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Abstract

We investigate the computational power of several models of dynamical systems
under infinitesimal perturbations of their dynamics. We consider in our study mod-
els for discrete and continuous time dynamical systems: Turing machines, Piecewise
affine maps, Linear hybrid automata and Piecewise constant derivative systems (a sim-
ple model of hybrid systems). We associate with each of these models a notion of
perturbed dynamics by a small ε (w.r.t. to a suitable metrics), and define the per-

turbed reachability relation as the intersection of all reachability relations obtained by
ε-perturbations, for all possible values of ε. We show that for the four kinds of models
we consider, the perturbed reachability relation is co-recursively enumerable, and that
any co-r.e. relation can be defined as the perturbed reachability relation of such mod-
els. A corollary of this result is that systems that are robust, i.e., their reachability
relation is stable under infinitesimal perturbation, are decidable.
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1 Introduction

Recently, the investigation of the relations between dynamics and computation attracted
attention of several research communities (see e.g. [12] where Turing machines are considered
as dynamical systems, and [8] and [2] where discrete and continuous time dynamical systems
are considered as computation models).

Our initial motivation for this research was related to hybrid systems (see e.g. [9]).
Since the first undecidability results were stated for hybrid systems (such as Linear hybrid
automata [5] or Piecewise constant derivative systems [2]), a folklore conjecture appeared,
saying that this undecidability is due to non-stability, non-robustness, sensitivity to initial
values of the systems, and that it never occurs in “real” systems. There were several attempts
to formalize and to prove (or to disprove) this conjecture [4, 6] (cf. Related Work below). We
think however that this conjecture is more rich than these formalizations and that exploring
relations between complexity of behaviours of a dynamical system (not necessarily hybrid)
and its properties related to stability, robustness, chaos is an important scientific challenge
(see [1]).

In this paper we explore one facet of this problem: how small perturbations of dynamics
influence the computational power of the system. We consider different kinds of transi-
tion systems corresponding to widely used models of dynamical systems: Turing machines
(TM), Piecewise affine maps (PAM), Linear hybrid automata (LHA), and Piecewise constant
derivative (PCD) systems. We introduce for these models a notion of “perturbed” dynamics
and study the computational power of the corresponding perturbed systems. Perturbations
are defined for each model using a notion of metrics on the state space (allowing to define
how distant is the ideal dynamics from the perturbed one). The notion of small perturbation
is easier to understand for computational models with a continuous state-space (such that
PCD, LHA, and PAM) than for discrete ones like TM. For such models, given a transition
system with a reachability relation R, the idea is to perturb the dynamics by a small ε, and
then, to take (as the perturbed dynamics of the system) the limit (intersection) Rω of the
perturbed reachability relations as this ε tends to 0. We say that a system is robust if its
reachability relation does not change under small perturbations of the dynamics, i.e., R is
equal to Rω.

We show that for the three models of PAM, LHA, and PCD, the relationRω belongs to the
class Π0

1 (i.e. it is co-recursively enumerable), and moreover, any Π0
1 relation can be reduced

to a relation Rω of a perturbed system. In other words, any complement to a r.e. set can
be semi-decided by an infinitesimally perturbed system. This result is somehow surprising
since it means that noise by itself does not make the reachability problem decidable, but
it transforms it in a rather non-trivial way (from Σ0

1 to Π0
1). Furthermore, an immediate

corollary of the result above is the following fact: the reachability problem is decidable for
the class of robust systems.

In the case of Turing machines, the analogous notion of small perturbation is obtained by
considering the prefix distance (Cantor distance) as metrics on the set of tape configurations.
In fact, this metrics is an adequate characteristics for these machines; in particular, the
dynamics of these machines has good properties w.r.t. this metrics, e.g., the transition
function of a TM is always Lipshitz w.r.t. it (see [12] for a detailed argument). So, we
consider that a TM is subjected to a small noise if its configuration is slightly perturbed in
the sense of this metrics, or equivalently, all the perturbations of the tape content happen
far from the head. Similarly to the other models, given a TM recognizing a language L, for
every natural number n, we define Ln to be the set of all words that are accepted if we allow
perturbations (arbitrary changes in the tape) beyond a distance n from the head, and we
take Lω to be the intersection of all the languages Ln. It can be understood intuitively that
the notion of robustness of a TM according to this notion of perturbation actually coincides
with the notion of boundedness since only machines that can visit arbitrarily far positions

1



from their initial position can have a different perturbed language. We prove that for TM
also the same results as for the other models hold: the language Lω is in Π0

1, and every Π0
1

language can be represented as a perturbed language of a TM, which means that robust
TM’s correspond precisely to machines recognizing recursive languages.

We give in the paper the proofs for the models mentioned above in an increasing technical
complexity order. The TM case unveils the mechanism of the effect of perturbation and
allows to understand the essence of this mechanism on a common and relatively simple
model. The PAM case makes it clear how this mechanism works in the continuous state
space, without unneeded technical complexity. Essentially the same techniques used for
PAM can also be applied to the more popular model of LHA (we omit in this extended
abstract the proofs concerning LHA). Moreover, the proof for PAM is a good introduction
to the trickier one for PCD, which is a simple and natural model for hybrid systems, and
perhaps the most motivating case.

Related Work. Recently, a similar approach to ours was independently invented and
applied in a completely different context to the analysis of numerical methods for chaotic
dynamical systems by Kloeden and Kozyakin. In [7], they refer to the procedure of infinites-
imal perturbation of dynamical systems as inflation.

The notion of perturbation we use (especially in the case of continuous state space
systems) was inspired by the work of Anuj Puri who studied the reachability relation of
timed automata (with finitely many control states) under infinitesimal perturbation [14].
He showed that for these models, the perturbed reachability relation is still decidable and
he gives an effective representation of this relation. Our work concerns models that are
more general than timed automata, and aims to show that infinitesimal perturbation has
the same effect on several common models of dynamical systems, namely that the perturbed
dynamics corresponds in all cases to a co-recursively enumerable relation (set), and that
robustness coincides with decidability.

Concerning the decidability issue of the reachability problem, there are two works closely
related to ours [4, 6]: Martin Fränzle has shown in [4] a similar result to ours for a certain
model of hybrid systems. Our work shows that the fact that “robustness implies decidability”
can be proved for other different types of transitions systems. Moreover, our hardness results
(inverse implication) show that the relation between robustness and decidability is really
tight. Our result is in contrast with Thomas Henzinger’s result [6] stating that reachability
is still undecidable for hybrid systems that allow small perturbations of the trajectory. It is
interesting to see that a small semantical difference between these two approaches drastically
changes the complexity.

Finally, the effect of noise on the power of analog computational models and the depen-
dence of this power from the level of this noise are explored in [3, 10, 13]. Differently, we
consider in our work the limit behaviour whith noise level tending to zero.

Outline. The rest of the paper is organized as follows: in section 2 we define the compu-
tation models (kinds of dynamical systems) we consider: TM, PAM, and PCD, and their
perturbed versions. In sections 3–5 we formulate and prove the main results for these mod-
els. For lack of space, we omit here the case of LHA since the proofs concerning these models
are technically very similar to those for PAM.

Acknowledgments. We would like to thank Vincent Blondel, Victor Kozyakin, Oded
Maler and Anuj Puri for useful discussion.
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Figure 1: (a) A Turing machine. (b) Its n-perturbed version.

2 Perturbed Models

2.1 Perturbed Turing Machines (PTMs)

Let us recall the definition of a Turing machine (TM for short) (see figure 1(a)). Let Σ be a
finite alphabet, and let B be a special symbol B 6∈ Σ. A TM over Σ is a tuple (Q, qinit, F,Γ)
where Q is a finite set of control states, qinit ∈ Q is the initial control state, F ⊆ Q is a set
of accepting states, and Γ is a set of transitions of the form (q, a)→ (q′, b, δ) where q, q′ ∈ Q,
a, b ∈ Σ ∪ {B}, and δ ∈ {−1, 0, 1}.

A configuration of the machine is an unbounded sequence (from left and right) of the
form · · · a−2a−1[q, a0]a1a2 · · · where the ais are symbols in Σ∪{B}. Intuitively, [q, a0] means
that the current control state of is q and that the head of the machine is at symbol a0.

Given a transition (q, a)→ (q′, b, δ) in Γ, if the symbol pointed by the head of the machine
is equal to a, then the machine can change its configuration in the following manner: the
symbol pointed by the head is replaced by b and then the head is moved to the left or to
the right, or it stays at the same position according to whether δ is −1, 1, or 0, respectively.

Let w = a1, · · · , an be a word in Σ∗. We say that w is accepted by M if, starting from
the configuration · · ·BBB[qinit, a1] · · · anBBB · · · the machine M eventually stops in an
accepting state. Let L(M) denote the set of such words, i.e., the recursively enumerable
(r.e.) language semi-recognized by M.

Now, let us introduce the concept of perturbed Turing machines (PTMs for short). Given
an integer n > 0, the n-perturbed version of the machineM is defined exactly asM except
that before any transition all the symbols at the distance n or more from the head of the
machine can be altered (i.e., replaced by other symbols) arbitrarily: Given a configuration

· · · a−n−1a−na−n+1 · · · a−1[q, a0]a1 · · · an−1anan+1 · · ·

the n-perturbed version of M may replace any symbols to the left of a−n (starting from
a−n−1) and to the right of an (starting from an+1) by any other symbols in Σ ∪ {B}
before executing a transition ofM (at a0). Hence, the machine becomes a nondeterministic
transition system (see figure 1(b)).

A word w is accepted by the n-perturbed version of M if there exists a run of this
machine which stops in an accepting state. Let Ln(M) be the n-perturbed language of M,
i.e., the set of words in Σ∗ that are accepted by the n-perturbed version of M.

It is easy to see that if a word is accepted byM, then it can also be recognized by all the
n-perturbed versions of M, for every n > 0 (perturbed machines have more behaviours).
Moreover, if the (n + 1)-perturbed version accepts a word w, the n-perturbed version will
also accept it since obviously all alterations at distance greater than n + 1 from the head
can also happen in the n-perturbed machine. Hence, we have:
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Lemma 1 L1(M) ⊇ L2(M) ⊇ · · · ⊇ L(M)

This technically justifies the following crucial definition (explained in the introduction):
ω-perturbed language of the machine M is given by

Lω(M) =
⋂

n

Ln(M)

Informally speaking, Lω(M) consists of all the words that can be accepted by M when
it is subject to arbitrarily “small” perturbations. The previous lemma could be trivially
extended to:

Lemma 2 L1(M) ⊇ L2(M) ⊇ · · · ⊇ Lω(M) ⊇ L(M)

2.2 Piecewise Affine Maps

The second kind of systems to which we apply small perturbations was introduced as a
computation model in [8]. Recall some definitions and results from that paper.

Definition 1 (PAM System) A Piecewise affine map system (PAM) is a discrete-time
dynamical system P defined by an assignment x := f(x) on a bounded polyhedral set X ⊂
IRd, where f is a (possibly partial) function from X to X represented by a formula:

f(x) = Aix+ bi for x ∈ Pi, i = 1..N

where Ai are rational d× d-matrices, bi ∈ IQd and Pi are rational polyhedral sets in X.

A trajectory of P is a sequence xn evolving according to f , i.e. such that xn+1 = f(xn) for
all n.

In other words, a PAM system consists of partitioning the space into convex polyhedral
sets (“regions”), and assigning an affine update rule x := Aix+ bi to all the points sharing
the same region (see figure 2 (a)).

It is important to emphasize that since we assume that all constants in the system’s
definition are rational, the expressive power of PAM is not achieved using the introduction
of some non-computable real numbers.

To each PAM P we associate its reachability relation RP(·, ·) on IQd. Namely, for two
rational points x and y the relation RP(x,y) holds iff there exists a trajectory of P from x
to y.

The following result on the computational power of PAMs was proved in [11, 8]

Theorem 1 (Simulation of TM by PAM) Let M be a TM. We can effectively con-
struct a PAM P and an encoding e : Σ∗ → IQd such that for any word w the following
equivalence holds. w ∈ L(M) iff RP(e(w), O), where O denotes the origin in IRd.

P1 P2

A1x+b1
A2x+b2

P1 P2

A1x+b1±ε A2x+b2±ε

(a) (b)

Figure 2: (a) A 2-dimensional PAM system with 2 regions. (b) Its ε-perturbed version.
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The following characterization of the complexity of the reachability relation is now im-
mediate:

Corollary 1 (Computational power of PAM)

• For any PAM P its reachability relation is r.e.

• Any r.e. set S is 1-reducible (see [15]) to the reachability relation of a PAM.

2.3 Perturbed PAMs (PPAMs)

Now we can apply the paradigm of small perturbations to PAMs. Consider a PAM P
described by the assignment x := f(x). For any ε > 0 we consider the ε-perturbed system
Pε (see figure 2 (b)). Its trajectories are defined as sequences xn satisfying the inequality
||xn+1 − f(xn)|| < ε for all n. This non-deterministic system can be considered as P
submitted to a small noise with magnitude ε. We denote reachability in the system Pε by
RP

ε (·, ·). All trajectories of a non-perturbed system P are also trajectories of the ε-perturbed
system Pε. If ε1 < ε2 then any trajectory of the ε1-perturbed system is also a trajectory of
the ε2-perturbed PAM.

Like for TM we can pass to a limit for ε → 0. Namely RP
ω (x,y) iff ∀ε > 0 RP

ε (x,y).
This means reachability with arbitrarily small perturbing noise.

The following analog of Lemmata 1 and 2 is now immediate:

Lemma 3 For any ε2 > ε1 > 0 and rational points x and y the following implications hold:
RP(x,y)⇒ RP

ω (x,y)⇒ RP
ε1
(x,y)⇒ RP

ε2
(x,y)

2.4 Piecewise Constant Derivative Hybrid Systems (PCDs)

The last kind of systems to which we apply small perturbations was introduced in [2] in the
context of hybrid systems. Recall some definitions and results.

Definition 2 (PCD System) A piecewise-constant derivative (PCD) system is a continuous-
time dynamical system H defined by a differential equation ẋ = f(x) on a bounded polyhedral
set X ⊂ IRd (the state-space), where f is a (possibly partial) function from X to IRd repre-
sented by a formula:

f(x) = ci for x ∈ Pi, i = 1..N

where ci ∈ IQd and Pi are rational polyhedral sets in X.

A trajectory of H starting at some x0 ∈ X is a solution of the differential equation with
initial condition x = x0, defined as a continuous function ξ : IR+ → X such that ξ(0) = x0

and for every t, f(ξ(t)) is defined and is equal to the right derivative of ξ(t).
In other words, a PCD system consists of partitioning the space into convex polyhedral

sets (“regions”), and assigning a constant derivative c (“slope”) to all the points sharing the
same region (see figure 3 (a)). The trajectories of such systems are broken lines, with the
breakpoints occurring on the boundaries of the regions. In order to rule out some pathologies
we consider only PCDs H which satisfy an additional assumption of being strongly non-zeno
i.e. the time interval between two consecutive visits of the same region should be bounded
from below by a positive constant ∆.

To each PCD H we associate its reachability relation RH(·, ·) on IQd. Namely, for two
rational points x and y the relation RH(x,y) holds iff there exists a trajectory of H from x
to y.

The following result on the computational power of PCDs was proved in [2]
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P1 P1

c1 cc1±ε

Figure 3: (a) A 2-dimensional PCD system with 4 regions and a trajectory from x to y. (b)
The ε-perturbed version of this PCD.

Theorem 2 (Simulation of TM by PCD) LetM be a TM. We can effectively construct
a PCD H and an encoding e : Σ∗ → IQd such that for any word w the following equivalence
holds. w ∈ L(M) iff RH(e(w), O), where O denotes the origin.

Corollary 2 (Computational power of (strongly non-zeno) PCD)

• For any PCD H its reachability relation is r.e.
• Any r.e. set S is 1-reducible (see [15]) to the reachability relation of a PCD.

2.5 Perturbed PCDs (PPCDs)

Consider a PCD H described by an ODE ẋ = f(x). For any ε > 0 the ε-perturbed system
Hε is described by the differential inclusion ||ẋ− f(x)|| < ε. This non-deterministic system
can be considered as H submitted to a small noise with magnitude ε (see figure 3 (b)). We
denote reachability in the system Hε by RH

ε (·, ·). The limit reachability relation RH
ω (x,y)

is introduced and an analog of Lemma 3 is stated exactly as for PAMs.

3 Results on PTMs

Our first result is that the ω-perturbed language of a TM is the complement of a recursively
enumerable language.

Theorem 3 (Perturbed reachability is co-r.e.) Lω(M) is in the class Π0
1.

Proof: First, we show that for every n ∈ N, Ln(M) is a regular language:
Let us associate with the n-perturbed version of M a finite-state machine AM defined

as follows: (1) Each of its configurations is composed of a control state of M and a finite
sequence of length 2n+1 corresponding to the part of the configuration in the radius n from
the head. There are |Q| × |Σ + 1|2n+1 such configurations. (2) The transition relation →
is constructed by simulating the transitions of M and considering that, when the head is
moved to the left (resp. to the right), a symbol in Σ∪{B} is nondeterministically chosen and
appended to the left (resp. right) of the configuration and the right-most (resp. left-most)
one is lost (it belongs now to the perturbed area of the configuration and hence it can be
replaced by any other symbol).

To formulate the link between the computations of AM and those of the n-perturbed
version of M we need some definitions and notations: Let Accept = (Σ ∪ B)n × [F × (Σ ∪
B)]× (Σ ∪B)n. Given a configuration of M

c = · · · a−n−1a−na−n+1 · · · a−1[q, a0]a1 · · · an−1anan+1 · · ·
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we define the sequence

c|n = a−na−n+1 · · · a−1[q, a0]a1 · · · an−1an

of length 2n+ 1.
Then, it is easy to see that:

The n-perturbed version ofM has an accepting run starting from a configuration
c, if there exists f ∈ Accept such that c|n ∗→ f in AM.

Hence, we can effectively construct Ln(M) as a finite union of computable regular lan-

guages: Let Basis be the finite set of sequences a0a1 · · · an ∈ Σn+1 such thatBn[qinit, a0]a1 · · · an ∗→
f for some f ∈ Accept. Let Short be the finite set of sequences a0a1 · · · ak ∈ Σ∗ with k < n
such that Bn[qinit, a0]a1 · · · akBn−k ∗→ f for some f ∈ Accept. Then, we have

Ln(M) = Short ∪ BasisΣ∗

Since Ln(M) is regular and effectively constructible, the same holds for its complement
Ln(M). Hence, the set

⋃

n Ln(M) = Lω(M) is recursively enumerable as a union of a
computable sequence of regular languages. ¤

A consequence of the theorem above is that robust languages (i.e. Lω(M) = L(M)) are
necessarily recursive (since they must be in Σ0

1 ∩Π0
1):

Corollary 3 (Robust ⇒ decidable) If Lω(M) = L(M) then L(M) is recursive.

The converse holds if we add another requirement on M:

Proposition 1 (Decidable ⇒ robust) IfM always stops (and hence L(M) is recursive)
then Lω(M) = L(M)

Now, we show that in general, ω-perturbed languages are not recursively enumerable. In
fact, the following result says that some of them are complete among Π0

1 languages.

Theorem 4 (Perturbed reachability is complete in Π0
1) For every TMM, we can ef-

fectively construct another TMM′ such that Lω(M′) = L(M).

Proof: Let M = (Q, qinit, F,Γ) be a TM over Σ. Suppose w.l.o.g. that the machine M is
such that, for every input w 6∈ L(M),M never stops and uses an unbounded working space
(the head goes arbitrarily far from the initial position).

Now, let us consider an extra symbol # 6∈ Σ. Then, we define the TMM′ = (Q′, q′init, F
′,Γ′)

over Σ ∪ {#} as follows: Q′ = Q ∪ {qf}, q′init = qinit, F
′ = {qf}, and Γ′ = Γ ∪ {(q,#) →

(qf ,#) : q ∈ Q}.
This means that M′ is constructed as M except that all accepting states of M are

rejecting for M′ and that whenever M′ sees the symbol #, it stops in its unique accepting
state qf . Let us prove that we have indeed Lω(M′) = L(M).

Consider a word w ∈ L(M). Then, there exists an accepting run of M on w. By
definition of M′, this run is rejecting for M′. Let N be size of the space used by this run.
It can be seen that the (N + 1)-perturbed version of M′ has exactly the same behaviour
as M′ on w since perturbations in the non-visited part of the configuration have no effect.
Hence w 6∈ LN+1, and consequently w 6∈ Lω (Lemma 2).

Consider now a word w 6∈ L(M). We show that for every n > 0, the n-perturbed version
of M′ recognizes w, which implies that w belongs to Lω(M′). Let n > 0 and let us exhibit
an accepting run of the n-perturbed version of M′ on w: Suppose that, in the perturbed
machine, starting from the initial configuration, two symbols at the distance n + 1 to the
left and to the right from the head are replaced by the symbol #. Then, since w 6∈ L(M),
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the machineM has an unbounded run on w (see above the initial hypothesis onM). Since
M′ has all the transitions of M, it has also the same unbounded run on w, visiting posi-
tions arbitrarily far from the initial position of the head. Hence, the considered run of the
n-perturbed version ofM′ eventually finds the # symbol and goes to the accepting state. ¤

4 Results on PPAMs

We consider now the case of perturbed PAMs and show that their perturbed reachability
relation is co-recursively enumerable.

Theorem 5 (Perturbed reachability is co-r.e.) The relation RP
ω (x,y) is Π

0
1 on IQd.

Remember that in the case of TM, the proof of the similar result was based on the fact
that the n-perturbed TM is in fact a finite-state system. For PAM, this actually does not
hold, but we can show that each ε-perturbed PAM can be “faitfully ” approximated by a
finite-state automaton we define hereafter:

Consider a PAM x := f(x) = Aix + bi for x ∈ Pi, i = 1..N . For any δ we can
partition X into finitely many cubes V1, . . . VS of size δ. We say that Vj is a δ-successor of
Vk if dist(f(Vk), Vj) < δ, that is if some point of Vk can be mapped to a point near Vj . Now
we can construct a finite automaton Aδ with states Qδ = {q1, . . . , qS}, and with a transition
from qk to qj authorized iff Vj is a δ-successor of Vk. Informally speaking, the automaton
Aδ represents the PAM with accuracy δ. In order to formalize it we introduce the following
abstraction function from X to Qδ: αδ(x) = qi for x ∈ Vi

Lemma 4 (Simulation) (1) for any ε > 0 if ||f(x)− y|| < ε (i.e. the ε-perturbed system
can make a transition from x to y) then the automaton Aε can make a transition from αε(x)
to αε(y); (2) for any δ > 0 if the automaton Aδ can make a transition from αδ(x) to αδ(y),
then ||f(x) − y|| < Cδ (i.e. the Cδ-perturbed system can make a transition from x to y),
where C is a rational constant independent of δ;

Proof: (1) Suppose that ||f(x) − y|| < ε. Let αε(x) = qk and αε(y) = qj . Then
dist(f(Vk), Vj) ≤ dist(f(x),y) < ε. Hence by definition of the automaton Aε the state
qj is reachable from qk.

(2) Suppose that αδ(x) = qk and αδ(y) = qj and the state qj is reachable from qk. In this
case dist(f(Vk), Vj) < δ. Hence there exist x0 ∈ Vk and y0 ∈ Vj such that ||f(x0)−y0|| < δ.
As x0 and x are in the same cube Vk the distance between them is inferior to the diameter
of this cube

√
dδ. The same is true for y0 and y. Finally

||f(x)− y|| ≤ ||f(x)− f(x0)||+ ||f(x0)− y0||+ ||y0 − y|| < L
√
dδ + δ +

√
dδ,

where the Lipschitz constant L can be found as L = maxi ||Ai||. We can take now C ≥
L
√
d+ 1 +

√
d. ¤

Corollary 4 RP
ω (x,y) holds iff for all rational δ > 0 in the automaton Aδ the state αδ(y)

is reachable from αδ(x).

Hence by complementation ¬RP
ω (x,y) iff for some rational δ > 0 the state αδ(y) is unreach-

able from αδ(y) in the automaton Aδ. Unreachability in this automaton is (uniformly in δ)
decidable for any particular δ, and hence the relation ¬RP

ω is recursively enumerable, which
terminates the proof of Theorem 5.

Corollary 5 (Robust ⇒ decidable) If RP
ω = RP then RP is recursive.
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Let us consider now the converse of Theorem 5. We prove the following fact:

Theorem 6 (Perturbed reachability is complete in Π0
1) LetM be a TM. We can ef-

fectively construct a PAM P and an encoding e : Σ∗ → IQn such that for any word w, the
following fact holds: w 6∈ L(M) iff RP

ω (e(w), O).

Proof: W.l.o.g. suppose that on any input word the machineM either stops in an accepting
state, or computes forever. First we construct a 2-dimensional PAM P0 (and an input
encoding e : Σ∗ → IQn) that simulates M and semi-recognizes L(M) as described in [8].
Its main property is that for any word w the following equivalence holds: w ∈ L(M) iff
RP0

ω (e(w), O). It is easy to verify that if a rather small neighborhood 1 (e.g. a 1/10-square)
of the origin is reachable from e(w) then w ∈ L(M). The last useful property of this
simulation is that all the points of the trajectory starting from e(w) are internal points of
polyhedra Pi.

Now we construct a new 3-dimensional PAM P whose perturbed version will “semi-
recognize” L(M). We will use notation x or y for 2-dimensional vectors and h for the third
dimension (so the generic element of IR3 will be (x, h)). It is mainly the original system P0

embedded in the plane h = 2 of the space IR3. However there are 2 changes (compare with
the proof for TMs) — informally:

• The accepting state O (with his small neighborhood) of the original system P0 becomes
rejecting for the new system P.

• The zone h ≤ 1 becomes accepting for the new system.

The idea is that for any w ∈ L(M) the original PAM P0 will eventually arrive to O (and
accept) and hence the perturbed PAM P will arrive to the neighborhood of O × {2} and
reject. For any w 6∈ L(M) the perturbed PAM P will slowly drift “down” until it reaches
the accepting zone h ≤ 1.

Formally, let the original system be defined on a subset of the cube [−T, T ]2 ⊆ IR2 by
equation x := f(x). Denote the squared neighborhood of the origin [−0.1, 0.1]2 ⊆ IR2 by C.
Then the new system will be defined on the rectangular set [−T − 1, T +1]2 × [−1, 3] ⊆ IR3

by the equation x := g(x, h) where g(x, h) is defined as follows:

• if 1 < h ≤ 3, and x 6∈ C, then g(x, h) = (f(x), h). Informally speaking, in the layer
1 < h < 3 the system P simulates the original system P0 without modifying h

• if 1 < h ≤ 3 and x ∈ C, then g(x, h) is undefined

• if h ≤ 1 we go to the origin : g(x, h) = (0, 0)

The input encoding function for the system P is as follows: e(w) = (e0(w), 2) where e0 is
the encoding function of the original system P′.

Now we have to prove that RP
ω (e(w), O) iff w 6∈ L(M). Suppose first that w 6∈ L(M).

In this case the TM M has an infinite-length run on w and the PAM P0 has an infinite
trajectory xn starting in e0(w). For any ε > 0 we can construct a trajectory g of the
ε-perturbed system P as follows:

• gn = (xn, 2 − εn) for n ∈ [0, d1/εe]; during the first d1/εe time units the system
simulates P0 along first two dimensions slowly drifting down in the third one

• gn = 0 for n ≥ d1/εe the trajectory jumps to the origin and stays there.

1representing the accepting state of the TM
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It is easy to see that gn is a trajectory of the ε-perturbed system, and hence RP
ω (e(w), O)

holds.
Now consider the other case when w 6∈ L(M). Then the trajectory xn of P0 starting

in e0(w) eventually arrives to the origin. The non-perturbed trajectory gn of P starting in
e(w) will follow xn in the plane h = 2 until it reaches the neighborhood C of the origin.
Once in this neighborhood the system P dies immediately. The only thing to verify is that
all perturbed trajectories of P starting in e(w) are close enough to gn for ε small enough.
Let T be the time of arrival to the origin (i.e. such that gT = 0), A = max{1, ||Ai||} and
θ = min

n<T
dist(xn, ∂Pi(n)). If we take ε < θA−T , then a straightforward induction shows that

any ε-perturbed trajectory g′n is close to gn and the same affine maps are applied until it
enters the deadly neighborhood of the origin. ¤

Theorem 7 All the results stated in this section can be proved in a very similar manner
for Linear hybrid automata (LHA).

5 Results on PPCDs

We consider finally the case of PCDs and prove the same results as for PAMs (and LHAs).
The overall structure of the proofs is the same as in the previous case. However, the proofs
for the two kinds of models are technically different due to the fact that the rules for
accumulating errors (resulting from perturbations) are different for each of these models. An
ε-perturbation of a PAM results in moving the state by ε in any direction at each transition,
which ensures the simulation lemma 4 (the same holds in the LHA model). Differently from
this, a perturbed trajectory in an ε-perturbed PCD deviates from the ideal trajectory after
crossing a region by ∼ τε, where τ stands for the time needed to cross this region, and this
time depends on the entry point to a region and the slope at this region and cannot be
bounded from below.

Our solution to this consists in observing (and approximating by an automaton) the states
of the PCD only when it enters some special good regions. In a non-Zeno system, the time
τ ′ between consecutive visits of good regions is bounded from below and the accumulated
error ∼ τ ′ε is large enough to ensure simulation.

Theorem 8 (Perturbed reachability is co-r.e.) The relation RH
ω (x,y) on IQd is in Π0

1.

We proceed in a similar manner as for PAMs: We approximate the ε-perturbed system by
a finite-state automaton. However, relations between the system and the automaton are
somewhat subtler. First of all, let N be the number of regions in the PCD, and α > 0 a
positive constant specified below. Without loss of generality we can suppose that the norm
used in the definition of ε-perturbed system is ‖ · ‖∞, which means that ε-ball centered in a
pointx is in fact a cube with side 2ε. Let us introduce now some definitions:

Definition 3 (Good points) A point x on the boundary of a region is good if the trajec-
tory starting from x does not change direction during at least α time. Formally let c = f(x)
be the slope in x. Then the vector field f(y) should be constant (and equal to c) for all
y ∈ [x,x+ αc]

Lemma 5 (Good regions) The set G of all good points is a finite union of polyhedra of
dimensionality < d.

The following lemma, saying that the good regions are visited often, enough follows from
the strong non-zenoness of the PCD.

10



Lemma 6 Each perturbed trajectory crossing N regions visits a good region at least once.

Let us see now how we define an “approximating automaton”: For any δ we can partition
G into finitely many polyhedra V1, . . . VS of size δ. We say that Vj is a δ-successor of Vk if
there exists a trajectory of the δ-perturbed system no more than N links from an x ∈ Vk

to an y ∈ Vj . It is easy to see that the property of being a δ-successor can be reduced to a
linear programming problem, and hence is decidable.

Then, we can construct a finite automaton Aδ with states Qδ = {q1, . . . , qS}, and with
a transition from qk to qj authorized iff Vj is a δ-successor of Vk. Informally speaking, the
automaton Aδ represents the δ-perturbed PCD with accuracy δ. In order to formalize it we
introduce the following abstraction function from X to Qδ: αδ(x) = qi for x ∈ Vi.

Hereafter, we explore in which sense Aδ simulates Hε:

Lemma 7 (Quasi-Simulation) Let x,y ∈ G be two good points. (1) for any ε > 0 if
the ε-perturbed system can go from x to y via a trajectory with less than N links, then
the automaton Aε can make a transition from αε(x) to αε(y); (2) for any δ > 0 if the
automaton Aδ can make a transition from αδ(x) to αδ(y), then Cδ-perturbed system can
go from x to a good point y′ via a trajectory with less than N links, where C is a rational
constant independent of δ, and αδ(y) = αδ(y

′);

Corollary 6 (Many steps) Let x,y ∈ G be two good points. (1) for any ε > 0 if the
ε-perturbed system has a trajectory from x to y , then the automaton Aε has a run from
αε(x) to αε(y); (2) for any δ > 0 if the automaton Aδ has a run from αδ(x) to αδ(y), then
Cδ-perturbed system has a trajectory from x to a good point y′), where αδ(y) = αδ(y

′).

It is still not the result that we want, because first it concerns only reachability between
good points, and, second, the target point y is replaced by a neighbor point y′.

In order to deal with these two issues we introduce the following δ-test for perturbed
reachability between arbitrary points. First of all we construct the Aδ automaton. Next,
we proceed in three steps:

1. Find the set S1 of indices i such that Vi is reachable by Hδ from x via a trajectory
with less then N links. This can be done algorithmically using linear programming.

2. Find the set S2 of indices of all the states qj of the Aδ automaton reachable in this
automaton from {qi | i ∈ S1}. This is a reachability problem in a finite-state automa-
ton.

3. For each j ∈ S2 test whether y is reachable by Hδ from Vj via a trajectory with less
then N links. This can be solved as in the first step using linear programming. In case
of positive answer for any j ∈ S2, the δ-test succeeds, otherwise it fails.

Notice that δ-test always terminates. Then, it is easy to see that the following fact holds:

Lemma 8 (Correctness of δ-test) For any two points x and y (1) if RH
ε (x,y), then δ-

test succeeds for x and y. (2) If δ-test succeeds for x and y, then RH
Cδ(x,y).

Corollary 7 (x,y) 6∈ RH
ω if and only if for some n ∈ N the 1/n-test fails for x and y.

By the corollary above, a semi-decision algorithm for ¬RH
ω is immediate, which terminates

the sketch of proof of Theorem 8.

Corollary 8 (Robust ⇒ decidable) If RH
ω = RH then RH is recursive.

Finally, we can prove the converse result of Theorem 8. The proof is given in the ap-
pendix.

Theorem 9 (Perturbed reachability is complete in Π0
1) LetM be a TM. We can ef-

fectively construct a PCD H and an encoding e : Σ∗ → IQn such that for any word w the
following equivalence holds: w 6∈ L(M) iff RH

ω (e(w), O).
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6 Conclusion

We have shown that when we consider infinitesimal perturbations in the dynamics of a sys-
tem, the reachability relation becomes co-recursively enumerable, which proves that robust
systems are decidable. It is interesting to observe that these results hold for several different
discrete and continuous time models of dynamic systems, which shows that they correspond
to a general phenomenon. The proofs of these results have also a common scheme, al-
though they differ significantly depending from the specifities of the dynamics of each class
of models.

Our results establish a tight link between the notions of decidability and robustness for
infinitesimal perturbations. This link is of a semantical nature. An intersting question is to
find sufficient “syntactical” conditions on the models of dynamical systems ensuring their
robustness, leading to decidability results for classes of dynamical systems.
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A Proof of Theorem 9

The idea of this proof is similar to the case of PAMs (Theorem 6). We take a PCD H0

simulating the machine M, and add one more dimension h. We start at the level h = 4.
Accepting states of the PCD H0 become rejecting in the new PCD H. In order to be
accepting in H the trajectory should go down and reach the plane h = 0. It is possible for
arbitrarily small ε only if the original PCD H0 can evolve during arbitrarily long time, that
is the perturbed version of H accepts a word iff H0 does not accept it.

First let us construct a 4-dimensional PCD H0 (and an input encoding e : Σ∗ → IQn)
which simulatesM and semi-recognizes L(M) as described in [2]. Its main property is that
for any word w the following equivalence holds. w ∈ L(M) if and only if RH0

ω (e(w), O) It is
easy to verify that if a rather small neighborhood (e.g. a 1/10-ball) of the origin is reachable
from e(w) then w ∈ L(M).

Now we construct a new 5-dimensional PCD H whose perturbed version will “semi-
recognize” L(M). We will use notation x,y for 4-dimensional vectors and h for the fifth
dimension (so the generic element of IR5 will be (x, h)). It is mainly the original system H0

submerged in the hyperplane h = 3 of the space IR5. However there are 2 changes (compare
with the proof for PAMs) — informally:
• The accepting state O (with his small neighborhood) of the original systemH0 becomes

rejecting for the new system H

• The zone h ≤ 1 becomes accepting for the new system

The idea is that for any w ∈ L(M) the original PCD H0 will eventually arrive to O
(and accept) and hence the perturbed PCD H will arrive to the neighborhood of O× 2 and
reject. For any w 6∈ L(M) the perturbed PCD H will slowly drift “down” until it reaches
the accepting zone h ≤ 1.

Formally, let the original system be defined on a subset of the cube [−T, T ]4 ⊆ IR4 by
equation ẋ = f(x). Denote the cubic neighborhood of the origin [−0.1, 0.1]4 ⊆ IR4 by C.

Then the new system will be defined on the rectangular set [−T−1, T+1]4×[−1, 5] ⊆ IR5

by the equation (x, h)̇ = g(x, h) where g(x, h) is defined as follows:

• if h ≥ 4, then g(x, h) = (0, 1) : anything that arrives in the layer h ≥ 4 goes “up” and
is rejected

• if 2 < h < 4 and f(x) is defined, then g(x, h) = (f(x), 0). Informally speaking, in the
layer 2 < h < 4 the system H simulates the original system H0

• if 2 < h < 4 and x ∈ C , then g(x, h) = (0, 1)

• if 2 < h < 4 and f(x) is undefined, then g(x, h) = (0, 1)

• if 1 < h ≤ 2 we go down : g(x, h) = (0,−1)

• finally in the layer −1 ≤ h < 1 we put a (piecewise constant) vector field with all the
trajectories going to the origin.

13



The input encoding function for the system H is as follows: e(w) = (e0(w), 3) where e0

is the encoding function of the original system H0.
Now we have to prove that RH

ω (e(w), O) if and only if not w 6∈ L(M). Suppose first that
w 6∈ L(M). In this case the TM M has an infinite-length run on w and the PCD H0 has
an infinite trajectory x(t) starting in e0(w). For any ε > 0 we can construct a trajectory g
of the ε-perturbed system H as follows:

• g(t) = (x(t), 3−εt) for t ∈ [0, 1/ε]; during the first 1/ε time units the system simulates
H0 along first four dimensions slowly drifting down in the fifth one

• g(t) = (x(1/ε), 2− (t− 1/ε)) for t ∈ [1/ε; 1/ε+1] — the next trajectory segment goes
straight down with unit velocity during one time unit.

• The last trajectory segment goes straight to the origin.

Now consider the other case when w 6∈ L(M). Then the trajectory x(t) of H0 starting
in e0(w) eventually arrives to the origin. The non-perturbed trajectory g(t) of H starting
in e(w) will follow x(t) in the plane h = 3 until it reaches the neighborhood C of the origin.
Once in this neighborhood the system H goes straight up to the death. The only thing to
verify is that all perturbed trajectories of H starting in e(w) are close enough to g(t) for ε
small enough. This can be done similarly to PAMs.
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