TD2 — fonctions et prédicats récursifs primitifs

- 1. Montrer que les fonctions suivantes sont récursives primitives (RP) en les construisant à partir de fonctions de base $0, \sigma, \pi$ avec les constructeurs Comp et Rec_Pri:
 - (a) 7 (d'arité 0 et d'arité 1);
 - (b) $x \uparrow y$ (cela signifie x^y);
 - (c) $x \uparrow \uparrow y$ (cela signifie $\underbrace{x \uparrow (x \uparrow \dots \uparrow x)}_{y \text{ fois}}$);
 - (d) sg(x) (signe: 0 quand x est nul, 1 quand x est positif);
 - (e) x y (différence tronquée: x y si $x \ge y$; 0 sinon);
 - (f) |x y|.
- 2. Somme finie. Montrer que si f(x,y) est RP, alors $h(x,n) = \sum_{y=0}^{n} f(x,y)$ est RP.
- 3. Montrer que les prédicats suivants sont RP: x = 0; x > y; x < y; x = y.
- 4. Montrer que les prédicats RP sont fermés sous les opérations suivantes: \land ; \lor ; \neg , \exists \leq ; \forall \leq .
- 5. **Substitution.** Soit P un prédicat RP (d'arité n) et f_1, \ldots, f_n des fonctions RP (d'arité k). Montrer que le prédicat Q (d'arité k) défini par $Q(z) \equiv P(f_1(z), \ldots, f_n(z))$ est aussi RP.
- 6. Montrer que les prédicats $x \mid y$, EstPremier(x) et $x \mod y = z$ sont RP.
- 7. Nombres parfaits. Le nombre x est parfait s'il est égal à la somme de tous ses diviseurs (différents de x). Par exemple : 6 = 1 + 2 + 3, 28 = 1 + 2 + 4 + 7 + 14. Montrer que le prédicat EstParfait est récursif primitif.
- 8. Montrer que les fonctions suivantes sont récursives primitives en utilisant les propriétés de fermeture:
 - (a) $x \mod y$;
 - (b) $x \operatorname{div} y$;
 - (c) pgcd et ppcm de 2 entiers;
 - (d) ex2(x): l'exposant de 2 dans la décomposition de x en facteurs premiers;
 - (e) p_x : le x-ème nombre premier;
 - (f) ex(x,y): l'exposant de p_x dans la décomposition de y en facteurs premiers.
 - (g) C_x^y : le nombre de combinaisons de x éléments y à y;
 - (h) $|\sqrt{\mathbf{x}}|$: la partie entière de \sqrt{x} ;
 - (i) $|\log_x y|$: la partie entière de $\log_x y$;
- 9. Les nombres de Fibonacci sont définis par la récurrence:

$$\begin{cases} Fib(0) &= 1\\ Fib(1) &= 1\\ Fib(n+2) &= Fib(n) + Fib(n+1) \end{cases}$$

Montrer que la fonction Fib est RP.

Indication. Utiliser la fonction auxiliaire $g = \lambda x.2^{Fib(x)} * 3^{Fib(x+1)}$