symbols

35

Overview

» Synchronous model

= Introduction to the Scade language
» Editing a Scade model

= Activation conditions

= Automata

= Arrays

= [terations

» Global flows: Sensors and probes
= Genericity

9 19 19 [9 [(919 |9 [9

& SCADE - [Welcome to SCADE]

J@ Ele Edt View Insert Project Toos Erowse Window Help _lEf x|

[Deeaizex--sa(e =
"I

WELCOME TO

= Q
SCADE
(‘:jﬂ'/

Create new or open an e M al n Wl n d OW mentation and SCADE-related
e papers,

B Creale a New 5C

open an Existing (g raph) 1o BCADEB.0

cess to All User Documentation

BrowserI

d Papers from the website

Examples Customer Support

DE project examples to disc e ool VisitE: website 1o leam more

Direct Actess tn SCADE Froject Examples " Email Technical Suppart

© (Cruise Gontol, Piot, ABC & Roll Control)

@ Visitthe Client Centet
& Visitthe Website

Hame. wwi.esterel-technologies.com

Messagels

Ll o

[JE3 T

I, Messages /
e

Do

36

Creating a new project

Projeets | workspases | Fies |

scocrroee:
= SCADE Project . x|

Uss this dialng to add or remorve libraries.

[
J

T

—— [=F Open... Chrl+0

— Close

Open Workspace...

[SCaDE fbraries

SCADE Project i

Save Workspace

Elose Workspace

B 5o e Use this dialog to set model propeties.
Save fs...

& 55e Al CErlHL | Defauilt model fie:

Semantic erro file: w.erm
Note type files: $ISCADE)/lib/Defaulbity. sty

[Save format

SaEwe s Template.. .

Report..,
& print... Chrl+p
Iﬁ Primk Prewiewy

Brink Setup, ..

Version: |current version -

Recent Files 4

Recent Workspaces 4

Exit <iéoadent | Suvents | [Teminer | Ao | dide |

& ScadebTraining.vsw - SCADE - [ActivationPackagesActivatedBlock/diagram ActivatedBlock 211

J@ File Edit View Operator Insert Layout Project Tools Browse Window Help

Deu@|emx o ogs| e R [t ji@ﬁgum@m@w j‘
[prenan k|| |jay|s|erry |

|# % [rowwosnoapsn et fes av- > uny @00l vk |- vas|
|¢w|eeeonans|oopet o

ase sosoesana

G- OutsidePackageperator
(23 ActivationPackage

= [ScadebTraming.etp — & i

£ 3 ScadefTraining Q
(£ Corstants

S Operators 2

]

O

toput

B Topes
-3 Operators
T AnayMgt
T basic
T BasicMap
L HigherOrder
{1 AutomatorPackage
-3 Operators
T AutomatenCommenHistery - .
T AutomatarFork. M d
T namaar LoDt aln winaow
L AutomatonLastD efaultHistary
L AutomatenLastHistory -
=i (g rap h)
T AutematenPre
L AutematenPreHistory
L AutematenSynchionization
L Counter
T Sequencel
T SequenceCounter
T SequenceTimeQut
T TimeOut

@O Transtions B
I o
Fieiew | G Framework [B3 D esion Veifier gl |

#l[lcading project Goadeblraining stp
lSuccessiully loaded project ScadeéTraining.etp
(G \APPPROGRANSCADEG SCripts~5oadstoSCADESGUL . tol: no such file

Message

K}

For e, press P 5]

vsw - SCADE - [Welcome to SCADE]

@5\5 Edt View Operator Insert Layout Broject Iools Browse Window Help

BHE $BRXocES (2R JJScadeETrammgetp E
nn&\nne.\m ey s ¥ 5|
dlE|rvawwsrnsn s |ooan |
- “Illlllll”lliillb- | ===

Packages

N 41 = cadeblraining el
= Definitions of ra it
=] Constants

n Scade OperatOfS s .iﬂ?ﬂ\fidepa:kagetunslanl

O OutsidePackageSensor

* Imported operators S e

ype
= Constants Ly,
-4} DutsidePackageOperator

" TYDeS £ ActivationPackage

Types

= Sensors L gy e
T} ActivatedBlock
» Packages

.'?EHEH‘QJ

{J ActivationBlack

[T ActivationBlock!
N - 2] {_] AnapPackage .

& i

= Inside or outside 5 2 rtoFs ;
[RR] o] ’

a package ek]

[JE

Gota Ciliin} '[mpurted Operatar

%8 Manage Requirements &7 Constant

I Type

> Sensor

(1 Package Bro
cap!

Properties. ..

Management of types (1/3)

g wawwssnnsiod|[@an0d|Fferegy umnn|oeen|n
iiH]lIlllIll| s»pmy| aensnns| snssnnnnn

EE [\\S Tupe | Dfiition Comrnefits
| ScadebTraining etp = - T_ARRAYS anaw
=4 ScadeBTraining Q iy 7B N p—
~(Z] Constants O || = T MaTRK 2 3 <anap>
Sensors = B-fp "2
Types g "3 real . =
Qperters | S A N £
: g iCtiV;tiorllF'ackage =9 3 Enmmenll Mote KCG ITlaceahllll_l,ll
= nayPackage] rea
=23 Types = T_PHASE Freamz

B T_ARRAYS - GROUND .
[l T_MATRIX_2_3 - Gp FLIGHT Marne: I

- T_MATRIR_3_2 (S T_QUATERNION @
i T_PHASE i @ o1 ~m Enum Value: I
i T_QUATERNMION = ff T_VECTORTO <anay>
: @ T_WECTORD @ "0 int
: © T_VECTORZ = = T_WECTORZ <antayy
LI. Tt I .I 2 real
|

= T_VECTOR4 <arapy
File. @ Fram.. | B3 Desi | e @_ "4 real

Management of types (2/3)

E w - SCADE Suite - [Types] =]]
File Edt View Operator Insert Layout Project Tools Mavigate Window Help ;Iilll|
DFEH@| s BBXacTS[TW fore o s BXamE
BB Fes (k| mmsn [|[&ass 0T
es e |m WA |[# 2 D=
vamwEsRLL btk |en||rennnn|paam ||
2l E Tuope | Definition | Comments
& SCADE.clp = ||=-® T_STRUCTURE <stiuctures
3 SCADE &l - @ lsbert int
B Types Y _rul
i ‘T_STRUCTURE
[libcigial =
[liblinear I
(1 lbmath
(L] libmathext 2
(21 lbpwinear]
(23 et
L
. -
PEICEIES LN R e | 2l
FmEDK 0| |zI“| "ate =]] | o
For Help, press Fi [um v

Management of types (3/3)

rrayPackage Types]

File |Edt Wiew Operator Insert Layout Project Tools Browse Window Help
[} & 7 Undo Type ez I =1 ‘ 7 K2 ” ScadeTraining. etp v % & g 2
Cu Redo Clrl 4 h
o [% n ¥ |
i oh Ut Ghrli k% | L
|3 By ce musm|ase [Py
2 Pt Chrl
e w |[#»>mr|[annsnn[na
M Celete From Mode! upe | Defirition Comme
1 Scad T_ARRAYS <y
£3 3¢ Gt line..., ChrliG Ty o5 int
Apply H- [T_MATRIX_2_3 <anay>
& B 2
Cﬂ i 1eal
= Mave Down Al+MEBas Lo T_MATRIX_3.2 <arayy
S "3
e g Complete Word = 9___0 ~2 =)
o Geleotal CEHA B T_PHASE <enumeration>
i GROUND
@& Find. .. Chrl+F & FUGHT
el S b T_OUATERNION <stucture>
i beegg Q1 real
Breakpoints. . o0z ol
Styles. .. - 03 real
#Reguirements”. tod real
K 5 properties... Al+Enter BB T_VECTORAD <arap>

39

Integers and reals

= [ntegers
= Binary 0b01001
= Octal 0563
= Decimal 9637
= Hexadecimal OxAF6C

= Encoding

= short, int, long Shall be defined
* Float, double by the user

Defining a constant

(=" Scade6Training.vsw - SCADE - [Scade6Training Constants]

[G9 File Edt View Gperator Insert Layout Project Tools Erowse Window Help
DEHG tRBXe oS 2R
sawnnn kwn axs|enoy|
#lE|vamwsrsnnniti|@s0p|ferrt mmsnu|osen N
s nessnssn|ssonr|(snssnn|sansnnnnn|

HENES

Constant Type [Valus | Comments

= - ScadebTraining.etp & DutsidePackageCons [+ false This is a basic constant
=423 ScadeBTraining 27 ActivationPackage -

=423 Constarts
& DutsidePackagsConstant

(7] ArrayPackage
(71 AutomatonPackage

|sBEL,

(L] Sensors [cgbool

(1 Types I char

(L Dperatars I int

[ActivationPackane & OutsidePackageConstant

[AnayPackage (1 ProhePackage

1 AutomatorPackage 7 Proof

[] ProbePackage i real |
1 Proot

40

Changing an object properties

E|

General | Declaration | Type Variables | Comment | Motz <[»|

Name:

Paih; |OutsidePackagelperator/

Filename: | OutsideP ackageOperator xscade:

[1+ Public " Abstract " Private ‘

|

General Declaration |TypaValiah\es| Comment | Note | »

Node " Function

I™ dmported Soures file: |
Symbal file:

Note Categoy: |

Keyword list

» Scade keywords

= abstract, activate, and, assume, automaton, bool, case, char, clock, const,
default, div, do, else, elsif, emit, end, enum, every, false, fby, final, flatten,
fold, foldi, foldw, foldwi, function, guarantee, group, if, imported, initial, int,
is, last, let, make, map, mapfold, mapi, mapw, mapwi, match, merge, mod,
node, not, numeric, of, onreset, open, or, package, parameter, pre,
private, probe, public, real, restart, resume, returns, reverse, sensor, sig,
specialize, state, synchro, tel, then, times, transpose, true, type, unless,
until, var, when, where, with, xor

» + Targeted programming language keywords

41

Quick check

7 ScadebTraining

=10j x|

Monday October 20 2007 15:41:43
Result of check for package Cours in
model Scade6Training

Cuick Check

0 error(s) detected - 3 warning(s) detected

Category Code Message
Usage: Unused input at Cours::B/X/
5 tic W WAR_S08
emantic Yarning - The input variahle X is never used
. . Usage: Unused input at Cours::B/Y/
S tic W WAR_S02 .
Emantic ¥arning - The input variable ¥ is never used
. . u: ST d input at C ::B/Hidden/
Serantic Warning WAR_S508 sage: Unused input a ours icden

The input variahle Hidden is never used

The quick check performs syntax and semanticsigatibn
It shall be frequently used

Symbol editor

20 |
= lib_matrix.etp [/4=
423 lin_matrix Zh
=10 lib_matrie aye
=i Edition of the symbol
1 S

£ MULT_Ma £7F Check

) SPLIT_Ma
g TRanGPD: &8 Generate Hode MULT_MAT_MAT

]
[VEC DIAG ¥ Build Node MULT_MAT_MAT LEFTé—
(2 i_vector € Simulate Node MULT_MAT_MAT =1 F—2LEFT_MULT _RIGHT
- lin_utils RIGHTé—
Insert > #MNP
2 1 B

Use of —>——

h bol WMATRIE_6_4 <1 x 52 —>
e symbo v

PATRIH_B_3
METRIH_4_3 446, 4, 332

42

. Edit |Wiew Bode Insert Layout Projeck ulink - Tools Browse Window Help

Display types / variable names / ...

oy zbas e a g e |oce Ao p X aremassBea||aim]
d — Browsers b
W WA poding windows »
[ElET R S Hla |
ggifimeor: pot||essese | oopeb o

Full Screen

Zoom

Page Bounds
Show Grid

Snap to Grid
Grid Praperties. .

Min-Max.

MTCFilt 4
Lt [~ isplay Local Varisbles

B3 Tupe Blocks
= Display Local Tvpes

| v Display Internal Types

Display Pin Rarks

Display Pin Names

Display Motes

@ T_VELOOITY
B4 Operators
-} GNC

B Interface Centered Labels
s Inputi
s Input2 o Percert Display
= Output]
- Dutput2

® e T_OUATE | T_OUATERNIGHS,
RNION —fe———————————————— RNIOH

It | Project Tools Browse Window Help

Set Active Project ™ | & Kl

¢
ﬂ Checker d
. Code Generator - Simulator 4

W Desion Yeriir v [20 @ % mm
T ¢ <. [
E Instrumenter

Configurations. ..

Set Active Configuration. ..

¢ B2 Resolve Inconsistencies. .
E Zompute Types

| 8 Launch MTC acquisition
< B3] Enable Design Yerlfier. .

Cancel

Generation of documentation

No dlassified

Scade 6 Training

Scade basic features training, Scade 6 new advanced
features training

Summary:
This model s used as a support of the training on Scade 6

Company: EADS Astrium Space Transportation
Authors: David Lesens

Reference: TE42

Index: 1.0

Date: 2007/10/29

Distribution List: Internal distribution only

43

Report customization

CITEE— i
dreote ETTTEN i
Pt 0o e 212
Gener
Pt Do Pepot P i
- G
Oupu i T Pretes @t O ETE]
Gener
e s T 21|

[Generate Documentgls Prowect Des

Fomat: Genm (B Reprter - T =

i i P bitle: Project Des
Header/For Distribution lis oject litle: I Ciaren @;Heponel IF\TF LI

Report script

SCADE defe Iszue numb " Cx i Proj
o . ject Des
el FlafEeiculin) | ST General I Shiucture I Cover |
Releience | Aoponisumm projoct deser | Authars] ‘Hffe'_ Project Desciiption | Document | Header/Faater Display
B 4 d a o
${Referenc
Corporate |t | This model is HFroieciDe: | Pioiect fefere tCreatedl
Project jndes: I~ Display called and calling operators sections
Project date: e v Botate landscape images
Left,
[Allowrow to break across page
Canstants representation
’7(' .85 ANays .as Images & a5 Tent ‘

0k | Annder | aide |

Code generation customization

peings 2| |
8 Cose Ger e 2lx|
Code Gor T E 21|

Erwiran
e W cetings 21|
fed I
oot GO Euion 15 Cade G T R x|

?|x
O e —_ 2]
(et Boned ool 48 Coce Ger O R 2|
Target dire (e | L = Ervvirani General 5 Code Ger_ x|

— I e gjz::::t o[Ainato EMViton Ganeral £ Code Generator - Simulator [kCsEn |
ctivat U= Compier Emiton - General | Opfimizations | Ewpansion | Configuation |
[Debug [psa Do Grpaipre Additional Envionment | Comper | Buld | Simuletion
[ClarayPe ™ FiterL II
hrrayF: User config file:
ClAraPe e lane Ianore file:
CowayPe | N - I
CJautoms g I
S Significan: [~ Ena Pieproces Heade fie
Praject: I
Addtional | o]
[Configu ML 3
_— Addtional

0k | Annder | aide |

44

File management

« Scade6Training.vsw - SCADE - [ArrayPackage =100 x|

[@ File Edit Wiew Operator Insert Layout
Project Tools Browse Window Help - 5[

DSEH@ | BXo - EF8 8 R ||

vor | e a5

= N
D@D‘nl v v X

|lzeasssoaes oc |- [un
= = |==]

E|-- Scade6Training.etp
=23 GoadeBTraining

(] Constants

(Z1 Sensois

F(Types

=24 Dperatars

-0 ImportedOperatar

1} OutsidePackageOperator e

|6 Bs -
SHE L7

I

3]
=
23
=
@
g
2
o
o
a1
*
o
=}
.3

ArapPackage
AutomatonPackage
Cours

Genericity
ProbePackage
Proof

|':)a@=:);

B EEEEEE
coooooo

Filetfiew | <] Framework I B Desian Veiifier

ﬁ WA T Build), Simulator), Matlab (T][<] 1 2

Scade6Training.xscade
ImportedOperator.xscade

OutsidePackageOperator.xscadg

ActivationPackage.xscade
ArrayPackage.xscade
AutomatonPackage.xscade
Cours.xscade
Genericity.xscade
ProbePackage.xscade
Proof.xscade

1%

l —— _

Documentation

([} Welcome to SCADE 6.0

'..Lll Getting Started with SCADE

m Scade Language Tutorial

m Scade Language Primer

II_I' Scade Language Reference Manual
tﬂ' SCADE User Manual

l;m SCADE Technical Manual

() SCADE Libraries Manual

(1) SCADE UML Metamodel Card

() SCADE Gateway for Rhapsody Guidelines
l:m Simulink™ Gateway Guidelines

m Simulink™ Modeling Guidelines

tﬂ] RTOS Wrapper Guidelines

About Requirements Management Gateway
documentation, check from RMG interface at
Help > Documentation or Coupling Notes

45

Overview

» Synchronous model &
®» |Introduction to the Scade language &
» Editing a Scade model &
= Activation conditions &
= Automata &
= Arrays &
= [terations =
» Global flows: Sensors and probes s
= Genericity &

“IF” operator
x=ifbtheny else z

If “b” is true, “x” takes the value “y”,
else, “x” takes the value “z”

Note:
Does not mean
If “b” is true, execute "y,
else, execute “z"

46

cond

If versus IfBlock

-3
=
=
=5

- 2
o
o
D
n
—~
o
o
<}
(@]
o
>
o
=
-~

Both branch
are executea

Only one branch
is executed

When Block

enumerated

black

int Case(T_ENUM enumerated

switch (enumerated) {

case black :
y=1
break;

case red :
y=2;
break;

case green :
y=3;
break;

}

returnvy;

}

{

47

Activation conditions

= Activation condition

= Condition true = Block activated

= Condition false = Previous outputs used
(was “condact” in Scade 5)

2
or Default values Bropert 5
. . Use | Size Parameters | Comment | Hote |
= |Init values before first use P e S e
Instance name: éguo;:a)n a:lwate;
“y. Clocked activate
= Restart condition i S
N Top: [0 7 1Y e
= Condition true = Internal memory reset e AR R

m

Activation: Example (1/3)

= a + b, initial default value 5, activation condition c
y = a + b, default value 5, activation condition ¢

@)

/.
\

/
)\
\

1 2T
B xﬁ@

\J

y 5 f/
Last computed value

Default value.

48

Activation: Example (2/3)

|

Use | Parameters | Size Parameters | Comment | Hote |

Fetivate Higher Order:

& Wit initial default values

Inst - [1
netanss name " ith defaull values

b Position and -
] j-—(
" > Output_default_initial_walue Top:|5450 Width: | 1773
Left: [7533 Height: [1403

Use | Parameters | Size Parameters | Comment | Hote |

) |
Aetivate >—‘ =

i AN Higher Order: | Eoolean activ,
A) %?\Umnm_defauh_\ralue Instance name: |5 C ith inital default values
~o & with defaull valies
S~o Positian and 5i
Top: 9155 Width: |1772
’V Left: [7533 Height: [1402

if (Activate) { sooLeaNlacTvaTED:BIACH ater: true
Output_default_initial_value = A(); : : :

Output_default_value = A();

o e T

if (init) Output_default_initial_value = 5; i | | |
Output_default_value = 5; 1 1 1
init = false; | | |
‘BOOLEAN]_ACTIVA1ED::B/Out|ut_defa t_initial_value/
1 1
setivate Last computed value

> Outpurt_default_initial_walue 1 1

1 1

1 1 1

’ Introduce an ff - . I

T
B OOLEANI_A CT IVAiED B /Out'ut_defa t_value/: 20

internal state

> Qutput_default_value

Activation and restart

Activation
/ restart
condition

| Previous vaIueI‘
| Computed vaIueI ‘ﬁ(

|—>—| ——— /1

== Default value HUNEY
Restart' ¥ 2

~Condition @ t

Activiatigh 2 t

Re-initialization §

[

RestartOutput

Overview

= Synchronous model &
= Introduction to the Scade language s
» Editing a Scade model &
= Activation conditions &
= Automata &
= Arrays &
= [terations .
» Global flows: Sensors and probes s
= Genericity &

50

SCADE at a glance: Automaton

Initial state . Guard N

W//i Parallel states

Strong
transition

Y=, ~
Action
i Weak
%‘; transition

T
5 . @>M -

L>2andY <(4)

STATES_1 \

<SM> -

(o SAmEs2

sty 1 > v

e

<SM2> -,

. © T2
- 5 times tue "
NN }* Ttimes

é/

STATE2_1
<SM> o, <sma>
(State2_11) o)
STATE2 13
2>
\ J J
Wey=2 ~

STATE2_1 2
STATE2_1 4
3>

Final
state

emit 'SYNCHRO;

Synchro
nizatior

Data flow and automata

= A node is composed of
= Equations (data-flow)
» Automata (event driven)
= An automaton is composed of
= States
» Transitions
= A state is composed of
= Equations
= Automata

<SM1>

{63

stepl

>

cmd

1

Counter _{ >

51

Principles of Automata

» Semantics equivalence

= There exists a data-flow model semantically equivalent to any

automaton

= Automaton scheduling

= At most one transition fired per cycle
= Exactly one active state per cycle
(except then parallel states are defined)

States Properties [
Declarati ransitions | Commet e
= A state can be e E—"
= An initial state / a final state Nems: | T
= Hidden / nested o - -
Isplay
v Initial " Hidden
[Final + Nested
o protection
false |—>
isActive
R— o KSM2> ., s <SM3> i,
: o
inactive inactive T
RS startl / s start2 [P p e iSAC‘Ee
Final N\

[]

52

Automaton simulation

HE A
= &7 TestScadebetp SR
o -} Packagel:Asomaton H X
¥ start faise :
» stopfalse
B s
_Actlve state
----- i
Watch
e — i : hd
Er. [SF. @80,]) 4] | 2
a8 A
H[TTTT 771\ Messages)\ Buld J\giwltor |\ Malab (TH] | /A L)
X [Package LAuomatonistan. false X[ananis e =l
n 1100
A | O - ckage] Adomaton/siad i f Creke: i RS
1> Package! Automaton,/sog false Cycle | Action]

D011 Userlnpu

[Packaget-Automatontstop, faire

[4 o
[For Help, press F1 E
Transitions
= A transition can — B
. have a Weak pre-emptlon Declaration General]Cﬂmmarﬂ Mote I
Prios
= have a strong pre-emption i - =] TRy
= be synchronized . .
 Weskc ¥ Pohline Mode
= [t can have C S
= A guard
= An action

= |t has a priority
= |t can be with or without a history

Graphical transitions

=
Strong without N
history] Weak without
. S . history

Synchronized
without history rg\ Strong with
% hiStory
history GL Synchronized
with history

Strong and weak transitions

= Strong transition
= The transition is triggered before the state execution
=>» The guard can not depend on the current value of a data

= \Weak transition
(or “weak delayed”)
= The state is executed before the transition triggering
=>» The guard can depend on the current value of a data

Strong transition

Strong and weak transition

LT T P T A M -
; |

':‘: Weak transition

N STATE 1 i STATE 2 3
: EVENT |

H nia — 12

: . 2 . 52

; last 52 + 1 > last '32 + 4 >

: —_—

EEEEFERY
B @
]

Kl |
[T Do Simuiator AL | |§| ~Defauk N
5 -fl Variable | valie | Path
[EvERT fakse T
o S 15 AT

ey 52

Example (1/2)
Strong transition Weak transition

inactive

last ‘count + last ‘count +
+ +
count

start T

stop T

count strong 0O |0 [0 (1 |2 |3 1|4 |4 |4 (4 |4

-Countweak 00001234444-

Example (2/2)
The behaviours of the two following models are gglént

SML>~,
G stepl (o~ stepl h
L D
cmd cmd
1 1
Counter —D Counter —D
cL cL
L Rl _ J
L LIN .?t et N,
2% st % cL= 5‘/"
*e CL 5 ‘ann *
‘ step2 (QIU! |
2 2 |—>
cmd cmd

1 Previous value

Synchronized transition

= A synchronized transition
= Has no guard
= |s triggered as soon as all nested automata reach a final state

56

Example

> Startl received %>
o Still in protection ' U ey
state |

> Start2 received U
o Final states reached [e)

> Transition inactive R Lo

triggered 1

[Inactive |

N
true |7/

ishctive

Transition history |
General Declaration | Activation | Transtions | Comment 4|+
» Transition without history o _pigor
= The state resumes its execution Kind ~——
¥ Strong I~ Els=
= The memories are reset £ sk 7 Poline Hods
" Synchio
» Transition with history
= The state resumes its execution 4

General Declaration |Actlval\on| Transiions | Comment 4|

= The memories are not reset

Pricrity istony
. - & Hestart
» Two types of memories NS

' Strang I~ Else

= PRE : local to the state © eok 7 Poline Hods
= LAST :common to the node € see

Transition with history

.. SUIEN

i st] Restart
A M2 -

N EVENTT Bvenrz =

: ' : Stated

2'_>S1‘_ - 30 g &0 =

- EVENTZ
e y
I T e
i

T SM2 -,

[“‘ State2

2 5 2

-~ J

Shared memory

» Data flow point of view
= Access to the last value of a flow in its scope
= “pre expression ”
» Mode automata point of view

= Access to values computed in other states
= “last X"
(“x” is a named flow, not an expression
=> utilization of ‘)

58

=
.

{"‘ inactive 1
x count
R n
stat 7
[©)

H
stop /xi
% [©)
active
9

1

e E

count

A u t m
.

stop

A u tl m

PRE memory local to the st —

LAST
memory
shared

Default actions in state

Gl
inactive

last ‘count T >
+

General Declaration | Comment | Mote | KCG | Traceabilty |

count

Initial value

Type:

it |

When [T] T Clek

Kind

= _| € Input

€ Quiput

| I | (5

By default the variabl
keeps its previous val

E|

(replaces “->”

Automator

Al

itom

ator

59

Modifying the default action

Prope \ties

last ‘count +
+

Modification of
the default behaviody,

Default [jast ‘court - 1

|

" Clock
Kind

= _| € Irput

€ Dutput

s _| £ Hidden

Name Type Properties

last 'count - 1
5

default

last

Automator

I \

Automator

Signals

= A signal can be
= Present = true
= Absent = false

= A signal can not be
= An input / output

= £ Boolean value

= A Boolean value keeps
its previous value then
non updated in a state

Automa

Automa
S2

Automa
S3

60

Composition and communication

= A signal can be
= Emitted in a state
= Emitted on a transition

= A transition can be
triggered by a
signal

Factor

= A factor specifies on many time a condition must be

true
* In a data flow view
= In a guard (automaton)

|_

SML>——

3

!

(3 Statel

D
5 times arg /l
(State2 w

‘ true |—>

AutomatonTimesOut

false |—>
AutomatonTimesOut

arg

X

AutomatonPe
N

AutomatonPe

[|

AutomatonPe

-

DataFlowTimesOut

arg

DataFlow

Automaton

61

Time-out with factor

e Stepl

Step2 Step3
e ——> P~ > E—
true p——m— - true pb——m {(D———P>
. Step_2 Step_3

DURATION times true 7 \

(durati-on =20) \

Step4

true l—>
Step_4

Commo
guard

State2

5
A A 1 t o m a t o \ n P a c
T
Step 1 20 \
A “r t O T Tt o] \ n P a c
— ¥ —
Step 2
A u t o m a p—— A P a c
Step 3 ' '
Fork
Specific

guard

62

Overview

» Synchronous model &
®» |Introduction to the Scade language &
» Editing a Scade model &
= Activation conditions &
= Automata &
= Arrays &
= [terations &
» Global flows: Sensors and probes s
= Genericity &

Arrays definition
= Restrictions

= Static size
= First element = index 0
= Definitions
* type VECTOR =real " 4 ; TS [o
= T_MATRIX 2.3 <armayr
" type MATRIX 2 3 =real "3"2; T —
= 2 lines, 3 columns

= typedef real LINE_3[3];
= typedef LINE_3 MATRIX_2_3 [2];

Editing array types

O & =) S

Ha FnEaRsEs DD DE D ffﬂ% On Arraytypel
N Type Definition co
= [TestScade6.etp =l T_MATRIX_3_2 <amay>
=3 TestScade /a/o 3

=3 Packages / P N ireal 7

73 ActivationPackage
=3 AmayPackage
E— ==

Type nam “VvEcTOR: | | Array size

[=-{3 Operators
=L AmayMgt

ANV

o T_VECTOMN amay
ip T4 real

Generated code
typedef real array_2[2];
typedef array_2 array_1[3];
typedefarray 1 T_MATRIX_3 2 ArrayPacka

£ Automat

Array access

Array5=[2,4,6,8,10], Index=3
= Dynamic

— [8

Array 5

|_

index

Index = 3= Output =8
Index = 10=>» Output

Default value for index out of ran

Dy namicProjection

= Static
Array 5 L (g - Statitzrojection I Outp Ut = 6
= Assignment
|_\ - newValue =3 2

L
O AssignOf StructureElement Out ut = 14) 6] 8] 10
LT put = B)

newvalue

64

Some operators on arrays

0.0 5
_ 0]
B g _ Data to Vecto
i Matrix_3_2
7 1
= | [~ Transpose o
% Matrix_2_3 an Array
204 . e Scalar to Vectofy
[> Slice of a vectofy
%z Vector2
Constructor L:) Concatenatio
Value repetitio i E— of Arrays
X Reverse o
[5.0, 6.0, 9.0, 1.0] }
Reverse_Vector4 a VeCtor
Overview
= Synchronous model &
= Introduction to the Scade language &
» Editing a Scade model &
= Activation conditions &
= Automata =
= Arrays &
= |terations s
= Global flows: Sensors and probes &
= Genericity &

65

lterations
= Equivalent to “for” in C

Map / Mapi / Mapw / Mapiw
Fold / Foldi / Foldi / Foldiw

EEEEEE Y Y

|_>—__ mapk<5>;
Firstints L >
+
|_>—I_ + i Mapint5
SecondInt5

%‘l Size of the input vectir

for (i=0; i {FFFH) {
Maplnt5[i] = Firstint5[i] + SecondInt5[i]§
}

MAP: Apply the operatosuccessivel ly
on each element of the input vector @)
element[i] .elementTi]

66

Bl A A e

Fold

fold<<5>>
(Inputint a >
|_ .t Foldint

| First element of the iteratiih
FoldIng)= Inputint;
for(1=0;1<5;i++) {

Foldint = FoldInt + FirstInt5[i];
}

FOLD: Applyrecursivelythe operator on input vectpi,,
element[i] .element[i+1]

N N e

Mapfold
Operator add_b

>___ mapfold<<5>>
|— I
> Inputint a 1 MapFoldlint
Inputl + suml
T >_’_ add 2 >

Input2 sum2 Firstint5

MapFold2Int5

Recursio:l

1N
&MapFold2Int[i])})

MapFold1int = Inputint;
for (i=0;i<5;i++){
add_ 2 ArrayPackage(Map

Successio

Nodes used with a mapfold iterator should duplichagsrtoutpu
We obtain both results at the same time

67

|+@,@:M@.mﬂh@uﬂklﬂlﬁ

Mapi = Map with iterator as input

mapi<<5>>
< I 41: MapilZS
Firstints,
% Only one inpul

for (i=0;i<5;i++){
Mapilnt5[i] QFirstlntS[i];
}

The index of the iteration
is the first argument of the no

|+@,@:@J+@.mM@,ﬂL 1 @& [

Foldi = Fold with iterator as input

foldi<<5>>
< al t Foldilnt

No vector in inpu

Foldilnt = Inputint;
for i=0;i<5;i++){

Foldilnt {Q Foldilnt;
}
‘1 The input flow is the iteratjr

Operator adaj

Mapw / Foldw = Partial operators

= Capability to stop an iteration on a Boolean
condition computed by the operator

Inputl +
”] >
|_ sum

Input2

10

The iteration can be stopp

As soon as the condition is false, the iteratioirmﬂrpec‘

N S N NN

Mapw = Map partial operator

/ Default value after th

ConditionBool

mapw<<5>;

/ lteration stop

Firstints p
ad

MapwEXxitIndexInt

>

SecondInt5 Y

Mapwints

MapwEXxitindexInt = 0;
for (i=0;i<5;i++){
if CanditionBodlp

MapwExitindexInt =i + 1;

add(FirstInt5[i], SecondInt5[i], &ConditionBool, &&pwInt5[i]);

The iteration can be stopp

}else { Mapwints[i] @ | Default value after th
Iteration stop

— It is recommended to not use this operator (WCE

69

|+@,@:@J+@.Mﬂu@,m M &

Mapwi = Mapi + Mapw Vs

ConditionBool /

mapwjs5>> f>

MapwiExitIndexInt

mntf} —\—>

=
S Mapuilnts

Default value after th
Iteration stop

MapwiExitIndexInt = 0;
for (i=0;i<5; i++)
if

The iteration can be stopp

MapwiExitindexInt =i + 1,

} else { outC->Mapwilnts[i] € FT | Default value after th
Iteration stop

— It is recommended to not use this operator (WCE

roazrosapla se s

Foldw = Fold partial operator

ConditionBool

|_>_\—- - foldw<<5>?_ ,—>

Inputint 174 FoldwExitindexInt
add

Firstints Foldwint

Foldwint = Inputint; I
for i=0;i<5;i++){ _ _
if €ConditionBoobT{hreak: } The iteration can be stopp
add(FoldwInt, FirstInt5[i], & ConditionBool, &mp}-
FoldwInt = tmp;

}

70

rozrosaalaloe s

Foldwi = Foldi + Foldw

ConditionBool

foldwi<<5>>

180
add

—

FoldwiExitIndexInt

|_>—

Inputint

a

Foldwilnt5

FoldwiInt5 = Inputint; tmp = ConditionBool

for i=0;i<5;i++){ ; :
if €ConditionBoayThreak: } The iteration can be stopp
ad oldwilnt5, & ConditionBool, &tmp)-
Foldwilnt5™= '
} The input flow is the iteratdy,
FoldwiExitindexInt = i;

Iteration summary

» Map = Successive application

» Fold = Recursive application

= Mapfold = Map + Fold

= Mapi = Map with iterator as input
» Foldi = Fold with iterator as input
= Mapw = Map partial operator

= Mapwi = Mapi + Mapw

» Foldw = Fold partial operator

» Foldwi = Foldi + Foldw

71

Example 1

Without loop

S foldizetts>
{ ' —>

— | a ~ ~
" 721_EQ_026_03T_0I% P
FORCE_EFFICIENCY_MATRIX 33 Logpz Top.N_SECOND
I S —

L | mafvor

= S
TORGUE_EFFICIENCY_MATRIX
i — S
—— With |

P ———— ith loop

Example 2: cross product

Compute scalar
product 1 [e L e §
3 |I REALTRESULT

RIGHT

-,

fold<<sizer> 2 ——m-—

\'(T >< NDRg_VALUE

Compute
vector norm

Compute cross product

mapEsizess

<]

map<isizers
A
+ -
- “ECTOR_RESULT

mapEsizess

=

Overview

» Synchronous model &
= Introduction to the Scade language s
» Editing a Scade model &
= Activation conditions &
= Automata &
= Arrays &
= [terations &
= Global flows: Sensors and probes &
= Genericity &

Sensors
» Sensor: Global system input

Input temperatur
Output heater

| N —

|) commanded_heater

temperature

Sensop\ S >
)

aimed_temperature

extern _int aimed_temperature_ProbePac%‘;

73

Probes
» Probe: Global system output

I N commmanded_heater
temperature

< > Proba
—

aimed_temperature

settings
typedef struct {* context */
bOOI heatel’[* OutputS */ 1% Code Generator - Simulator IE
bool commanded_heatét;probes */|, «, ~ Emiomert | Comier |
— —_ General | Optimizations I
} C_controller__ProbePackage; _ _ :
v ¥.eep probes In generated code

Overview

» Synchronous model &
= Introduction to the Scade language s
» Editing a Scade model &
= Activation conditions &
= Automata &
= Arrays &
= |[terations &
= Global flows: Sensors and probes &
= Genericity &

Generic operator definition

GenericSquark

arg

|
square_oul

Input

arg

Name Type 2

T

Specializatiod,

1

|—>—- GenericSquare

argint squarelnt

|—>—- GenericSquare

argReal squarereal

Output

square_out

T

Name

Generic Type

numeric

Definition of a generig
numeric type

Properties |
General | Declaration Type Variables | Comment | Note «|

neric types to be declared as numeric:

Generic operator instantiation

int GenericSquare_int (int arg)} real GenericSquare_real (real arg,,)){{
int square_out;
square_out = arg * arg;
return square_out;

real square_out;
square_out = arg * arg;
return square_out;

}

void Specialization(

*squareReal = GenericSquare_real (argReal);
*squarelnt = GenericSquare_int (argint);

int argint; real argReal,
int squarelnt; real squarereal; {{

75

Definition of parameters
o (=] e

e lib_vector.vsw - SCADE - [lib_vectorzCOMPUTE_SCALAR_PRODUCT]
_lg ﬂ‘

J@ Eile Edit Yiew Operator Insert Layout Project Toals Browse ‘Window Help

[oeose s nitomBBRE

DEEHE tBERXo 8 2R
[0t %] | [EmpR|#ems e - o v @0

k] [N
== A H}M Definition Ofageneri @H]EH?

£l
FE A size (“parameter”)

=-(lin_vector

[Constants
[Types on
=123 Operators
{7 COMPUTE_CROSS #RODUCT <<sizes>
{7 COMPUTE_MORI C <<sizeyy A‘ . olowsizes
: - ™

El {7 COMPUTE_SCALAR_PRODUCT <<sizey: apessizess —Ne——1
e = LEFT = —I P
+ I REAL_RESULT
S]
» RIGHT RIGHT

- REAL_RESULT
@ eq COMPUTE_SCALAR_PRODUCT.
| ;IJ

4

F\\eVlewJ @ Framewark I 4 |
[l [[T Messages AMTE } Dump f, Build }, Simulater fy Matlab [TM] Seipt f, Reparter / || Kl B |
For Help, press F1 X v

Parameter instantiation
ﬂ

rnpertles

Gemerall Declalatlon' Use Size Parameters ICommer D

>_|—' —_— —_—
LEFT (LY R E—

>_|— (<0 F!EAL RESULT
RIGHT —~—

REAL_RESULT =0.0;
for (i=0;i<3;i++){

REAL_RESULT = REAL_RESULT + (*LEFT)[i] * *RIGHT)]I;
}

return REAL_RESULT,

Overview

= Critical real-time embedded software

= Principles of the approach
= |[ntroduction
= Formal semantics

= SCADE
= Model validation

ERE
14 19

199

Software validation

Correct software * No runtime errors
» Satisfaction of real time constraints
» Compliance with the expected results

Solutions
i Costly
. Manuall review ——p rone
» Dynamic testing
* A code level o Costly _
* At model level Non exhaustive

» Semantics checking
» Abstract interpretation
» Formal proof

77

Semantics verification (1/2)

Semantics of a SCADE model
= Syntax
Typing verification

= Types compatibility
= Example: Integer # real

Non uninitialized variables
Temporal causality

Temporal causality

SCADE is an equational language
» The evaluation order depends only on data flows

X=Y, “y = z” evaluated first

y=12; . { “X = y” evaluated secondly

X=Y Impossible computation of the evaluation ofder
y=2 ‘X=y=z=x=.."

Z=X —~——

Causality problem

78

Semantics verification (2/2)

A SCADE model with a correct semantics is:

= Complete

= Consistent

» Implementable

=> The good properties of a specification

= “Semantics check” to be systematically performed

Window Help

A~
[P E ~ @lﬁt £ 0| ‘
. ./ :

But does the software behave as expected?

Software validation

Correct software * No runtime errors
» Satisfaction of real time constraints
» Compliance with the expected results

Solutions
i Costly
. Manuall review ——p rone
* Dynamic testing
* A code level o Costly _
* At model level Non exhaustive

» Semantics checking
» Abstract interpretation
» Formal proof

What is testing?

Compare the observed behaviour
with the expected behaviour

= Several levels of test
= Unitary / integration / validation / system qualification
= Host/ target
= Real equipment / simulator

= “White” box / “Black” box At code or

modellevel

Objectives of unitary tests
» Robustness

= Absence of “runtime error”
» Functional validity
= Comparison with the expected results

= Contractual objectives

= Coverage
= Intuitively satisfactory
= Measurable
= But not a proof of exhaustiveness

80

Unitary tests: Coverage

Procedure f(x : in real; y: in real; z : out real)
if (x> 1.0) or (x <-1.0) then

z = ylx;
else
Z:=Y,
if z< 2.0 then
z=2.0;
Coverage
» branch (x=2.0, y=6.0), (x=-1.0,y=1.0)
» decision + (x=-2, y=3.0)
» path + (x=2.0, y=1.0), (x=0.5,y=2.0)

Coverage of a SCADE model

Warning = true
Both branches inc = false
are executed |
whatever
the value of “inc” 1}
| : L Counter
N q
PRE — —E l—-
P+
0 2+

81

Integration test

Validated by
Unitary Tests 4 | Module A Module B

Do they work together? /

y =1(x, %) ou

y = f(X, Xl) Module A Module B

Validation of interfacesin white box

|

Limit of the white box approach

= The presence of a spy may modify the real time
behaviour

»What happens if the debugger / simulator has ... a
bug?

Validation

* Black box tests
= Control of the inputs _ NOII’\
= Observations of the outputs Intrusive

= On host or on target
= Tests on target are more expensive

Software validation

Correct software * No runtime errors
» Satisfaction of real time constraints

» Compliance with the expected results

Solutions

. Costly
. Manuall review — Error prone
* Dynamic testing
» A code level Costly

« At model level Non exhaustive

» Semantics checking
* Abstract interpretation But proof can not
« Formal proof completely replace testing

83

Software testing

Tested execution OK

Test coverage

Concrete

Possible execution

emantics

Non detected
failure

Program testing can be
used to show the presence
of bugs, but never to show
their absence!

Edgser W. Dijkstra

Principle of the proof

N

Non computable

Concrete semantics

Verified

Abstract semantics
/

In order to reason or

Computable and sound
abstraction

/

compute about a

complex system, some

information must be lost
Patrick Cousot

84

Proof limitation

Concrete semantics

Abstract semantics Warning

/ False alarms!

7

Computable but
incomplete

Example (1)

int a[1000];
for (i = 0; i < 1000; i++) {
for (j = 0; j < 1000-1i; j++) {
// 0 <=1 <= 999
// 0 <= j <= 999
ali+j] = 0;
}
}

Warning

Non conclusive

85

Example (2)

int a[1000];
for (i = 0; i < 1000; i++) {
for (j = 0; j < 1000-1; j++) {
// 0 <=1 and 0 <= j
// i+] <= 999
safe |—ali+jl = 0;

}

999

Conclusive

Safety et liveness properties
= Safety

“Bad” things never happen

= Liveness

Some thing “good” will eventually happen in the
future

The proof
tool of
SCADE
can not
prove
liveness
properties

Concrete semantics

Abstract semantics

86

Interest of the liveness properties

= “Liveness” property / “timed” property
= Example: if an error is detected, the software shall raise an

alarm toward the user
= Liveness: the alarm will mandatorily be raised (one day or another)

But wherf
=>» Not acceptable for a critical real time piece of software

¢ Timed propertythe alarm will mandatorily be raised 1
second after the failure occurence

=>» Safety property

Formal proof
= “Mathematical” exhaustive demonstration that a

piece of software/code satisfied a property

Rarely the case!

A piece software generally satisfies a property only in
a correct environment

87

The software is part of a complex system

¢ T T T T T TN
Vehicle

—»

Bus i
<> Processor

1\ ' Software |
| v

‘ [
\ /

" . S S e S e e e

'ronment|

Formal proof principles

= Software under validation
* Properties to be satisfied
= Software environment

(O correct environment) [0 software = properties

= Environment in open or close loop

88

Expression of properties

Notion of observer

= An observer is a software observing the software
under validation and returning “true” as long as the
property is satisfied
= Observation of the software inputs
= Observation of the software outputs

= |dem for the environment properties

Observers in SCADE

FBY
Inputs Outputs
_ P Software puts
Environment under
validation
Observer
of the
property

=>» Use for testingdqracle
=>» Use by SCADE proof tool

ok

89

Non deterministic environment (1/2)

The software environment is generally not fully
deterministic
= Human action
= Failure

Non deterministic environment

But SCADE is a deterministic language!

Non deterministic environment (2/2)

The non determinism is modelled by an additional
input

Example: Failure occurrence

Failure
— Environment System

90

Assertion

An assertion allows to restrict an environment “too
much” non deterministic

Example:

= Input “gf” models a gyroscope failure

* |nput “tf" models a thruster failureune panne d'une tuyére
=> To develop a “one fault tolerant” system

Hypothesisasseri#(gf, tf)

The End

91

