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Abstrat. We introdue two-dimensional substitutions generating two-dimensional sequenes re-

lated to disrete approximations of irrational planes. These two-dimensional substitutions are

produed by the lassial Jaobi-Perron ontinued fration algorithm, by the way of indution of a

Z

2

-ation by rotations on the irle. This gives a new geometri interpretation of the Jaobi-Perron

algorithm, as a map operating on the parameter spae of Z

2

-ations by rotations.

0. Introdution

The aim of this paper is to disuss an expliit method to build a disrete approximation of an

irrational plane in R

3

. Suh an approximation an be either studied as a stepped surfae [24, 25℄ or it

an be desribed by a two-dimensional sequene, indexed by Z

2

, de�ned on a three-letter alphabet

[42℄. Furthermore, suh a sequene is diretly related to symboli dynamis for a Z

2

-ation by

rotations on the unit irle [10, 11, 12℄.

We will show that this sequene an be generated by applying the Jaobi-Perron algorithm to

the oordinates of the unit vetor orthogonal to the given plane; this algorithm produes a sequene

of generalized substitutions, whih an be interpreted as ating on two-dimensional sequenes, re-

ating arbitrarily large parts of the symboli sequene assoiated with the plane. These generalized

substitutions are deeply onneted to the higher-dimensional extensions of substitutions introdued

in [24, 25, 3, 5℄, whih at on unit tips (faes of unit ubes with integer verties), generating the

stepped surfae.

This paper grew out of an attempt to generalize to higher dimensions well-known results for

usual ontinued frations. Let us �rst reall shortly the framework of the usual ontinued frations,

and its interpretation in terms of dynamis of rotations, Sturmian sequenes and approximation of

irrational lines; we will be more preise in the �rst setion.

Consider a line with positive irrational diretion ay = bx. One an approximate in an obvious

way this line by a broken line made of horizontal and vertial segments with integer verties (this

is what is done, for example, to represent suh a line on a omputer sreen [7℄).

One an represent this line by a symboli sequene with values in the alphabet f0; 1g. This family

of sequenes has been muh studied: they are the so-alled Sturmian sequenes, and it is well-known

that they are linked in a natural way with the symboli dynamis of rotations (see [29℄ and see also

the surveys [1, 2, 8, 9℄). The dynamial system generated by the shift on suh a sequene is a one-to-

one extension, exept on a ountable set, of an irrational rotation, of angle b=(a+ b). Furthermore,

eah suh sequene an be generated by an in�nite sequene of substitutions, made only by two

elementary substitutions �

0

; �

1

(see [6℄ and the survey [16℄); this sequene of substitutions an be

written as �

a

0

0

�

a

1

1

�

a

2

0

: : :, where [a

0

; a

1

; a

2

; : : :℄ is the ontinued fration expansion of the slope b=a

of the line. A substitution over the alphabet A is a non-erasing morphism of the free monoid A

�

endowed with the onatenation.
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We wish to extend the previous onepts to the two-dimensional ase. The most natural problem

is to try to approximate a pair of real numbers (�; �) (suh that 1; �; � are rationally independent)

by rational numbers with the same denominator. Many algorithms have been proposed for this,

one of the oldest being the lassial Jaobi-Perron algorithm.

Reall that the Jaobi-Perron algorithm is de�ned on (0; 1)

2

by the maps: �(�; �) = (

�

�

�

b

�

�

;

1

�

� b

1

�

) and F (�; �) = (b

�

�

; b

1

�

); with eah pair of irrational and rationally independent

numbers (�; �), we an assoiate the sequene F (�

n

(�; �))

n2N

, and one an easily obtain, from

this sequene, a sequene of pairs of rational numbers that approximate the initial pair (�; �). For

more details, see for instane [13℄. The dynamial system de�ned by � on the unit square has been

muh studied [40℄, in partiular its invariant measures and its unique invariant ergodi probability

measure equivalent to Lebesgue measure [14, 15℄ (generalization of the lassial Gauss measure).

Our purpose here is to show that, in the same way as lassial ontinued frations an be

interpreted in terms of indution of rotations, this algorithm an be interpreted in terms of indution

of Z

2

-ations by rotations on the irle. We will de�ne a sequene of substitutions orresponding

to Jaobi-Perron algorithm, and show how it an be used to generate double sequenes oding the

approximation of an irrational plane in the three-dimensional spae by a disrete plane.

This paper is organized as follows.

In Setion 1, we reall some lassial results on disrete lines, rotations and ontinued frations,

and a less lassial way to ompute the disrete line assoiated with a line of equation ax+ by = 0;

these are the results and tehniques we generalize in this paper.

In Setion 2, we onsider a plane P : ax+ by+ z+h = 0, with a; b;  stritly positive, and de�ne

the stepped surfae assoiated with this plane, as the upper boundary of the set of unit ubes with

integer verties that interset this plane. We show that, by projeting this stepped surfae on the

diagonal plane x+ y+ z = 0 along the main diagonal diretion (1; 1; 1), and onsidering the lattie

�, projetion of Z

3

on this plane (this lattie is isomorphi to Z

2

), one an ode the stepped surfae

as a two-dimensional sequene U with values in a three-letter alphabet (i.e., a map from Z

2

to the

set f1; 2; 3g). We then reall [10℄ how one an reover this sequene as a symboli dynamis for the

Z

2

-ation by two rotations R

a

and R

b

of respetive angles a and b on a irle of length a + b + ,

and we prove the following result:

Theorem 1. Let U be the oding of the plane P : ax + by + z + h = 0, with a; b;  stritly

positive. We have

8(m;n) 2 Z

2

; (U

m;n

= i() R

m

a

R

n

b

(h) 2 I

i

);

with I

3

= [0; [, I

2

= [; + b[ and I

1

= [b+ ; a+ b+ [:

In Setion 3, we de�ne the notion of indution for Z

n

-ations by rotations on the irle, by

onsidering the equivalene relation generated by the ation (its lasses are the orbits of the ation),

and taking the restrition of this relation to a subset. In this framework, we prove a general

theorem: under suitable arithmeti onditions, the indued equivalene relation on an interval is

again generated by a Z

n

-ation by rotations. This allows us to give a geometri interpretation of a

generalized ontinued fration algorithm.

Theorem 2. Let a

0

; a

1

; : : : ; a

n

be n+1 positive real numbers suh that a

0

; a

1

; : : : ;a

n

are rationally

independent. Let b

0

=

P

n

i=0

k

i

a

i

be a real number suh that 0 < b

0

<

P

n

i=0

a

i

, with k

0

; : : : ; k

n

relatively prime integers. Then, there exist numbers b

1

; : : : ; b

n

suh that the indution on an interval

of length b

0

of the Z

n

-ation by rotations R

a

1

; : : : ; R

a

n

on the irle of length a

0

+ a

1

+ : : :+ a

n

is

generated by n rotations R

b

1

; : : : ; R

b

n

, de�ned modulo b

0

.

In Setion 4, we show expliitly how to apply this in the ase of the Jaobi- Perron algorithm,

and explain how we an reover the symboli dynamis for the initial ation from the symboli
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dynamis of the Z

2

-ation via a substitution, whih assoiates with eah letter a �nite pattern. We

give a �rst result in Theorem 3.

We then give an other form for this pointed substitution, whih is more onvenient in our

framework (here, (a

1

; b

1

; 

1

;h

1

) is the image of the initial (a; b; ;h) by the inhomogeneous Jaobi-

Perron algorithm de�ned in Setion 4):

Theorem 4. Let U (respetively U

1

) be the oding of the plane P : ax + by + z + h = 0

(respetively P

1

: a

1

x+ b

1

y + 

1

z + h

1

= 0).

Let B

1

= bb=a, C

1

= b=a, J = [(C

1

� 1)a; ) [ [ + b � B

1

a;  + b), N

1

= inffn 2 N; n 6=

0j R

n

a

(�h) 2 Jg, and p

1

= b

h

1

+ma

1

+nb

1

a

1

+b

1

+

1

, m = N

1

�mB

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

) + C

1

� 1,

n = m

1

� n

1

. We have:

� if U

1

(m

1

; n

1

) = 1, then U(m+B

1

; n

1

) = 2;

� if U

1

(m

1

; n

1

) = 2, then U(m;n) = 3;

� if U

1

(m

1

; n

1

) = 3, then: if 0 � i < C

1

, U(m�i; n) = 3; U(m�C

1

; n) = 1; if 0 � i � B

1

�1,

U(m� C

1

+ i; n� 1) = 2.

Furthermore, this ompletely de�nes the sequene U .

This is the entral result of the paper; one ould rephrase it in this way: when one replaes in U

1

the letter 1 by 2, 2 by 3 and 3 by

1 3 � � � 3

2 � � � 2

, (with C

1

3's and B

1

2's), the rule of plaement

of the images of the letters being given by (m(m

1

; n

1

); n(m

1

; n

1

)), the sequene obtained is exatly

U . The de�nition of these two-dimensional substitutions, unlike the lassial one-dimensional ase,

is not trivial; in partiular, it is not immediate to prove the onsisteny.

In Setion 5, we onsider these two-dimensional substitutions from two di�erent points of view,

�rst as pointed substitutions, and seond, as generated by loal rules. Indeed, given the value of the

initial sequene at the point x, we �rst dedue the value of the image sequene on a pointed pattern

situated at a point y that an be omputed from x and its value. This is however inonvenient for

expliit omputations. We show also that this sequene an be omputed from loal rules: if we

know the image of the initial point, we an ompute the values of adjaent points by using a �nite

number of patterns, and in this way, ompute the image of the omplete sequene. This is loser

to the usual notion of substitution on one-dimensional sequenes, and we will prove in later papers

that it an be extended to at on a larger lass of sequenes.

We will show in Setion 6 that one an build diretly the stepped surfae by the dual map of

the one-dimensional extension of a substitution, using the framework of [3, 5℄, and reover the

generalized substitutions of the previous setion in a more geometri way. Finally, we give in

Setion 7 a few additional remarks, and diretions for future researhes.

This notion of substitution has to be ompared with the notion of substitution tiling, whih

orresponds to a globally de�ned hierarhial struture in a geometri spae (see for instane [18,

32, 33, 34℄). It is proved in [22℄ that one an onstrut loal rules for suh tilings under some mild

onditions. See also [30℄ for a generalization of Durand's haraterization of minimal substitutive

sequenes [19℄ in this framework of substitutive tilings. For a notion of two-dimensional onstant

length substitutions, replaing eah letter by a square of same size, see also [37, 38℄.

1. Disrete lines, rotations and ontinued frations

We will here explain the relation between the disrete approximation of an irrational line, the

dynamis of a rotation, and lassial ontinued frations. We summarize the detailed exposition of

[1℄.
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Figure 1. The disrete line

There are two ways to approximate a line by a broken line (see Figure 1, 2). The �rst one that

we onsider here shows in a more natural way the onnetions with substitutions. The point of

view orresponding to the seond one is the one we will generalize in the higher-dimensional ase.

1.1. Approximation of a line: the diret viewpoint. Consider �rst a line L with positive

irrational slope y = �x + �. We want to approximate this line by a broken line with integer

verties. One of the most onvenient way to do it is to progress by unit segments, either up or to

the right, always going in the diretion of the line (see Figure 1).

A simple omputation shows that the verties of this broken line are the elements of the set

B = f(x; y) 2 Z

2

j � � < y � �x� � < 1g (we ignore the speial ase where the line goes through a

vertex; we must then take a speial onvention). This set an be ordered, using the natural partial

order on Z

2

given by the positive one, in a sequene (P

n

)

n2Z

; sine the sequene P

n+1

� P

n

an

take only values (1; 0) and (0; 1), we an ode the broken line as a biin�nite sequene with values

in the alphabet f0; 1g.

A �rst remark is that this sequene is linked to a rotation; indeed, let � be the projetion along

the line L on the vertial line of equation �x + � = 0, through the intersetion of L and the

horizontal axis. From the formula given above for B, we see that all points of B projet to the

interval �� < y < 1 on this line. Furthermore, if �(P

n

) is negative, �(P

n+1

) = �(P

n

) + 1, while,

if �(P

n

) is positive, �(P

n+1

) = �(P

n

) � �. Hene, the sequene assoiated with B is de�ned by a

rotation of angle 1 on a irle of length 1+�. This gives the link between the disrete line and the

dynamis of the rotation.

We have approximated the line by translates of the two basi unit segments; it is however possible

to approximate also using diagonal segments. If the slope is less than 1, we an use segments of

diretion (1; 0), (1; 1), and if it is greater than 1, we an use segments of diretion (0; 1), (1; 1). It

is readily seen that, in the �rst ase, the initial symboli sequene is obtained from the new one by

replaing eah 1 by 10, and in the seond ase, by replaing eah 0 by 01. This shows that the initial

sequene is obtained from the new sequene by one of two elementary substitutions �

0

, �

1

; these

two substitutions are related to the indution of the initial rotation on a suitable interval. We an

iterate this proess, and we obtain a sequene of substitutions �

a

0

0

�

a

1

1

�

a

2

0

: : :, where [a

0

; a

1

; a

2

; : : :℄

is the ontinued fration expansion of the slope �. In this way, we an reover the stepped line

knowing the ontinued fration expansion of �, as limit of an in�nite sequene of substitutions (at

least if the line goes through the origin; in the general ase, we need also some information about

�, whih an be done through an Ostrowsky expansion of � with respet to the ontinued fration

expansion of �, giving rise to a skew extension of the usual ontinued fration map [4℄). Remark
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that, in this way, we only obtain an in�nite sequene, so we only know the positive part of the

stepped line; this is however always suÆient to ompletely speify the line.

Instead of generating the symboli sequene, one an generate diretly the disrete line in the

following way: this disrete line is made of unit segments starting at points with integral oordinates;

one an denote suh a segment by (P; i), where P is the integral point, and i = 0 if the segment is

horizontal, and 1 if it is vertial. Suppose that the line has slope less than 1; then, one an hange

of basis, taking as new basis (e

0

; e

0

+ e

1

), and onsider the new disrete line in this basis.

One an reover the initial disrete line from this one in the following way. Let A =

�

1 1

0 1

�

.

One �rst builds the new disrete line, with segments parallel to the two basis vetors e

0

and e

0

+e

1

.

The horizontal segments (P; 0) of the new line are horizontal segments of the initial line, but with

initial point A:P , beause of the hange of oordinates; the vertial segments (P; 1) are hanged

to the union of an horizontal and a vertial segment, and one heks that the image of (P; 1) is

the union of (A:P; 1) and (A:P + (0; 1); 0). One de�nes in this way a map E

1

(�

0

), whih an be

extended as a linear map to the spae of formal linear ombinations of unit segments. For more

details, see [3℄.

It is possible to iterate this operation; with the sequene of substitutions de�ned above, one

assoiates a sequene of linear maps E

1

(�

0

)

a

0

E

1

(�

1

)

a

1

: : :, and the images of the unit segment at

the origin by these maps onverge to the disrete line approximating the line with given slope

through the origin. A similar, but more ompliated, algorithm allows us to approximate a line

that does not go through the origin (see for example [4℄).

1.2. Approximation of a line: the dual viewpoint. We an onsider the similar problem of

approximating a line ax + by = 0, where 0 < a; b. In that ase, it is more onvenient to onsider

the so-alled \stair" over the line (alled stepped line), that is, the upper boundary of the set of

unit squares with integer verties the interior of whih interset the lower half-plane de�ned by the

line (see Figure 2).

One an here also try to approximate the line by a sequene of bases. There are two possible basi

hanges of basis: with the initial basis (e

0

; e

1

), one an assoiate either (e

0

� e

1

; e

1

) or (e

0

; e

1

� e

0

),

and we hoose at eah step the unique basis suh that both vetors are \above" the line for the

natural partial order in the plane.

With eah suh hange of basis, on an, as above, assoiate one of the substitutions �

0

, �

1

.

We annot in this situation use diretly the linear maps E

1

(�) de�ned previously, for several

reasons: �rst, this would produe an approximation of a line with positive slope. Seond, and more

importantly, this would produe an approximation of the renormalized line, starting with the given

initial line, whih is not what we want; the situation has hanged from ontravariant to ovariant,

that is, the order of omposition of substitutions has been reversed.

In suh a ase, one would like to use the inverse of the map E

1

(�); however, it is readily heked

that this map is not invertible. A substitute to the inverse is the transpose map, whih also reverses

the diretion of omposition (remark that it is quite natural to obtain dual maps, sine the line

ax + by = 0 an be seen as the kernel of the linear form with oordinates (a; b) in the anonial

basis; hene one an onsider the approximation of the line as approximation of the linear form,

that is, the dual problem of the approximation of a vetor). For more details, see [1℄.

This an be done, using the framework of [3, 5℄, and we an generate the stair over the irrational

line using the dual of the one-dimensional extension of the substitutions we have obtained (we will

give more detailed explanations in Setion 6).

The aim of this paper is to reover similar results for an irrational plane in the three-dimensional

spae; it turns out that the dual viewpoint (approximating a linear form, or the plane representing

its kernel) generalizes more easily than the diret viewpoint, as we shall see below.
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X

Y

Figure 2. The disrete line: dual ase

Figure 3. The stepped surfae

2. Symboli representation of disrete planes

Our aim in this setion is to de�ne the disrete approximation (also alled disrete plane or

stepped surfae, see Figure 3) assoiated with an irrational plane and to show how we an assoiate

with this stepped surfae a symboli sequene indexed by Z

2

. We will then explain how we an

reover this symboli sequene as symboli dynamis of a Z

2

-ation generated by two rotations

on the irle [10℄. Our onstrution an be rephrased in terms of the lassial \ut and projet"

onstrution (see for instane [39℄); see also [41℄ for a dual approah.

2.1. Constrution of the stepped surfae. We denote by (O; ~e

1

; ~e

2

; ~e

3

) the anonial basis of

the spae R

3

. In R

3

, we denote by P the plane of equation ax+ by + z + h = 0, with a; b;  > 0.

We will always suppose that the plane has totally irrational diretion, that is, the triple (a; b; )
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satis�es no rational relation (but we make no assumption on h). We an also assume, without loss

of generality, that  > a; b > 0; this assumption will be used in Setion 4.

We assoiate with the plane P a disrete plane P by approximating P by unit square faes as

follows (see Figure 3). This onstrution orresponds to the stepped surfae introdued by Ito and

Ohtsuki in [24, 25℄.

De�nition 1. Let S be the set of translates of the fundamental ube with integer verties that

interset the lower half-spae ax+ by + z + h < 0.

The disrete plane, or stepped surfae, P is de�ned as the boundary of S.

A vertex of the stepped surfae is an integral point that belongs to P . We denote by V the set of

verties of the stepped surfae.

Remark Some authors prefer to onsider the set of unit ubes that interset the plane P; in

that ase, the boundary of this set has two onneted omponents, and our disrete plane P is the

upper omponent of the boundary.

The de�nition implies that P is also the boundary of the union of the integral unit ubes the

interior of whih do not interset the lower half-spae (this is the losure of the omplement of S);

hene, there is a simple riterium to deide whether an integral point is a vertex of the stepped

surfae:

Proposition 1. An integral point (p; q; r) belongs to the set V of verties of the stepped surfae P

if and only if 0 � ap+ bq + r + h < a+ b+ 

Proof. If 0 � ap+ bq+ r+h, the ube of whih (p; q; r) is the lowest orner (for the natural partial

order in R

3

) does not interset the plane P, and if ap+ bq + r + h < a+ b+ , the ube of whih

it is the highest orner does interset the lower half spae. Hene (p; q; r) belongs to the boundary

of S. �

2.2. A lattie struture for the stepped surfae. We onsider now the verties of the stepped

surfae. These verties an be determined by a \ut and projet" method, as we have just seen, but

they learly do not form a sublattie of Z

3

, sine the plane has irrational diretion. It is however

possible, and very important for the sequel, to impose on the set of verties a lattie struture, by

projeting them on the diagonal plane x+ y + z = 0.

Let � be the aÆne projetion on the plane x + y + z = 0 along the diretion (1,1,1). Sine the

projetion is along a rational diretion, the projetion � of the lattie Z

3

is a lattie in the plane

x+ y + z = 0; a simple omputation proves that the sublattie f(p; q; r) 2 Z

3

j p+ q + r = 0g is a

sublattie of index 3 in � (see Figure 4).

Proposition 2. The projetion � is a bijetion from V to �.

Proof. Consider an arbitrary point g 2 �; by de�nition, there is (p; q; r) 2 Z

3

suh that g =

�(p; q; r). But it is lear that there is exatly one integer n 2 Z suh that 0 � a(p+n) + b(q+n)+

(r + n) + h < a+ b+ , hene g is the image of exatly one element of V . �

Hene, we an parameterize the verties of the disrete plane by a lattie; but this is not suÆient,

and we want to understand the loal struture of the disrete plane around a given vertex.

2.3. Symboli dynamis for the stepped surfae. The disrete plane P is a union of translates

of unit square faes. We use the following notation:

E

1

= f��~e

2

� �~e

3

j(�; �) 2 [0; 1[

2

g;

E

2

= f�~e

1

� �~e

3

j(�; �) 2 [0; 1[

2

g;

E

3

= f�~e

1

+ �~e

2

j(�; �) 2 [0; 1[

2

g:
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Figure 4. The lattie �

X

Y

Z

(0,0,0)+E1

X

Y

Z

(0,0,0)+E2

X

Y

Z

(0,0,0)+E3

Figure 5. The three possible faes with distinguished vertex at the origin

We all pointed fae of type i and distinguished vertex (p; q; r) 2 Z

3

the set of points

f(p; q; r) +E

i

g:

Remark that, beause of the signs we have used, (p; q; r) is not always the lowest vertex (for the

natural partial order in R

3

) of its pointed fae: this is the ase only for faes of type 3; for a fae of

type 1, the orresponding vertex is the highest point, while for a fae of type 2, it is an intermediate

point (see Figure 5). This an seem a umbersome notation, but it has two important advantages:

with this de�nition, we will see that the pointed faes form a partition of the disrete plane (this

is the reason for the semi-open interval and the signs in the de�nition of the faes), and that eah

vertex in V is the distinguished vertex of exatly one pointed fae in P .

Proposition 3. The disrete plane P is a union of pointed faes.

Proof. It is lear from the de�nition that P , being the boundary of a union of ubes, is a union of

squares. The only thing to hek is that, beause of our onvention, eah edge and eah vertex of

P belong to exatly one pointed fae of P ; we will prove it for the verties.

It is not immediately lear that a vertex in V annot be the distinguished vertex of 2 pointed

faes: it is not diÆult to �gure out that eah point in V an belong to the losure of 3, 4, 5, or 6

faes (see Figure 3, where we have indiated by dots the four ases).
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Remark �rst that the projetion from P to the plane x+ y+ z = 0 is one-to-one, sine eah line

parallel to the vetor (1; 1; 1) rosses P exatly one. Hene, the projetion of P tiles this plane by

three kinds of diamonds with verties in �, orresponding to the three types of faes.

Let us endow the plane x + y + z = 0 with the basis (O;

~

i;

~

j), where

~

i = ~�(~e

1

);

~

j = ~�(~e

2

). The

lattie �, having symmetry of order 6, determines a tiling by equilateral triangles. Given an element

g of �, onsider the triangle (g; g +

~

i; g+

~

i+

~

j). This triangle an be ompleted in exatly one way

in a diamond, whih orresponds to the projetion of a fae in P .

One easily heks that, in the three possible ases, our onvention have been hosen in suh way

that the preimage of g will be the distinguished vertex of the square orresponding to that diamond;

hene, a vertex annot be the distinguished vertex of two faes (beause their projetions would

overlap), but must be the distinguished vertex of one fae, otherwise the orresponding triangle in

the plane would have no preimage. �

The following orollary is an immediate onsequene of the preeding proof:

Corollary 1. The projetions of the square faes of P tile the plane by three kinds of diamonds

being the projetion of a fae of type E

k

, where k = 1; 2 or 3. Furthermore, eah point of V is

the distinguished vertex of exatly one pointed fae, hene eah point of � is the projetion of a

distinguished vertex of a fae of determined type.

Corollary 1 implies that we an ode the tiling of the plane that we obtain by a double sequene

de�ned over Z

2

. Indeed, we an de�ne a sequene indexed by �, by assoiating with eah element

of � the type of the fae orresponding to its preimage. But �, being a lattie in the plane, is

isomorphi (in a non-anonial way) to Z

2

.

De�nition 2. Reall that

~

i = ~�(~e

1

);

~

j = ~�(~e

2

). Let U = (U

g

)

g2�

be the sequene that assoiates

with eah point of � the type of the fae whose distinguished vertex projets on g, or equivalently

whih odes eah triangle with verties (g; g+

~

i; g+

~

i+

~

j) by the index k of the orresponding diamond

�(E

k

).

The sequene U is alled the oding of the plane P.

In the sequel, we will use the basis (

~

i;

~

j) of �, and assimilate � to Z

2

.

2.4. Symboli dynamis for Z

2

-ations. If we follow the proof of Corollary 1 further, we an

give an expliit desription of the type of an element of V :

Proposition 4. Let (p; q; r) be an element of V . Then:

� If 0 � ap+ bq + r + h < , (p; q; r) is the distinguished vertex of a fae of type 3.

� If  � ap+ bq + r + h < b+ , (p; q; r) is the distinguished vertex of a fae of type 2.

� If b+  � ap+ bq+ r+h < a+ b+ , (p; q; r) is the distinguished vertex of a fae of type 1.

Proof. To prove the proposition, remark that the given onditions determine some neighbouring

verties. For example, if 0 � ap+bq+r+h < , we have a+b � a(p+1)+b(q+1)+r+h < a+b+;

hene (p+ 1; q + 1; r), and, by the same kind of proof, (p+ 1; q; r) and (p; q + 1; r) are elements of

V . These are the four verties of a fae of type 3, whose distinguished vertex is (p; q; r). The other

ases are proved in a similar way. �

This proposition is not ompletely satisfying, beause we need to know the oordinates (p; q; r) of

an element of V . It would be preferable to use only oordinates in �, to give an expliit desription

of the sequene U , and this an be easily ahieved.

We shall use the usual representation for two-dimensional sequenes: the �rst index indiates

the olumn number from bottom to top, whereas the seond index denotes the row number, from

left to right.
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De�nition 3. The triple of stritly positive numbers (a; b; ) being �xed, we denote by R

a

the map:

R

a

: [0; a + b+ [ ! [0; a + b+ [ x 7! x+ a mod a+ b+ ;

and similarly, R

b

is the map:

R

b

: [0; a+ b+ [ ! [0; a + b+ [ x 7! x+ b mod a+ b+ :

We will all these maps, by abuse of language, rotations of angle a (respetively b) on the interval

[0; a + b + [ (sine these are onjugate, after identi�ation of points 0 and a + b + , to a irle

rotation).

Theorem 1. Let U be the oding of the plane P : ax+ by+ z+ h = 0 following De�nition 2. We

have

U

m;n

= i() R

m

a

R

n

b

(h) 2 I

i

;

with I

3

= [0; [, I

2

= [; + b[ and I

1

= [b+ ; a+ b+ [:

Proof. Let (m;n) be an element of �, and (p; q; r) its preimage in V . We know that the type of

(p; q; r) depends only on ap + bq + r. But we have (m;n) = (p � r; q � r), hene ap + bq + r =

am+ bn+ r(a+ b+ ).

This proves that am + bn and ap + bq + r are ongruent modulo a + b + , and the theorem

follows immediately from the de�nition of R

a

and R

b

and Proposition 4; for example, for a vertex

of type 3, we must have 0 � ap+ bq + r + h < , that is, 0 �ma+ nb+ r(a+ b+ ) + h < : this

exatly means that R

m

a

R

n

b

(h) 2 I

3

. �

3. Indution of Z

2

-ations

3.1. General framework. We keep the same notation as in the previous setions, a; b and  being

rationally independent positive real numbers.

Sine the two rotations R

a

and R

b

on the irle of length a + b +  ommute, they generate a

free Z

2

-ation on this irle, by (m;n):x = R

m

a

R

n

b

x. Our aim is to understand better the small

sale struture of this Z

2

-ation (that is, the way elements of an orbit R

m

a

R

n

b

x an approximate the

initial element x), and we want to use for that purpose the tool of indution, as one does in the

ase of a unique rotation on the irle. There are however two diÆulties:

First, the indued map T

A

of a map T on a subset A is easily de�ned by T

A

(x) = T

n

x

(x), with

n

x

= inffp > 0jT

p

(x) 2 Ag. But this de�nition uses in a fundamental way the order struture

of Z, and annot be extended as suh to Z

2

: for a Z

2

-ation, it does not make sense to de�ne a

\�rst return map". We will explain below how we an de�ne a notion of indution for Z

2

-ation, by

onsidering the equivalene relation related to the Z

2

-ation, that is, the equivalene relation whose

lasses are the orbits of the ation; we will onsider the indued equivalene relation obtained by

restrition to a subset. It is however unlear (and in fat, it is generally not the ase) that suh an

indued equivalene relation omes from a Z

2

-ation by rotations. It is a remarkable fat that it is

the ase for a suitable subinterval.

Seond, the indued map of a rotation on an arbitrary subinterval of the irle is usually not a

rotation, but an exhange of three intervals, with quite di�erent ergodi properties (for example,

most of these, ontrary to rotations, are weakly mixing [26℄). However, for suitable admissible

subintervals, whih have in partiular a length that is an integral linear ombination of a and

a+b+, it is the ase that the indued map of R

a

is again a rotation (on a irle of length a+b+)

on the given subinterval. Sine the numbers a; b;  are rationally independent, it is impossible to

�nd an interval on whih the indued maps of R

a

and R

b

are both rotations. Hene, it is quite

surprising that we an �nd, as we will prove below, a suitable subinterval on whih the indution

of the Z

2

-ation is again generated by a Z

2

-ation by a pair of rotations.

Note that this indution involves a non-trivial rearrangement of the orbit: an orbit for the

indued ation is always isomorphi to Z

2

. It is also inluded in an orbit of the original ation, and
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Figure 6. An indued orbit

this original orbit too is isomorphi to Z

2

, hene the indued orbit an be onsidered in a natural

way as a subset of Z

2

: if I is the indution interval, onsider the set of (m;n) suh that R

m

a

R

n

b

x 2 I.

However, this subset is NOT a sublattie of Z

2

(see Figure 6, where we have shown the points in

the Z

2

-orbit that fall in a given subinterval).

We will express in Setion 5 this orrespondene in ombinatorial terms, via the notion of sub-

stitutions, and explain how one an generate symboli dynamis for the initial ation using the

symboli dynamis for the Z

2

-ation.

Note �nally that, unlike the lassial Z-ation, the generators of the Z

2

-ation are not anonially

de�ned (sine we an �nd an in�nite number of bases for the lattie Z

2

); hene, there is a large

hoie for the indution proedure. This is to relate to the fat that there seems to be no way

to de�ne a \best" two-dimensional ontinued fration algorithm. In Setion 4, we will de�ne a

partiular indution proess related to the Jaobi-Perron algorithm; other hoies are obviously

possible. (See [13℄ for other examples of two-dimensional ontinued fration algorithms, suh as

Brun's or Selmer's algorithms.)

3.2. Indution of Z

n

-ations: de�nitions. With a Z

n

-ation on a set S, one an always assoiate

an equivalene relation on S, two points being equivalent if they belong to the same orbit.

De�nition 4. If I is a subset of S, we de�ne the indued equivalene relation on I as the restrition

of the original equivalene relation to the set I.

De�nition 5. Consider a free Z

n

-ation by rotations (as de�ned in De�nition 3) on an interval

S, and I a subinterval of S. We all generator of the indued equivalene relation, a free Z

n

-ation

on the set I suh that both equivalene relations oinide: we say that this new Z

n

-ation generates

the indution of the initial ation on the subset I.

If the Z

n

-ation has all dense orbits and I ontains an open set, the lasses of the equivalene

relation are ountable, and we an ertainly �nd a Z

n

-ation on I with the same orbits, but there

is in general no natural way to exhibit generators for this Z

n

-ation.

In the ase of a Z-ation, one an be more expliit: we an de�ne as above the indued map,

whih is a generator for the indued equivalene relation. If this Z-ation is given by an irrational

rotation R

a

on the irle R=Z, and we indue on a (half-open) interval of the irle, it is easy to

ompute expliitly the indued map on I. In the general ase, it is an exhange of three intervals,

whih has disontinuity points. For some speial interval (the so-alled admissible intervals), in

partiular for intervals of length 1 � ka, with 0 � k < 1=a, the indued map turns out to be a
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rotation on the smaller irle obtained by identifying extremities of I; iteration of this proedure

leads to the lassial ontinued fration algorithm. We an de�ne a similar notion for Z

n

-ations:

De�nition 6. Consider a free Z

n

-ation by rotations on an interval S, and I a subinterval of S.

The interval I is said admissible if the indued equivalene relation has a generator by rotations.

We an in fat generalize almost exatly the above result for free Z

n

-ations by rotations on the

unit irle:

Theorem 2. Let a

0

; a

1

; : : : ; a

n

be n + 1 positive real numbers suh that a

0

; a

1

; : : : ; a

n

are ratio-

nally independent. Let b

0

=

P

n

i=0

k

i

a

i

be a real number in (0; 1), with k

0

; : : : ; k

n

relatively prime

integers. Then, there exist numbers b

1

; : : : ; b

n

(with b

0

; b

1

; : : : ; b

n

rationally independent), suh that

the indution on an interval of length b

0

of the Z

n

-ation by rotations R

a

1

; : : : ; R

a

n

on the irle of

length a

0

+ a

1

+ : : : + a

n

is generated by the free Z

n

-ation by n rotations R

b

1

; : : : ; R

b

n

de�ned on

a irle of length b

0

.

Proof. Lift the Z

n

-ation by rotations R

a

1

; : : : ; R

a

n

to the universal over R of the irle of length

a

0

+a

1

+: : :+a

n

; we obtain a Z

n+1

- ation by translations (we add the translation by a

0

+a

1

+: : :+a

n

).

The irrationality ondition means that the lattie Z

n+1

ats without �xed point on R.

Consider any indivisible element b

0

=

P

n

i=0

k

i

a

i

of the lattie L with basis (a

0

; a

1

; : : : ; a

n

) (an

element of the lattie is alled divisible if it is a nontrivial produt by an integer of an element of the

lattie; indivisibility is equivalent to the fat that the oordinates k

0

; k

1

; : : : ; k

n

are relatively prime

integers). It an be ompleted by numbers b

1

; : : : ; b

n

in a basis for the lattie L. If we quotient R

by the translation by b

0

, the other translations de�ne rotations of the same angle b

i

on a irle of

length b

0

; this is exatly what we want to prove. �

We ould prove that we have in fat an equivalent ondition: a subinterval is admissible if and

only if its length is an indivisible element of the lattie; but we will not need this fat.

3.3. An algorithm for indution of Z

2

-ations by rotations. We onsider now a Z

2

-ation

by rotations R

a

; R

b

on a irle of length a + b + . An indution algorithm is a way to de�ne an

admissible subinterval, and to give expliit generators for the Z

2

-ation obtained by indution on

the admissible subinterval.

Here is a way to proeed (see Figure 7): suppose that a; b < . Consider the interval

J := [(b=a � 1)a; + b� bb=aa):

The length jJ j of this interval is a + b +  � (b=a + bb=a)a, hene it satis�es the ondition of

Theorem 2. One heks immediately that the numbers  � b=aa and b � bb=aa are generators

for the indued ation on a irle of length jJ j = �b=aa+ b�bb=aa+ a; they satisfy again the

indution hypothesis (� b=aa, b� bb=aa < a), hene we an iterate. We will show below that

this algorithm is a dynamial version of the lassial Jaobi-Perron algorithm.

4. Jaobi-Perron algorithm

4.1. The lassial Jaobi-Perron algorithm and a linear version. The usual Jaobi-Perron

algorithm, whih will be, in our terms, the projetive Jaobi-Perron algorithm, is usually de�ned

on the unit square in the following way (see for instane [13℄):

De�nition 7. The projetive Jaobi-Perron algorithm is de�ned on the unit square X = [0; 1) �

[0; 1) by the transformation �:

�(�; �) =

( �

�

�

� b

�

�

;

1

�

� b

1

�



�

if (�; �) 2 X � I

(0; �) if (�; �) 2 I;

where I is given by I = f(0; �); � 2 [0; 1)g:
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0 c b+c a+b+c

I3 I2 I1

J3 J2 J1

(C1-1)a C1a c c+b-B1a

Figure 7. Indution on the interval J

This is a map that is pieewise rational, and we an onsider it as a projetive map, oming from

a pieewise linear map in three dimensions; we an de�ne in this way a linear algorithm.

De�nition 8. The linear Jaobi-Perron algorithm is de�ned on the positive one f(a; b; ) 2 R

3

j0 �

a; b < g by the transformation F :

F (a; b; ) = (b� bb=aa;  � b=aa; a):

Sine we will always suppose that the numbers are irrational, we do not bother to de�ne F if

a = 0. Remark that, if we renormalize the last oordinate to 1, we reover the initial pieewise

rational transformation.

4.2. The indution algorithm. We onsider a Z

2

-ation on the interval I := [0; a+ b+ ) by two

rotations R

a

and R

b

. This is the ation used in Setion 2 to obtain the symboli sequene related

to the disrete plane ax+ by + z + h = 0.

Following Theorem 1, to obtain the symboli sequene, we partition the interval [0; a + b + )

into 3 subintervals: I

1

= [b + ; a + b + ), of length a, I

2

= [; b + ), of length b, and I

3

= [0; ),

of length  (these intervals are naturally linked to the generators of the ation: I

1

and I

2

[ I

3

are

the ontinuity intervals of the map R

a

(onsidered as an exhange of two intervals), while I

3

and

I

1

[ I

2

are the ontinuity intervals of R

a+b

).

Let

J := [(b=a � 1)a; + b� bb=aa):

We will indue on the subinterval J obtained by subtrating as many times as possible the interval

I

1

from I

2

and I

3

(see Figure 7). More preisely, the union [

�bb=a�k<b=a

R

k

a

(I

1

) is an interval of

the irle, whose omplement is an interval naturally partitioned into three intervals J

1

; J

2

; J

3

of

respetive lengths b� bb=aa;  � b=aa; a: we have

J

3

= [(b=a � 1)a; b=aa);

J

2

= [b=aa; );

J

1

= [; + b� bb=aa):

We reognize the Jaobi-Perron algorithm, and Theorem 2 shows that the indued Z

2

-ation is

given by F (a; b; ) (De�nition 8). It is then lear that we an iterate the proess. The aim of this

setion is to formulate this in more preise terms.
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4.3. The inhomogeneous Jaobi-Perron algorithm. We are interested in the disrete plane

assoiated with ax+ by+ z + h = 0, or equivalently with the symboli dynamis of the orbit of h

for the Z

2

-ation assoiated with the triple (a; b; ) on the irle [0; a+ b+ ). We de�ne h

1

by

h

1

= R

n

a

(h)� (b=a � 1)a;

where n is the smallest nonnegative integer suh that R

n

a

(h) belongs to J . Reall that J = [(b=a�

1)a;  + b� bb=aa). Hene n satis�es:

n =

8

<

:

b

�h

a

+ (b=a � 1), if h 2 [0; (b=a � 1)a);

0, if h 2 J;

b

a+b+�h

a

+ (b=a � 1); otherwise:

We thus de�ne an inhomogeneous (projetive and linear) version of the Jaobi-Perron algorithm.

In the Jaobi-Perron algorithm, one substrats the rotation vetor a as muh as possible from

the other two quantities b and . This algorithm will be shown to at on the whole system of all

the orbits under the Z

2

-ation assoiated with the triple (a; b; ) on the irle [0; a + b + ). The

inhomogeneous Jaobi-Perron algorithm will at on the orbit of a given point h 2 [0; a + b+ ) as

follows: the original point h is translated by multiples of the rotation vetor a so that �rst, the

image of h lands into the idution interval J of length a

1

+ b

1

+ 

1

. It is then translated (again by

multiples of the rotation vetor a) so that it lands into the interval [0; a

1

+ b

1

+ 

1

), on whih the

algorithm is de�ned.

De�nition 9. The inhomogeneous projetive Jaobi-Perron algorithm is de�ned on f(�; �; �) 2

(0; 1) � (0; 1) � (0; 1 + �+ �)g by the transformation

~

�:

if 0 < � < b1=� � 1, then

~

�(�; �;�) =

�

�

�

� b

�

�

;

1

�

� b

1

�

;

�

�

+ b

��

�

)

�

;

if b1=� � 1 � � < � + 1� b1=�, then

~

�(�; �;�) =

�

�

�

� b

�

�

;

1

�

� b

1

�

;

�

�

� b1=� + 1

�

;

if � + 1� b1=� � � < 1 + �+ �, then

~

�(�; �;�) =

�

�

�

� b

�

�

;

1

�

� b

1

�

;

�

�

+ b

1 + �+ � � �

�



�

:

In other words, the inhomogeneous Jaobi-Perron algorithm is a skew produt of its homogeneous

version.

De�nition 10. We will use in the sequel the following notation:

B

1

= bb=a; C

1

= b=a;

N

1

= minfn 2 N; n 6= 0; h+ na 2 Jg � (C

1

� 1):

The inhomogeneous linear Jaobi-Perron algorithm is de�ned on the positive one f(a; b; ;h) 2

R

3

j0 < a; b < ; 0 < h < a+ b+ g by the transformation

~

F :

~

F (a; b; ;h) = (a

1

; b

1

; 

1

;h

1

) = (b�B

1

a; � C

1

a; a;h +N

1

a):

Remark If h = 0, we have h

1

= 0, and this property is onserved by iteration. Hene, the

homogeneous algorithm de�nes the symboli dynamis of the plane ax+ by + z = 0.
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4.4. Generation of symboli sequenes. We an reover the symboli dynamis of the orbit of

h from the symboli dynamis of h

1

for the indued ation.

Theorem 3. Let U be the symboli sequene given by the orbit of h for the ation de�ned by the

triple (a; b; ) de�ned as in Theorem 1:

8(m;n) 2 Z

2

; U(m;n) = i() ma+ nb+ h 2 I

i

modulo (a+ b+ );

where I

1

= [b + ; a + b + [, I

2

= [; b + [, I

3

= [0; [. Let U

1

= (U

1

(m

1

; n

1

))

(m

1

;n

1

)2Z

2
be the

symboli sequene similarly de�ned by (a

1

; b

1

; 

1

;h

1

) =

~

F (a; b; ;h): Let

p

1

= b

h

1

+m

1

a

1

+ n

1

b

1

a

1

+ b

1

+ 

1

;

and

(1)

�

m = N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

) + C

1

� 1

n = m

1

� n

1

:

We have:

� if U

1

(m

1

; n

1

) = 1, then U(m;n) = 2;

� if U

1

(m

1

; n

1

) = 2, then U(m;n) = 3;

� if U

1

(m

1

; n

1

) = 3; then: if 0 � i < C

1

, U(m � i; n) = 3; U(m � C

1

; n) = 1; if C

1

< i �

B

1

+ C

1

, U(m� i; n) = 2.

Furthermore, this ompletely de�nes the sequene U , i.e., for any (m;n) 2 Z

2

, there exists a unique

(m

1

; n

1

) suh that (m;n) satis�es (1).

Proof. Reall the notation:

B

1

= bb=a; C

1

= b=a;

N

1

= minfn 2 N; n 6= 0; h+ na 2 Jg � C

1

+ 1;

a

1

= b�B

1

a; b

1

= � C

1

a; 

1

= a;h

1

= h+N

1

a;

J = [(C

1

� 1)a;  + b�B

1

a):

It suÆes to use the fat that, up to a translation of (C

1

�1)a (beause we take the initial point of

interval J as origin of oordinates for the indued ation), the orbit of h

1

is just the intersetion of

the orbit of h with J , that is, the orbit of h

1

is the intersetion of the orbit of h with [0; a

1

+b

1

+

1

).

To prove this, the only diÆulty is to obtain the index, in the \big" orbit, of the point of index

(m

1

; n

1

) in the indued orbit. This is not trivial, as we remarked in Setion 3.1: we are now making

expliit the rearrangement of the orbit implied by the indution.

For this purpose, we lift the orbit of h

1

to the universal over R. The point of oordinates

(m

1

; n

1

) an be written as

h

1

+m

1

a

1

+ n

1

b

1

� p

1

(b

1

+ a

1

+ 

1

);

where

p

1

= b

h

1

+m

1

a

1

+ n

1

b

1

a

1

+ b

1

+ 

1

:

This means that we onsider the ation on R by a group of three rotations, and we quotient by

the rotation of length the indution interval. Indeed p

1

is exatly the number of times we must

subtrat the length of this interval, after advaning from h

1

by ma

1

+ nb

1

.

We an now replae a

1

; b

1

; 

1

by their respetive values, and express the resulting value in terms

of the basis (a; b; a + b+ ) of the lattie:

h

1

+m

1

a

1

+ n

1

b

1

� p

1

(a

1

+ b

1

+ 

1

)

= h+N

1

a+m

1

(b�B

1

a) + n

1

(� C

1

a)� p

1

(a+ b+ � (B

1

+ C

1

)a)

= h+ a(N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

))+

+ b(m

1

� n

1

) + (a+ b+ )(�p

1

+ n

1

):
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0 c b+c a+b+c

I3 I2 I1

J’3 J’2 J’1

( C1-1)a C1 a c c+B1a b+c

Figure 8. Indution on the interval J

0

Hene, we get

h

1

+m

1

a

1

+ n

1

b

1

� p

1

(b

1

+ a

1

+ 

1

) = h+ma+ nb� p(a+ b+ );

with

m = N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

); n = m

1

� n

1

; p = p

1

� n

1

:

Indeed we proved that R

m

a

R

n

b

(h) 2 [0; a

1

+ b

1

+ 

1

) if and only if there exists (m

1

; n

1

) 2 Z

2

suh

that (m;n) satis�es the preeding relation. This implies that R

m

a

R

n

b

(h) 2 J if and only if there

exists (m

1

; n

1

) 2 Z

2

suh that (m;n) satis�es

m = N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

) + C

1

� 1; n =m

1

� n

1

; p = p

1

� n

1

:

Note that suh a (m

1

; n

1

) always exists and is unique sine

0

�

m

n

p

1

A

=

0

�

�B

1

�(C

1

+ 1) (B

1

+ C

1

)

1 �1 0

0 �1 1

1

A

0

�

m

1

n

1

p

1

1

A

+

0

�

N

1

+ C

1

� 1

0

0

1

A

;

and the determinant of this matrix equals 1.

We then remark that by onstrution J

1

� I

2

, and J

2

� I

3

, J

3

� I

3

(see Figure 7). This

ompletely de�nes U for the part of the orbit that belongs to J . Hene U

1

(m

1

; n

1

) = i implies

U(m;n) = i, for i 2 f1; 2; 3g.

Observe now that the omplement of J is partitioned by the intervals R

�i

a

J

3

, for 0 < i � B

1

+C

1

,

and eah of these intervals is inluded in one of the I

n

. This implies that the sequene U is

ompletely de�ned in this way. Indeed, if R

m

a

R

n

b

(h) is not in J , there is an iterate R

k

a

R

m

a

R

n

b

(h),

with k � B

1

+ C

1

, that belongs to J ; using this point, the value U(m;n) is de�ned by the third

ondition in the statement of the theorem.

�

4.5. A seond generating proess. The aim of the next setion is to use Theorem 3 to onstrut

two-dimensional substitutions. In ombinatorial terms, Theorem 3 means that the sequene U is

dedued from the sequene U

1

by replaing 1 by 2, 2 by 3, and 3 by the one-dimensional word

2

B

1

13

C

1

(a more preise meaning to this statement will be disussed in Setion 5). It will be more

onvenient in order to replae the letter 3 by a two-dimensional word, to indue on a non-onneted

set, i.e., on the set (see Figure 8)

J

0

:= J

3

[ J

2

[R

B

1

a

(J

1

) = [(C

1

� 1)a; ) [ [+ b�B

1

a; + b):

Note that we hoose to �rst indue on J sine we needed for algebrai reasons (Theorem 2) the

onnetedness of J .

We thus dedue from Theorem 3:
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Theorem 4. Let U and U

1

be de�ned as in Theorem 3. Let

p

1

= b

h

1

+m

1

a

1

+ n

1

b

1

a

1

+ b

1

+ 

1

;

and

(2)

�

m = N

1

�m

1

B

1

� n

1

(C

1

+ 1) + p

1

(B

1

+ C

1

) + C

1

� 1

n = m

1

� n

1

:

We have:

� if U

1

(m

1

; n

1

) = 1, then U(m+B

1

; n) = 2;

� if U

1

(m

1

; n

1

) = 2, then U(m;n) = 3;

� if U

1

(m

1

; n

1

) = 3; then: if 0 � i < C

1

, U(m�i; n) = 3; U(m�C

1

; n) = 1; if 0 � i � B

1

�1,

U(m� C

1

+ i; n� 1) = 2.

Furthermore, this ompletely de�nes the sequene U , i.e., for any (m;n) 2 Z

2

, there exists a unique

(m

1

; n

1

) suh that (m;n) satis�es (2).

5. Two-dimensional substitutions

5.1. Pointed substitutions. Let us reall that a substitution over the alphabet A is a non-erasing

morphism of the free monoid A

�

endowed with the onatenation. Substitutions are usually used

to substitute a �nite word or a sequene, and also, as iteration devies whih generate in�nite

sequenes [31℄. We want to extend this notion to the two-dimensional ase. We are not able to

endow the set of two-dimensional �nite words (whatever its de�nition ould be) with an algebrai

struture, as the onatenation over A

�

. If we restrit ourselves to square fators or retangular

fators (this orresponds to piture languages [21℄), some results have been established in this

diretion. This is the ase in partiular for the notion of two-dimensional substitutions of onstant

length whih orrespond to two-dimensional automati sequenes [37, 38℄. We are interested here

in the non-onstant length ase.

Theorem 4 shows how to dedue the sequene U from the sequene U

1

: we an summarize simply

by saying that we replae 1 by 2, 2 by 3 and 3 by

13

C

1

2

B

1

. This, however, would be suÆient for

a one-dimensional sequene and for a usual substitution, but not for a two-dimensional sequene;

in fat, we need to de�ne the position of the pattern that replaes a given letter. We thus need

to introdue the notion of pointed substitution as a map that sends a letter i loated in position

(m;n) to a pointed pattern, depending only on i, loated in position (m

0

; n

0

) given as a funtion

of (m;n) and i. (Note that similar substitutions have been introdued in [24, 25, 3, 5℄ in the

framework of the stepped surfae: these substitutions at on unit tips.) Hene, the sequene U is

the image of U

1

by a pointed substitution that is ompletely determined by (a

1

; b

1

; 

1

;h

1

), de�ned

via the inhomogeneous Jaobi-Perron algorithm. To make this statement more preise, we need to

introdue a suitable formalism.

We want a two-dimensional substitution to at on two-dimensional words and sequenes. By

word, we mean roughly speaking a �nite set of letters in f1; 2; 3g, loated in some position in Z

2

with no overlaps, whih may be not onneted. More preisely, a pointed word is de�ned as a map

with �nite support from Z

2

�f1; 2; 3g to f0; 1g. We shall need to onsider some words with overlaps.

Hene, it is more onvenient to onsider linear ombinations of words with oeÆients in R, so as

to get a vetor spae. Hene we introdue the following de�nition.

De�nition 11. Let F be the vetor spae of maps from Z

2

� f1; 2; 3g to R, that take value zero

everywhere exept for a �nite set.
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For x 2 Z

2

and i 2 f1; 2; 3g, note (x; i) the element of F whih takes value 1 at (x; i), and 0

elsewhere; the set f(x; i); x 2 Z

2

; i 2 f1; 2; 3gg is a basis of F . We all suh an element a pointed

letter.

The support of an element of F is the set of (x; i) on whih it is not zero.

We say that an element of F is a pointed pattern if it takes value 0 and 1 and for every x 2 Z

2

,

there exists at most one i 2 f1; 2; 3g suh that it takes 1 at (x; i). One an represent a pointed

pattern as a two-dimensional pointed word loated in point x 2 Z

2

.

If M and N are two pointed patterns, we will say for simpliity that M ontains N (we denote

it N �M) if the support of M ontains that of N .

Similarly, we say that a pointed pattern M is inluded in the two-dimensional sequene V (we

note it M � V ) if the support of M is inluded in the support of V, where V denotes the map from

Z

2

� f1; 2; 3g to R that takes value 1 for every (x; V (x)), and 0 otherwise.

We say that two pointed patterns M and N are disjoint (M \ N = ;) if their supports are

disjoint.

We are now able to de�ne a notion of pointed substitution �

(a

1

;b

1

;

1

;h

1

)

on F . This notion an

be ompared with the formalism developed by C. Radin (see for instane [32, 18, 33, 34℄) for

tiling spaes whih are generated by substitution rules ating on polygonal tiles, as the well-known

example of the Penrose tiling.

De�nition 12. Let us use the notation of Theorem 4. We de�ne the pointed substitution

�

(a

1

;b

1

;

1

;h

1

)

: F ! F

as the linear map de�ned on the basis of F

f((m

1

; n

1

); i); (m

1

; n

1

) 2 Z

2

; i 2 f1; 2; 3gg

by

8

>

>

<

>

>

:

�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 1) = ((m+B

1

; n); 2)

�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 2) = ((m;n); 3)

�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 3) =

P

0�k�C

1

�1

((m� k; n); 3) + ((m� C

1

; n); 1)+

P

0�k�B

1

�1

((m� C

1

+ k; n� 1); 2);

with

8

>

<

>

:

m = m(m

1

; n

1

) = N

1

�mB

1

� n(C

1

+ 1) + p

1

(B

1

+C

1

) + C

1

� 1;

n = n(m

1

; n

1

) = m

1

� n

1

;

p

1

= p

1

(m

1

; n

1

) =

h

h

1

+m

1

a

1

+n

1

b

1

a

1

+b

1

+

1

i

;

and

�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); i) = 0;

otherwise.

The map (m

1

; n

1

) 7! (m;n) is alled the plaing rule assoiated with the substitution �

(a

1

;b

1

;

1

;h

1

)

:

Remark

Note that when h = 0, then h

1

= 0, N

1

= 0 and the image of ((0; 0); 3) ontains ((0; 0); 3).

Furthermore, the parameter N

1

ats as a translation of the image of a letter.

Let U (respetively U

1

) denote the map from Z

2

� f1; 2; 3g to R that takes value 1 for every

(x;U(x)) (respetively (x;U

1

(x))), and 0 otherwise.

We an de�ne in a natural way �

(a

1

;b

1

;

1

;h

1

)

on U

1

. More preisely, we an translate the indution

proess (Theorem 4) into the following ombinatorial terms:

Theorem 5. We have:
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(1) 8(x; i) 2 U

1

; �

(a

1

;b

1

;

1

;h

1

)

(x; i) � U :

(2) 8(y; j) 2 U ; 9!(x; i) 2 U

1

; �

(a

1

;b

1

;

1

;h

1

)

(x; i) ontains (y; j):

(3) If (x; i); (x

0

; j) 2 U

1

with (x; i) 6= (x

0

; j);

then �

(a

1

;b

1

;

1

;h

1

)

(x; i) \ �

(a

1

;b

1

;

1

;h

1

)

(x

0

; j) = ;:

Remarks In other words, this theorem means that the image of the two-dimensional sequene

U

1

under the ation of �

(a

1

;b

1

;

1

;h

1

)

is exatly the two-dimensional sequene U .

Note that, in ontrast to one-dimensional substitutions, it is non-trivial to prove that the def-

inition of a pointed substitution is onsistent: the images of pointed patterns ould overlap, or

not over the whole image sequene. Indeed, the image by �

(a

1

;b

1

;

1

;h

1

)

of a pointed pattern is not

always a pointed pattern or the image of a onneted pointed pattern may not be onneted. But

we know that if the pointed pattern is ontained in U

1

, then its image is still a pointed pattern and

it is ontained in the double sequene U .

Remark that the substitution depends on the inhomogeneous part h and that it may not be

onsistent anymore if one onsiders a pointed pattern inluded in a sequene U

1

assoiated with a

di�erent h (although the languages, i.e., the sets of fators are the same).

5.2. Loal rules. It is however very inonvenient to use a pointed substitution, sine we need at

eah step global information, inluding a

1

; b

1

; 

1

; h

1

, and not only B

1

; C

1

; N

1

. In partiular we are

not able to iterate it in order to generate a double sequene. It is muh more onvenient to be able

to use a loal information, i.e., loal rules (and this is exatly what is done when one omputes

one-dimensional substitutions: one does not ompute the exat position of a given pattern, but

only uses the fat that patterns follow eah other). Roughly speaking, a loal rule says how to

plae the image of a (pointed) letter with respet to the images of the letters belonging to a �nite

neighbourhood. The idea here is that in fat, the relative position of patterns ontains all the

information in a

1

; b

1

; 

1

; h

1

; hene we must rely only on this relative position. A loal information

is suÆient for iteration. Fortunately, it is possible to give suh loal rules for the two-dimensional

substitutions we use. We obtain seven loal rules involving only one letter adjaent to the one we

onsider. In order to give a more preise meaning to the notion of loal rule, we need to introdue

the onept of pattern.

We de�ne a pattern as a pointed pattern up to translation. More preisely, a loal pattern is an

equivalene lass for a given pointed pattern for the following relation:

M � N if and only if there exists t 2 Z

2

suh that

8(x; i) 2 Z

2

� f1; 2; 3g : (x; i) �M if and only if (x+ t; i) � N:

In other words, a pattern is a word onsidered without a preise loation in Z

2

.

Consider the following seven patterns: we give a representative of eah of these patterns below.

We denote by C the union of the equivalene lasses of those pointed patterns.

� 33 : ((0; 0); 3) + ((1; 0); 3)

� 13 : ((0; 0); 1) + ((1; 0); 3)

�

3

2

: ((0; 0); 2) + ((1; 1); 3)

�

3

3

: ((0; 0); 3) + (0; 1); 3)

�

1

3

: ((0; 0); 3) + ((1; 1); 1)

� 21 : ((0; 0); 2) + ((1; 0); 1)

�

2

3

: ((0; 0); 3) + ((0; 1); 2)
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We mean by loal rule the following: suppose for instane

((m;n); U

m;n

); (m+ 1; n); U

m+1;n

)) 2 C;

then one knows where to plae the image of ((m + 1; n); U

m+1;n

) with respet to the one of

((m;n); U

m;n

): Theorem 6 below gives a more preise meaning to this. Note that the patterns

in C do not depend on the oeÆients (B

1

; C

1

; N

1

), ontrary to the loal rules.

Theorem 6. Let v 2 Z

2

. Let T

v

denote the translation de�ned on the basis f(x; i)g by T

v

(x; i) =

(x + v; i). The following relations hold for every pointed loal pattern inluded in U

1

, with the

notation of De�nition 12:

� �

(a

1

;b

1

;

1

;h

1

)

[(m

1

; n

1

); 3) + ((m

1

+ 1; n

1

)); 3)℄

= �

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 3) + T

(�B

1

;1)

[�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 3)℄

� �

(a

1

;b

1

;

1

;h

1

)

[((m

1

� 1; n

1

); 1) + ((m

1

; n

1

); 3)℄

= �

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 3) + T

(B

1

�C

1

�1;1)

[�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 1)℄

� �

(a

1

;b

1

;

1

;h

1

)

[((m

1

� 1; n

1

� 1); 2) + ((m

1

; n

1

); 3)℄

= �

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 3) + T

(1;0)

[�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 1)℄

� �

(a

1

;b

1

;

1

;h

1

)

[((m

1

; n

1

); 3) + (m

1

; n

1

+ 1); 3)℄

= �

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 3) + T

(�C

1

�1;�1)

[�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 3)℄

� �

(a

1

;b

1

;

1

;h

1

)

[((m

1

; n

1

); 3) + ((m

1

+ 1; n

1

+ 1); 1)℄

= �

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 3) + T

(�C

1

�1;0

[�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 1)℄

� �

(a

1

;b

1

;

1

;h

1

)

[((m

1

; n

1

); 2) + ((m

1

+ 1; n

1

); 1)℄

= �

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 2) + T

(0;1)

[�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 1)℄

� �

(a

1

;b

1

;

1

;h

1

)

[((m

1

; n

1

); 3) + ((m

1

; n

1

+ 1); 2)℄

= �

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 3) + T

(�C

1

�1;�1

[�

(a

1

;b

1

;

1

;h

1

)

((m

1

; n

1

); 2)℄:

Note that these rules orrespond to the ones given in [25℄, up to a rotation and to a permutation

of the letters. The following piture gives a representation of the loal rules in the ase B

1

= 2,

C

1

= 4. We have distinguished the letters and their respetive images by overlining one of the

two letters. This onvention is useful in partiular for what onerns the �rst and the fourth rules,

where the same letter ours twie.

�
33

7!

13333

2213333

22

�
13

7!

13333

222

�

3

2

7!

133333

22

�

3

3

7!

13333

1333322

22

�

1

3

7!

213333

22

�
21

7!

2

3

�

2

3

7!

13333

322

Proof. Let us prove the �rst assertion of Theorem 6 for instane. The proof of the other assertions

follows the same sheme. Suppose that U

1

(m

1

; n

1

) = U

1

(m

1

+ 1; n

1

) = 3. Let us use the notation
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of De�nition 12. We thus have p

1

(m

1

+ 1; n

1

) = p

1

(m

1

; n

1

), m(m

1

+ 1; n

1

) = m(m

1

; n

1

) � B

1

,

n(m

1

+ 1; n

1

) = n(m

1

; n

1

) + 1. �

The next step is to prove that these rules ompletely de�ne the image of the sequene U

1

. Let

us use the terminology of [24, 25℄.

De�nition 13. Let M be a pointed pattern. We say that M is C-overed if:

8(x; i); (x

0

; i

0

) �M; 9n 2 N; 9(y

0

; j

0

); (y

1

; j

1

); : : : ; (y

n

; j

n

) 2 Z

2

� f1; 2; 3g

suh that (y

0

; j

0

) = (x; i); (y

n

; j

n

) = (x

0

; i

0

); and for 0 � k � n� 1;

((y

k

; j

k

) + (y

k+1

; j

k+1

)) 2 C:

One easily dedues from the loal rules the following.

Lemma 1. If a pointed pattern M � U

1

is C-overed, then �

(a

1

;b

1

;

1

;h

1

)

(M) is also a C-overed

pointed pattern.

Proof. This is a diret onsequene of the fat that the image of any pointed pattern in C is C-

overed. This is just a ase study.

�

We are now able to extend the de�nition of the two-dimensional substitution �

(a

1

;b

1

;

1

:h

1

)

to any

C-overed pointed pattern inluded in U

1

by using only loal rules and forgetting the plaing rule

(De�nition 12). This implies in partiular that we an easily onsider limits of iterations of the

two-dimensional substitutions starting from any C-overed pointed pattern.

5.3. Iteration of the two-dimensional substitutions in the homogeneous ase. Consider

the homogeneous ase, that is, the plane ax + by + z = 0. We have given a meaning to the fat

that U is the image of U

1

under the ation of the substitution �

(a

1

;b

1

;

1

;0)

. We an now iterate this

proedure, using again the Jaobi-Perron algorithm.

Reall that a; b;  are independent over Q . We assoiate with (a; b; ) the sequene (B

n

; C

n

)

n2N

of integers de�ned by:

F

n

(a; b; ) = (a

n

; b

n

; 

n

); B

n+1

= bb

n

=a

n

; C

n+1

= b

n

=a

n

:

Reall that we have for every n the following admissibility onditions:

0 � B

n

� C

n

and if B

n

= C

n

then B

n+1

6= 0:

We an iterate this proess in order to generate the sequene U by the omposition of suh

two-dimensional substitutions. More preisely, we eventually de�ne arbitrarily large parts of the

sequene U even if we only know the initial letter of eah sequene, or in the worst ase, if we

only know a �nite path surrounding ((0; 0); 3). Indeed ((0; 0); 3) belongs to U

n

for every integer n

(where U

n

is assoiated as previously with the plane a

n

x + b

n

y + 

n

z = 0). We have 8n; h

n

= 0.

Hene �

(a

1

;b

1

;

1

;0)

�

(a

2

;b

2

;

2

;0)

: : :�

(a

n

;b

n

;

n

;0)

((0; 0); 3) belongs to U for every n. Furthermore, sine

the sequene of pointed patterns �

(a

1

;b

1

;

1

;0)

�

(a

2

;b

2

;

2

;0)

: : :�

(a

n

;b

n

;

n

;0)

((0; 0); 3) is inreasing, one

an give a meaning to its limit, and

lim

n!1

�

(a

1

;b

1

;

1

;0)

�

(a

2

;b

2

;

2

;0)

: : :�

(a

n

;b

n

;

n

;0)

((0; 0); 3)

overs an in�nite part of the sequene U ; we shall return to the in�nite sequene we obtain in the

last setion.
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6. Dual substitutions: algebrai onstrution of stepped surfaes

In this setion, we introdue an expliit onstrution for the stepped surfae and emphasize the

onnetion between the notion of two-dimensional substitutions we introdued and the dual maps

for one-dimensional extensions of substitutions disussed in [3, 5℄, and alluded to in Subsetion 1.2.

Indeed, the work done so far an be reformulated in the initial framework of stepped surfaes.

We will introdue a family of one-dimensional substitutions; with these, one assoiates, (following

the formalism of [3, 5℄) a linear map on an in�nite dimensional spae, the one-dimensional geometri

realization. One then de�nes the dual map E

1

(�)

�

of these linear maps; using these dual maps,

one �rst reovers the substitutions of the previous setion, and seond, generates in a onstrutive

way the stepped surfae.

We will for the sake of simpliity restrit ourselves to the homogeneous ase: that is, we will

onsider only the ase h = h

1

= 0, or equivalently, we will onstrut stepped surfaes for irrational

planes through the origin. Our results generalize to the inhomogeneous ase, but the notation

beomes quite umbersome.

In this setion, we will onsider a rationally independent triple (a; b; ), and the triple (a

1

; b

1

; 

1

)

obtained from it by the Jaobi-Perron algorithm, and take as previously the notation B

1

= bb=a,

C

1

= b=a, so that a

1

= b�B

1

a, b

1

= � C

1

a, 

1

= a.

In Setion 6.1, we will reformulate the pointed substitutions of the previous setion to obtain

diretly the stepped surfae. In the next two subsetion, we will briey review the formalism of

one-dimensional extensions of substitutions and their dual maps. In Setion 6.4, we apply this to

the present ase, and in Setion 6.5, we will prove that we an so reover in a ompletely formal

way the previous results; the last subsetion gives another interpretation in terms of tilings of the

line.

6.1. A ombinatorial onstrution of the stepped surfae. In Setion 5, we de�ned pointed

substitutions taking pointed letters to pointed patterns. If we denote, as in Setion 2, P (respe-

tively P

1

) the plane ax + by + z = 0 (respetively a

1

x + b

1

y + 

1

z = 0), P (respetively P

1

) the

orresponding stepped surfae, we reover easily both stepped surfaes from the symboli sequenes

U;U

1

. The pointed substitution, sending sequene U

1

to U , an then be onjugate to a map that

sends eah fae of P

1

to a disjoint union of faes of P , in suh a way that any fae of P is in the

image of exatly one fae of P

1

.

A straightforward omputation, using Theorem 4, gives the exat formula for this map, where

we denote as above by (X;Y;Z) +E

i

the fae of type i with distinguished vertex (X;Y;Z) and we

denote disjoint unions by a formal sum:

Theorem 7. If (X;Y;Z) +E

i

is a fae of P

1

, the pointed substitution sends it to a union of faes

of P aording to the following:

� (X;Y;Z) +E

1

is sent to (�B

1

X � C

1

Y + Z +B

1

+ C

1

� 1;X; Y ) +E

2

� (X;Y;Z) +E

2

is sent to (�B

1

X � C

1

Y + Z + C

1

� 1;X; Y ) +E

3

� (X;Y;Z)+E

3

is sent to [(�B

1

X �C

1

Y +Z;X +1; Y +1)+E

1

℄+

P

B

1

�1

i=0

[(�B

1

X �C

1

Y +

Z + i;X; Y + 1) +E

2

℄+

P

C

1

�1

i=0

[(�B

1

X � C

1

Y + Z + i;X; Y ) +E

3

℄:

Proof. We will only prove the last and most ompliated formula, the �rst two are proved in the

same way. Suppose that the fae (X;Y;Z) + E

3

belongs to P

1

. Then, by Proposition 4, we have

a

1

X + b

1

Y + 

1

Z 2 J

3

= [0; 

1

[ (this equality is valid in R, not modulo a

1

+ b

1

+ 

1

).

This ation omes by indution on J from the ation de�ned by (a; b; ). We an then obtain

the position of this point, and a part of its orbit for the initial ation, with respet to the natural

partition for this initial ation. Namely, taking into aount the shift of (C

1

� 1)a oming from the

hange of origin, we obtain that

for 0 � i � C

1

� 1; a

1

X + b

1

Y + 

1

Z + (C

1

� 1)a� ia 2 I

3

;
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the next preimage (for whih we must take into aount that we have made a omplete turn

(a+ b+ ))

a

1

X + b

1

Y + 

1

Z + (C

1

� 1)a� C

1

a+ (a+ b+ ) 2 I

1

;

and images of this last point by R

�1

b

R

i

a

, for 0 � i � B

1

� 1,

a

1

X + b

1

Y + 

1

Z + (C

1

� 1)a� C

1

a+ (a+ b+ )� b+ ia 2 I

2

;

(see Figure 7). Replaing a

1

; b

1

; 

1

by their respetive values b�B

1

a; � C

1

a; a shows that

a(�B

1

X � C

1

Y + Z) + b(X + 1) + (Y + 1) 2 I

1

;

hene (�B

1

X �C

1

Y +Z;X + 1; Y + 1) +E

1

is a fae of P , and similarly for the other faes; as it

was proved in Theorem 4, eah fae is obtained in this way exatly one. �

The aim of the next setion is to show that, using the formalism of [3, 5℄, we an reover

in a purely algebrai way this formula from the following ordinary one-dimensional substitutions

assoiated with the Jaobi-Perron algorithm.

De�nition 14. We denote by �

B

1

;C

1

the substitution over the three- letter alphabet f1; 2; 3g de�ned

by:

�

B

1

;C

1

(1) = 3; �

B

1

;C

1

(2) = 13

B

1

; �

B

1

;C

1

(3) = 23

C

1

:

6.2. The one-dimensional extension of a substitution. We denote by f1; 2; 3g

�

the free

monoid on 3 letters, and by f the natural map (abelianization) from f1; 2; 3g

�

to Z

3

(if W is

an element of f1; 2; 3g

�

(a word), f(W ) is the vetor that ounts the number of ourrene of eah

letter in W ).

Let � be a substitution on three letters. We will denote by M the matrix assoiated with the

abelianization of � (M

i;j

is the number of ourrenes of the letter i in the word �(j)). There is an

obvious ommutative diagram:

f1; 2; 3g

�

�

�! f1; 2; 3g

�

f # # f

Z

3

M

�! Z

3

:

We will take the notation

�(i) =W

(i)

=W

(i)

1

: : :W

(i)

l

i

= P

(i)

n

W

(i)

n

S

(i)

n

;

for 1 � n � l

i

, where l

i

is the length of �(i), P

(i)

n

is the pre�x of length n � 1 of �(i) (the empty

word for n = 1), and S

(i)

n

is the suÆx of length l

i

� n of �(i) (the empty word for n = l

i

).

It is natural to assoiate with eah �nite word W = w

1

w

2

: : : w

n

on 3 letters a path in the three-

dimensional spae, starting from 0 and ending in f(W ), with verties in f(w

1

: : : w

i

) for i = 1 : : : n:

we start from 0, advane by ~e

i

if the �rst letter is i, and so on. This allows us to de�ne a map on

paths, oming from the substitution, by taking the path for W to the path for �(W ). In fat, this

map an be de�ned in a onsistent way for all paths with adjaent integer verties, and made in a

linear map, in the following way:

De�nition 15. We denote by ((X;Y;Z); i) 2 Z

3

�f1; 2; 3g an elementary path (that is, a segment

from (X;Y;Z) to (X;Y;Z)+~e

i

); we denote by G the real vetor spae of formal �nite weighted sums

of elementary paths. We all one-dimensional extension of �, and denote by E

1

(�), the linear map

de�ned on G by:

E

1

(�)((X;Y;Z); i) =

l

i

X

n=1

((M:(X;Y;Z) + f(P

(i)

n

);W

(i)

n

):
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X

Y

X

Y

X

Y

X

Y

Figure 9. The one-dimensional extension of 0 7! 010, 1 7! 10

It is easily heked that this formula is suh that � takes the ontinuous path orresponding to a

word W to the ontinuous path orresponding to �(W ); indeed, the �rst path ends in f(W ), while

the seond ends in f(�(W )) = M:f(W ), and the formula ensures that if we extend the �rst path,

the image of the extension will start at the end of the seond path (see Figure 9).

6.3. The dual substitution. For the sequel, we need the matrix M to be invertible in the set of

integral matries, and a suÆient ondition is that its determinant is 1, hene the next de�nition:

De�nition 16. A substitution � is alled unimodular if its abelianized matrix M has determinant

1.

From now on, we suppose that � is a unimodular substitution; it is readily heked that this is

the ase of the Jaobi-Perron substitutions de�ned above (De�nition 14).

We want to study the dual map E

�

1

(�) of E

1

(�), as a linear map on G.

De�nition 17. We denote by G

�

the spae of dual maps with �nite support (that is, dual maps

that give value 0 to all but a �nite number of the vetors of the anonial basis).

The spae G

�

has a natural basis ((X;Y;Z); i

�

), the map that gives value 1 to ((X;Y;Z); i) and

0 to all other vetors. It is possible to give a geometri meaning to this dual spae by a kind of

Poinar�e duality: we represent the element ((X;Y;Z); i

�

) by the upper fae perpendiular to the

diretion ~e

i

of the unit ube with lowest vertex (X;Y;Z) (see [3, 5℄ for more details, and a more

general framework).

The map E

1

(�) has a dual map, and it is easy to prove that, if the map M is not degenerated,

it preserves the spae G

�

[3℄; when � is unimodular, it is easy to ompute expliitly this dual map:

Proposition 5. If � is unimodular, the dual map E

�

1

(�) is de�ned on G

�

by

E

�

1

(�)((X;Y;Z); i

�

) =

X

j2f1;2;3g

X

W

(j)

n

=i

(M

�1

:[(X;Y;Z) � f(P

(j)

n

)℄; j

�

):

Proof. Let us ompute E

�

1

(�). Using the natural bilinear produt over G

�

� G, one gets:

< E

�

1

(�)((X;Y;Z); i

�

))j((X

0

; Y

0

; Z

0

); j) >=< (X;Y;Z); i

�

)jE

1

(�)((X

0

; Y

0

; Z

0

); j) >

=< ((X;Y;Z); i

�

)j

l

j

X

n=1

(M:(X

0

; Y

0

; Z

0

) + f(P

(j)

n

);W

(j)

n

> :
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The produt is nonzero if and only if there exists n suh that W

(j)

n

= i, M:(X

0

; Y

0

; Z

0

) + f(P

(j)

n

) =

(X;Y;Z), that is, (X

0

; Y

0

; Z

0

) =M

�1

([(X;Y;Z) � f(P

(j)

n

)℄; j

�

): �

6.4. Computation of the dual substitution of the Jaobi-Perron substitution. We an

apply the preeding formula to the Jaobi-Perron substitution.

The matrix M and its inverse are given in that ase by:

M =

0

�

0 1 0

0 0 1

1 B

1

C

1

1

A

M

�1

=

0

�

�B

1

�C

1

1

1 0 0

0 1 0

1

A

:

The �rst two letters our exatly one in all the images, so in the orresponding images by

the dual map, the sum redues to exatly one element, and the pre�x is empty, making it very

easy to ompute. The letter 3 ours one in �(1), B

1

times in �(2), and C

1

times in �(3), hene

the image E

�

1

(�)((� � �); 3

�

) onsists in a sum of one element of type ((� � �); 1

�

), B

1

elements of

type ((� � �); 2

�

) and C

1

elements of type ((� � �); 3

�

), as for the pointed substitution omputed in

Theorem 7. The exat formula is:

Proposition 6. The dual substitution E

�

1

(�) is de�ned by:

� E

1

(�)

�

((X;Y;Z); 1

�

) = ((�B

1

X � C

1

Y + Z;X; Y ); 2

�

)

� E

1

(�)

�

((X;Y;Z); 2

�

) = ((�B

1

X � C

1

Y + Z;X; Y ); 3

�

)

� E

1

(�)

�

((X;Y;Z); 3

�

) = ((�B

1

X �C

1

Y + Z;X; Y ); 1

�

) +

P

B

1

�1

i=0

((�B

1

X �C

1

Y + Z + 1 +

i;X � 1; Y ); 2

�

) +

P

C

1

�1

i=0

((�B

1

X � C

1

Y + Z + 1 + i;X; Y � 1); 3

�

):

6.5. Geometri interpretation. It seems at �rst sight that we do not reover exatly the formula

given in Theorem 7. But the disrepany only omes from a di�erene of onvention: reall that,

by de�nition, (X;Y;Z)+E

1

represents a fae of type 1 whose upper vertex is (X;Y;Z); this hoie

was made to make easier the proofs in Setion 2, so that (X;Y;Z) belongs to the fae; but by

de�nition, ((X;Y;Z); 1

�

) represents the upper fae, orthogonal to the diretion 1, of the unit ube

whose lowest vertex is (X;Y;Z). This hoie was imposed upon us in the paper [5℄ for oherene

reasons.

Hene, in our notation, ((X;Y;Z); 1

�

) and (X + 1; Y + 1; Z + 1) + E

1

orrespond to the same

fae of P . In the same way, we have ((X;Y;Z); 2

�

) = (X;Y + 1; Z + 1) +E

2

and ((X;Y;Z); 3

�

) =

(X;Y;Z + 1) +E

3

.

We an rephrase in these notation the preeding proposition:

Proposition 7. The dual substitution E

�

1

(�) is de�ned by:

� E

1

(�)

�

((X;Y;Z) +E

1

) = (�B

1

X � C

1

Y + Z +B

1

+ C

1

� 1;X; Y ) +E

2

� E

1

(�)

�

((X;Y;Z) +E

2

) = (�B

1

X � C

1

Y + Z + C

1

� 1;X; Y ) +E

3

� E

1

(�)

�

((X;Y;Z)+E

3

) = [(�B

1

X�C

1

Y +Z;X+1; Y +1)+E

1

℄+

P

B

1

�1

i=0

[(�B

1

X�C

1

Y +

Z + i;X; Y + 1) +E

2

℄ +

P

C

1

�1

i=0

[(�B

1

X � C

1

Y + Z + i;X; Y ) +E

3

℄:

We an hek that we reover the initial formula in Theorem 7.

6.6. Dynamial interpretation of the Jaobi-Perron substitution. The meaning of the one-

dimensional substitution �

B

1

;C

1

is not ompletely lear. However, we remark that the indution

de�nes a tiling of the initial interval I by intervals of length a

1

; b

1

; 

1

. If we take the negative

orientation, whih is onsistent with our way to number the intervals, we see that interval 1 is tiled

exatly by one interval of type 3, interval 2 is tiled by 23

B

1

and interval 3 is tiled by 13

C

1

; if we

iterate, we get a new substitution �

B

2

;C

2

, and the new tiling, in the reverse order, is now given by

�

B

2

;C

2

�

B

1

;C

1

(123).

It should be interesting to study the property of the sequene of tilings generated in this way.
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Figure 10. Iteration starting from the faes at the origin

Figure 11. Iteration starting from the fae ((1;�1;�1); 3

�

)

7. Additional remarks

We have proved above that, by iterating the sequene of pointed substitutions given by Jaobi-

Perron algorithm, we generate an in�nite part of the disrete surfae.

Note that in some ases, this limit is stritly inluded in the sequene U , as shown in the next

example (where the sequene (B

n

; C

n

)

n2N

is purely periodi of period [(1; 1); (1; 2); (0; 1)℄). Figure

10 shows the iteration of the substitution starting from the three faes at the origin; these however

do not generate everything, and the fae denoted by ((1;�1;�1); 3

�

) is ontained in its own image,

hene it never appears in the iterated images of the faes at the origin. Figure 11 shows an iterated

image of this fae. The last �gure shows that, together, these four faes generate a neighbourhood

of the origin. One an in fat prove that, in this way, one generates the omplete plane.

One ould ask what is the shape of the piee of the stepped surfae generated after n iterations.

This is not known in the general ase; however, in the periodi ase, one an prove that, if we

renormalize by a suitable matrix (restrition to the plane of the abelianization of the substitution),

the shape onverges to a partiular fratal set. Several papers have been devoted to this study,

speially [24, 25, 3, 5℄. The partiular ase where all partial quotient are equal to 1 in the Jaobi-

Perron algorithm gives the substitution 1 7! 3, 2 7! 13, 3 7! 23 (De�nition 4); up to a hange of
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Figure 12. A neighbourhood of the origin obtained by iteration on 4 faes

diretion and the exhange of 1 and 3, this is the same as the Rauzy substitution 1 7! 12, 2 7! 13,

3 7! 1 whih was �rst studied by Rauzy in [35℄ and in several other papers [17, 27, 28℄.

An interesting question is the extent to whih one an generalize these notions of substitution.

It has been addressed in [5℄ for extensions of substitutions. It seems that substitutions de�ned by

loal rules an also be used in a quite general ontext, ontrary to pointed substitutions, whih are

quite rigidly restrited to symboli sequenes assoiated with disrete planes.

Our disussion is not restrited to Jaobi-Perron algorithm; in fat, any lassial algorithm an

be used. The algorithm of Brun is partiularly interesting, sine it has an expliitly de�ned natural

extension, and we plan to return to this topi in a future paper.
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