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Abstract
We present the design and implementation of a compiler from
OCaml bytecode to Javascript. We believe that taking bytecode as
input instead of a high-level language is a sensible choice. Virtual
machines provide a very stable API. Such a compiler is thus easy
to maintain. It is also convenient to use: it can just be added to
an existing installation of the development tools. Already compiled
libraries can be used directly, with no need to reinstall anything. Fi-
nally, some virtual machines are the target of several languages. A
bytecode to Javascript compiler would make it possible to retarget
all these languages to Web browsers at once.

Introduction
We present a compiler translating OCaml [16] bytecode into
Javascript [9]. This compiler makes it possible to program client-
side interactive Web applications in OCaml.

Javascript is the only language that is directly available in most
Web browsers and that provides a direct access to browser APIs.
(The Flash and Silverlight platforms are not as widely available
nor as integrated.) It is thus the mandatory language for developing
Web applications. However, one should be able to use a variety
of languages on a Web browser. Javascript may be suitable for
some tasks, but other languages can be more appropriate in other
cases. In particular, being able to use the same language both
on browsers and servers makes it possible to share code and to
reduce the language impedance mismatch between the two tiers.
For instance, form validation must be performed on the server for
security reasons, and is desirable on the client to provide an early
feed-back to the user. Having to maintain two different pieces of
code in two different languages would be error-prone. Concretely,
we have appreciated being able to share a large amount of code
when developing a graph viewer application with both a GTK and
a Web user interface. When using a single language, the impedance
mismatch in client-server communication is greatly reduced: data
still have to be marshalled; but the same type definitions can be
used on both side, with no need for translation. Thanks to recent
work on highly-optimized JIT-based interpreters, Javascript now
exhibits decent performance. For all these reasons, it is a sensible
target for a compiler.

We have chosen to take OCaml bytecode as input, rather than
source code, based on maintenance and ease-of-use considerations.
Indeed, we have very limited human resources available, and we are
targeting a small community of developers. Virtual machines pro-
vide a very stable API. The JVM (Java Virtual Machine [17]) and
.NET Common Language Runtime hardly change, while the source
languages continue to evolve. The same is true for the OCaml vir-
tual machine. Thus, there is no need to modify the compiler at each
release of the language to support the latest features (or just for
it to continue to work, if it is implemented as patches against the

main compiler). This is crucial for us. We have seen too many in-
teresting OCaml-related projects die due to lack of maintenance:
OCamlIl [21] (a compiler to .NET), OCamlExc [15] (a static an-
alyzer of spurious exceptions), ocamldefun (a defunctorizer), . . .
With our compiler, the barrier to entry is low for programmers. A
programmer wanting to target Web browsers can just install the
compiler as an add-on to its usual OCaml development environ-
ment, rather than installing a specific development environment for
the Web. In particular, already installed precompiled libraries can
be used directly. Finally, though this is not the case for the OCaml
virtual machine, some virtual machines are the target of many lan-
guages. For the JVM, one can list, among many others, Java, Scala,
Clojure and JRuby. A single compiler from bytecode to Javascript
would provide a tight integration of all these languages in Web
browsers. This is in contrast, for instance, with the Google Web
Toolkit [12] which can be use with Java programs but not Scala
programs.

There are challenges to address when starting from bytecode
rather than source code. First, the data representation is low-level.
For instance, functions have been compiled down to flat closures;
the bytecode interpreter is a stack machine. Also, little type infor-
mation remains to help us in the translation. It was not clear at
first whether these data representations could be mapped to avail-
able Javascript datastructures in an efficient way. Second, one may
fear that going from a low-level language to a higher level lan-
guage would result in a low code density. Third, one must find
ways to represent unstructured code using the limited Javascript
control statements (Javascript does not have a goto statement).
Last, one must design a way to easily use the available Javascript
APIs, though they are object-oriented and the calling convention of
Javascript differs from the OCaml one. We believe that we have ad-
dressed these challenges successfully and that starting from OCaml
bytecode provides a good tradeoff.

One of the design goals for the compiler was to rapidly have a
working implementation that yet provides a solid basis for future
developments. Thus, at the moment, no sophisticated optimization
has been implemented. The focus has rather been on simple but
effective analyses and code transformations, designed to achieve
good performance, but also to generate compact code. Indeed, the
compiled programs are intended to be transferred a large number
of times over the network. It is thus important to minimize latency
(Web page loading times) and bandwidth usage.

The compilation process is fairly standard. We first present the
OCaml datastructures and how they are represented in Javascript
(Section 1). Bytecode programs are converted to an SSA-based in-
termediate form (Section 2). Some optimizations are performed on
the intermediate code (Section 3). Then, the intermediate code is
translated to Javascript (Section 4). We document some OCaml-
specific issues in Section 5. The compiler would not be usable with-
out ways of manipulating Javascript values and accessing browser
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APIs. We deal with this interoperability issue in Section 6. Finally,
we have performed extensive benchmarks of the compiler to assess
its performance (Section 7).

1. Data Representation
Data representation is crucial performance-wise. One must choose
representations that match the OCaml semantics, that can be trans-
lated from Javascript, and that are implemented efficiently by
Javascript engines.

OCaml has a number of predefined types: integers, floating-
point numbers, characters, strings, booleans, arrays. New types can
be declared using a type declaration. For instance, the following
declaration defines trees of integers.

type tree = Leaf | Node of tree * int * tree

A value of type tree is either a leaf, with constructor Leaf, or
a node, with constructor Node, containing two subtrees and an
integer.

The OCaml virtual machine differs only slightly from the Zinc
machine [14] of Caml Light. It uses a very uniform memory model.
An OCaml value is a word of either 32 or 64 bits depending
on the architecture. This word represents either an integer or a
pointer in the heap (integers are the only unboxed values). They
are distinguished by the lower bit, which is 1 for integers and 0 for
pointers. The heap is composed of memory blocks of arbitrary size
preceded by a one-word header. This header contains informations
such as the size of the block, a tag indicating the kind of the block,
and some bits reserved for the garbage collector. One of the uses of
the tag is to distinguish structured blocks (containing valid values)
which should be recursively traversed by the garbage collectors
from blocks containing unstructured data (such as floating-point
numbers or the characters of a string).

With the OCaml virtual machine, integers, booleans and charac-
ters are represented as integers. Arrays are represented as structured
blocks. String and floating-point numbers are stored into unstruc-
tured blocks. Functional values are represented as flat closures, that
is, blocks with a special tag and that contain a pointer to the code
of the function as well as the values of the free variables of the
function. Type constructors with no argument, such as Leaf, are
represented as integers. Other type constructors are represented as
memory blocks. The integer value and the tag of the memory block
make it possible to distinguish the different constructors of a same
type definition. Modules are represented as memory blocks; func-
tors (that is, higher-order modules) are represented as function tak-
ing modules as arguments and returning a module.

For the translation to Javascript, we have made the following
choices. The integers and floating-point numbers of the OCaml
virtual machine are represented as Javascript numbers. Structured
blocks are represented as Javascript arrays. The first element of the
array is the tag; subsequent elements are the contents of the block.
Closures are represented as Javascript functions. We take advan-
tage of the scoping mechanism of Javascript. Thus, the function
body is compiled in such a way that free variables are accessed
directly from the outer scopes rather than from the closure. We
use our own implementation of strings. Indeed, OCaml strings are
mutable arrays of 8-bit characters, while Javascript strings are im-
mutable UTF-16 strings. More details on how integers and strings
are handled are provided in Section 5.

We do not perform any special mapping for exceptions; in
particular, OCaml exceptions remain generative. OCaml objects
are mostly compiled away during bytecode generation. Thus, we
do not have to deal with them in a special way. There are just a few
bytecode instructions for method resolution which are implemented
as Javascript functions.

B ::= I ;B | STOP bytecode stream
I ::= . . . bytecode instruction

| ACC0 | ACC1 | PUSH stack manipulation
| CONSTINT n | MULINT integer operations
| CLOSURE n,l | APPLY1 function operations
| RETURN n
| BRANCH l | BGEINT n,l,l’ branch instructions

Figure 1. Bytecode instructions

68 ACC0 copy top of stack to accu
69 BGEINT 0,79 branch if 0 ≥ accu
72 ACC0
73 PUSH push accu on stack
74 CONSTINT 2 store integer 2 into accu
76 MULINT multiply the two values
77 RETURN 1 pop stack and return
79 ACC0
80 RETURN 1

82 CLOSURE 0,68 allocate closure
85 PUSH
86 CONSTINT 10
88 PUSH
89 ACC1 copy second element of stack to accu
90 APPLY1 invoke function

...

Figure 2. Bytecode sample

2. From Bytecode to Intermediate Code
2.1 OCaml Bytecode
The OCaml virtual machine [14] is a stack machine (like the JVM)
with an accumulator (a single register that stores the result of the
last instruction, if any, thus avoiding some stack operations).

A bytecode program is basically composed of a sequence of in-
structions ending by a STOP instruction. We list in Figure 1 some
of the bytecode instructions. We use them to illustrate the compi-
lation process. The semantics of these operations is given in Sec-
tion 2.3 when presenting the conversion from bytecode to inter-
mediate code. In the actual bytecode, the instruction BGEINT only
takes one target address l. The second address l’ is convenient for
specifying the translation to intermediate code. It will always be the
address of the immediately following instruction.

As a running example, we consider the OCaml code sample
below. A function f is defined. This function takes as argument an
integer x. If the integer is strictly positive, the function returns twice
the integer. Otherwise, it returns the integer itself. The function is
later applied to integer 10.

let f(x) = if x > 0 then 2 * x else x
f(10)

The decompiled portion of a bytecode program corresponding to
these two lines is shown in Figure 2. The leftmost column is the
address (in words) of each instruction. When running the program,
the execution moves at some point to address 82. There, the func-
tion closure corresponding to function f is allocated and put in the
accumulator. The function has no free variable, hence its environ-
ment is empty (integer argument 0). The code of the function starts
at address 68. The closure is pushed on the stack (instruction PUSH).
Then, the function call is performed. The integer constant 10 is
loaded in the accumulator, then pushed on the stack. The closure
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C ::= i ; C | c intermediate code
i ::= . . . instruction:

| x = e assignment
e ::= . . . expression:

| n integer constant
| fun(σ){l(σ′)} function closure
| x(σ) function invocation
| “p”(σ) primitive invocation

c ::= . . . control instruction
| branch l(σ) unconditional branch
| if x then l(σ) else l(σ) conditional branch
| return x function return
| stop end of program

Figure 3. Intermediate Code

is retrieved from the stack and put in the accumulator (instruction
ACC1). Finally, the function is invoked (instruction APPLY1). The
execution process thus moves to address 68. The integer 10 at the
top of the stack is copied into the accumulator. As it is not inferior
or equal to 0, the conditional branch is not taken. The integer is put
in the accumulator, then pushed again onto the stack. The integer 2
is placed into the accumulator. The instruction MULINT multiplies
the two integers in the accumulator and on the stack top and pop
the stack. The resulting integer 20 is in the accumulator. Finally, the
function returns, discarding one value (integer 10) from the stack.
The value 20 returned by the function is in the accumulator.

2.2 Intermediate Code
A variant of static single-assignment form (SSA) is used as inter-
mediate representation. This variant has a more functional flavor
than the standard SSA presentation. When two control-flow edges
join, a variable may hold different values depending on the incom-
ing edge. In standard SSA form this is expressed by a notational
trick, the φ function: x = φ(y, z) means that the value of ei-
ther variable y or variable z is assigned to variable x, depending
on the incoming edge. Here, instead of using φ functions, blocks
are parameterized and values are passed explicitly from blocks to
blocks. For instance, if there is a jump from a source block with ar-
guments z and t to a target block with two parameters x and y, the
values of variables z and t are assigned respectively to variables x
and y when moving from the source block to the destination block.
As we shall see at the beginning of Section 3, there is a simple
correspondence between the two notations: a φ function can be as-
sociated to each block parameter. Our variant otherwise keeps the
essential property that each variable in a program has only one def-
inition (it is assigned to only once). The domination-based scoping
is also kept: the scope of a variable extends from its definition to
every places that can be reached only via its definition.

The intermediate representation is composed of a set of blocks.
A block is composed of a block location l, the block parameters σ
and some code C. The compiler uses integers for block locations
(this integer is in fact the location of the corresponding bytecode se-
quence in the source program). Block parameters σ are a sequence
of variables x1, . . . , xn. A variable x is represented by an integer.
A counter is used in the implementation to generate fresh variables.

The syntax of intermediate code is given in Figure 3. A piece
of intermediate code C is a sequence of instructions i followed
by a control instruction c. One instruction is the assignment of the
value of an expression e to a variable x. Expressions can be, among
others, a constant, a function closure, a function invocation or a
primitive invocation. Integer multiplication is one of these prim-

itives. Later, we present other instructions to manage exceptions
(Section 2.4) and deal with memory blocks (Section 3.3).

2.3 Translation to Intermediate Code
The bytecode program is decomposed by the compiler in blocks of
bytecode instructions that are always executed sequentially. Each
block is compiled to intermediate code independently. The first
step of the compilation process is to delimit these blocks. The start
address of each block can be found by traversing recursively the
code: it is either the address 0 (program entry point), the target
of a branch instruction, the start of a function, or the address of
an exception handler (see Section 2.4 for the later). The end of
a block can be explicit, right after a control instruction. It may
also be implicit, when a branch instruction points to the middle
of a sequence of instructions. All these implicit delimitations are
collected by scanning the bytecode sequentially from start to end
and recording the target address of each branch instruction.

To compile a block, one also need its static environment. More
precisely, one need the size of the current stack frame. For this, a
recursive traversal of the program is performed, starting from the
entry point, following the branches, and visiting the function body
of each closure, while keeping track of the size of the current stack
frame.

We can now specify the translation of a block. Values flow from
previous blocks through the accumulator and the stack. We repre-
sent symbolically the contents of the accumulator at the beginning
of the block as a fresh variable x, and the contents of the current
stack frame as a sequence of fresh variables σ. The parameters of
the block are then the concatenation x, σ. The translation of a block
is specified in Figure 4 using inductive rules. It is defined as a pred-
icate x ; σ ` B ; C where the variable x and the sequence of
variables σ represents symbolically the contents of the accumula-
tor and of the current stack frame, B is the sequence of bytecode
instructions to compile, and C is the resulting intermediate code.
The idea of starting the translation of each block with fresh vari-
ables can also be found in [1] and [2], which propose algorithms to
put code into SSA form. For specifying the translation, we assume
that whenever a block is implicitly terminated in the actual byte-
code, a BRANCH instruction has been added to its tail, pointing to
the immediately following block. The actual implementation com-
pares the current location in the bytecode to the end of the block
and generates a branch instruction when the limit is reached.

We present the translation of the most interesting instructions.
No code is produced when translating a stack access ACC0. One
just records that afterwards the value of the accumulator is the top
element of the stack. The BRANCH l instruction is compiled to a
branch instruction. The target block of the branch is at location l.
The block arguments are the concatenation of the contents of the
accumulator and of the stack. The APPLY1 instruction is compiled
to the call of the function contained in the accumulator applied to
a single parameter at the top of the stack. The results of the call
is stored in a fresh variable z. Afterwards, the top element of the
stack is discarded and the accumulator contains the value returned
by the function. The CLOSURE instruction is compiled to a func-
tion closure allocation. We show here only the translation when the
function has no free variable (when its environment is empty). The
closure parameters are a sequence of fresh variables σ′. Their num-
ber is given by the arity of the function, which can be obtained from
the location of its body l. The arguments are expected on the stack.
The contents of the accumulator is unknown at the beginning of a
function body and will not be used. Hence, a dummy variable z0
is used to symbolize this contents. The closure is stored in a fresh
variable y. Afterwards, the accumulator contains the closure. The
RETURN instruction is compiled to a corresponding return instruc-
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x ; x, σ ` B ; C

y ; x, σ ` ACC0 ;B ; C

y ; x, y, σ ` B ; C

z ; x, y, σ ` ACC1 ;B ; C

x ; x, σ ` B ; C

x ; σ ` PUSH ;B ; C

x ; σ ` B ; C x fresh
y ; σ ` CONSTINT n ;B ; x = n ; C

z ; σ ` B ; C z fresh
x ; y, σ ` MULINT ;B ; z = “∗”(x, y) ; C

x ; σ ` BRANCH l ;B ; branch l(x, σ)

y fresh
x ; σ ` BGEINT n,l,l’ ;B ; y = n ≥ x ; if y then l(x, σ) else l′(x, σ)

z ; σ ` B ; C z fresh
x ; y, σ ` APPLY1 ;B ; z = x(y) ; C

y ; σ ` B ; C y and σ′ fresh |σ′| = arity(l)

x ; σ ` CLOSURE 0,l ;B ; y = fun(σ′){l(z0, σ′)} ; C
x ; σ ` RETURN n ;B ; return x x ; σ ` STOP ; stop

Figure 4. Translation to intermediate code

tion. The number n of stack items to be discarded is not useful after
translation. The returned value x is in the accumulator.

When compiling function, one actually needs to deal with the
environment of the current function, that contains the values of the
free variables of the function. We only sketch the translation of
functions with non-empty environments. A bytecode closure is a
memory block containing a pointer to the function code followed
by the value of each free variable of the function. The CLOSURE
n,l instruction grabs the n topmost elements of the stack to build
the closure. When executing the body of a function, its closure is
stored in a specific environment register. The ENVACC n instruction
copies the n-th element of the environment to the accumulator.
The compiler takes advantage of Javascript static scoping. For
this, the environment is eliminated in a way similar to the stack.
The translation predicate x ; σ ; η ` B ; C actually takes an
additional argument η representing symbolically the contents of
the environment register. This argument is a sequence of variables
each standing for an element of the environment. The translation
of the ENVACC instruction is then similar to the ACCn instructions,
except that the new contents of the accumulator is taken from the
environment rather than from the stack.

y ; σ ; η ` B ; C η(n) = y

x ; σ ; η ` ENVACC n ;B ; C

As an example, the translation of the piece of bytecode in Fig-
ure 2 is given in Figure 5. The translation process starts at ad-
dress 82 that corresponds to the closure allocation and the function
application. (There is a branch instruction pointing to this address,
not shown here.) We assume that the stack is empty at the beginning
of the block (we write • for an empty sequence of variables).

2.4 Exceptions
Three bytecode instructions are dedicated to exception handling.

I ::= . . . | RAISE | PUSHTRAP l | POPTRAP

The virtual machine keeps in a register a pointer to the stack
frame describing the current exception handler, if any. This stack
frame contains the address of the handler, the current function
environment and a pointer to the frame of the previous handler.
The PUSHTRAP instruction installs a handler by recording such a
frame. The POPTRAP instruction restores the previous handler and
pop the frame. The RAISE instruction pops all elements of the stack
including the stack frame of the current handler. It restores the
previous handler. Finally, it jumps to the handler. It expects the
raised exception to be in the accumulator. The intermediate code
has corresponding control instructions.

c ::= pushtrap (l1, σ1), (x, (l2, σ2))
| poptrap (l, σ) | raise x | . . .

Accu and stack Bytecode Intermediate code

block 68(a, b)
a ; b 68 ACC0
b ; b 69 BGEINT 0,79 c = 0 ≥ b

if c then 79(b, b)
else 72(b, b)

block 72(d, e)
d ; e 72 ACC0
e ; e 73 PUSH
e ; e, e 74 CONSTINT 2 f = 2
f ; e, e 76 MULINT g = “∗”(f, e)
g ; e 77 RETURN 1 return g

block 79(h, i)
h ; i 79 ACC0
i ; i 80 RETURN 1 return i

block 82(j)
j ; • 82 CLOSURE 0,68 k = fun(l){68(z, l)}
k ; • 85 PUSH
k ; k 86 CONSTINT 10 m = 10
m ; k 88 PUSH
m ;m, k 89 ACC1
k ;m, k 90 APPLY1 n = k(m)
n ; k . . .

Figure 5. Example of translation

Besides, an exception handler (x, (l2, σ)) is associated to each
block in between a PUSHTRAP and the matching POPTRAP. The ar-
guments σ to the exception handler are the bound variable x stand-
ing for the raised exception as well as the variables corresponding
to the portion of the stack available to the handler. These arguments
change from block to block, as fresh variables are used each time.
This associated handler makes it explicit which variables of a block
are passed to the handler, which is crucial for correct code analyses.

3. Code Analyses and Transformations
Several code analyses and transformations are performed on the
intermediate code in order to improve the performance of the gen-
erated code and reduce its size. The main issue, performance-wise,
is the calling convention mismatch between OCaml, which encour-
ages a curried style, and Javascript, that does not support currying.
To deal with this, the closures possibly involved at each call point
are computed (Section 3.3). Then, optimized function calls are gen-
erated when the closure arities match the number of arguments pro-
vided (see Section 5 for details). Self-tail call are very common and
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block 68()
c = 0 ≥ l
if c then 79() else 72()

block 72()
f = 2
g = “∗”(f, l)
return g

block 79()
return l

block 82()
k = fun(l){68()}
m = 10
n = k(m)
. . .

Figure 6. Code after redundant variable removal

should be implemented using constant stack depth (Section 3.1).
Finally, a difficulty for dead code elimination (Section 3.4) is that
all the components of a module are stored in a common memory
block. Thus, if there is any reference to this block, a rough dead
code elimination algorithm would retain the contents of the whole
module. We thus use an algorithm that is aware of structured mem-
ory blocks. The strategy used is to eliminate references to these
blocks by replacing field accesses by direct reference to their con-
tents (Section 3.3).

At the moment, the compiler only uses intraprocedural analyses.
Indeed, they are much simpler to implement and are already quite
effective. In order to define some of the code analyses, it is conve-
nient to associate to each variable x of the program its definition
def(x) as follows:

• def(x) = e if there exists an instruction x = e in the program;
• def(x) = φ(x1, . . . , xn) if variable x is a block parameter and

variables x1 to xn are the possible corresponding arguments
(this is the φ function of standard SSA form);

• def(x) = ? if x is a function parameter.

As each variable is assigned to only once, this defines a total func-
tion over variables. We consider the arguments of the φ function as
a set of variables. Thus, for instance, φ(x, x) = φ(x).

3.1 Self-Tail Call Optimization
Tail recursion optimization is performed first. Indeed, this opti-
mization changes the program control flow and thus cannot be eas-
ily applied after the transformation in Section 3.2.

Whenever a function f calls itself in tail position, the call is
replaced by a branch to the beginning of the function. Formally,
suppose we have a function definition:

f = fun(σ1){l(σ2)}
If one of the blocks of the function body ends with:

x = f(σ3); return x

then, these two instructions are replaced by:

branch l(σ4)

where the arguments σ4 are built from the block arguments σ2

by replacing any variable in the function parameters σ1 by the
corresponding variable in the function arguments σ3.

3.2 Minimizing Variable Passing between Blocks
So far, the number of parameters of a block is equal to the depth
of the stack frame at this corresponding point in the bytecode pro-
gram. By a suitable renaming of variables, the number of argu-
ments passed from one block to its successors can be greatly re-
duced. The compiler follows the approach in [2]. Whenever one
has def(x) = φ(y) or def(x) = φ(x, y), one can replace all oc-
currences of variable x by variable y. Intuitively, any value assigned
to variable x must in both cases have been assigned to variable y
beforehand. By performing this renaming repeatedly until no such

def(x) = φ(x1, . . . , xn) xi ←[ y
x← [ y

def(x) = y[i] y ←[ z
def(z) = [j|x1, . . . , xi, . . . , xn] xi ← [ t

x←[ t

def(x) = e
e not of the shape y[i]

x← [ x
def(x) = ?

x←[ x

Figure 7. Propagation of known values

definition remains, one reduces the number of φ-functions (that is,
the number of block parameters) in the program. It can be proved
that this algorithm is correct, and besides, that it computes the min-
imal φ-function placement for reducible control-flow graphs [2],
which the OCaml compiler always generates. The implementation
does not actually perform variable substitution eagerly. A union-
find datastructure is used to keep track of which variable should be
replaced by which. A global substitution is performed once no sim-
plification is possible anymore. The block parameter and argument
simplification is also not performed at this point, but by dead code
elimination (Section 3.4). Figure 6 shows the result of the transfor-
mation (together with dead code elimination) applied to the code in
Figure 5. In this example, all block parameters are eliminated.

3.3 Data Flow Analysis
The compiler performs an analysis to determine an overapproxima-
tion of which values may be contained in each variable. This anal-
ysis has to deal in a sound fashion with mutable fields and function
calls, including calls to arbitrary external functions. Thus, it com-
bines a flow-insensitive data-flow analysis with an escape analysis
that computes which values might be modified. A major use of the
analysis is for shortcutting memory block accesses, replacing field
accesses by direct references to the contents of the field. If the com-
piler is able to remove all accesses to a given memory block, then
the block does not have to be allocated anymore. Besides, then,
any value stored in one of its fields but not otherwise used also be-
comes unnecessary. As OCaml modules are implemented as mem-
ory blocks, this optimization is crucial for effective dead code elim-
ination. The analysis is also used to generate optimized code for
some operations: function calls (Section 5), integer multiplication
(Section 5), Javascript method invocations (Section 6), . . .

The analysis deals in a special way with the following memory
block operations. The expression [i|x1, . . . , xn] of the intermediate
code allocates a memory block with a tag i and n fields whose
values are given by variables x1 to xn. The expression x[i] accesses
field i of the memory block contained in value x. The instruction
x[i] = y stores the value of variable y in field i of the memory
block contained in value x.

e ::= . . .
| [i|x1, . . . , xn] block allocation
| x[i] field access

i ::= . . .
| x[i] = y field update

The analysis consists in computing two predicates. Predicate
x ←[ y indicates that variable x may contain values coming from
variable y. Predicate x←[? holds when xmay contain other values.
Thus, when x ←[ ? does not hold, the only possible values for
variable x are the values of expressions def(y) where x←[ y.

The first step of the analysis is the computation of predicate
x ← [ y, as specified in Figure 7. The idea is to track how values
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def(x) = y(. . . , z, . . .)
z ← [ t
t escapes

def(x) = “p”(. . . , z, . . .)
z ← [ t
t escapes

return x ∈ P x←[ y
y escapes

raise x ∈ P x←[ y
y escapes

x[i] = y ∈ P
y ← [ z
z escapes

x escapes def(x) = [j|x1, . . . , xn]
xi ←[ y
y escapes

x escapes
x mutable

x[i] = y ∈ P x← [ z
z mutable

Figure 8. Escaping values

def(x) = φ(x1, . . . , xn)
xi ←[ ?
x←[ ?

def(x) = y[i]
y ← [ ?
x←[ ?
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Figure 9. Propagation of unknown values

flow through code blocks and memory blocks. Basically, source
variables are propagated through block parameters (fist rule) and
field accesses (second rule). In all other cases, we take x←[ x. The
implementation collects for each variable x the set of variables y
such that x ← [ y. A standard work list algorithm is used. A pitfall
is that the dependency graph indicating when the value of a variable
should be recomputed is not static. Indeed, for the second rule,
whenever one learns that y ←[ z, one must add a dependency of
variable x on the corresponding variable xi.

As a second step, an escape analysis is performed. This is spec-
ified as predicate ‘x escapes’ in Figure 8. In this figure, we write
i ∈ P to mean that the instruction i occurs anywhere in the whole
program. The goal is to determine which memory blocks may be
modified, which is predicate ‘x mutable’ in the same figure. If a
variable z either occurs as parameter of a function or a primitive,
is returned, is raised, or is assigned to the field of a block, then all
its possible known values, given by variables t such that z ←[ t,
escape (four first rules). If a block escapes, then the values of all
its fields also escape (fifth rule). A value is considered mutable if
either it escapes or it is the target of a block update (last two rules).
The two predicates can be computed using recursive functions.

Finally, the predicate x ←[ ? specified in Figure 9 is computed.
It indicates which variables x may contain other unknown values
besides the values given by predicate x ←[ y. If variable xi may
contain unknown values and is assigned to variable x (by branching
to a code block), then variable xmay contain unknown values (first
rule). If we access a block y but do not know enough information
regarding the accessed field, either because not all possible shapes
for block y are known precisely or the field contents may have been

modified, then we may get some unknown values (three remaining
rules). A work list algorithm is used in the implementation.

The result of the analysis is used to eliminate field accesses.
This is done through variable renaming. Indeed, if the predicate
x ←[ ? does not hold and there is a single variable y such that
x ← [ y, then all occurrences of variable x can be replaced by
variable y. If we happen to have def(x) = z[i], this will turn the
field access into dead code. As this only works when the field value
has a single known definition, we consider a second case where
variable renaming is performed. If we have def(x) = y[i], the
predicate y ←[ ? does not hold and, for all variables z such that
y ←[ z, the definition of z is of the shape [j| . . . , t, . . .] where a
same variable t is at index i, then all occurrences of variable x can
be replaced by variable t.

3.4 Dead Code Elimination
An analysis is performed to determine which parts of the code
are reachable and which variables are used. Unreachable code and
effect-free expressions whose results are not used are discarded.

So as to get a more precise result, the compiler first determines
which functions may be effectful. We write ‘x effectful’ to mean
that the functions bound to variables x may be effectful. In the
current implementation, non-terminating functions are considered
effectful; expressions which may only raise exceptions due to pro-
grammer errors, such as out of bound accesses, are not considered
as effectful.

The live variable analysis is specified in Figure 10 as five mutu-
ally defined predicates: ‘l reachable’, ‘C reachable’, ‘i reachable’,
‘x live’ and ‘e live’. Location 0 (the program entry point) is reach-
able. If a location l is reachable, then the code of the block at
location l, written code(l), is reachable. If a piece of code C is
reachable, all the instruction it contains are reachable. If a control
instruction is reachable, then all the locations it points to are reach-
able. If a block update or an effectful assignment is reachable, then
all its free variables are live. The variable in a reachable return or
raise instruction is live. In the case of a reachable conditional in-
struction, the condition variable is live. If a block parameter is live,
then the corresponding arguments are also live. If a live variable
is assigned to some expression e, then the expression is live. If an
expression is live, then all its free variables are live. Finally, if a
closure expression is live, then its body location is reachable. This
analysis is implemented using recursive functions.

Then dead code elimination can take place. Unreachable blocks
are discarded. Assignments x = e where x is not live and e is not
effectful are removed. Block parameters that are not live are also
removed, as well as the corresponding block arguments.

During the analysis, the compiler actually counts how many
time each variable is used. This is only a slight variation of the
live variable analysis presented here, where a counter, associated
to each variable, is incremented each time one would deduce that a
variable is live. One just has to be careful to consider expressions
only once (two distinct rules applies for effectful expressions). This
information is used during code generation (Section 4).

The analysis is effective at eliminating unused functions in mod-
ules. It is not powerful enough to deal with functors (modules pa-
rameterized by other modules) in the general case. An interproce-
dural analysis would be needed for that.

3.5 Function Inlining
The OCaml bytecode compiler does not perform any inlining.
There are thus lots of opportunities for inlining. At the moment,
only functions that are used exactly once are inlined. This is guar-
anteed to make the code smaller and is simple to implement. In
particular, no variable renaming is necessary. This is performed as
follows. The block containing the function call is split at the call
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Figure 10. Live variable analysis

instruction. The function call is replaced by a branch to the function
body. The arguments passed to the block can be deduced from the
function parameters. Each return instruction in the function body is
replaced by a branch to the instruction just after the function call,
with a single argument which is the return value of the function.

According to our measurements, inlining has no significant
impact on performance. On the other hand, it helps for dead code
elimination, as it can exposes opportunities for code removal. In
particular, the dead code elimination algorithm is not smart enough
to eliminate unused functions in a functor (that is, in a higher-
order module). On the other hand, if the body of the functor is
inlined, unused functions can be eliminated. Function inlining has
also turned out to be a good way to stress the compilation process,
and hence shake out bugs in the compilers, as it makes the control
flow significantly more complex.

4. Javascript Generation
The compiler first produces a Javascript abstract syntax tree, which
is then printed. Thus, parentheses and whitespaces do not have to
be dealt with during code generation. They are added only when
necessary when serializing the abstract syntax tree. The use of
an abstract syntax tree makes is also possible to perform some
peephole optimizations at the Javascript level.

A naive compilation of our running example (Figure 6) would
yield the following Javascript piece of code:

function f(x){
var b = 0 < x;
if (b) {

var t = 2; var y = caml_mul(t,x); return y;
} else { return x; }

}
var x = 10; var z = f(x);

We describe the function body. The code for block at location 68 is
generated first. The conditional instruction at the end of the block
is translated into a Javascript conditional statement. The code for
blocks at locations 72 and 79 is inserted in the branches. The actual
result, assuming that function f is not inlined, is the following:

function f(x){return 0<x?2*x|0:x;}
var y=f(10);

Unnecessary variable assignments are avoided (Section 4.1). A di-
rect multiplication can be performed without overflow (Javascript
uses floating point arithmetic). The result is converted back to a 32-
bit integer using the construction e|0 (see Section 5 for details).
Finally, a peephole optimization turns statement “if(e)return
e1;else return e2;” into statement “return e?e1:e2;”. (This

is only to save space; it does not make any performance difference
with current Javascript engines).

We now detail the code generation process: first, how expres-
sions are generated, and then how the control flow graph is com-
piled to Javascript.

4.1 Generating Expressions
In order to get compact code, the compiler produces nested expres-
sion when possible, skipping assignments to intermediate variables.
It is careful to preserve the order of evaluation. For this, three kinds
of expressions are distinguished: expressions that always evaluate
to the same result and have no side-effect are pure (for instance,
integer addition x + y); expressions that have side-effects are mu-
tators; (for instance, array update); expressions that do not have
side-effects but which may evaluate to different values due to side-
effect are mutable (for instance, block access x[i]).

Pure and mutable expressions can be reordered freely. The order
of mutator expressions has to be preserved. A mutable and a muta-
tor expression cannot be swapped. The compiler provides a way to
declare external primitives and specify their kind.

When compiling a piece of intermediate code, the compiler
keeps a set of pending assignments of a Javascript expression to a
Javascript variable, together with the kind of each of these expres-
sions. When compiling a statement x = e, the Javascript expres-
sion corresponding to expression e is produced first. In doing so,
any variable defined in the assignment set is replaced by the corre-
sponding expression (and the assignment is removed from the set).
Then, if expression e is a mutator, all the assignments correspond-
ing to mutable or mutator expressions are emitted. If expressions
e is mutable, any assignment corresponding to a mutator expres-
sion is emitted (note that there can be at most one). Finally, if the
variable x is used only once, the current assignment is added to
the set of pending assignments. Otherwise, the assignment is di-
rectly emitted. When the variable x is not used, only the code of
the expression is emitted, not the assignment to the variable. At the
moment, the definition of a closure flushes all pending assignments.
The compiler could be more precise and flush just the assignments
to variables occurring in the closure. The pending assignments are
also flushed before emitting any control statement.

4.2 Compiling the Control Flow Graph
The control flow graph has to be mapped to Javascript control state-
ments. The compiler uses for statements for loops, and conditional
and switch statements for other control flow graph edges. In both
cases, a crucial ingredient is the computation of the dominance
frontier [7] of each block. The dominance frontier of a block a is
the set of blocks b such that the block a dominates one predecessor
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of b (every path from the entry that reaches this predecessor has to
pass through block a), but not all of them.

The OCaml bytecode compiler always generates reducible con-
trol flow graphs: there are no cross edges (edges that points to a
block which is neither an ancestor nor a descendant of the current
block). Loops can be found by a depth first traversal: a block is the
start of a loop if there exists a back edge pointing to it. Loops are
compiled into for statements:

label:for(;;){ (loop body) break;}

In the loop body, branching back to the beginning of the loop is
performed by emitting the code for passing arguments to the block
at the top of the loop followed by a continue statement. The
argument passing must be performed by parallel variable renaming:
for instance, when the parameters are a pair of variables (a, b) and
the arguments are the same pair in reverse order (b, a), the content
of the two variables must be swapped; it would be incorrect to
first assign the contents of b to a then the new contents of a to b.
When loops are nested, a label is used to specify at the beginning of
which loop the execution should proceeds. Blocks in the dominance
frontier of the first block of the loop are not part of the loop, but just
after. If the flow of control reaches the end of the loop body without
encountering a backward edge, the execution should leave the loop.
Hence the break instruction at the end of the loop above.

We now explain how forward edges are handled. A recursive
process is used, which compiles a block and all the blocks it
dominates. We illustrate this process on the graph in Figure 11(a).
The compilation starting at block a proceeds as follow. First, the
instructions of the block are compiled. Then, the control instruction
is handled. Here, there are two edges, hence a conditional statement
is used. With more than two edges, a switch statement is used.
If there is a single edge (as for block b, for instance), no code
is produced at this point and the compilation process proceeds
linearly right after the already emitted statements (see just below).
The argument passing code corresponding to each edge is inserted
in the corresponding branch of the conditional. Then, if the target
block has a single incoming edge, the block (and the blocks it
dominates) is recursively processed. Thus, the instructions of block
b are inserted in the first branch of the conditional followed by the
argument passing code to block d, and similarly for the second
branch of the conditional. However, the code corresponding to
the instructions of block d is, rightly, not inserted in any of the

branches, as the block has two incoming edges. Now that the
conditional statement has been produced, the blocks that are either
on the dominance frontier of one of the branches or are the target
of critical edges coming from block a (that is, edges which are
neither the only edges leaving their source block, nor the only edges
entering their destination block) are considered. (See Figure 11(c)
for an example of critical edge, from block a to block d). Here,
block d is the only such a block. The compilation thus proceeds
recursively at this block. There can be no such block, for instance
if block c ended with a return instruction, rather than branching to
block d. In this case, the compilation process stops here. There can
also be more than one such blocks, as shown in Figure 12(a). Such
control graphs may arise due to compilation of pattern matching
and shortcut boolean operators (&& and ||). Then, an intermediate
block s is inserted (Figure 12(b)). The block s performs a switch on
some variable x and dispatches to the adequate block (here, either
block d or e). Jumping to block d from one of the branches of the
conditional is compiled as first performing the argument passing
to this block and then setting the variable x appropriately. The
insertion of the intermediate block s is done on the fly. Indeed, it
cannot be performed at the intermediate code level, as its successor
blocks have incompatible parameters in general.

5. Language Specific Issues
Deviations from the standard OCaml implementation. At the
moment, integers are 32-bits, rather than 31 or 63 bits with the
standard OCaml implementation depending on the architecture. In-
deed, there is no implementation reason to lose one bit. The com-
piler could provide 31 bit integers at a reasonable cost by masking
appropriately the result of each integer operation. But we do not
think this choice will result in many compatibility issues. Programs
for which the integer size matters already deal with several sizes
and usually use masking for that. For instance, the Random module
from the standard library, which implements pseudo-random num-
ber generators, works perfectly well with our compiler.

The compiler performs self-tail call optimization, but not gen-
eral tail call optimization. The general case could be implemented
using trampolines, but at a high cost. Indeed, implementing prop-
erly tail call optimization when targeting a runtime with no tail call
support was considered both for Scala [24] (JVM) and Hop [18]
(Javascript), but was not implemented for any of these languages.
We hope Javascript interpreters will eventually support tail call op-
timization in strict mode [9], which does not allow stack inspection.

Integer operations. Javascript only provides floating point arith-
metic operations (using double-precision 64-bit format IEEE 754
values). Logical operations are performed by first converting the
operands to 32-bit integers (non-integer values are truncated toward
zero). Addition and subtraction on 32-bit integers can be imple-
mented by performing the corresponding float operation and then
converting back to integer using a logical operation(x+y)|0. Mul-
tiplying two 32-bit integers can require up to 62 significant bits (not
including the sign), while floats only provide 53 significant bits.
Thus, a custom multiplication function is used in general. When
one of the operands is statically known to be small, thanks to the
data flow analysis, a direct Javascript multiplication is performed,
followed by a conversion to 32-bit integer. Division by zero raises
an exception in OCaml, while it returns Nan (not a number) in
Javascript. Thus, a custom division function is used when the com-
piler cannot determine that the divisor is different from 0. The mod-
ulo operation is implemented similarly.

Array bound checking. Javascript returns the undefined value
when an out-of-bound array access is performed, rather than rais-
ing an exception. The compiler follows the OCaml semantics and
inserts bound checks by default.
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Function invocation. The OCaml language encourages a curried
style. From a semantic point of view, OCaml functions always take
a single argument. A function expecting more than one argument is
actually a function that takes a first argument and returns a function
consuming the remaining arguments. This style is inefficient if
implemented naively. Thus, implementations of the language use
n-ary functions internally, with a suitable invocation strategy to
simulate the expected semantics.

The data flow analysis is used to optimize function calls. At each
call point, the expected arities of the possible closures is computed.
If the arity is known and matches the number of arguments, the
function can be called directly. Otherwise, an intermediate function
is called with the closure and the arguments to perform the call
appropriately. The compiler generates one such function for each
call-site arity. The function used when two arguments are provided
is given below. In Javascript, the property f.length of a function f
is its expected arity. If the arities correspond, which is likely, the
function is invoked directly. Otherwise, the invocation is performed
by a generic function caml_call_gen which handles currying.

function caml_call_2(f,x,y) {
return f.length==2?f(x,y):

caml_call_gen(f,[x,y]); }

Strings. Javascript only provides immutable UTF-16 strings,
while OCaml strings are mutable arrays of 8-bit characters. Thus,
strings are implemented as an object that acts as a proxy for three
possible representations: a UTF-16 Javascript string, a string of
bytes stored in a Javascript string (one byte per UTF-16 code unit),
and a Javascript array of bytes. The first representation is used
when converting to and from Javascript. The second allows effi-
cient string read access and concatenation and can be converted
efficiently to the first. The last is only used when the string is mod-
ified. Conversions are automatically performed when needed.

Concurrency. Javascript has no multi-threading support. Thus,
the OCaml thread library cannot be used. However, the Lwt cooper-
ative thread library [26] works out of the box, without modification
nor recompilation.

6. Interoperability with Javascript
It is crucial to be able to access the browser APIs in a natural way. A
short library provides functions for manipulating Javascript values
(strings, booleans, null and undefined values) from OCaml and
performing conversions between the two worlds. For instance, the
parametric type ’a opt stands for values which are either null
or of type ’a. A number of functions are available to manipulate
values of this type: testing whether a value is null, performing
different operations whether a value is null or not, . . .

Javascript object types are encoded using OCaml object types.
An abstract type constructor Js.t with a phantom parameter is
used to denotes Javascript objects. The parameter describes the
methods and properties of the objects. For instance, consider the
class type definition sketched below (we show only some of the
methods).

class type canvasContext = object
method canvas : canvasElement t readonly_prop
method save : unit meth
method restore : unit meth
method scale : float -> float -> unit meth
method rotate : float -> unit meth
method lineWidth : float prop
...

end

Such a class type definition does not correspond to any ac-
tual OCaml object. It is just used to specify a type abbreviation
canvasContext that stands for an object type with the given meth-
ods. Then, type canvasContext Js.t is the type used to denote
Javascript canvasContext objects. Each method in the OCaml
object type corresponds either to a property or a method of the
Javascript object. We use type constructors with a phantom parame-
ter to differentiate the different cases. Constructor readonly_prop
is used for read-only properties and constructor prop for read-write
properties. For instance, property canvas is read-only and contains
a canvasElement Javascript object; property lineWidth con-
tains a floating point number and can be modified. Field scale is a
method with two arguments of type float and that returns nothing.
The result type is marked by a parametric type meth. This delimits
precisely the part of the type corresponding to arguments and the
part corresponding to the method return value, even when a func-
tion is returned. (This is important, as Javascript does not support
currying.) Though Javascript is untyped, this scheme works well in
practice. Indeed, browser APIs are specified using the Document
Object Model (DOM), which is a typed language-independent con-
vention.

A Camlp4 syntax extension is used to perform method invoca-
tions and to access object properties in a type safe way. For in-
stance, a method invocation is written e##m(e1,...,en), with
the number of arguments made explicit by the tuple notation. This
method invocation expression is desugared into a call to a primi-
tive caml_js_meth_call(e,"m",[|e1,...,en|]), with appro-
priate type constraints not shown here. The array makes the number
of arguments explicit. This primitive is recognized by the compiler
which generates a direct Javascript method call. Object property
access e##m and update e##m <- e’ are also defined as syntax
extension and are compiled in a similar way.

A naming trick is used to map several method names on the
OCaml side to the same method in Javascript to deal with overload-
ing (in particular, methods with optional parameters are common in
Javascript): any leading underscore character is removed from the
OCaml method name; then, the underscore occurring last and what-
ever follows is also removed. Thus, names _concat, _concat, and
concat_2 are all mapped to the same Javascript name concat.

7. Current Status and Performance
Status. The compiler is publicly available1. It is currently about
6000 lines of OCaml. We believe it is a solid implementation that
can be used for real applications. Most of the OCaml standard
library is supported. A binding for a large part of the browser APIs,
including manipulation of the HTML DOM tree, is provided.

We have written a few sample demos that can be tried online.
One is a 3D real-time animation of the Earth based on the HTML
canvas element. Another is a graphic viewer with both a GTK and
Web user interface, (lot of code being shared between the two),
which we use to visualize the huge graphs of package dependencies
in GNU/Linux distributions.

Performance. We tested the compiler with several programs,
most of them taken from the standard OCaml benchmarks, as
well as two Javascript tests rewritten in OCaml: splay from the V8
benchmarking suite and raytrace from the Webkit benchmarking
suite. We ran the generated programs with the Google V8 (version
3.1.5), Apple Nitro (revision 79445 of the Subversion repository of
Webkit) and Mozilla JaegerMonkey (revision 62992 of the Mercu-
rial repository) Javascript engines. All tests were performed on an
Intel Core i7-870 platform running a 64 bit Debian GNU/Linux op-
erating system. Each program was run at least ten times. We report

1 http://ocsigen.org/js_of_ocaml/
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average time. In each case, the measurement error is below 3% at
99% confidence, as estimated using Students t-distribution.

The execution time of the code generated by our compiler is
compared on Figure 13 with the execution time of the same pro-
grams compiled with the Ocaml bytecode compiler (ocamlc) and
the Ocaml native code compiler (ocamlopt). The running times
are normalized and we take the performance of the Google V8 en-
gine as reference. Overall, the Javascript engines are faster than
the bytecode interpreter, V8 being the fastest. Exceptions are ex-
tremely expansive, especially with Nitro: boyer and kb heavily
uses exception; variants boyer no exc and kb no exc uses op-
tion types rather than exceptions in most cases and are thus more
competitive. Strings and 64-bit integers are not natively supported
in Javascript. This explains the low performance with hamming and
splay. JaegerMonkey appears to be slower than other engines with
simple recursive functions (fib and takc). We were not able to
measure its performance on the hamming and splay benchmarks
as the standalone JaegerMonkey engine fails with an “out of mem-
ory” error on these benchmarks (though Firefox 4.0 is able to run
the successfully).

Comparison with Javascript programs. Making a fair compari-
son with handwritten Javascript programs is hard. We are unlikely
to match the performance of heavily hand-tuned programs. On the
other hand, one may hope to match casually written Javascript
code. We hope the following results will give an idea of where
we stand, though they should be taken with a grain of salt. We
compared the performance of compiled programs and handwrit-
ten Javascript versions of the same programs: bdd, fft, fib, raytrace
and splay (figure 15). We translated the first three programs from
OCaml and the last two from Javascript. In three cases, the gen-
erated program is only a little bit slower than the native version.
This tends to indicate that the generated code is quite good. The
Javascript version of raytrace creates a lot of objects for vectors
and colors. The compiler uses literal arrays, which appears to be
much faster. The splay program performs quite a lot of string oper-

ations. We are at a disadvantage here, as we cannot use the native
Javascript string implementation.

Size of generated code. As mentioned already, it is important
to produce compact code. The relative size of the OCaml source
code and of the bytecode, compared to the code produced by the
compiler, is shown in Figure 14. For the latter, we distinguish be-
tween generated code and runtime. The runtime consists of hand-
written Javascript functions that correspond to C functions in the
bytecode interpreter. It is not optimized for space at the moment.
We omitted benchmarks that were too small to give significant re-
sults and added several concrete programs: O’Browser [4] exam-
ples (minesweeper, sudoku and boulderdash), an ocamljs [8] exam-
ple (canvas) and some other small programs (planet, cubes). These
programs make more use of external libraries, which explains the
large size of the bytecode compared to the source code. We also
tested the compiler on large OCaml programs: the OCaml bytecode
compiler, the Ocsigen Web server, the Unison file synchronizer and
the compiler itself.

In all cases but one (boyer, that contains a large constant value),
the generated code is smaller than the bytecode. For large program,
with little dead code, the generated code is about 30% smaller than
bytecode. It is much smaller for medium-sized programs as a large
part of the included libraries is dead code.

When comparing source code with compiled code, we should
keep in mind that some of the generated code comes from libraries,
which are not included for in the given source code size. We believe
it is also fairer not to take into account the size of runtime code, as
this size is bounded and become negligeable for large programs.
With these caveats, the generated code is smaller than the source
code for most benchmarks and comparable for others. For medium-
sized applications, it is larger, as the code corresponding to libraries
is not accounted for by the source size. Overall, the compiler
appears to produce consistently compact code.

Performance optimizations. We present in Figure 16 the impact
on execution time (using the V8 engine) of disabling the function
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Program Time (s)

almabench 0.06
bdd 0.04
boulderdash 0.54
fib 0.02
ocamlc 9.81
ocsigen server 15.91
unison 3.82

Table 1. Compilation times

call optimization and of disabling bound checks for array and string
accesses (option -unsafe of the OCaml compiler).

The function call optimization is very effective for programs
performing a lot of function calls (bdd, fib, quicksort, raytrace,
takc, taku). Array bound checking has a large impact on programs
working on arrays (fft, quicksort, soli).

Code size optimizations. The code size impact of turning off in-
lining, dead code elimination or compact expression generation
(Section 4.1) is shown in Figure 17. We compare the size of the gen-
erated code, runtime code omitted. As expected, dead code elimi-
nation is extremely effective on medium-sized programs making
use of libraries. Overall, the two other optimizations each yield a
code size reduction of about 5%. This is small but not negligible.
The improvement is sometimes larger with inlining as it can expose
opportunities for dead code removal.

Compilation time. We report the time taken by our compiler to
translate some bytecode programs to Javascript in Table 1. Even
large programs are compiled in less than thirty seconds.

Conclusion. Our benchmarks show that the compiler generates
compact code with good performance for most tested programs,

even compared to handwritten Javascript programs. By using com-
piler options to disable some optimizations, we checked that our
analyses were effective, both with regard to performance and code
size. Finally, we can see that modern implementations of Javascript
are getting reasonably fast, as the performance achieved is compa-
rable to those of OCaml bytecode programs.

8. Related Work
The compilation process from a low level language to a high level
language has clear relationship with decompilation [5, 19, 20]. In
particular, one finds the same issues of recovering the control flow
and mapping it to high level constructions. However, while decom-
pilation put the emphasis on readability, we are rather interested in
concise and fast code. In particular, basic techniques are sufficient
in our case. We are not interested in choosing informative names
for variables, or in detecting specific high-level constructions.

There are many other compilers targeting Javascript including
Links [6], SMLtoJs [10], F# Web Tools [23], ocamljs [8], Hop [18,
25], and the Google Web Toolkit (GWT) [12]. All these are full
compilers, from a high-level language to Javascript. Only the last
two put the emphasis on performance, with GWT also generating
compact code.

While we try to follow closely the behavior of the standard
OCaml, the ocamljs compiler takes a more pragmatic approach and
attempt to map OCaml datatypes (functions, strings, objects, . . . )
into the corresponding Javascript datatypes. Due to the semantics
differences, this can yield runtime failures which are not caught
by the type system. Ocamljs generates much slower and much
larger code then our compiler. Programs run typically several times
slower. It appears that function calls are implemented in a very
unefficient way. One of the reason is that Ocamljs uses trampolines
to implement tail recursion properly.

We have unsuccessfully attempted to assess the performances
of program compiled with the SMLtoJs [10] compiler. It fails to
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compile with MLton 20100608, the latest release of MLton. We
were able to compile it with an older release. But it appears to
generate incorrect Javascript code for many benchmarks (such as
boyer.sml) of the SML/NJ benchmark suite: the code attempts
to refer to unbound Javascript variables. This issue appears to be
present in both SMLtoJs versions 4.3.5 and 4.3.4.

Another approach for running bytecode programs on browsers
is to use a bytecode interpreter written in Javascript. O’Browser [4]
shows that this is indeed feasible, at least for short programs. But
the performance hit is high.

9. Future Work
The compiler was started as an experiment: when compiling
OCaml bytecode to Javascript, was it possible to get acceptable
performance as well as keep the size of the generated code mod-
erate? The result, as shown by the benchmarks, is well beyond our
expectations. But there is always room for improvement. In par-
ticular, there remains some low-hanging fruits regarding code size.
A better choice of variable names, taking into account the scope
of variables, could yield a 10 to 15% improvement in code size.
This requires a liveness analysis followed by graph coloring, as if
performing register allocation [11, 22].

A natural application of the compiler is for multi-tier program-
ming. It would be interesting to extend the Ocsigen Web program-
ming framework [3] to provide a uniform framework where OCaml
is used both on the server and on Web browsers. The challenge here
is to find a natural way to write programs that run on both sides.

We are interested in reusing the front-end of the compiler to tar-
get other languages. Native code could be generated through the
LLVM compilation framework [13]. This would yield an alternate
native code compiler, more portable than the current one. Other
possible targets include the Java and .Net virtual machines, or the
Dalvik virtual machine, to run OCaml programs on Android. A dif-
ficulty with these targets is the generation of typed bytecode from
untyped bytecode. Finally, the compiler could also be made to out-
put optimized OCaml bytecode. This would be especially interest-
ing for resource-constrained systems, such as microcontrollers.

A last possible direction would be to take a different source
bytecode, such as the Java bytecode or .NET Common Intermediate
Language. Compilation of method invocation should be straightfor-
ward. On the other hand, more complex analyses should be required
for eliminating dead code effectively, as the control flow is usually
less explicit than in OCaml.
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A. Comparison with Ocamljs
Ocamljs is a compiler from OCaml source code to Javascript, im-
plemented as a back-end to the existing OCaml compiler [8]. Thus,
contrary to Js of ocaml, you need to perform a distinct installa-
tion of OCaml to use Ocamljs, and you have to recompile all the
libraries you may need.

Ocamljs follows a different philosophy: it attempts to merge
OCaml datatypes with the corresponding Javascript datatypes. For
instance, OCaml objects are implemented as Javascript objects.
Conversely, Javascript objects are given an OCaml object type.
A mixed representation of strings is used: mutable OCaml-style
strings and immutable Javascript strings both have the same type.
All this is good for interoperability, but can be a source of incom-
patibilities and can result in runtime errors not caught by the type
checker.

Ocamljs optimizes tail recursion, but this comes at a large per-
formance cost (See figure 18).
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