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Abstra
t. We introdu
e two-dimensional substitutions generating two-dimensional sequen
es re-

lated to dis
rete approximations of irrational planes. These two-dimensional substitutions are

produ
ed by the 
lassi
al Ja
obi-Perron 
ontinued fra
tion algorithm, by the way of indu
tion of a

Z

2

-a
tion by rotations on the 
ir
le. This gives a new geometri
 interpretation of the Ja
obi-Perron

algorithm, as a map operating on the parameter spa
e of Z

2

-a
tions by rotations.

0. Introdu
tion

The aim of this paper is to dis
uss an expli
it method to build a dis
rete approximation of an

irrational plane in R

3

. Su
h an approximation 
an be either studied as a stepped surfa
e [24, 25℄ or it


an be des
ribed by a two-dimensional sequen
e, indexed by Z

2

, de�ned on a three-letter alphabet

[42℄. Furthermore, su
h a sequen
e is dire
tly related to symboli
 dynami
s for a Z

2

-a
tion by

rotations on the unit 
ir
le [10, 11, 12℄.

We will show that this sequen
e 
an be generated by applying the Ja
obi-Perron algorithm to

the 
oordinates of the unit ve
tor orthogonal to the given plane; this algorithm produ
es a sequen
e

of generalized substitutions, whi
h 
an be interpreted as a
ting on two-dimensional sequen
es, 
re-

ating arbitrarily large parts of the symboli
 sequen
e asso
iated with the plane. These generalized

substitutions are deeply 
onne
ted to the higher-dimensional extensions of substitutions introdu
ed

in [24, 25, 3, 5℄, whi
h a
t on unit tips (fa
es of unit 
ubes with integer verti
es), generating the

stepped surfa
e.

This paper grew out of an attempt to generalize to higher dimensions well-known results for

usual 
ontinued fra
tions. Let us �rst re
all shortly the framework of the usual 
ontinued fra
tions,

and its interpretation in terms of dynami
s of rotations, Sturmian sequen
es and approximation of

irrational lines; we will be more pre
ise in the �rst se
tion.

Consider a line with positive irrational dire
tion ay = bx. One 
an approximate in an obvious

way this line by a broken line made of horizontal and verti
al segments with integer verti
es (this

is what is done, for example, to represent su
h a line on a 
omputer s
reen [7℄).

One 
an represent this line by a symboli
 sequen
e with values in the alphabet f0; 1g. This family

of sequen
es has been mu
h studied: they are the so-
alled Sturmian sequen
es, and it is well-known

that they are linked in a natural way with the symboli
 dynami
s of rotations (see [29℄ and see also

the surveys [1, 2, 8, 9℄). The dynami
al system generated by the shift on su
h a sequen
e is a one-to-

one extension, ex
ept on a 
ountable set, of an irrational rotation, of angle b=(a+ b). Furthermore,

ea
h su
h sequen
e 
an be generated by an in�nite sequen
e of substitutions, made only by two

elementary substitutions �

0

; �

1

(see [6℄ and the survey [16℄); this sequen
e of substitutions 
an be

written as �

a

0

0

�

a

1

1

�

a

2

0

: : :, where [a

0

; a

1

; a

2

; : : :℄ is the 
ontinued fra
tion expansion of the slope b=a

of the line. A substitution over the alphabet A is a non-erasing morphism of the free monoid A

�

endowed with the 
on
atenation.
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We wish to extend the previous 
on
epts to the two-dimensional 
ase. The most natural problem

is to try to approximate a pair of real numbers (�; �) (su
h that 1; �; � are rationally independent)

by rational numbers with the same denominator. Many algorithms have been proposed for this,

one of the oldest being the 
lassi
al Ja
obi-Perron algorithm.

Re
all that the Ja
obi-Perron algorithm is de�ned on (0; 1)

2

by the maps: �(�; �) = (

�

�

�

b

�

�


;

1

�

� b

1

�


) and F (�; �) = (b

�

�


; b

1

�


); with ea
h pair of irrational and rationally independent

numbers (�; �), we 
an asso
iate the sequen
e F (�

n

(�; �))

n2N

, and one 
an easily obtain, from

this sequen
e, a sequen
e of pairs of rational numbers that approximate the initial pair (�; �). For

more details, see for instan
e [13℄. The dynami
al system de�ned by � on the unit square has been

mu
h studied [40℄, in parti
ular its invariant measures and its unique invariant ergodi
 probability

measure equivalent to Lebesgue measure [14, 15℄ (generalization of the 
lassi
al Gauss measure).

Our purpose here is to show that, in the same way as 
lassi
al 
ontinued fra
tions 
an be

interpreted in terms of indu
tion of rotations, this algorithm 
an be interpreted in terms of indu
tion

of Z

2

-a
tions by rotations on the 
ir
le. We will de�ne a sequen
e of substitutions 
orresponding

to Ja
obi-Perron algorithm, and show how it 
an be used to generate double sequen
es 
oding the

approximation of an irrational plane in the three-dimensional spa
e by a dis
rete plane.

This paper is organized as follows.

In Se
tion 1, we re
all some 
lassi
al results on dis
rete lines, rotations and 
ontinued fra
tions,

and a less 
lassi
al way to 
ompute the dis
rete line asso
iated with a line of equation ax+ by = 0;

these are the results and te
hniques we generalize in this paper.

In Se
tion 2, we 
onsider a plane P : ax+ by+ 
z+h = 0, with a; b; 
 stri
tly positive, and de�ne

the stepped surfa
e asso
iated with this plane, as the upper boundary of the set of unit 
ubes with

integer verti
es that interse
t this plane. We show that, by proje
ting this stepped surfa
e on the

diagonal plane x+ y+ z = 0 along the main diagonal dire
tion (1; 1; 1), and 
onsidering the latti
e

�, proje
tion of Z

3

on this plane (this latti
e is isomorphi
 to Z

2

), one 
an 
ode the stepped surfa
e

as a two-dimensional sequen
e U with values in a three-letter alphabet (i.e., a map from Z

2

to the

set f1; 2; 3g). We then re
all [10℄ how one 
an re
over this sequen
e as a symboli
 dynami
s for the

Z

2

-a
tion by two rotations R

a

and R

b

of respe
tive angles a and b on a 
ir
le of length a + b + 
,

and we prove the following result:

Theorem 1. Let U be the 
oding of the plane P : ax + by + 
z + h = 0, with a; b; 
 stri
tly

positive. We have

8(m;n) 2 Z

2

; (U

m;n

= i() R

m

a

R

n

b

(h) 2 I

i

);

with I

3

= [0; 
[, I

2

= [
; 
+ b[ and I

1

= [b+ 
; a+ b+ 
[:

In Se
tion 3, we de�ne the notion of indu
tion for Z

n

-a
tions by rotations on the 
ir
le, by


onsidering the equivalen
e relation generated by the a
tion (its 
lasses are the orbits of the a
tion),

and taking the restri
tion of this relation to a subset. In this framework, we prove a general

theorem: under suitable arithmeti
 
onditions, the indu
ed equivalen
e relation on an interval is

again generated by a Z

n

-a
tion by rotations. This allows us to give a geometri
 interpretation of a

generalized 
ontinued fra
tion algorithm.

Theorem 2. Let a

0

; a

1

; : : : ; a

n

be n+1 positive real numbers su
h that a

0

; a

1

; : : : ;a

n

are rationally

independent. Let b

0

=

P

n

i=0

k

i

a

i

be a real number su
h that 0 < b

0

<

P

n

i=0

a

i

, with k

0

; : : : ; k

n

relatively prime integers. Then, there exist numbers b

1

; : : : ; b

n

su
h that the indu
tion on an interval

of length b

0

of the Z

n

-a
tion by rotations R

a

1

; : : : ; R

a

n

on the 
ir
le of length a

0

+ a

1

+ : : :+ a

n

is

generated by n rotations R

b

1

; : : : ; R

b

n

, de�ned modulo b

0

.

In Se
tion 4, we show expli
itly how to apply this in the 
ase of the Ja
obi- Perron algorithm,

and explain how we 
an re
over the symboli
 dynami
s for the initial a
tion from the symboli
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dynami
s of the Z

2

-a
tion via a substitution, whi
h asso
iates with ea
h letter a �nite pattern. We

give a �rst result in Theorem 3.

We then give an other form for this pointed substitution, whi
h is more 
onvenient in our

framework (here, (a

1

; b

1

; 


1

;h

1

) is the image of the initial (a; b; 
;h) by the inhomogeneous Ja
obi-

Perron algorithm de�ned in Se
tion 4):

Theorem 4. Let U (respe
tively U

1

) be the 
oding of the plane P : ax + by + 
z + h = 0

(respe
tively P

1

: a

1

x+ b

1

y + 


1

z + h

1

= 0).

Let B

1

= bb=a
, C

1

= b
=a
, J = [(C

1

� 1)a; 
) [ [
 + b � B

1

a; 
 + b), N

1

= inffn 2 N; n 6=

0j R

n

a

(�h) 2 Jg, and p

1

= b

h

1

+ma

1

+nb

1

a

1

+b

1

+


1


, m = N

1

�mB

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

) + C

1

� 1,

n = m

1

� n

1

. We have:

� if U

1

(m

1

; n

1

) = 1, then U(m+B

1

; n

1

) = 2;

� if U

1

(m

1

; n

1

) = 2, then U(m;n) = 3;

� if U

1

(m

1

; n

1

) = 3, then: if 0 � i < C

1

, U(m�i; n) = 3; U(m�C

1

; n) = 1; if 0 � i � B

1

�1,

U(m� C

1

+ i; n� 1) = 2.

Furthermore, this 
ompletely de�nes the sequen
e U .

This is the 
entral result of the paper; one 
ould rephrase it in this way: when one repla
es in U

1

the letter 1 by 2, 2 by 3 and 3 by

1 3 � � � 3

2 � � � 2

, (with C

1

3's and B

1

2's), the rule of pla
ement

of the images of the letters being given by (m(m

1

; n

1

); n(m

1

; n

1

)), the sequen
e obtained is exa
tly

U . The de�nition of these two-dimensional substitutions, unlike the 
lassi
al one-dimensional 
ase,

is not trivial; in parti
ular, it is not immediate to prove the 
onsisten
y.

In Se
tion 5, we 
onsider these two-dimensional substitutions from two di�erent points of view,

�rst as pointed substitutions, and se
ond, as generated by lo
al rules. Indeed, given the value of the

initial sequen
e at the point x, we �rst dedu
e the value of the image sequen
e on a pointed pattern

situated at a point y that 
an be 
omputed from x and its value. This is however in
onvenient for

expli
it 
omputations. We show also that this sequen
e 
an be 
omputed from lo
al rules: if we

know the image of the initial point, we 
an 
ompute the values of adja
ent points by using a �nite

number of patterns, and in this way, 
ompute the image of the 
omplete sequen
e. This is 
loser

to the usual notion of substitution on one-dimensional sequen
es, and we will prove in later papers

that it 
an be extended to a
t on a larger 
lass of sequen
es.

We will show in Se
tion 6 that one 
an build dire
tly the stepped surfa
e by the dual map of

the one-dimensional extension of a substitution, using the framework of [3, 5℄, and re
over the

generalized substitutions of the previous se
tion in a more geometri
 way. Finally, we give in

Se
tion 7 a few additional remarks, and dire
tions for future resear
hes.

This notion of substitution has to be 
ompared with the notion of substitution tiling, whi
h


orresponds to a globally de�ned hierar
hi
al stru
ture in a geometri
 spa
e (see for instan
e [18,

32, 33, 34℄). It is proved in [22℄ that one 
an 
onstru
t lo
al rules for su
h tilings under some mild


onditions. See also [30℄ for a generalization of Durand's 
hara
terization of minimal substitutive

sequen
es [19℄ in this framework of substitutive tilings. For a notion of two-dimensional 
onstant

length substitutions, repla
ing ea
h letter by a square of same size, see also [37, 38℄.

1. Dis
rete lines, rotations and 
ontinued fra
tions

We will here explain the relation between the dis
rete approximation of an irrational line, the

dynami
s of a rotation, and 
lassi
al 
ontinued fra
tions. We summarize the detailed exposition of

[1℄.
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Figure 1. The dis
rete line

There are two ways to approximate a line by a broken line (see Figure 1, 2). The �rst one that

we 
onsider here shows in a more natural way the 
onne
tions with substitutions. The point of

view 
orresponding to the se
ond one is the one we will generalize in the higher-dimensional 
ase.

1.1. Approximation of a line: the dire
t viewpoint. Consider �rst a line L with positive

irrational slope y = �x + �. We want to approximate this line by a broken line with integer

verti
es. One of the most 
onvenient way to do it is to progress by unit segments, either up or to

the right, always going in the dire
tion of the line (see Figure 1).

A simple 
omputation shows that the verti
es of this broken line are the elements of the set

B = f(x; y) 2 Z

2

j � � < y � �x� � < 1g (we ignore the spe
ial 
ase where the line goes through a

vertex; we must then take a spe
ial 
onvention). This set 
an be ordered, using the natural partial

order on Z

2

given by the positive 
one, in a sequen
e (P

n

)

n2Z

; sin
e the sequen
e P

n+1

� P

n


an

take only values (1; 0) and (0; 1), we 
an 
ode the broken line as a biin�nite sequen
e with values

in the alphabet f0; 1g.

A �rst remark is that this sequen
e is linked to a rotation; indeed, let � be the proje
tion along

the line L on the verti
al line of equation �x + � = 0, through the interse
tion of L and the

horizontal axis. From the formula given above for B, we see that all points of B proje
t to the

interval �� < y < 1 on this line. Furthermore, if �(P

n

) is negative, �(P

n+1

) = �(P

n

) + 1, while,

if �(P

n

) is positive, �(P

n+1

) = �(P

n

) � �. Hen
e, the sequen
e asso
iated with B is de�ned by a

rotation of angle 1 on a 
ir
le of length 1+�. This gives the link between the dis
rete line and the

dynami
s of the rotation.

We have approximated the line by translates of the two basi
 unit segments; it is however possible

to approximate also using diagonal segments. If the slope is less than 1, we 
an use segments of

dire
tion (1; 0), (1; 1), and if it is greater than 1, we 
an use segments of dire
tion (0; 1), (1; 1). It

is readily seen that, in the �rst 
ase, the initial symboli
 sequen
e is obtained from the new one by

repla
ing ea
h 1 by 10, and in the se
ond 
ase, by repla
ing ea
h 0 by 01. This shows that the initial

sequen
e is obtained from the new sequen
e by one of two elementary substitutions �

0

, �

1

; these

two substitutions are related to the indu
tion of the initial rotation on a suitable interval. We 
an

iterate this pro
ess, and we obtain a sequen
e of substitutions �

a

0

0

�

a

1

1

�

a

2

0

: : :, where [a

0

; a

1

; a

2

; : : :℄

is the 
ontinued fra
tion expansion of the slope �. In this way, we 
an re
over the stepped line

knowing the 
ontinued fra
tion expansion of �, as limit of an in�nite sequen
e of substitutions (at

least if the line goes through the origin; in the general 
ase, we need also some information about

�, whi
h 
an be done through an Ostrowsky expansion of � with respe
t to the 
ontinued fra
tion

expansion of �, giving rise to a skew extension of the usual 
ontinued fra
tion map [4℄). Remark
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that, in this way, we only obtain an in�nite sequen
e, so we only know the positive part of the

stepped line; this is however always suÆ
ient to 
ompletely spe
ify the line.

Instead of generating the symboli
 sequen
e, one 
an generate dire
tly the dis
rete line in the

following way: this dis
rete line is made of unit segments starting at points with integral 
oordinates;

one 
an denote su
h a segment by (P; i), where P is the integral point, and i = 0 if the segment is

horizontal, and 1 if it is verti
al. Suppose that the line has slope less than 1; then, one 
an 
hange

of basis, taking as new basis (e

0

; e

0

+ e

1

), and 
onsider the new dis
rete line in this basis.

One 
an re
over the initial dis
rete line from this one in the following way. Let A =

�

1 1

0 1

�

.

One �rst builds the new dis
rete line, with segments parallel to the two basis ve
tors e

0

and e

0

+e

1

.

The horizontal segments (P; 0) of the new line are horizontal segments of the initial line, but with

initial point A:P , be
ause of the 
hange of 
oordinates; the verti
al segments (P; 1) are 
hanged

to the union of an horizontal and a verti
al segment, and one 
he
ks that the image of (P; 1) is

the union of (A:P; 1) and (A:P + (0; 1); 0). One de�nes in this way a map E

1

(�

0

), whi
h 
an be

extended as a linear map to the spa
e of formal linear 
ombinations of unit segments. For more

details, see [3℄.

It is possible to iterate this operation; with the sequen
e of substitutions de�ned above, one

asso
iates a sequen
e of linear maps E

1

(�

0

)

a

0

E

1

(�

1

)

a

1

: : :, and the images of the unit segment at

the origin by these maps 
onverge to the dis
rete line approximating the line with given slope

through the origin. A similar, but more 
ompli
ated, algorithm allows us to approximate a line

that does not go through the origin (see for example [4℄).

1.2. Approximation of a line: the dual viewpoint. We 
an 
onsider the similar problem of

approximating a line ax + by = 0, where 0 < a; b. In that 
ase, it is more 
onvenient to 
onsider

the so-
alled \stair" over the line (
alled stepped line), that is, the upper boundary of the set of

unit squares with integer verti
es the interior of whi
h interse
t the lower half-plane de�ned by the

line (see Figure 2).

One 
an here also try to approximate the line by a sequen
e of bases. There are two possible basi



hanges of basis: with the initial basis (e

0

; e

1

), one 
an asso
iate either (e

0

� e

1

; e

1

) or (e

0

; e

1

� e

0

),

and we 
hoose at ea
h step the unique basis su
h that both ve
tors are \above" the line for the

natural partial order in the plane.

With ea
h su
h 
hange of basis, on 
an, as above, asso
iate one of the substitutions �

0

, �

1

.

We 
annot in this situation use dire
tly the linear maps E

1

(�) de�ned previously, for several

reasons: �rst, this would produ
e an approximation of a line with positive slope. Se
ond, and more

importantly, this would produ
e an approximation of the renormalized line, starting with the given

initial line, whi
h is not what we want; the situation has 
hanged from 
ontravariant to 
ovariant,

that is, the order of 
omposition of substitutions has been reversed.

In su
h a 
ase, one would like to use the inverse of the map E

1

(�); however, it is readily 
he
ked

that this map is not invertible. A substitute to the inverse is the transpose map, whi
h also reverses

the dire
tion of 
omposition (remark that it is quite natural to obtain dual maps, sin
e the line

ax + by = 0 
an be seen as the kernel of the linear form with 
oordinates (a; b) in the 
anoni
al

basis; hen
e one 
an 
onsider the approximation of the line as approximation of the linear form,

that is, the dual problem of the approximation of a ve
tor). For more details, see [1℄.

This 
an be done, using the framework of [3, 5℄, and we 
an generate the stair over the irrational

line using the dual of the one-dimensional extension of the substitutions we have obtained (we will

give more detailed explanations in Se
tion 6).

The aim of this paper is to re
over similar results for an irrational plane in the three-dimensional

spa
e; it turns out that the dual viewpoint (approximating a linear form, or the plane representing

its kernel) generalizes more easily than the dire
t viewpoint, as we shall see below.
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X

Y

Figure 2. The dis
rete line: dual 
ase

Figure 3. The stepped surfa
e

2. Symboli
 representation of dis
rete planes

Our aim in this se
tion is to de�ne the dis
rete approximation (also 
alled dis
rete plane or

stepped surfa
e, see Figure 3) asso
iated with an irrational plane and to show how we 
an asso
iate

with this stepped surfa
e a symboli
 sequen
e indexed by Z

2

. We will then explain how we 
an

re
over this symboli
 sequen
e as symboli
 dynami
s of a Z

2

-a
tion generated by two rotations

on the 
ir
le [10℄. Our 
onstru
tion 
an be rephrased in terms of the 
lassi
al \
ut and proje
t"


onstru
tion (see for instan
e [39℄); see also [41℄ for a dual approa
h.

2.1. Constru
tion of the stepped surfa
e. We denote by (O; ~e

1

; ~e

2

; ~e

3

) the 
anoni
al basis of

the spa
e R

3

. In R

3

, we denote by P the plane of equation ax+ by + 
z + h = 0, with a; b; 
 > 0.

We will always suppose that the plane has totally irrational dire
tion, that is, the triple (a; b; 
)
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satis�es no rational relation (but we make no assumption on h). We 
an also assume, without loss

of generality, that 
 > a; b > 0; this assumption will be used in Se
tion 4.

We asso
iate with the plane P a dis
rete plane P by approximating P by unit square fa
es as

follows (see Figure 3). This 
onstru
tion 
orresponds to the stepped surfa
e introdu
ed by Ito and

Ohtsuki in [24, 25℄.

De�nition 1. Let S be the set of translates of the fundamental 
ube with integer verti
es that

interse
t the lower half-spa
e ax+ by + 
z + h < 0.

The dis
rete plane, or stepped surfa
e, P is de�ned as the boundary of S.

A vertex of the stepped surfa
e is an integral point that belongs to P . We denote by V the set of

verti
es of the stepped surfa
e.

Remark Some authors prefer to 
onsider the set of unit 
ubes that interse
t the plane P; in

that 
ase, the boundary of this set has two 
onne
ted 
omponents, and our dis
rete plane P is the

upper 
omponent of the boundary.

The de�nition implies that P is also the boundary of the union of the integral unit 
ubes the

interior of whi
h do not interse
t the lower half-spa
e (this is the 
losure of the 
omplement of S);

hen
e, there is a simple 
riterium to de
ide whether an integral point is a vertex of the stepped

surfa
e:

Proposition 1. An integral point (p; q; r) belongs to the set V of verti
es of the stepped surfa
e P

if and only if 0 � ap+ bq + 
r + h < a+ b+ 


Proof. If 0 � ap+ bq+ 
r+h, the 
ube of whi
h (p; q; r) is the lowest 
orner (for the natural partial

order in R

3

) does not interse
t the plane P, and if ap+ bq + 
r + h < a+ b+ 
, the 
ube of whi
h

it is the highest 
orner does interse
t the lower half spa
e. Hen
e (p; q; r) belongs to the boundary

of S. �

2.2. A latti
e stru
ture for the stepped surfa
e. We 
onsider now the verti
es of the stepped

surfa
e. These verti
es 
an be determined by a \
ut and proje
t" method, as we have just seen, but

they 
learly do not form a sublatti
e of Z

3

, sin
e the plane has irrational dire
tion. It is however

possible, and very important for the sequel, to impose on the set of verti
es a latti
e stru
ture, by

proje
ting them on the diagonal plane x+ y + z = 0.

Let � be the aÆne proje
tion on the plane x + y + z = 0 along the dire
tion (1,1,1). Sin
e the

proje
tion is along a rational dire
tion, the proje
tion � of the latti
e Z

3

is a latti
e in the plane

x+ y + z = 0; a simple 
omputation proves that the sublatti
e f(p; q; r) 2 Z

3

j p+ q + r = 0g is a

sublatti
e of index 3 in � (see Figure 4).

Proposition 2. The proje
tion � is a bije
tion from V to �.

Proof. Consider an arbitrary point g 2 �; by de�nition, there is (p; q; r) 2 Z

3

su
h that g =

�(p; q; r). But it is 
lear that there is exa
tly one integer n 2 Z su
h that 0 � a(p+n) + b(q+n)+


(r + n) + h < a+ b+ 
, hen
e g is the image of exa
tly one element of V . �

Hen
e, we 
an parameterize the verti
es of the dis
rete plane by a latti
e; but this is not suÆ
ient,

and we want to understand the lo
al stru
ture of the dis
rete plane around a given vertex.

2.3. Symboli
 dynami
s for the stepped surfa
e. The dis
rete plane P is a union of translates

of unit square fa
es. We use the following notation:

E

1

= f��~e

2

� �~e

3

j(�; �) 2 [0; 1[

2

g;

E

2

= f�~e

1

� �~e

3

j(�; �) 2 [0; 1[

2

g;

E

3

= f�~e

1

+ �~e

2

j(�; �) 2 [0; 1[

2

g:
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Figure 4. The latti
e �

X

Y

Z

(0,0,0)+E1

X

Y

Z

(0,0,0)+E2

X

Y

Z

(0,0,0)+E3

Figure 5. The three possible fa
es with distinguished vertex at the origin

We 
all pointed fa
e of type i and distinguished vertex (p; q; r) 2 Z

3

the set of points

f(p; q; r) +E

i

g:

Remark that, be
ause of the signs we have used, (p; q; r) is not always the lowest vertex (for the

natural partial order in R

3

) of its pointed fa
e: this is the 
ase only for fa
es of type 3; for a fa
e of

type 1, the 
orresponding vertex is the highest point, while for a fa
e of type 2, it is an intermediate

point (see Figure 5). This 
an seem a 
umbersome notation, but it has two important advantages:

with this de�nition, we will see that the pointed fa
es form a partition of the dis
rete plane (this

is the reason for the semi-open interval and the signs in the de�nition of the fa
es), and that ea
h

vertex in V is the distinguished vertex of exa
tly one pointed fa
e in P .

Proposition 3. The dis
rete plane P is a union of pointed fa
es.

Proof. It is 
lear from the de�nition that P , being the boundary of a union of 
ubes, is a union of

squares. The only thing to 
he
k is that, be
ause of our 
onvention, ea
h edge and ea
h vertex of

P belong to exa
tly one pointed fa
e of P ; we will prove it for the verti
es.

It is not immediately 
lear that a vertex in V 
annot be the distinguished vertex of 2 pointed

fa
es: it is not diÆ
ult to �gure out that ea
h point in V 
an belong to the 
losure of 3, 4, 5, or 6

fa
es (see Figure 3, where we have indi
ated by dots the four 
ases).
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Remark �rst that the proje
tion from P to the plane x+ y+ z = 0 is one-to-one, sin
e ea
h line

parallel to the ve
tor (1; 1; 1) 
rosses P exa
tly on
e. Hen
e, the proje
tion of P tiles this plane by

three kinds of diamonds with verti
es in �, 
orresponding to the three types of fa
es.

Let us endow the plane x + y + z = 0 with the basis (O;

~

i;

~

j), where

~

i = ~�(~e

1

);

~

j = ~�(~e

2

). The

latti
e �, having symmetry of order 6, determines a tiling by equilateral triangles. Given an element

g of �, 
onsider the triangle (g; g +

~

i; g+

~

i+

~

j). This triangle 
an be 
ompleted in exa
tly one way

in a diamond, whi
h 
orresponds to the proje
tion of a fa
e in P .

One easily 
he
ks that, in the three possible 
ases, our 
onvention have been 
hosen in su
h way

that the preimage of g will be the distinguished vertex of the square 
orresponding to that diamond;

hen
e, a vertex 
annot be the distinguished vertex of two fa
es (be
ause their proje
tions would

overlap), but must be the distinguished vertex of one fa
e, otherwise the 
orresponding triangle in

the plane would have no preimage. �

The following 
orollary is an immediate 
onsequen
e of the pre
eding proof:

Corollary 1. The proje
tions of the square fa
es of P tile the plane by three kinds of diamonds

being the proje
tion of a fa
e of type E

k

, where k = 1; 2 or 3. Furthermore, ea
h point of V is

the distinguished vertex of exa
tly one pointed fa
e, hen
e ea
h point of � is the proje
tion of a

distinguished vertex of a fa
e of determined type.

Corollary 1 implies that we 
an 
ode the tiling of the plane that we obtain by a double sequen
e

de�ned over Z

2

. Indeed, we 
an de�ne a sequen
e indexed by �, by asso
iating with ea
h element

of � the type of the fa
e 
orresponding to its preimage. But �, being a latti
e in the plane, is

isomorphi
 (in a non-
anoni
al way) to Z

2

.

De�nition 2. Re
all that

~

i = ~�(~e

1

);

~

j = ~�(~e

2

). Let U = (U

g

)

g2�

be the sequen
e that asso
iates

with ea
h point of � the type of the fa
e whose distinguished vertex proje
ts on g, or equivalently

whi
h 
odes ea
h triangle with verti
es (g; g+

~

i; g+

~

i+

~

j) by the index k of the 
orresponding diamond

�(E

k

).

The sequen
e U is 
alled the 
oding of the plane P.

In the sequel, we will use the basis (

~

i;

~

j) of �, and assimilate � to Z

2

.

2.4. Symboli
 dynami
s for Z

2

-a
tions. If we follow the proof of Corollary 1 further, we 
an

give an expli
it des
ription of the type of an element of V :

Proposition 4. Let (p; q; r) be an element of V . Then:

� If 0 � ap+ bq + 
r + h < 
, (p; q; r) is the distinguished vertex of a fa
e of type 3.

� If 
 � ap+ bq + 
r + h < b+ 
, (p; q; r) is the distinguished vertex of a fa
e of type 2.

� If b+ 
 � ap+ bq+ 
r+h < a+ b+ 
, (p; q; r) is the distinguished vertex of a fa
e of type 1.

Proof. To prove the proposition, remark that the given 
onditions determine some neighbouring

verti
es. For example, if 0 � ap+bq+
r+h < 
, we have a+b � a(p+1)+b(q+1)+
r+h < a+b+
;

hen
e (p+ 1; q + 1; r), and, by the same kind of proof, (p+ 1; q; r) and (p; q + 1; r) are elements of

V . These are the four verti
es of a fa
e of type 3, whose distinguished vertex is (p; q; r). The other


ases are proved in a similar way. �

This proposition is not 
ompletely satisfying, be
ause we need to know the 
oordinates (p; q; r) of

an element of V . It would be preferable to use only 
oordinates in �, to give an expli
it des
ription

of the sequen
e U , and this 
an be easily a
hieved.

We shall use the usual representation for two-dimensional sequen
es: the �rst index indi
ates

the 
olumn number from bottom to top, whereas the se
ond index denotes the row number, from

left to right.
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De�nition 3. The triple of stri
tly positive numbers (a; b; 
) being �xed, we denote by R

a

the map:

R

a

: [0; a + b+ 
[ ! [0; a + b+ 
[ x 7! x+ a mod a+ b+ 
;

and similarly, R

b

is the map:

R

b

: [0; a+ b+ 
[ ! [0; a + b+ 
[ x 7! x+ b mod a+ b+ 
:

We will 
all these maps, by abuse of language, rotations of angle a (respe
tively b) on the interval

[0; a + b + 
[ (sin
e these are 
onjugate, after identi�
ation of points 0 and a + b + 
, to a 
ir
le

rotation).

Theorem 1. Let U be the 
oding of the plane P : ax+ by+ 
z+ h = 0 following De�nition 2. We

have

U

m;n

= i() R

m

a

R

n

b

(h) 2 I

i

;

with I

3

= [0; 
[, I

2

= [
; 
+ b[ and I

1

= [b+ 
; a+ b+ 
[:

Proof. Let (m;n) be an element of �, and (p; q; r) its preimage in V . We know that the type of

(p; q; r) depends only on ap + bq + 
r. But we have (m;n) = (p � r; q � r), hen
e ap + bq + 
r =

am+ bn+ r(a+ b+ 
).

This proves that am + bn and ap + bq + 
r are 
ongruent modulo a + b + 
, and the theorem

follows immediately from the de�nition of R

a

and R

b

and Proposition 4; for example, for a vertex

of type 3, we must have 0 � ap+ bq + 
r + h < 
, that is, 0 �ma+ nb+ r(a+ b+ 
) + h < 
: this

exa
tly means that R

m

a

R

n

b

(h) 2 I

3

. �

3. Indu
tion of Z

2

-a
tions

3.1. General framework. We keep the same notation as in the previous se
tions, a; b and 
 being

rationally independent positive real numbers.

Sin
e the two rotations R

a

and R

b

on the 
ir
le of length a + b + 
 
ommute, they generate a

free Z

2

-a
tion on this 
ir
le, by (m;n):x = R

m

a

R

n

b

x. Our aim is to understand better the small

s
ale stru
ture of this Z

2

-a
tion (that is, the way elements of an orbit R

m

a

R

n

b

x 
an approximate the

initial element x), and we want to use for that purpose the tool of indu
tion, as one does in the


ase of a unique rotation on the 
ir
le. There are however two diÆ
ulties:

First, the indu
ed map T

A

of a map T on a subset A is easily de�ned by T

A

(x) = T

n

x

(x), with

n

x

= inffp > 0jT

p

(x) 2 Ag. But this de�nition uses in a fundamental way the order stru
ture

of Z, and 
annot be extended as su
h to Z

2

: for a Z

2

-a
tion, it does not make sense to de�ne a

\�rst return map". We will explain below how we 
an de�ne a notion of indu
tion for Z

2

-a
tion, by


onsidering the equivalen
e relation related to the Z

2

-a
tion, that is, the equivalen
e relation whose


lasses are the orbits of the a
tion; we will 
onsider the indu
ed equivalen
e relation obtained by

restri
tion to a subset. It is however un
lear (and in fa
t, it is generally not the 
ase) that su
h an

indu
ed equivalen
e relation 
omes from a Z

2

-a
tion by rotations. It is a remarkable fa
t that it is

the 
ase for a suitable subinterval.

Se
ond, the indu
ed map of a rotation on an arbitrary subinterval of the 
ir
le is usually not a

rotation, but an ex
hange of three intervals, with quite di�erent ergodi
 properties (for example,

most of these, 
ontrary to rotations, are weakly mixing [26℄). However, for suitable admissible

subintervals, whi
h have in parti
ular a length that is an integral linear 
ombination of a and

a+b+
, it is the 
ase that the indu
ed map of R

a

is again a rotation (on a 
ir
le of length a+b+
)

on the given subinterval. Sin
e the numbers a; b; 
 are rationally independent, it is impossible to

�nd an interval on whi
h the indu
ed maps of R

a

and R

b

are both rotations. Hen
e, it is quite

surprising that we 
an �nd, as we will prove below, a suitable subinterval on whi
h the indu
tion

of the Z

2

-a
tion is again generated by a Z

2

-a
tion by a pair of rotations.

Note that this indu
tion involves a non-trivial rearrangement of the orbit: an orbit for the

indu
ed a
tion is always isomorphi
 to Z

2

. It is also in
luded in an orbit of the original a
tion, and
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Figure 6. An indu
ed orbit

this original orbit too is isomorphi
 to Z

2

, hen
e the indu
ed orbit 
an be 
onsidered in a natural

way as a subset of Z

2

: if I is the indu
tion interval, 
onsider the set of (m;n) su
h that R

m

a

R

n

b

x 2 I.

However, this subset is NOT a sublatti
e of Z

2

(see Figure 6, where we have shown the points in

the Z

2

-orbit that fall in a given subinterval).

We will express in Se
tion 5 this 
orresponden
e in 
ombinatorial terms, via the notion of sub-

stitutions, and explain how one 
an generate symboli
 dynami
s for the initial a
tion using the

symboli
 dynami
s for the Z

2

-a
tion.

Note �nally that, unlike the 
lassi
al Z-a
tion, the generators of the Z

2

-a
tion are not 
anoni
ally

de�ned (sin
e we 
an �nd an in�nite number of bases for the latti
e Z

2

); hen
e, there is a large


hoi
e for the indu
tion pro
edure. This is to relate to the fa
t that there seems to be no way

to de�ne a \best" two-dimensional 
ontinued fra
tion algorithm. In Se
tion 4, we will de�ne a

parti
ular indu
tion pro
ess related to the Ja
obi-Perron algorithm; other 
hoi
es are obviously

possible. (See [13℄ for other examples of two-dimensional 
ontinued fra
tion algorithms, su
h as

Brun's or Selmer's algorithms.)

3.2. Indu
tion of Z

n

-a
tions: de�nitions. With a Z

n

-a
tion on a set S, one 
an always asso
iate

an equivalen
e relation on S, two points being equivalent if they belong to the same orbit.

De�nition 4. If I is a subset of S, we de�ne the indu
ed equivalen
e relation on I as the restri
tion

of the original equivalen
e relation to the set I.

De�nition 5. Consider a free Z

n

-a
tion by rotations (as de�ned in De�nition 3) on an interval

S, and I a subinterval of S. We 
all generator of the indu
ed equivalen
e relation, a free Z

n

-a
tion

on the set I su
h that both equivalen
e relations 
oin
ide: we say that this new Z

n

-a
tion generates

the indu
tion of the initial a
tion on the subset I.

If the Z

n

-a
tion has all dense orbits and I 
ontains an open set, the 
lasses of the equivalen
e

relation are 
ountable, and we 
an 
ertainly �nd a Z

n

-a
tion on I with the same orbits, but there

is in general no natural way to exhibit generators for this Z

n

-a
tion.

In the 
ase of a Z-a
tion, one 
an be more expli
it: we 
an de�ne as above the indu
ed map,

whi
h is a generator for the indu
ed equivalen
e relation. If this Z-a
tion is given by an irrational

rotation R

a

on the 
ir
le R=Z, and we indu
e on a (half-open) interval of the 
ir
le, it is easy to


ompute expli
itly the indu
ed map on I. In the general 
ase, it is an ex
hange of three intervals,

whi
h has dis
ontinuity points. For some spe
ial interval (the so-
alled admissible intervals), in

parti
ular for intervals of length 1 � ka, with 0 � k < 1=a, the indu
ed map turns out to be a
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rotation on the smaller 
ir
le obtained by identifying extremities of I; iteration of this pro
edure

leads to the 
lassi
al 
ontinued fra
tion algorithm. We 
an de�ne a similar notion for Z

n

-a
tions:

De�nition 6. Consider a free Z

n

-a
tion by rotations on an interval S, and I a subinterval of S.

The interval I is said admissible if the indu
ed equivalen
e relation has a generator by rotations.

We 
an in fa
t generalize almost exa
tly the above result for free Z

n

-a
tions by rotations on the

unit 
ir
le:

Theorem 2. Let a

0

; a

1

; : : : ; a

n

be n + 1 positive real numbers su
h that a

0

; a

1

; : : : ; a

n

are ratio-

nally independent. Let b

0

=

P

n

i=0

k

i

a

i

be a real number in (0; 1), with k

0

; : : : ; k

n

relatively prime

integers. Then, there exist numbers b

1

; : : : ; b

n

(with b

0

; b

1

; : : : ; b

n

rationally independent), su
h that

the indu
tion on an interval of length b

0

of the Z

n

-a
tion by rotations R

a

1

; : : : ; R

a

n

on the 
ir
le of

length a

0

+ a

1

+ : : : + a

n

is generated by the free Z

n

-a
tion by n rotations R

b

1

; : : : ; R

b

n

de�ned on

a 
ir
le of length b

0

.

Proof. Lift the Z

n

-a
tion by rotations R

a

1

; : : : ; R

a

n

to the universal 
over R of the 
ir
le of length

a

0

+a

1

+: : :+a

n

; we obtain a Z

n+1

- a
tion by translations (we add the translation by a

0

+a

1

+: : :+a

n

).

The irrationality 
ondition means that the latti
e Z

n+1

a
ts without �xed point on R.

Consider any indivisible element b

0

=

P

n

i=0

k

i

a

i

of the latti
e L with basis (a

0

; a

1

; : : : ; a

n

) (an

element of the latti
e is 
alled divisible if it is a nontrivial produ
t by an integer of an element of the

latti
e; indivisibility is equivalent to the fa
t that the 
oordinates k

0

; k

1

; : : : ; k

n

are relatively prime

integers). It 
an be 
ompleted by numbers b

1

; : : : ; b

n

in a basis for the latti
e L. If we quotient R

by the translation by b

0

, the other translations de�ne rotations of the same angle b

i

on a 
ir
le of

length b

0

; this is exa
tly what we want to prove. �

We 
ould prove that we have in fa
t an equivalent 
ondition: a subinterval is admissible if and

only if its length is an indivisible element of the latti
e; but we will not need this fa
t.

3.3. An algorithm for indu
tion of Z

2

-a
tions by rotations. We 
onsider now a Z

2

-a
tion

by rotations R

a

; R

b

on a 
ir
le of length a + b + 
. An indu
tion algorithm is a way to de�ne an

admissible subinterval, and to give expli
it generators for the Z

2

-a
tion obtained by indu
tion on

the admissible subinterval.

Here is a way to pro
eed (see Figure 7): suppose that a; b < 
. Consider the interval

J := [(b
=a
 � 1)a; 
+ b� bb=a
a):

The length jJ j of this interval is a + b + 
 � (b
=a
 + bb=a
)a, hen
e it satis�es the 
ondition of

Theorem 2. One 
he
ks immediately that the numbers 
 � b
=a
a and b � bb=a
a are generators

for the indu
ed a
tion on a 
ir
le of length jJ j = 
�b
=a
a+ b�bb=a
a+ a; they satisfy again the

indu
tion hypothesis (
� b
=a
a, b� bb=a
a < a), hen
e we 
an iterate. We will show below that

this algorithm is a dynami
al version of the 
lassi
al Ja
obi-Perron algorithm.

4. Ja
obi-Perron algorithm

4.1. The 
lassi
al Ja
obi-Perron algorithm and a linear version. The usual Ja
obi-Perron

algorithm, whi
h will be, in our terms, the proje
tive Ja
obi-Perron algorithm, is usually de�ned

on the unit square in the following way (see for instan
e [13℄):

De�nition 7. The proje
tive Ja
obi-Perron algorithm is de�ned on the unit square X = [0; 1) �

[0; 1) by the transformation �:

�(�; �) =

( �

�

�

� b

�

�


;

1

�

� b

1

�




�

if (�; �) 2 X � I

(0; �) if (�; �) 2 I;

where I is given by I = f(0; �); � 2 [0; 1)g:
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0 c b+c a+b+c

I3 I2 I1

J3 J2 J1

(C1-1)a C1a c c+b-B1a

Figure 7. Indu
tion on the interval J

This is a map that is pie
ewise rational, and we 
an 
onsider it as a proje
tive map, 
oming from

a pie
ewise linear map in three dimensions; we 
an de�ne in this way a linear algorithm.

De�nition 8. The linear Ja
obi-Perron algorithm is de�ned on the positive 
one f(a; b; 
) 2 R

3

j0 �

a; b < 
g by the transformation F :

F (a; b; 
) = (b� bb=a
a; 
 � b
=a
a; a):

Sin
e we will always suppose that the numbers are irrational, we do not bother to de�ne F if

a = 0. Remark that, if we renormalize the last 
oordinate to 1, we re
over the initial pie
ewise

rational transformation.

4.2. The indu
tion algorithm. We 
onsider a Z

2

-a
tion on the interval I := [0; a+ b+ 
) by two

rotations R

a

and R

b

. This is the a
tion used in Se
tion 2 to obtain the symboli
 sequen
e related

to the dis
rete plane ax+ by + 
z + h = 0.

Following Theorem 1, to obtain the symboli
 sequen
e, we partition the interval [0; a + b + 
)

into 3 subintervals: I

1

= [b + 
; a + b + 
), of length a, I

2

= [
; b + 
), of length b, and I

3

= [0; 
),

of length 
 (these intervals are naturally linked to the generators of the a
tion: I

1

and I

2

[ I

3

are

the 
ontinuity intervals of the map R

a

(
onsidered as an ex
hange of two intervals), while I

3

and

I

1

[ I

2

are the 
ontinuity intervals of R

a+b

).

Let

J := [(b
=a
 � 1)a; 
+ b� bb=a
a):

We will indu
e on the subinterval J obtained by subtra
ting as many times as possible the interval

I

1

from I

2

and I

3

(see Figure 7). More pre
isely, the union [

�bb=a
�k<b
=a


R

k

a

(I

1

) is an interval of

the 
ir
le, whose 
omplement is an interval naturally partitioned into three intervals J

1

; J

2

; J

3

of

respe
tive lengths b� bb=a
a; 
 � b
=a
a; a: we have

J

3

= [(b
=a
 � 1)a; b
=a
a);

J

2

= [b
=a
a; 
);

J

1

= [
; 
+ b� bb=a
a):

We re
ognize the Ja
obi-Perron algorithm, and Theorem 2 shows that the indu
ed Z

2

-a
tion is

given by F (a; b; 
) (De�nition 8). It is then 
lear that we 
an iterate the pro
ess. The aim of this

se
tion is to formulate this in more pre
ise terms.
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4.3. The inhomogeneous Ja
obi-Perron algorithm. We are interested in the dis
rete plane

asso
iated with ax+ by+ 
z + h = 0, or equivalently with the symboli
 dynami
s of the orbit of h

for the Z

2

-a
tion asso
iated with the triple (a; b; 
) on the 
ir
le [0; a+ b+ 
). We de�ne h

1

by

h

1

= R

n

a

(h)� (b
=a
 � 1)a;

where n is the smallest nonnegative integer su
h that R

n

a

(h) belongs to J . Re
all that J = [(b
=a
�

1)a; 
 + b� bb=a
a). Hen
e n satis�es:

n =

8

<

:

b

�h

a


+ (b
=a
 � 1), if h 2 [0; (b
=a
 � 1)a);

0, if h 2 J;

b

a+b+
�h

a


+ (b
=a
 � 1); otherwise:

We thus de�ne an inhomogeneous (proje
tive and linear) version of the Ja
obi-Perron algorithm.

In the Ja
obi-Perron algorithm, one substra
ts the rotation ve
tor a as mu
h as possible from

the other two quantities b and 
. This algorithm will be shown to a
t on the whole system of all

the orbits under the Z

2

-a
tion asso
iated with the triple (a; b; 
) on the 
ir
le [0; a + b + 
). The

inhomogeneous Ja
obi-Perron algorithm will a
t on the orbit of a given point h 2 [0; a + b+ 
) as

follows: the original point h is translated by multiples of the rotation ve
tor a so that �rst, the

image of h lands into the idu
tion interval J of length a

1

+ b

1

+ 


1

. It is then translated (again by

multiples of the rotation ve
tor a) so that it lands into the interval [0; a

1

+ b

1

+ 


1

), on whi
h the

algorithm is de�ned.

De�nition 9. The inhomogeneous proje
tive Ja
obi-Perron algorithm is de�ned on f(�; �; �) 2

(0; 1) � (0; 1) � (0; 1 + �+ �)g by the transformation

~

�:

if 0 < � < b1=�
 � 1, then

~

�(�; �;�) =

�

�

�

� b

�

�


;

1

�

� b

1

�


;

�

�

+ b

��

�


)

�

;

if b1=�
 � 1 � � < � + 1� b1=�
, then

~

�(�; �;�) =

�

�

�

� b

�

�


;

1

�

� b

1

�


;

�

�

� b1=�
 + 1

�

;

if � + 1� b1=�
 � � < 1 + �+ �, then

~

�(�; �;�) =

�

�

�

� b

�

�


;

1

�

� b

1

�


;

�

�

+ b

1 + �+ � � �

�




�

:

In other words, the inhomogeneous Ja
obi-Perron algorithm is a skew produ
t of its homogeneous

version.

De�nition 10. We will use in the sequel the following notation:

B

1

= bb=a
; C

1

= b
=a
;

N

1

= minfn 2 N; n 6= 0; h+ na 2 Jg � (C

1

� 1):

The inhomogeneous linear Ja
obi-Perron algorithm is de�ned on the positive 
one f(a; b; 
;h) 2

R

3

j0 < a; b < 
; 0 < h < a+ b+ 
g by the transformation

~

F :

~

F (a; b; 
;h) = (a

1

; b

1

; 


1

;h

1

) = (b�B

1

a; 
� C

1

a; a;h +N

1

a):

Remark If h = 0, we have h

1

= 0, and this property is 
onserved by iteration. Hen
e, the

homogeneous algorithm de�nes the symboli
 dynami
s of the plane ax+ by + 
z = 0.



DISCRETE PLANES, Z

2

-ACTIONS, JACOBI-PERRON ALGORITHM AND SUBSTITUTIONS 15

4.4. Generation of symboli
 sequen
es. We 
an re
over the symboli
 dynami
s of the orbit of

h from the symboli
 dynami
s of h

1

for the indu
ed a
tion.

Theorem 3. Let U be the symboli
 sequen
e given by the orbit of h for the a
tion de�ned by the

triple (a; b; 
) de�ned as in Theorem 1:

8(m;n) 2 Z

2

; U(m;n) = i() ma+ nb+ h 2 I

i

modulo (a+ b+ 
);

where I

1

= [b + 
; a + b + 
[, I

2

= [
; b + 
[, I

3

= [0; 
[. Let U

1

= (U

1

(m

1

; n

1

))

(m

1

;n

1

)2Z

2
be the

symboli
 sequen
e similarly de�ned by (a

1

; b

1

; 


1

;h

1

) =

~

F (a; b; 
;h): Let

p

1

= b

h

1

+m

1

a

1

+ n

1

b

1

a

1

+ b

1

+ 


1


;

and

(1)

�

m = N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

) + C

1

� 1

n = m

1

� n

1

:

We have:

� if U

1

(m

1

; n

1

) = 1, then U(m;n) = 2;

� if U

1

(m

1

; n

1

) = 2, then U(m;n) = 3;

� if U

1

(m

1

; n

1

) = 3; then: if 0 � i < C

1

, U(m � i; n) = 3; U(m � C

1

; n) = 1; if C

1

< i �

B

1

+ C

1

, U(m� i; n) = 2.

Furthermore, this 
ompletely de�nes the sequen
e U , i.e., for any (m;n) 2 Z

2

, there exists a unique

(m

1

; n

1

) su
h that (m;n) satis�es (1).

Proof. Re
all the notation:

B

1

= bb=a
; C

1

= b
=a
;

N

1

= minfn 2 N; n 6= 0; h+ na 2 Jg � C

1

+ 1;

a

1

= b�B

1

a; b

1

= 
� C

1

a; 


1

= a;h

1

= h+N

1

a;

J = [(C

1

� 1)a; 
 + b�B

1

a):

It suÆ
es to use the fa
t that, up to a translation of (C

1

�1)a (be
ause we take the initial point of

interval J as origin of 
oordinates for the indu
ed a
tion), the orbit of h

1

is just the interse
tion of

the orbit of h with J , that is, the orbit of h

1

is the interse
tion of the orbit of h with [0; a

1

+b

1

+


1

).

To prove this, the only diÆ
ulty is to obtain the index, in the \big" orbit, of the point of index

(m

1

; n

1

) in the indu
ed orbit. This is not trivial, as we remarked in Se
tion 3.1: we are now making

expli
it the rearrangement of the orbit implied by the indu
tion.

For this purpose, we lift the orbit of h

1

to the universal 
over R. The point of 
oordinates

(m

1

; n

1

) 
an be written as

h

1

+m

1

a

1

+ n

1

b

1

� p

1

(b

1

+ a

1

+ 


1

);

where

p

1

= b

h

1

+m

1

a

1

+ n

1

b

1

a

1

+ b

1

+ 


1


:

This means that we 
onsider the a
tion on R by a group of three rotations, and we quotient by

the rotation of length the indu
tion interval. Indeed p

1

is exa
tly the number of times we must

subtra
t the length of this interval, after advan
ing from h

1

by ma

1

+ nb

1

.

We 
an now repla
e a

1

; b

1

; 


1

by their respe
tive values, and express the resulting value in terms

of the basis (a; b; a + b+ 
) of the latti
e:

h

1

+m

1

a

1

+ n

1

b

1

� p

1

(a

1

+ b

1

+ 


1

)

= h+N

1

a+m

1

(b�B

1

a) + n

1

(
� C

1

a)� p

1

(a+ b+ 
� (B

1

+ C

1

)a)

= h+ a(N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

))+

+ b(m

1

� n

1

) + (a+ b+ 
)(�p

1

+ n

1

):
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0 c b+c a+b+c

I3 I2 I1

J’3 J’2 J’1

( C1-1)a C1 a c c+B1a b+c

Figure 8. Indu
tion on the interval J

0

Hen
e, we get

h

1

+m

1

a

1

+ n

1

b

1

� p

1

(b

1

+ a

1

+ 


1

) = h+ma+ nb� p(a+ b+ 
);

with

m = N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

); n = m

1

� n

1

; p = p

1

� n

1

:

Indeed we proved that R

m

a

R

n

b

(h) 2 [0; a

1

+ b

1

+ 


1

) if and only if there exists (m

1

; n

1

) 2 Z

2

su
h

that (m;n) satis�es the pre
eding relation. This implies that R

m

a

R

n

b

(h) 2 J if and only if there

exists (m

1

; n

1

) 2 Z

2

su
h that (m;n) satis�es

m = N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

) + C

1

� 1; n =m

1

� n

1

; p = p

1

� n

1

:

Note that su
h a (m

1

; n

1

) always exists and is unique sin
e

0

�

m

n

p

1

A

=

0

�

�B

1

�(C

1

+ 1) (B

1

+ C

1

)

1 �1 0

0 �1 1

1

A

0

�

m

1

n

1

p

1

1

A

+

0

�

N

1

+ C

1

� 1

0

0

1

A

;

and the determinant of this matrix equals 1.

We then remark that by 
onstru
tion J

1

� I

2

, and J

2

� I

3

, J

3

� I

3

(see Figure 7). This


ompletely de�nes U for the part of the orbit that belongs to J . Hen
e U

1

(m

1

; n

1

) = i implies

U(m;n) = i, for i 2 f1; 2; 3g.

Observe now that the 
omplement of J is partitioned by the intervals R

�i

a

J

3

, for 0 < i � B

1

+C

1

,

and ea
h of these intervals is in
luded in one of the I

n

. This implies that the sequen
e U is


ompletely de�ned in this way. Indeed, if R

m

a

R

n

b

(h) is not in J , there is an iterate R

k

a

R

m

a

R

n

b

(h),

with k � B

1

+ C

1

, that belongs to J ; using this point, the value U(m;n) is de�ned by the third


ondition in the statement of the theorem.

�

4.5. A se
ond generating pro
ess. The aim of the next se
tion is to use Theorem 3 to 
onstru
t

two-dimensional substitutions. In 
ombinatorial terms, Theorem 3 means that the sequen
e U is

dedu
ed from the sequen
e U

1

by repla
ing 1 by 2, 2 by 3, and 3 by the one-dimensional word

2

B

1

13

C

1

(a more pre
ise meaning to this statement will be dis
ussed in Se
tion 5). It will be more


onvenient in order to repla
e the letter 3 by a two-dimensional word, to indu
e on a non-
onne
ted

set, i.e., on the set (see Figure 8)

J

0

:= J

3

[ J

2

[R

B

1

a

(J

1

) = [(C

1

� 1)a; 
) [ [
+ b�B

1

a; 
+ b):

Note that we 
hoose to �rst indu
e on J sin
e we needed for algebrai
 reasons (Theorem 2) the


onne
tedness of J .

We thus dedu
e from Theorem 3:



DISCRETE PLANES, Z

2

-ACTIONS, JACOBI-PERRON ALGORITHM AND SUBSTITUTIONS 17

Theorem 4. Let U and U

1

be de�ned as in Theorem 3. Let

p

1

= b

h

1

+m

1

a

1

+ n

1

b

1

a

1

+ b

1

+ 


1


;

and

(2)

�

m = N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

) + C

1

� 1

n = m

1

� n

1

:

We have:

� if U

1

(m

1

; n

1

) = 1, then U(m+B

1

; n) = 2;

� if U

1

(m

1

; n

1

) = 2, then U(m;n) = 3;

� if U

1

(m

1

; n

1

) = 3; then: if 0 � i < C

1

, U(m�i; n) = 3; U(m�C

1

; n) = 1; if 0 � i � B

1

�1,

U(m� C

1

+ i; n� 1) = 2.

Furthermore, this 
ompletely de�nes the sequen
e U , i.e., for any (m;n) 2 Z

2

, there exists a unique

(m

1

; n

1

) su
h that (m;n) satis�es (2).

5. Two-dimensional substitutions

5.1. Pointed substitutions. Let us re
all that a substitution over the alphabet A is a non-erasing

morphism of the free monoid A

�

endowed with the 
on
atenation. Substitutions are usually used

to substitute a �nite word or a sequen
e, and also, as iteration devi
es whi
h generate in�nite

sequen
es [31℄. We want to extend this notion to the two-dimensional 
ase. We are not able to

endow the set of two-dimensional �nite words (whatever its de�nition 
ould be) with an algebrai


stru
ture, as the 
on
atenation over A

�

. If we restri
t ourselves to square fa
tors or re
tangular

fa
tors (this 
orresponds to pi
ture languages [21℄), some results have been established in this

dire
tion. This is the 
ase in parti
ular for the notion of two-dimensional substitutions of 
onstant

length whi
h 
orrespond to two-dimensional automati
 sequen
es [37, 38℄. We are interested here

in the non-
onstant length 
ase.

Theorem 4 shows how to dedu
e the sequen
e U from the sequen
e U

1

: we 
an summarize simply

by saying that we repla
e 1 by 2, 2 by 3 and 3 by

13

C

1

2

B

1

. This, however, would be suÆ
ient for

a one-dimensional sequen
e and for a usual substitution, but not for a two-dimensional sequen
e;

in fa
t, we need to de�ne the position of the pattern that repla
es a given letter. We thus need

to introdu
e the notion of pointed substitution as a map that sends a letter i lo
ated in position

(m;n) to a pointed pattern, depending only on i, lo
ated in position (m

0

; n

0

) given as a fun
tion

of (m;n) and i. (Note that similar substitutions have been introdu
ed in [24, 25, 3, 5℄ in the

framework of the stepped surfa
e: these substitutions a
t on unit tips.) Hen
e, the sequen
e U is

the image of U

1

by a pointed substitution that is 
ompletely determined by (a

1

; b

1

; 


1

;h

1

), de�ned

via the inhomogeneous Ja
obi-Perron algorithm. To make this statement more pre
ise, we need to

introdu
e a suitable formalism.

We want a two-dimensional substitution to a
t on two-dimensional words and sequen
es. By

word, we mean roughly speaking a �nite set of letters in f1; 2; 3g, lo
ated in some position in Z

2

with no overlaps, whi
h may be not 
onne
ted. More pre
isely, a pointed word is de�ned as a map

with �nite support from Z

2

�f1; 2; 3g to f0; 1g. We shall need to 
onsider some words with overlaps.

Hen
e, it is more 
onvenient to 
onsider linear 
ombinations of words with 
oeÆ
ients in R, so as

to get a ve
tor spa
e. Hen
e we introdu
e the following de�nition.

De�nition 11. Let F be the ve
tor spa
e of maps from Z

2

� f1; 2; 3g to R, that take value zero

everywhere ex
ept for a �nite set.
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For x 2 Z

2

and i 2 f1; 2; 3g, note (x; i) the element of F whi
h takes value 1 at (x; i), and 0

elsewhere; the set f(x; i); x 2 Z

2

; i 2 f1; 2; 3gg is a basis of F . We 
all su
h an element a pointed

letter.

The support of an element of F is the set of (x; i) on whi
h it is not zero.

We say that an element of F is a pointed pattern if it takes value 0 and 1 and for every x 2 Z

2

,

there exists at most one i 2 f1; 2; 3g su
h that it takes 1 at (x; i). One 
an represent a pointed

pattern as a two-dimensional pointed word lo
ated in point x 2 Z

2

.

If M and N are two pointed patterns, we will say for simpli
ity that M 
ontains N (we denote

it N �M) if the support of M 
ontains that of N .

Similarly, we say that a pointed pattern M is in
luded in the two-dimensional sequen
e V (we

note it M � V ) if the support of M is in
luded in the support of V, where V denotes the map from

Z

2

� f1; 2; 3g to R that takes value 1 for every (x; V (x)), and 0 otherwise.

We say that two pointed patterns M and N are disjoint (M \ N = ;) if their supports are

disjoint.

We are now able to de�ne a notion of pointed substitution �

(a

1

;b

1

;


1

;h

1

)

on F . This notion 
an

be 
ompared with the formalism developed by C. Radin (see for instan
e [32, 18, 33, 34℄) for

tiling spa
es whi
h are generated by substitution rules a
ting on polygonal tiles, as the well-known

example of the Penrose tiling.

De�nition 12. Let us use the notation of Theorem 4. We de�ne the pointed substitution

�

(a

1

;b

1

;


1

;h

1

)

: F ! F

as the linear map de�ned on the basis of F

f((m

1

; n

1

); i); (m

1

; n

1

) 2 Z

2

; i 2 f1; 2; 3gg

by

8

>

>

<

>

>

:

�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 1) = ((m+B

1

; n); 2)

�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 2) = ((m;n); 3)

�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 3) =

P

0�k�C

1

�1

((m� k; n); 3) + ((m� C

1

; n); 1)+

P

0�k�B

1

�1

((m� C

1

+ k; n� 1); 2);

with

8

>

<

>

:

m = m(m

1

; n

1

) = N

1

�mB

1

� n(C

1

+ 1) + p

1

(B

1

+C

1

) + C

1

� 1;

n = n(m

1

; n

1

) = m

1

� n

1

;

p

1

= p

1

(m

1

; n

1

) =

h

h

1

+m

1

a

1

+n

1

b

1

a

1

+b

1

+


1

i

;

and

�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); i) = 0;

otherwise.

The map (m

1

; n

1

) 7! (m;n) is 
alled the pla
ing rule asso
iated with the substitution �

(a

1

;b

1

;


1

;h

1

)

:

Remark

Note that when h = 0, then h

1

= 0, N

1

= 0 and the image of ((0; 0); 3) 
ontains ((0; 0); 3).

Furthermore, the parameter N

1

a
ts as a translation of the image of a letter.

Let U (respe
tively U

1

) denote the map from Z

2

� f1; 2; 3g to R that takes value 1 for every

(x;U(x)) (respe
tively (x;U

1

(x))), and 0 otherwise.

We 
an de�ne in a natural way �

(a

1

;b

1

;


1

;h

1

)

on U

1

. More pre
isely, we 
an translate the indu
tion

pro
ess (Theorem 4) into the following 
ombinatorial terms:

Theorem 5. We have:
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(1) 8(x; i) 2 U

1

; �

(a

1

;b

1

;


1

;h

1

)

(x; i) � U :

(2) 8(y; j) 2 U ; 9!(x; i) 2 U

1

; �

(a

1

;b

1

;


1

;h

1

)

(x; i) 
ontains (y; j):

(3) If (x; i); (x

0

; j) 2 U

1

with (x; i) 6= (x

0

; j);

then �

(a

1

;b

1

;


1

;h

1

)

(x; i) \ �

(a

1

;b

1

;


1

;h

1

)

(x

0

; j) = ;:

Remarks In other words, this theorem means that the image of the two-dimensional sequen
e

U

1

under the a
tion of �

(a

1

;b

1

;


1

;h

1

)

is exa
tly the two-dimensional sequen
e U .

Note that, in 
ontrast to one-dimensional substitutions, it is non-trivial to prove that the def-

inition of a pointed substitution is 
onsistent: the images of pointed patterns 
ould overlap, or

not 
over the whole image sequen
e. Indeed, the image by �

(a

1

;b

1

;


1

;h

1

)

of a pointed pattern is not

always a pointed pattern or the image of a 
onne
ted pointed pattern may not be 
onne
ted. But

we know that if the pointed pattern is 
ontained in U

1

, then its image is still a pointed pattern and

it is 
ontained in the double sequen
e U .

Remark that the substitution depends on the inhomogeneous part h and that it may not be


onsistent anymore if one 
onsiders a pointed pattern in
luded in a sequen
e U

1

asso
iated with a

di�erent h (although the languages, i.e., the sets of fa
tors are the same).

5.2. Lo
al rules. It is however very in
onvenient to use a pointed substitution, sin
e we need at

ea
h step global information, in
luding a

1

; b

1

; 


1

; h

1

, and not only B

1

; C

1

; N

1

. In parti
ular we are

not able to iterate it in order to generate a double sequen
e. It is mu
h more 
onvenient to be able

to use a lo
al information, i.e., lo
al rules (and this is exa
tly what is done when one 
omputes

one-dimensional substitutions: one does not 
ompute the exa
t position of a given pattern, but

only uses the fa
t that patterns follow ea
h other). Roughly speaking, a lo
al rule says how to

pla
e the image of a (pointed) letter with respe
t to the images of the letters belonging to a �nite

neighbourhood. The idea here is that in fa
t, the relative position of patterns 
ontains all the

information in a

1

; b

1

; 


1

; h

1

; hen
e we must rely only on this relative position. A lo
al information

is suÆ
ient for iteration. Fortunately, it is possible to give su
h lo
al rules for the two-dimensional

substitutions we use. We obtain seven lo
al rules involving only one letter adja
ent to the one we


onsider. In order to give a more pre
ise meaning to the notion of lo
al rule, we need to introdu
e

the 
on
ept of pattern.

We de�ne a pattern as a pointed pattern up to translation. More pre
isely, a lo
al pattern is an

equivalen
e 
lass for a given pointed pattern for the following relation:

M � N if and only if there exists t 2 Z

2

su
h that

8(x; i) 2 Z

2

� f1; 2; 3g : (x; i) �M if and only if (x+ t; i) � N:

In other words, a pattern is a word 
onsidered without a pre
ise lo
ation in Z

2

.

Consider the following seven patterns: we give a representative of ea
h of these patterns below.

We denote by C the union of the equivalen
e 
lasses of those pointed patterns.

� 33 : ((0; 0); 3) + ((1; 0); 3)

� 13 : ((0; 0); 1) + ((1; 0); 3)

�

3

2

: ((0; 0); 2) + ((1; 1); 3)

�

3

3

: ((0; 0); 3) + (0; 1); 3)

�

1

3

: ((0; 0); 3) + ((1; 1); 1)

� 21 : ((0; 0); 2) + ((1; 0); 1)

�

2

3

: ((0; 0); 3) + ((0; 1); 2)
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We mean by lo
al rule the following: suppose for instan
e

((m;n); U

m;n

); (m+ 1; n); U

m+1;n

)) 2 C;

then one knows where to pla
e the image of ((m + 1; n); U

m+1;n

) with respe
t to the one of

((m;n); U

m;n

): Theorem 6 below gives a more pre
ise meaning to this. Note that the patterns

in C do not depend on the 
oeÆ
ients (B

1

; C

1

; N

1

), 
ontrary to the lo
al rules.

Theorem 6. Let v 2 Z

2

. Let T

v

denote the translation de�ned on the basis f(x; i)g by T

v

(x; i) =

(x + v; i). The following relations hold for every pointed lo
al pattern in
luded in U

1

, with the

notation of De�nition 12:

� �

(a

1

;b

1

;


1

;h

1

)

[(m

1

; n

1

); 3) + ((m

1

+ 1; n

1

)); 3)℄

= �

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 3) + T

(�B

1

;1)

[�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 3)℄

� �

(a

1

;b

1

;


1

;h

1

)

[((m

1

� 1; n

1

); 1) + ((m

1

; n

1

); 3)℄

= �

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 3) + T

(B

1

�C

1

�1;1)

[�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 1)℄

� �

(a

1

;b

1

;


1

;h

1

)

[((m

1

� 1; n

1

� 1); 2) + ((m

1

; n

1

); 3)℄

= �

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 3) + T

(1;0)

[�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 1)℄

� �

(a

1

;b

1

;


1

;h

1

)

[((m

1

; n

1

); 3) + (m

1

; n

1

+ 1); 3)℄

= �

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 3) + T

(�C

1

�1;�1)

[�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 3)℄

� �

(a

1

;b

1

;


1

;h

1

)

[((m

1

; n

1

); 3) + ((m

1

+ 1; n

1

+ 1); 1)℄

= �

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 3) + T

(�C

1

�1;0

[�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 1)℄

� �

(a

1

;b

1

;


1

;h

1

)

[((m

1

; n

1

); 2) + ((m

1

+ 1; n

1

); 1)℄

= �

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 2) + T

(0;1)

[�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 1)℄

� �

(a

1

;b

1

;


1

;h

1

)

[((m

1

; n

1

); 3) + ((m

1

; n

1

+ 1); 2)℄

= �

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 3) + T

(�C

1

�1;�1

[�

(a

1

;b

1

;


1

;h

1

)

((m

1

; n

1

); 2)℄:

Note that these rules 
orrespond to the ones given in [25℄, up to a rotation and to a permutation

of the letters. The following pi
ture gives a representation of the lo
al rules in the 
ase B

1

= 2,

C

1

= 4. We have distinguished the letters and their respe
tive images by overlining one of the

two letters. This 
onvention is useful in parti
ular for what 
on
erns the �rst and the fourth rules,

where the same letter o

urs twi
e.

�
33

7!

13333

2213333

22

�
13

7!

13333

222

�

3

2

7!

133333

22

�

3

3

7!

13333

1333322

22

�

1

3

7!

213333

22

�
21

7!

2

3

�

2

3

7!

13333

322

Proof. Let us prove the �rst assertion of Theorem 6 for instan
e. The proof of the other assertions

follows the same s
heme. Suppose that U

1

(m

1

; n

1

) = U

1

(m

1

+ 1; n

1

) = 3. Let us use the notation



DISCRETE PLANES, Z

2

-ACTIONS, JACOBI-PERRON ALGORITHM AND SUBSTITUTIONS 21

of De�nition 12. We thus have p

1

(m

1

+ 1; n

1

) = p

1

(m

1

; n

1

), m(m

1

+ 1; n

1

) = m(m

1

; n

1

) � B

1

,

n(m

1

+ 1; n

1

) = n(m

1

; n

1

) + 1. �

The next step is to prove that these rules 
ompletely de�ne the image of the sequen
e U

1

. Let

us use the terminology of [24, 25℄.

De�nition 13. Let M be a pointed pattern. We say that M is C-
overed if:

8(x; i); (x

0

; i

0

) �M; 9n 2 N; 9(y

0

; j

0

); (y

1

; j

1

); : : : ; (y

n

; j

n

) 2 Z

2

� f1; 2; 3g

su
h that (y

0

; j

0

) = (x; i); (y

n

; j

n

) = (x

0

; i

0

); and for 0 � k � n� 1;

((y

k

; j

k

) + (y

k+1

; j

k+1

)) 2 C:

One easily dedu
es from the lo
al rules the following.

Lemma 1. If a pointed pattern M � U

1

is C-
overed, then �

(a

1

;b

1

;


1

;h

1

)

(M) is also a C-
overed

pointed pattern.

Proof. This is a dire
t 
onsequen
e of the fa
t that the image of any pointed pattern in C is C-


overed. This is just a 
ase study.

�

We are now able to extend the de�nition of the two-dimensional substitution �

(a

1

;b

1

;


1

:h

1

)

to any

C-
overed pointed pattern in
luded in U

1

by using only lo
al rules and forgetting the pla
ing rule

(De�nition 12). This implies in parti
ular that we 
an easily 
onsider limits of iterations of the

two-dimensional substitutions starting from any C-
overed pointed pattern.

5.3. Iteration of the two-dimensional substitutions in the homogeneous 
ase. Consider

the homogeneous 
ase, that is, the plane ax + by + 
z = 0. We have given a meaning to the fa
t

that U is the image of U

1

under the a
tion of the substitution �

(a

1

;b

1

;


1

;0)

. We 
an now iterate this

pro
edure, using again the Ja
obi-Perron algorithm.

Re
all that a; b; 
 are independent over Q . We asso
iate with (a; b; 
) the sequen
e (B

n

; C

n

)

n2N

of integers de�ned by:

F

n

(a; b; 
) = (a

n

; b

n

; 


n

); B

n+1

= bb

n

=a

n


; C

n+1

= b


n

=a

n


:

Re
all that we have for every n the following admissibility 
onditions:

0 � B

n

� C

n

and if B

n

= C

n

then B

n+1

6= 0:

We 
an iterate this pro
ess in order to generate the sequen
e U by the 
omposition of su
h

two-dimensional substitutions. More pre
isely, we eventually de�ne arbitrarily large parts of the

sequen
e U even if we only know the initial letter of ea
h sequen
e, or in the worst 
ase, if we

only know a �nite path surrounding ((0; 0); 3). Indeed ((0; 0); 3) belongs to U

n

for every integer n

(where U

n

is asso
iated as previously with the plane a

n

x + b

n

y + 


n

z = 0). We have 8n; h

n

= 0.

Hen
e �

(a

1

;b

1

;


1

;0)

�

(a

2

;b

2

;


2

;0)

: : :�

(a

n

;b

n

;


n

;0)

((0; 0); 3) belongs to U for every n. Furthermore, sin
e

the sequen
e of pointed patterns �

(a

1

;b

1

;


1

;0)

�

(a

2

;b

2

;


2

;0)

: : :�

(a

n

;b

n

;


n

;0)

((0; 0); 3) is in
reasing, one


an give a meaning to its limit, and

lim

n!1

�

(a

1

;b

1

;


1

;0)

�

(a

2

;b

2

;


2

;0)

: : :�

(a

n

;b

n

;


n

;0)

((0; 0); 3)


overs an in�nite part of the sequen
e U ; we shall return to the in�nite sequen
e we obtain in the

last se
tion.
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6. Dual substitutions: algebrai
 
onstru
tion of stepped surfa
es

In this se
tion, we introdu
e an expli
it 
onstru
tion for the stepped surfa
e and emphasize the


onne
tion between the notion of two-dimensional substitutions we introdu
ed and the dual maps

for one-dimensional extensions of substitutions dis
ussed in [3, 5℄, and alluded to in Subse
tion 1.2.

Indeed, the work done so far 
an be reformulated in the initial framework of stepped surfa
es.

We will introdu
e a family of one-dimensional substitutions; with these, one asso
iates, (following

the formalism of [3, 5℄) a linear map on an in�nite dimensional spa
e, the one-dimensional geometri


realization. One then de�nes the dual map E

1

(�)

�

of these linear maps; using these dual maps,

one �rst re
overs the substitutions of the previous se
tion, and se
ond, generates in a 
onstru
tive

way the stepped surfa
e.

We will for the sake of simpli
ity restri
t ourselves to the homogeneous 
ase: that is, we will


onsider only the 
ase h = h

1

= 0, or equivalently, we will 
onstru
t stepped surfa
es for irrational

planes through the origin. Our results generalize to the inhomogeneous 
ase, but the notation

be
omes quite 
umbersome.

In this se
tion, we will 
onsider a rationally independent triple (a; b; 
), and the triple (a

1

; b

1

; 


1

)

obtained from it by the Ja
obi-Perron algorithm, and take as previously the notation B

1

= bb=a
,

C

1

= b
=a
, so that a

1

= b�B

1

a, b

1

= 
� C

1

a, 


1

= a.

In Se
tion 6.1, we will reformulate the pointed substitutions of the previous se
tion to obtain

dire
tly the stepped surfa
e. In the next two subse
tion, we will brie
y review the formalism of

one-dimensional extensions of substitutions and their dual maps. In Se
tion 6.4, we apply this to

the present 
ase, and in Se
tion 6.5, we will prove that we 
an so re
over in a 
ompletely formal

way the previous results; the last subse
tion gives another interpretation in terms of tilings of the

line.

6.1. A 
ombinatorial 
onstru
tion of the stepped surfa
e. In Se
tion 5, we de�ned pointed

substitutions taking pointed letters to pointed patterns. If we denote, as in Se
tion 2, P (respe
-

tively P

1

) the plane ax + by + 
z = 0 (respe
tively a

1

x + b

1

y + 


1

z = 0), P (respe
tively P

1

) the


orresponding stepped surfa
e, we re
over easily both stepped surfa
es from the symboli
 sequen
es

U;U

1

. The pointed substitution, sending sequen
e U

1

to U , 
an then be 
onjugate to a map that

sends ea
h fa
e of P

1

to a disjoint union of fa
es of P , in su
h a way that any fa
e of P is in the

image of exa
tly one fa
e of P

1

.

A straightforward 
omputation, using Theorem 4, gives the exa
t formula for this map, where

we denote as above by (X;Y;Z) +E

i

the fa
e of type i with distinguished vertex (X;Y;Z) and we

denote disjoint unions by a formal sum:

Theorem 7. If (X;Y;Z) +E

i

is a fa
e of P

1

, the pointed substitution sends it to a union of fa
es

of P a

ording to the following:

� (X;Y;Z) +E

1

is sent to (�B

1

X � C

1

Y + Z +B

1

+ C

1

� 1;X; Y ) +E

2

� (X;Y;Z) +E

2

is sent to (�B

1

X � C

1

Y + Z + C

1

� 1;X; Y ) +E

3

� (X;Y;Z)+E

3

is sent to [(�B

1

X �C

1

Y +Z;X +1; Y +1)+E

1

℄+

P

B

1

�1

i=0

[(�B

1

X �C

1

Y +

Z + i;X; Y + 1) +E

2

℄+

P

C

1

�1

i=0

[(�B

1

X � C

1

Y + Z + i;X; Y ) +E

3

℄:

Proof. We will only prove the last and most 
ompli
ated formula, the �rst two are proved in the

same way. Suppose that the fa
e (X;Y;Z) + E

3

belongs to P

1

. Then, by Proposition 4, we have

a

1

X + b

1

Y + 


1

Z 2 J

3

= [0; 


1

[ (this equality is valid in R, not modulo a

1

+ b

1

+ 


1

).

This a
tion 
omes by indu
tion on J from the a
tion de�ned by (a; b; 
). We 
an then obtain

the position of this point, and a part of its orbit for the initial a
tion, with respe
t to the natural

partition for this initial a
tion. Namely, taking into a

ount the shift of (C

1

� 1)a 
oming from the


hange of origin, we obtain that

for 0 � i � C

1

� 1; a

1

X + b

1

Y + 


1

Z + (C

1

� 1)a� ia 2 I

3

;
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the next preimage (for whi
h we must take into a

ount that we have made a 
omplete turn

(a+ b+ 
))

a

1

X + b

1

Y + 


1

Z + (C

1

� 1)a� C

1

a+ (a+ b+ 
) 2 I

1

;

and images of this last point by R

�1

b

R

i

a

, for 0 � i � B

1

� 1,

a

1

X + b

1

Y + 


1

Z + (C

1

� 1)a� C

1

a+ (a+ b+ 
)� b+ ia 2 I

2

;

(see Figure 7). Repla
ing a

1

; b

1

; 


1

by their respe
tive values b�B

1

a; 
� C

1

a; a shows that

a(�B

1

X � C

1

Y + Z) + b(X + 1) + 
(Y + 1) 2 I

1

;

hen
e (�B

1

X �C

1

Y +Z;X + 1; Y + 1) +E

1

is a fa
e of P , and similarly for the other fa
es; as it

was proved in Theorem 4, ea
h fa
e is obtained in this way exa
tly on
e. �

The aim of the next se
tion is to show that, using the formalism of [3, 5℄, we 
an re
over

in a purely algebrai
 way this formula from the following ordinary one-dimensional substitutions

asso
iated with the Ja
obi-Perron algorithm.

De�nition 14. We denote by �

B

1

;C

1

the substitution over the three- letter alphabet f1; 2; 3g de�ned

by:

�

B

1

;C

1

(1) = 3; �

B

1

;C

1

(2) = 13

B

1

; �

B

1

;C

1

(3) = 23

C

1

:

6.2. The one-dimensional extension of a substitution. We denote by f1; 2; 3g

�

the free

monoid on 3 letters, and by f the natural map (abelianization) from f1; 2; 3g

�

to Z

3

(if W is

an element of f1; 2; 3g

�

(a word), f(W ) is the ve
tor that 
ounts the number of o

urren
e of ea
h

letter in W ).

Let � be a substitution on three letters. We will denote by M the matrix asso
iated with the

abelianization of � (M

i;j

is the number of o

urren
es of the letter i in the word �(j)). There is an

obvious 
ommutative diagram:

f1; 2; 3g

�

�

�! f1; 2; 3g

�

f # # f

Z

3

M

�! Z

3

:

We will take the notation

�(i) =W

(i)

=W

(i)

1

: : :W

(i)

l

i

= P

(i)

n

W

(i)

n

S

(i)

n

;

for 1 � n � l

i

, where l

i

is the length of �(i), P

(i)

n

is the pre�x of length n � 1 of �(i) (the empty

word for n = 1), and S

(i)

n

is the suÆx of length l

i

� n of �(i) (the empty word for n = l

i

).

It is natural to asso
iate with ea
h �nite word W = w

1

w

2

: : : w

n

on 3 letters a path in the three-

dimensional spa
e, starting from 0 and ending in f(W ), with verti
es in f(w

1

: : : w

i

) for i = 1 : : : n:

we start from 0, advan
e by ~e

i

if the �rst letter is i, and so on. This allows us to de�ne a map on

paths, 
oming from the substitution, by taking the path for W to the path for �(W ). In fa
t, this

map 
an be de�ned in a 
onsistent way for all paths with adja
ent integer verti
es, and made in a

linear map, in the following way:

De�nition 15. We denote by ((X;Y;Z); i) 2 Z

3

�f1; 2; 3g an elementary path (that is, a segment

from (X;Y;Z) to (X;Y;Z)+~e

i

); we denote by G the real ve
tor spa
e of formal �nite weighted sums

of elementary paths. We 
all one-dimensional extension of �, and denote by E

1

(�), the linear map

de�ned on G by:

E

1

(�)((X;Y;Z); i) =

l

i

X

n=1

((M:(X;Y;Z) + f(P

(i)

n

);W

(i)

n

):
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X

Y

X

Y

X

Y

X

Y

Figure 9. The one-dimensional extension of 0 7! 010, 1 7! 10

It is easily 
he
ked that this formula is su
h that � takes the 
ontinuous path 
orresponding to a

word W to the 
ontinuous path 
orresponding to �(W ); indeed, the �rst path ends in f(W ), while

the se
ond ends in f(�(W )) = M:f(W ), and the formula ensures that if we extend the �rst path,

the image of the extension will start at the end of the se
ond path (see Figure 9).

6.3. The dual substitution. For the sequel, we need the matrix M to be invertible in the set of

integral matri
es, and a suÆ
ient 
ondition is that its determinant is 1, hen
e the next de�nition:

De�nition 16. A substitution � is 
alled unimodular if its abelianized matrix M has determinant

1.

From now on, we suppose that � is a unimodular substitution; it is readily 
he
ked that this is

the 
ase of the Ja
obi-Perron substitutions de�ned above (De�nition 14).

We want to study the dual map E

�

1

(�) of E

1

(�), as a linear map on G.

De�nition 17. We denote by G

�

the spa
e of dual maps with �nite support (that is, dual maps

that give value 0 to all but a �nite number of the ve
tors of the 
anoni
al basis).

The spa
e G

�

has a natural basis ((X;Y;Z); i

�

), the map that gives value 1 to ((X;Y;Z); i) and

0 to all other ve
tors. It is possible to give a geometri
 meaning to this dual spa
e by a kind of

Poin
ar�e duality: we represent the element ((X;Y;Z); i

�

) by the upper fa
e perpendi
ular to the

dire
tion ~e

i

of the unit 
ube with lowest vertex (X;Y;Z) (see [3, 5℄ for more details, and a more

general framework).

The map E

1

(�) has a dual map, and it is easy to prove that, if the map M is not degenerated,

it preserves the spa
e G

�

[3℄; when � is unimodular, it is easy to 
ompute expli
itly this dual map:

Proposition 5. If � is unimodular, the dual map E

�

1

(�) is de�ned on G

�

by

E

�

1

(�)((X;Y;Z); i

�

) =

X

j2f1;2;3g

X

W

(j)

n

=i

(M

�1

:[(X;Y;Z) � f(P

(j)

n

)℄; j

�

):

Proof. Let us 
ompute E

�

1

(�). Using the natural bilinear produ
t over G

�

� G, one gets:

< E

�

1

(�)((X;Y;Z); i

�

))j((X

0

; Y

0

; Z

0

); j) >=< (X;Y;Z); i

�

)jE

1

(�)((X

0

; Y

0

; Z

0

); j) >

=< ((X;Y;Z); i

�

)j

l

j

X

n=1

(M:(X

0

; Y

0

; Z

0

) + f(P

(j)

n

);W

(j)

n

> :
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The produ
t is nonzero if and only if there exists n su
h that W

(j)

n

= i, M:(X

0

; Y

0

; Z

0

) + f(P

(j)

n

) =

(X;Y;Z), that is, (X

0

; Y

0

; Z

0

) =M

�1

([(X;Y;Z) � f(P

(j)

n

)℄; j

�

): �

6.4. Computation of the dual substitution of the Ja
obi-Perron substitution. We 
an

apply the pre
eding formula to the Ja
obi-Perron substitution.

The matrix M and its inverse are given in that 
ase by:

M =

0

�

0 1 0

0 0 1

1 B

1

C

1

1

A

M

�1

=

0

�

�B

1

�C

1

1

1 0 0

0 1 0

1

A

:

The �rst two letters o

ur exa
tly on
e in all the images, so in the 
orresponding images by

the dual map, the sum redu
es to exa
tly one element, and the pre�x is empty, making it very

easy to 
ompute. The letter 3 o

urs on
e in �(1), B

1

times in �(2), and C

1

times in �(3), hen
e

the image E

�

1

(�)((� � �); 3

�

) 
onsists in a sum of one element of type ((� � �); 1

�

), B

1

elements of

type ((� � �); 2

�

) and C

1

elements of type ((� � �); 3

�

), as for the pointed substitution 
omputed in

Theorem 7. The exa
t formula is:

Proposition 6. The dual substitution E

�

1

(�) is de�ned by:

� E

1

(�)

�

((X;Y;Z); 1

�

) = ((�B

1

X � C

1

Y + Z;X; Y ); 2

�

)

� E

1

(�)

�

((X;Y;Z); 2

�

) = ((�B

1

X � C

1

Y + Z;X; Y ); 3

�

)

� E

1

(�)

�

((X;Y;Z); 3

�

) = ((�B

1

X �C

1

Y + Z;X; Y ); 1

�

) +

P

B

1

�1

i=0

((�B

1

X �C

1

Y + Z + 1 +

i;X � 1; Y ); 2

�

) +

P

C

1

�1

i=0

((�B

1

X � C

1

Y + Z + 1 + i;X; Y � 1); 3

�

):

6.5. Geometri
 interpretation. It seems at �rst sight that we do not re
over exa
tly the formula

given in Theorem 7. But the dis
repan
y only 
omes from a di�eren
e of 
onvention: re
all that,

by de�nition, (X;Y;Z)+E

1

represents a fa
e of type 1 whose upper vertex is (X;Y;Z); this 
hoi
e

was made to make easier the proofs in Se
tion 2, so that (X;Y;Z) belongs to the fa
e; but by

de�nition, ((X;Y;Z); 1

�

) represents the upper fa
e, orthogonal to the dire
tion 1, of the unit 
ube

whose lowest vertex is (X;Y;Z). This 
hoi
e was imposed upon us in the paper [5℄ for 
oheren
e

reasons.

Hen
e, in our notation, ((X;Y;Z); 1

�

) and (X + 1; Y + 1; Z + 1) + E

1


orrespond to the same

fa
e of P . In the same way, we have ((X;Y;Z); 2

�

) = (X;Y + 1; Z + 1) +E

2

and ((X;Y;Z); 3

�

) =

(X;Y;Z + 1) +E

3

.

We 
an rephrase in these notation the pre
eding proposition:

Proposition 7. The dual substitution E

�

1

(�) is de�ned by:

� E

1

(�)

�

((X;Y;Z) +E

1

) = (�B

1

X � C

1

Y + Z +B

1

+ C

1

� 1;X; Y ) +E

2

� E

1

(�)

�

((X;Y;Z) +E

2

) = (�B

1

X � C

1

Y + Z + C

1

� 1;X; Y ) +E

3

� E

1

(�)

�

((X;Y;Z)+E

3

) = [(�B

1

X�C

1

Y +Z;X+1; Y +1)+E

1

℄+

P

B

1

�1

i=0

[(�B

1

X�C

1

Y +

Z + i;X; Y + 1) +E

2

℄ +

P

C

1

�1

i=0

[(�B

1

X � C

1

Y + Z + i;X; Y ) +E

3

℄:

We 
an 
he
k that we re
over the initial formula in Theorem 7.

6.6. Dynami
al interpretation of the Ja
obi-Perron substitution. The meaning of the one-

dimensional substitution �

B

1

;C

1

is not 
ompletely 
lear. However, we remark that the indu
tion

de�nes a tiling of the initial interval I by intervals of length a

1

; b

1

; 


1

. If we take the negative

orientation, whi
h is 
onsistent with our way to number the intervals, we see that interval 1 is tiled

exa
tly by one interval of type 3, interval 2 is tiled by 23

B

1

and interval 3 is tiled by 13

C

1

; if we

iterate, we get a new substitution �

B

2

;C

2

, and the new tiling, in the reverse order, is now given by

�

B

2

;C

2

�

B

1

;C

1

(123).

It should be interesting to study the property of the sequen
e of tilings generated in this way.
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Figure 10. Iteration starting from the fa
es at the origin

Figure 11. Iteration starting from the fa
e ((1;�1;�1); 3

�

)

7. Additional remarks

We have proved above that, by iterating the sequen
e of pointed substitutions given by Ja
obi-

Perron algorithm, we generate an in�nite part of the dis
rete surfa
e.

Note that in some 
ases, this limit is stri
tly in
luded in the sequen
e U , as shown in the next

example (where the sequen
e (B

n

; C

n

)

n2N

is purely periodi
 of period [(1; 1); (1; 2); (0; 1)℄). Figure

10 shows the iteration of the substitution starting from the three fa
es at the origin; these however

do not generate everything, and the fa
e denoted by ((1;�1;�1); 3

�

) is 
ontained in its own image,

hen
e it never appears in the iterated images of the fa
es at the origin. Figure 11 shows an iterated

image of this fa
e. The last �gure shows that, together, these four fa
es generate a neighbourhood

of the origin. One 
an in fa
t prove that, in this way, one generates the 
omplete plane.

One 
ould ask what is the shape of the pie
e of the stepped surfa
e generated after n iterations.

This is not known in the general 
ase; however, in the periodi
 
ase, one 
an prove that, if we

renormalize by a suitable matrix (restri
tion to the plane of the abelianization of the substitution),

the shape 
onverges to a parti
ular fra
tal set. Several papers have been devoted to this study,

spe
ially [24, 25, 3, 5℄. The parti
ular 
ase where all partial quotient are equal to 1 in the Ja
obi-

Perron algorithm gives the substitution 1 7! 3, 2 7! 13, 3 7! 23 (De�nition 4); up to a 
hange of
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Figure 12. A neighbourhood of the origin obtained by iteration on 4 fa
es

dire
tion and the ex
hange of 1 and 3, this is the same as the Rauzy substitution 1 7! 12, 2 7! 13,

3 7! 1 whi
h was �rst studied by Rauzy in [35℄ and in several other papers [17, 27, 28℄.

An interesting question is the extent to whi
h one 
an generalize these notions of substitution.

It has been addressed in [5℄ for extensions of substitutions. It seems that substitutions de�ned by

lo
al rules 
an also be used in a quite general 
ontext, 
ontrary to pointed substitutions, whi
h are

quite rigidly restri
ted to symboli
 sequen
es asso
iated with dis
rete planes.

Our dis
ussion is not restri
ted to Ja
obi-Perron algorithm; in fa
t, any 
lassi
al algorithm 
an

be used. The algorithm of Brun is parti
ularly interesting, sin
e it has an expli
itly de�ned natural

extension, and we plan to return to this topi
 in a future paper.
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