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Abstract. Polygonal hybrid systems are a subclass of planar hybrid
automata which can be represented by piecewise constant differential
inclusions. Here, we study the problem of defining and constructing the
phase portrait of such systems. We identify various important elements of
it, such as viability and controllability kernels, and propose an algorithm
for computing them all. The algorithm is based on a geometric analysis
of trajectories.

1 Introduction

Given a (hybrid) dynamical system one can ask whether a point (or set) is
reachable from another, or one can ask for a full qualitative picture of the system
(say, its phase portrait). An answer to the second question provides very useful
information about the behavior of the system such as “every trajectory except
the equilibrium point in the origin converges to a limit cycle which is the unit
circle”. The reachability question has been an important and extensively studied
research problem in the hybrid systems community. However, there have been
very few results on the qualitative properties of trajectories of hybrid systems
[1,3,5,7,8,9,10]. In particular, the question of defining and constructing phase
portraits of hybrid systems has not been directly addressed except in [9], where
phase portraits of deterministic systems with piecewise constant derivatives are
explored.

In this paper we study phase portraits of polygonal hybrid systems (or,
SPDIs), a class of nondeterministic systems that correspond to piecewise con-
stant differential inclusions on the plane (Fig. 1). It is not a priori clear what the
phase portraits of such systems exactly are. To begin with, we concentrate on
studying the qualitative behavior of sets of trajectories having the same cyclic
pattern. In [1], we have given a classification of cyclic behaviors. Here, we rely
on this information to more deeply study the qualitative behavior of the system.
In particular, we are able to compute the viability kernel [2,4] of the cycle, that
is, the set of points which can keep rotating in the cycle forever. We show that
this kernel is a non-convex polygon (often with a hole in the middle) and give a
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Fig. 1. An SPDI and its trajectory segment.

non-iterative algorithm for computing the coordinates of its vertices and edges.
Clearly, the viability kernel provides useful insight about the behavior of the
SPDI around the cycle. Furthermore, we are also (and even more) interested
in the limit behaviors. We introduce a notion of controllability kernel, a cyclic
polygonal stripe within which a trajectory can reach any point from any point.
We show how to compute it and argue that this is a good analog of the notion
of limit cycle. Indeed, we prove that the distance between any infinite trajectory
performing forever the same cyclic pattern and the controllability kernel always
converges to zero.

In section 4 we show that any simple (without self-crossings) infinite trajec-
tory converges to one of those “limit cycles” (controllability kernels). We con-
clude that controllability kernels are important elements of the phase portrait
of an SPDI yielding an analog of Poincaré-Bendixson theorem for simple trajec-
tories. We apply all these results to compute (elements of) the phase portrait
by enumerating all the feasible cyclic patterns and computing its viability and
controllability kernels. We also discuss difficulties related to self-crossing trajec-
tories, which can, for example, randomly walk in two adjacent controllability
kernels.

2 Preliminaries

2.1 Truncated affine multivalued functions

A (positive) affine function f : R → R is such that f(x) = ax + b with a > 0.
An affine multivalued function F : R → 2R, denoted F = 〈fl, fu〉, is defined by
F (x) = 〈fl(x), fu(x)〉 where fl and fu are affine and 〈·, ·〉 denotes an interval.
For notational convenience, we do not make explicit whether intervals are open,
closed, left-open or right-open, unless required for comprehension. For an interval
I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverse of F is defined by



F−1(x) = {y | x ∈ F (y)}. It is not difficult to show that F−1 = 〈f−1
u , f−1

l 〉.
These classes of functions are closed under composition.

A truncated affine multivalued function (TAMF) F : R → 2R is defined by
an affine multivalued function F and intervals S ⊆ R

+ and J ⊆ R
+ as follows:

F(x) = F (x) ∩ J if x ∈ S, otherwise F(x) = ∅. For convenience we write
F(x) = F ({x} ∩ S) ∩ J . For an interval I, F(I) = F (I ∩ S) ∩ J and F−1(I) =
F−1(I ∩J)∩S. We say that F is normalized if S = DomF = {x | F (x)∩J 6= ∅}
(thus, S ⊆ F−1(J)) and J = ImF = F(S).

The following theorem states that TAMFs are closed under composition [1].

Theorem 1. The composition of two TAMFs F1(I) = F1(I ∩ S1) ∩ J1 and
F2(I) = F2(I∩S2)∩J2, is the TAMF (F2 ◦F1)(I) = F(I) = F (I∩S)∩J , where
F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2).

2.2 SPDI

An angle ∠
b
a

on the plane, defined by two non-zero vectors a,b is the set of all
positive linear combinations x = α a + β b, with α, β ≥ 0, and α + β > 0. We
can always assume that b is situated in the counter-clockwise direction from a.

A simple planar differential inclusion (SPDI) is defined by giving a finite
partition P of the plane into convex polygonal sets, and associating with each
P ∈ P a couple of vectors aP and bP . Let φ(P ) = ∠

bP

aP
. The SPDI is ẋ ∈ φ(P )

for x ∈ P .

Let E(P ) be the set of edges of P . We say that e is an entry of P if for all
x ∈ e and for all c ∈ φ(P ), x + cε ∈ P for some ε > 0. We say that e is an exit
of P if the same condition holds for some ε < 0. We denote by in(P ) ⊆ E(P )
the set of all entries of P and by out(P ) ⊆ E(P ) the set of all exits of P .

Assumption 1 All the edges in E(P ) are either entries or exits, that is, E(P ) =
in(P ) ∪ out(P ).

Example 1. Consider the SPDI illustrated in Fig. 1. For each region Ri, 1 ≤ i ≤
8, there is a pair of vectors (ai,bi), where: a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2
),

a3 = (−1, 11

60
) and b3 = (−1,− 1

4
), a4 = b4 = (−1,−1), a5 = b5 = (0,−1),

a6 = b6 = (1,−1), a7 = b7 = (1, 0), a8 = b8 = (1, 1).

A trajectory segment of an SPDI is a continuous function ξ : [0, T ] → R
2 which

is smooth everywhere except in a discrete set of points, and such that for all
t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P ). The signature, denoted
Sig(ξ), is the ordered sequence of edges traversed by the trajectory segment, that
is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If T = ∞, a trajectory segment is
called a trajectory.

Assumption 2 We will only consider trajectories with infinite signatures.



2.3 Successors and predecessors

Given an SPDI, we fix a one-dimensional coordinate system on each edge to
represent points laying on edges [1]. For notational convenience, we indistinctly
use letter e to denote the edge or its one-dimensional representation. Accordingly,
we write x ∈ e or x ∈ e, to mean “point x in edge e with coordinate x in the
one-dimensional coordinate system of e”. The same convention is applied to sets
of points of e represented as intervals (e.g., x ∈ I or x ∈ I, where I ⊆ e) and to
trajectories (e.g., “ξ starting in x” or “ξ starting in x”).

Now, let P ∈ P, e ∈ in(P ) and e′ ∈ out(P ). For I ⊆ e, Succe,e′(I) is the
set of all points in e′ reachable from some point in I by a trajectory segment
ξ : [0, t] → R

2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). We have shown in
[1] that Succe,e′ is a TAMF1.

Example 2. Let e1, . . . , e8 be as in Fig. 1 and I = [l, u]. We assume a one-
dimensional coordinate system such that ei = Si = Ji = (0, 1). We have that:

Fe1e2
(I) =

[

l

2
,
u

2

]

Fe2e3
(I) =

[

l −
1

4
, u +

11

60

]

Feiei+1
(I) = I 3 ≤ i ≤ 7 Fe8e1

(I) =

[

l +
1

5
, u +

1

5

]

with Succeiei+1
(I) = Feiei+1

(I ∩ Si) ∩ Ji+1, for 1 ≤ i ≤ 7, and Succe8e1
(I) =

Fe8e1
(I ∩ S8) ∩ J1.

Given a sequence w = e1, e2, . . . , en, Theorem 1 implies that the successor of I

along w defined as Succw(I) = Succen−1,en
◦ . . . ◦ Succe1,e2

(I) is a TAMF.

Example 3. Let σ = e1 · · · e8e1. We have that Succσ(I) = F (I ∩ S) ∩ J , where:

F (I) =

[

l

2
−

1

20
,
u

2
+

23

60

]

(1)

S = (0, 1) and J = ( 1

5
, 1) are computed using Theorem 1.

For I ⊆ e′, Pree,e′(I) is the set of points in e that can reach a point in I by a
trajectory segment in P . We have that[1]: Pree,e′ = Succ−1

e,e′ and Preσ = Succ−1
σ .

Example 4. Let σ = e1 . . . e8e1 be as in Fig. 1 and I = [l, u]. We have that
Preeiei+1

(I) = F−1
eiei+1

(I ∩ Ji+1) ∩ Si, for 1 ≤ i ≤ 7, and Pree8e1
(I) = F−1

e8e1
(I ∩

J1) ∩ S8, where:

F−1
e1e2

(I) = [2l, 2u] F−1
e2e3

(I) =

[

l −
11

60
, u +

1

4

]

F−1
eiei+1

(I) = I 3 ≤ i ≤ 7 F−1
e8e1

(I) =

[

l −
1

5
, u −

1

5

]

Besides, Preσ(I) = F−1(I ∩ J) ∩ S, where F−1(I) = [2l − 23

30
, 2u + 1

10
].

1 In [1] we explain how to choose the positive direction on every edge in order to
guarantee positive coefficients in the TAMF.
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Fig. 2. Reachability analysis.

3 Qualitative analysis of simple edge-cycles

Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei 6= ej for all 1 ≤ i 6= j ≤ k. Let
Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉 (we suppose that this representation
is normalized). We denote by Dσ the one-dimensional discrete-time dynamical
system defined by Succσ, that is xn+1 ∈ Succσ(xn).

Assumption 3 None of the two functions fl, fu is the identity.

Let l∗ and u∗ be the fixpoints2 of fl and fu, respectively, and S ∩ J = 〈L,U〉.
We have shown in [1] that a simple cycle is of one of the following types:

STAY. The cycle is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L ≤ l∗ ≤ u∗ ≤ U .

DIE. The rightmost trajectory exits the cycle through the left (consequently the
leftmost one also exits) or the leftmost trajectory exits the cycle through the
right (consequently the rightmost one also exits), that is, u∗ < L ∨ l∗ > U .

EXIT-BOTH. The leftmost trajectory exits the cycle through the left and the
rightmost one through the right, that is, l∗ < L ∧ u∗ > U .

EXIT-LEFT. The leftmost trajectory exits the cycle (through the left) but the
rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .

EXIT-RIGHT. The rightmost trajectory exits the cycle (through the right)
but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.

Example 5. Let σ = e1 · · · e8e1. We have that S ∩ J = 〈L,U〉 = ( 1

5
, 1). The

fixpoints of Eq. (1) are such that l∗ = − 1

10
< 1

5
< u∗ = 23

30
< 1. Thus, σ is

EXIT-LEFT.

2 Obviously, the fixpoint x∗ is computed by solving a linear equation f(x∗) = x∗.



The classification above gives us some information about the qualitative behavior
of trajectories. Any trajectory that enters a cycle of type DIE will eventually
quit it after a finite number of turns. If the cycle is of type STAY, all trajectories
that happen to enter it will keep turning inside it forever. In all other cases, some
trajectories will turn for a while and then exit, and others will continue turning
forever. This information is very useful for solving the reachability problem [1].

Example 6. Consider again the cycle σ = e1 · · · e8e1. Fig. 2 shows part of the
reach set of the interval [0.6, 0.65] ⊂ e1. Notice that the leftmost trajectory
exits the cycle in the third turn while the rightmost one shifts to the right and
“converges to” the limit u∗ = 23

30
. Clearly, no point in [0.6, 0.65] will ever reach a

point of e1 smaller than L = 1

5
or bigger than u∗. Fig. 2 has been automatically

generated by the SPeeDi toolbox we have developed for reachability analysis of
SPDIs based on the results of [1].

The above result does not allow us to directly answer other questions about
the behavior of the SPDI such as determine for a given point (or set of points)
whether: (a) there exists (at least) one trajectory that remains in the cycle, and
(b) it is possible to control the system to reach any other point. In order to
do this, we need to further study the properties of the system around simple
edge-cycles.

3.1 Viability kernel

Let K ⊂ R
2. A trajectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a

viability domain if for every x ∈ K, there exists at least one trajectory ξ, with
ξ(0) = x, which is viable in K. The viability kernel of K, denoted Viab(K), is
the largest viability domain contained in K3. The same concepts can be defined
for Dσ, by setting that a trajectory x0x1 . . . of Dσ is viable in an interval I ⊆ R,
if xi ∈ I for all i ≥ 0.

Theorem 2. For Dσ, if σ is not DIE then Viab(e1) = S, else Viab(e1) = ∅.4

The viability kernel for the continuous-time system can be now found by prop-
agating S from e1 using the following operator.

For I ⊆ e1 let us define Preσ(I) as the set of all x ∈ R
2 for which there exists

a trajectory segment ξ starting in x, that reaches some point in I, such that
Sig(ξ) is a suffix of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonal subset
of the plane which can be calculated using the following procedure. First define

Pree(I) = {x | ∃ξ : [0, t] → R
2, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e}

and apply this operation k times: Preσ(I) =
⋃k

i=1
Preei

(Ii) with I1 = I, Ik =
Preek,e1

(I1) and Ii = Preei,ei+1
(Ii+1), for 2 ≤ i ≤ k − 1.

3 We do not define the viability kernel to be closed as in [2].
4 Notice that this theorem can be used to compute Viab(I) for any I ⊆ e1.



Now, let

Kσ =

k
⋃

i=1

(int(Pi) ∪ ei) (2)

where Pi is such that ei−1 ∈ in(Pi), ei ∈ out(Pi) and int(Pi) is the interior of
Pi.

Theorem 3. If σ is not DIE, Viab(Kσ) = Preσ(S), otherwise Viab(Kσ) = ∅.

This result provides a non-iterative algorithmic procedure for computing the
viability kernel of Kσ.

Example 7. Let σ = e1 . . . e8e1. Fig. 3 depicts: (a) Kσ, and (b) Preσ(S)
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Fig. 3. Viability kernel.

3.2 Controllability kernel

We say K ⊂ R
2 is controllable if for any two points x and y in K there exists a

trajectory segment ξ starting in x that reaches an arbitrarily small neighborhood
of y without leaving K. More formally, K is controllable iff ∀x,y ∈ K,∀δ >

0,∃ξ : [0, t] → R
2, t > 0 . (ξ(0) = x∧ |ξ(t)− y| < δ ∧ ∀t′ ∈ [0, t] . ξ(t′) ∈ K). The

controllability kernel of K, denoted Cntr(K), is the largest controllable subset
of K. The same notions can be defined for the discrete dynamical system Dσ.

Define

CD(σ) =























〈L,U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE

(3)
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Theorem 4. For Dσ, CD(σ) = Cntr(S).

For I ⊆ e1 let us define Succσ(I) as the set of all points y ∈ R
2 for which there

exists a trajectory segment ξ starting in some point x ∈ I, that reaches y, such
that Sig(ξ) is a prefix of e1 . . . ek. The successor Succσ(I) is a polygonal subset
of the plane which can be computed similarly to Preσ(I).

Example 8. Let σ = e1 · · · e8e1. Fig. 4 depicts: (a) Preσ(L, u∗), (b) Succσ(L, u∗),
with L = 1

5
< u∗ = 23

30
.

Define

C(σ) = (Succσ ∩ Preσ)(CD(σ)) (4)

Theorem 5. C(σ) = Cntr(Kσ).

This result provides a non-iterative algorithmic procedure for computing the
controllability kernel of Kσ.

Example 9. Let σ = e1 · · · e8e1. Recall that σ is EXIT-LEFT with L = 1

5
< u∗ =

23

30
. Fig. 5(a) depicts Cntr(Kσ).

Convergence. A trajectory ξ converges to a set K ⊂ R
2 if limt→∞ dist(ξ(t),K) =

0. For Dσ, convergence is defined as limn→∞ dist(ξn, I) = 0. The following result
says that the controllability kernel CD(σ) can be considered to be a kind of
(weak) limit cycle of Dσ.

Theorem 6. For Dσ, any viable trajectory in S converges to CD(σ).

Furthermore, C(σ) can be regarded as a (weak) limit cycle of the SPDI. The
following result is a direct consequence of Theorem 3 and Theorem 6.
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Theorem 7. Any viable trajectory in Kσ converges to C(σ).

Example 10. Fig. 5(b) shows a trajectory with signature σ = e1 · · · e8e1 which
is viable in Kσ and converges to C(σ).

STAY cycles. The controllability kernels of STAY-cycles have stronger limit
cycle properties. We say that K is invariant if for any x ∈ K, every trajectory
starting in x is viable in K. The following result is a corollary of the previous
theorems.

Corollary 1. Let σ be STAY. Then,
(1) C(σ) is invariant.
(2) There exists a neighborhood K of C(σ) such that any viable trajectory starting
in K converges to C(σ).

Fixpoints. Here we give an alternative characterization of the controllability
kernel of a cycle in SPDI. As in [7], let us call a point x in e1 a fixpoint iff
x ∈ Succσ(x). We call a point x ∈ Kσ a periodic point iff there exists a trajectory
segment ξ starting and ending in x, such that Sig(ξ) is a cyclic shift of σ (hence,
there exists also an infinite periodic trajectory passing through x). The following
result is a corollary of the previous theorems and definitions.

Corollary 2. For SPDIs,
(1) CD(σ) is the set of all the fixpoints in e1.
(2) C(σ) is the set of all the periodic points in Kσ.

4 Phase portrait

Let ξ be any trajectory without self-crossings. Recall that ξ is assumed to have
an infinite signature. An immediate consequence of the results proven in [1] is



that Sig(ξ) can be canonically expressed as a sequence of edges and cycles of the
form r1s

∗

1 . . . rnsω
n , where

1. For all 1 ≤ i ≤ n, ri is a sequence of pairwise different edges, and si is a
simple cycle.

2. For all 1 ≤ i 6= j ≤ n, ri and rj are disjoint, and si and sj are different.

3. For all 1 ≤ i ≤ n − 1, si is repeated a finite number of times.

4. sn is repeated forever.

Hence,

Theorem 8. Every trajectory with infinite signature which does not have self-
crossings converges to the controllability kernel of some simple edge-cycle.

Corollary 3. 1. Any trajectory ξ with infinite signature without self-crossings
is such that its limit set limit(ξ) is a subset of the controllability kernel C(σ)
of a simple edge-cycle σ.

2. Any point in C(σ) is a limit point of a trajectory ξ with infinite signature
without self-crossings

We conclude that controllability kernels are important elements of the phase
portrait of an SPDI yielding an analog of Poincaré-Bendixson theorem for sim-
ple trajectories. Moreover, all such components of the phase portrait can be
algorithmically constructed. Indeed, since there are finitely many simple cycles,
the following algorithm computes all the limit sets and their attraction basins
for such kind of trajectories:

for each simple cycle σ compute C(σ), Preσ(S)

Example 11. Fig. 6 shows an SPDI with two edge cycles σ1 = e1, · · · , e8, e1 and
σ2 = e10, · · · , e15, e10, and their respective controllability kernels. Every simple
trajectory eventually arrives (or converges) to one of the two limit sets and
rotates therein forever.

Self-crossing trajectories. Actually, the previous example illustrates the diffi-
culties that arise when exploring the limit behavior of self-crossing trajectories
of an SPDI. The figure shows that there exist infinite self-crossing (and even
periodic) trajectories that keep switching between the two cycles forever. In
this particular case, it can be shown that all trajectories converge to the “joint
controllability kernel” Cntr(Kσ1

∪ Kσ2
) which turns out to be C(σ1) ∪ C(σ2)

5.
However, the analysis of limit behaviors of self-cutting trajectories in the general
case is considerably more difficult and challenging.

5 The cross-shaped region is the bridge between the two cycles.
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5 Concluding remarks

The contribution of this paper is an automatic procedure to analyze the quali-
tative behavior of non-deterministic planar hybrid systems. Our algorithm enu-
merates all the “limit cycles” (i.e., controllability kernels) and their local basins
of attraction (i.e., viability kernels).

Our analysis technique for a single cycle is very similar to the one used in
[7] for n-dimensional systems. However, for polygonal systems, we are able to
prove further properties such as controllability of and convergence to the set of
fixpoints, and that there are only a finite number of them. These results are the
analog of Poincaré-Bendixson for polygonal differential inclusions. The difference
with [9] is that our results hold for non-deterministic systems.

This work is a first step in the direction of finding an algorithm for automat-
ically constructing the complete phase portrait of an SPDI. This would require
identifying and analyzing other useful structures such as stable and unstable
manifolds, orbits (generated by identity Poincaré maps), bifurcation points (re-
sulting of the non-deterministic qualitative behavior at the vertices of the poly-
gons), limit behaviors of self-intersecting trajectories, etc.

We are currently developing a tool for qualitative analysis of SPDIs. The tool
already implements the reachability algorithm published in [1] as well as most
of the basic functionalities required for constructing the phase portrait. We have
used it to analyze (though not completely automatically) all the examples of
this paper.

Acknowledgments. We are thankful to S. Bornot, J. Della Dora, P. Varaiya for
the valuable discussions. We thank G. Pace for his contribution to the develop-
ment of the tool.
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A Appendix

Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei 6= ej for all 1 ≤ i 6= j ≤ k. Let
Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉 (we suppose that this representation
is normalized). We denote by Dσ the one-dimensional discrete-time dynamical
system defined by Succσ, that is xn+1 ∈ Succσ(xn). For x ∈ R and I ⊂ R, x < I

means that x < y for all y ∈ I.

Theorem 2 For Dσ, if σ is not DIE then Viab(e1) = S, otherwise Viab(e1) = ∅.
Proof. If σ is DIE, Dσ has no trajectories. Therefore, Viab(e1) = ∅.
Let σ be not DIE. We first prove that any viability domain is a subset of S: Let
I be a viability domain. Then, for all x ∈ I, there exists a trajectory starting in
x which is viable in I. Then, x ∈ DomSuccσ = S. Thus, I ⊆ S.
Now, let us prove that S is a viability domain: It suffices to show that for all
x ∈ S, Succσ(x) ∩ S 6= ∅.
Let x ∈ S.
If σ is STAY, we have that both l∗ and u∗ belong to S ∩ J . It follows that both
fl(x) and fu(x) are in S.
If σ is EXIT-LEFT, we have that l∗ < S ∩ J and u∗ ∈ S ∩ J . Then, fu(x) ∈ S.
If σ is EXIT-RIGHT, we have that l∗ ∈ S ∩ J and u∗ > S ∩ J . Then, fl(x) ∈ S.
If σ is EXIT-BOTH, we have that l∗ < S ∩ J and u∗ > S ∩ J . If x ∈ J : then
x ∈ F (x). If x < J : then fl(x) < x < S ∩ J , and either fu(x) ∈ S ∩ J or
fu(x) > S ∩ J (the other case yields a contradiction). If x > J : similar to the
previous case.
Thus, for all x ∈ S, Succσ(x) ∩ S 6= ∅.
Hence, Viab(e1) = S. ut



Theorem 3 If σ is not DIE, Viab(Kσ) = Preσ(S), otherwise Viab(Kσ) = ∅.
Proof: If σ is DIE, trivially Viab(Kσ) = ∅.
Let σ be not DIE. We first prove that any viability domain K, with K ⊆ Kσ,
is a subset of Preσ(S): Let x ∈ K. Then, there exists a trajectory ξ such that
ξ(0) = x and for all t ≥ 0, ξ(t) ∈ K. Clearly, the sequence x1x2 . . . of the
intersections of ξ with e1 is a trajectory of Dσ. Then, by Theorem 2, xi ∈ S for
all i ≥ 1. Thus, x ∈ Preσ(S).
It remains to prove that Preσ(S) is a viability domain. Let x ∈ Preσ(S). Then,
there exists a trajectory segment ξ̄ : [0, T ] → R

2 such that ξ̄(T ) ∈ S and Sig(ξ̄) is
a suffix of σ. Theorem 2 implies that ξ̄(T ) is the initial state of some trajectory ξ

with Sig(ξ) = σω. It is straightforward to show that for all t ≥ 0, ξ(t) ∈ Preσ(S).
Concatenating ξ̄ and ξ, we obtain a viable trajectory starting in x.
Hence, Viab(Kσ) = Preσ(S). ut

Theorem 4 For Dσ, CD(σ) = Cntr(S).
Proof. Controllability of CD(σ) follows from the reachability result in [1]. To
prove that CD(σ) is maximal we reason by contradiction. Suppose it is not.
Then, there should exist a controllable set C ⊃ CD(σ). Since C ⊆ S ∩ J , there
should exist y ∈ C such that either y < l∗, or y > u∗. In any case, controllability
implies that for all l∗ < x < u∗, there exists a trajectory segment starting
in x that reaches an arbitrarily small neighborhood of y. From [1] we know
that Reach(x) ⊂ (l∗, u∗), which yields a contradiction. Hence, CD(σ) is the
controllability kernel of S. ut

Theorem 5 C(σ) = Cntr(Kσ).
Proof. Let x,y ∈ C(σ). Since y ∈ Succσ(CD(σ)), there exists a trajectory seg-
ment starting in some point w ∈ CD(σ) and ending in y. Let ε be an arbitrarily
small number and Bε(y) be the set of all points y′ such that |y−y′| < ε. Clearly,
w ∈ Preσ(Bε(y))∩ CD(σ). Now, since x ∈ Preσ(CD(σ)), there exists a trajectory
segment starting in x and ending in some point z ∈ CD(σ). Since CD(σ) is con-
trollable, there exists a trajectory segment starting in z that reaches a point
in Preσ(Bε(y)) ∩ CD(σ). Thus, there is a trajectory segment that starts in x

and ends in Bε(y). Therefore, C(σ) is controllable. Maximality follows from the
maximality of CD(σ) and the definition of Succσ and Preσ. Hence, C(σ) is the
controllability kernel of Kσ. ut

Theorem 6 For Dσ, any viable trajectory in S converges to CD(σ).
Proof. Let x1x2 . . . a viable trajectory. Clearly, xi ∈ S ∩ J for all i ≥ 2. Recall
that CD(σ) ⊆ S∩J . There are three cases: (1) There exists N ≥ 2 such that xN ∈
CD(σ). Then, for all n ≥ N , xn ∈ CD(σ). (2) For all n, xn < CD(σ). Therefore,
xn < l∗. Let x̂n be such that x̂1 = x1 and for all n ≥ 1, x̂n+1 = fl(x̂n). Clearly,
for all n, x̂n ≤ xn < l∗, and limn→∞ x̂n = l∗, which implies limn→∞ xn = l∗. (3)
For all n, xn > CD(σ). Therefore, u∗ < xn. Let x̂n be such that x̂1 = x1 and for
all n ≥ 1, x̂n+1 = fu(x̂n). Clearly, for all n, u∗ < xn ≤ x̂n, and limn→∞ x̂n = u∗,
which implies limn→∞ xn = u∗. Hence, x1x2 . . . converges to C(σ). ut


