A NEW CHARACTERIZATION OF THE FIBONACCI WORD

V. BERTHÉ, S. BRLEK, AND P. CHOQUETTE

ABSTRACT. Using the run-length encoding Δ , the Fibonacci infinite word F possesses a natural representation obtained from the iterations of Δ . This representation is the eventually periodic word $112(13)^{\omega}$ which can be extended to the shifted Fibonacci words.

1. INTRODUCTION

Let $\varphi: \{1,2\}^* \longrightarrow \{1,2\}^*$ be the morphism defined by

$$\varphi(1) = 12 \quad ; \quad \varphi(2) = 1,$$

and let $F_n = \varphi^n(1)$ be the *n*-th iterate, also called the *n*-th Fibonacci word. We then have

$$\begin{array}{rcl} F_{0} & = & 1, \\ F_{1} & = & 12, \\ F_{2} & = & 121, \\ F_{3} & = & 12112, \\ F_{4} & = & 12112121 \end{array}$$

and the infinite Fibonacci word F is obtained as the fixed point of φ , that is

The combinatorial and arithmetic properties of F have been widely studied and it has a dominant role in the theory of Sturmian words.

The run-length encoding Δ is used in many applications as a method for compressing data. For instance, the first step in the algorithm used for compressing the data transmitted by Fax machines consists of a run-length encoding of each line of pixels. It also has been used for the enumeration of factors in the Thue-Morse sequence [2]. It is defined as follows. Let $\Sigma = \{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ be a finite alphabet. Then every word $w \in \Sigma^*$ can be uniquely written as a product of factors as follows

$$v = \alpha_{m_1}^{e_1} \alpha_{m_2}^{e_2} \alpha_{m_3}^{e_3} \cdots$$

where $\alpha_{m_j} \in \Sigma$ and the exponents $e_j \ge 0$. Hence the coding is realized by a function

$$\Delta, \tau) : \Sigma^* \longrightarrow \mathbb{N}^* \times \Sigma^*$$

where the first component is the function Δ : $\Sigma^* \longrightarrow \mathbb{N}^*$, defined by

$$\Delta(w) = e_1 e_2 e_3 \dots = \prod_{j \ge 0} e_j,$$

with the support of NSERC (Canada).

and the second component is the function $\tau: \Sigma^* \longrightarrow \Sigma^*$ induced by the congruence \equiv defined by

$$\alpha^2 \equiv \alpha, \ \forall \alpha \in \Sigma.$$

Note that the alphabet Σ may be identified with a subset of \mathbb{N} and we shall denote $\mathbf{k} = \{1, 2, \ldots, k\} \subset \mathbb{N}$ for a fixed integer k. The operator Δ can be iterated, provided the process is stopped when the resulting word has length 1, and can also be extended to infinite words. For instance we have

 $\begin{array}{rcl} \Delta^0(F) &=& 121121211211212121212\\ \Delta^1(F) &=& 1121112121112111\\ \Delta^2(F) &=& 213111313\cdots,\\ \Delta^3(F) &=& 1113111\cdots,\\ \Delta^4(F) &=& 313\cdots. \end{array}$

It is not difficult to see that the process can be reversed: $\Delta^i(F)$ may be retrieved from $\Delta^{i+1}(F)$ with the knowledge of $\tau(\Delta^i(F))$. It turns out that in the case of the Fibonacci word F, not only the alphabet is bounded but also $\tau(\Delta^i(F))$ is eventually periodic. Therefore F is completely determined by the characteristic sequence

$$\Phi(F) = (\Delta^{i}(F)[0])_{i=0..\infty} = 112(13)^{\omega}.$$

We also show that the shifted sequences of F also share this property.

2. Definitions and notation

A word over a finite alphabet of letters Σ is a finite sequence of letters

$$w: [0, n-1] \longrightarrow \Sigma, \quad n \in \mathbb{N},$$

of length n, and w[i] or w_i denotes its letter of index i. The set of n-length words over Σ is denoted Σ^n . By convention the *empty* word is denoted ε and its length is 0. The free monoid generated by Σ is defined by $\Sigma^* = \bigcup_{n\geq 0} \Sigma^n$. The set of right infinite words is denoted by Σ^{ω} and $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$. Adopting a consistent notation for sequences of integers, $\mathbb{N}^* = \bigcup_{n\geq 0} \mathbb{N}^n$ is the set of finite sequences and \mathbb{N}^{ω} is those of infinite ones. Given a word $w \in \Sigma^*$, a factor f of w is a word $f \in \Sigma^*$ satisfying

$$\exists x, y \in \Sigma^*, w = xfy.$$

If $x = \varepsilon$ (resp. $y = \varepsilon$) then f is called *prefix* (resp. *suffix*). The set of all factors of w, called the *language* of w, is denoted by L(w), and those of length n is $L_n(w) = L(w) \cap \Sigma^n$. Finally $\operatorname{Pref}(w)$, $\operatorname{Suff}(w)$ denote respectively the set of all prefixes and suffixes of w. The length of a word w is |w|, and the number of occurrences of a factor $f \in \Sigma^*$ is $|w|_f$. A *block* of length k is a factor of the particular form $f = \alpha^k$, with $\alpha \in \Sigma$. If w = pu, and |w| = n, |p| = k, then $p^{-1}w = w[k] \cdots w[n-1] = u$ is the word obtained by erasing p. As a special case, when |p| = 1 we obtain the *shift* function defined by $s(w) = w_1 \cdots w_{n-1}$. Clearly the shift extends to right infinite words.

The *reversal* (or mirror image) \tilde{u} of $u = u_0 u_1 \cdots u_{n-1} \in \Sigma^n$ is the unique word satisfying

$$\widetilde{u_i} = u_{n-1-i}, \ \forall \ i, 0 \le i \le n-1.$$

A palindrome is a word p such that $p = \tilde{p}$, and for a language L, $\operatorname{Pal}(L)$ denotes the set of its palindromic finite factors. Over any finite alphabet $\Sigma = \{\alpha_1, \alpha_2, \ldots, \alpha_k\},\$

there is a usual length preserving morphism, defined for every permutation ρ : $\Sigma \longrightarrow \Sigma$ of the letters, which extends to words by composition

$$[0, n-1] \xrightarrow{u} \Sigma \xrightarrow{\rho} \Sigma$$
,

defined by $\rho u = \rho u_0 \ \rho u_1 \ \rho u_2 \cdots \rho u_{n-1}$.

This definition extends as usual to infinite words $\mathbb{N} \longrightarrow \Sigma$. The occurrences of factors play an important role and an infinite word w is recurrent if it satisfies the condition

$$u \in L(w) \implies |w|_u = \infty$$

Clearly, every periodic word is recurrent, and there exist recurrent but non-periodic words, the Thue-Morse word M being one of these [15]. Finally, two words u and v are *conjugate* when there are words x, y such that u = xy and v = yx. The conjugacy class of a word u is denoted by [u], and the length is invariant under conjugacy so that it makes sense to define |[u]| = |u|.

Checking that Δ commutes with the mirror image, is stable under permutation and preserves palindromicity is straightforward:

Proposition 1. The operator Δ satisfies the conditions

- (a) $\Delta(\widetilde{u}) = \Delta(u)$, for all $u \in \Sigma^*$;
- (b) $\Delta(\rho u) = \Delta(u)$, for all $u \in \Sigma^*$ and every permutation $\rho : \Sigma \longrightarrow \Sigma$;
- (c) $p \in \operatorname{Pal}(\Sigma^*) \implies \Delta(p) \in \operatorname{Pal}(\mathbb{N}^*)$.

Note that Δ is not distributive on concatenation in general. Nevertheless

(1)
$$\Delta(uv) = \Delta(u) \cdot \Delta(v) \iff \widetilde{u}[0] \neq v[0],$$

that is to say if and only if the last letter of u differs from the first letter of v. This property can be extended to iterations and yields the following useful lemma.

Lemma 2 (Glueing Lemma). Let $u \cdot v \in \operatorname{Pref}(F_n)$ for some *n*. If there exists an index *m* such that, for all $i, 0 \leq i \leq m$, the last letter of $\Delta^i(u)$ differs from the first letter of $\Delta^i(v)$, and $\Delta^i(u) \neq 1$, $\Delta^i(v) \neq 1$, then

(i) $\Phi(uv) = \Phi(u)[0..m] \cdot \Phi \circ \Delta^{m+1}(uv);$ (ii) $\Delta^{i}(uv) = \Delta^{i}(u)\Delta^{i}(v).$

The glueing operation is denoted by \oplus :

$$\Phi(u) \oplus_m \Phi(v) = \Phi(u)[0..m] \cdot \Phi \circ \Delta^{m+1}(uv),$$

and observe that the glueing lemma may also be generalized (by associativity) to the concatenation of more than two words.

Example. Let u = 1211 and v = 21211. Iterating Δ on uv yields

$$\begin{array}{rcl} \Delta^0(uv) = & \mathbf{1}211 & \cdot & 21211 \\ \Delta^1(uv) = & \mathbf{1}12 & \cdot & 1112 \\ \Delta^2(uv) = & \mathbf{2}1 & \cdot & 31 \\ \Delta^3(uv) = & 11 & \cdot & 11 \\ \Delta^4(uv) = & \mathbf{4} \end{array}$$

In this case we have m = 2 and $\Phi(1211 \cdot 21211) = \mathbf{112} \cdot \Phi(1111) = 112 \cdot 14$.

The glueing Lemma 2 admits an extension to infinite words: let $u \in \Delta^{(*)}(\operatorname{Pref}(F))$ and $v \in \Delta^{(*)}(Suff(F))$. If there exists an index m such that the last letter of $\Delta^m(u)$ differs from the first letter of $\Delta^m(v)$, then

$$\Phi(u) \oplus_m \Phi(v) = \Phi(u)[0..m] \cdot \Phi \circ \Delta^{m+1}(uv).$$

The glueing lemma is fundamental for establishing the claim results and most of the proofs are based on induction, use canonical factorizations of the Fibonacci finite words F_n , where the glueing lemma applies.

3. Results

The Fibonacci words F_n satisfy many characteristic properties and we state without proof the ones that will be used hereafter:

Proposition 3. For all n > 0 the following properties hold:

- (a) $F_{n+3} = F_{n+2} \cdot F_{n+1}$, and $F_{n+4} = F_{n+2} \cdot F_{n+1} \cdot F_{n+2}$; (b) $2 \cdot F_{2n+2} \cdot 1^{-1}$ and $1 \cdot F_{2n+1} \cdot 2^{-1}$ are paindromic factors.
- (c) The set $\{F_{n+1}, F_n\}$ is an ω -code, that is, every word in $\{1, 2\}^{\omega}$ admits at most one $\{F_n, F_{n-1}\}$ -factorization.

In the finite case we have the following property.

Proposition 4. The sequence of finite Fibonacci words satisfies for all $n \ge 0$ the conditions

- (i) $\Phi(2 \cdot F_{2n+2} \cdot 1^{-1}) = 2(13)^{n+1};$ (ii) $\Phi(1 \cdot F_{2n+1} \cdot 2^{-1}) = 12(13)^n.$

Proof. We proceed by induction. A straightforward verification establishes the base of the induction for n = 0, 1, 2, 3. Assume now the conditions hold until n - 1. In order to establish (i) we use the recurrence relations of Proposition 3 for 2n+2 and obtain

(2)
$$\Phi(2 \cdot F_{2n+2} \cdot 1^{-1}) = \Phi(2 \cdot (F_{2n}F_{2n-1}F_{2n}) \cdot 1^{-1})$$
$$= \Phi(2 \cdot (F_{2n} \cdot 1^{-1}1 \cdot F_{2n-1} \cdot 2^{-1}2 \cdot F_{2n}) \cdot 1^{-1})$$

Recall that Δ preserves palindromicity (Proposition 1), and that $2 \cdot F_{2n+2} \cdot 1^{-1}$ is palindromic (Proposition 3). Therefore, for every $m \leq 2n-1$ by induction hypothesis, the Δ -iterates satisfy

$$\begin{aligned} \Delta^m (2 \cdot F_{2n} \cdot 1^{-1})[0] &= \Delta^m (2 \cdot F_{2n} \cdot 1^{-1})[Last] \\ &\neq \Delta^m (1 \cdot F_{2n-1} \cdot 2^{-1})[0] = \Delta^m (1 \cdot F_{2n-1} \cdot 2^{-1})[Last], \end{aligned}$$

where *Last* abusively denotes the index of the last letter of a word. We may now apply the glueing Lemma 2 to equation (2) in order to obtain

$$\Delta^{2n-1}(2 \cdot F_{2n+2} \cdot 1^{-1}) = 313$$

from which one concludes that

$$\begin{split} \Phi(2 \cdot F_{2n+2} \cdot 1^{-1}) &= 2(13)^{n-1} 1 \oplus_{2n-1} \Phi \circ \Delta^{2n} (2 \cdot F_{2n+2} \cdot 1^{-1}) \\ &= 2(13)^{n-1} 1 \cdot \Phi(313) \\ &= 2(13)^{n+1}. \end{split}$$

The proof of (ii) is similar and is left to the reader.

In a similar way one can establish the following result.

Proposition 5. The sequence of Fibonacci words satisfies for all $n \ge 2$ the conditions

(i) $\Phi(F_{2n} \cdot 1^{-1}) = 112(13)^{n-1};$ (ii) $\Phi(F_{2n+1} \cdot 2^{-1}) = 112(13)^{n-1} \cdot 12.$

We proceed now with showing that the alphabet used in the iterations of Δ is bounded.

Proposition 6. The words

$$F_{2n} \cdot 1^{-1}, F_{2n+2} \cdot 2^{-1}, 2 \cdot F_{2n+2} \cdot 1^{-1}, 1 \cdot F_{2n+1} \cdot 2^{-1}, n \in \mathbb{N},$$

are words in $\Delta^{(*)}(\mathbf{3})$.

Proof. First, we prove by induction on $n \ge 1$ that there exist two uniquely and well defined words V_n and W_n such that

$$\begin{array}{rcl} \Phi(V_n) &=& (13)^n, & \Phi(W_n) &=& 3(13)^n, \\ \Delta(V_n) &=& W_{n-1}, & \Delta(W_n) &=& V_n, \\ V_n &\in& \{1,3\}^*, & W_n &\in& \{1,3\}^*, \end{array}$$

and two consecutive occurrences in V_n or in W_n of the letter 3 are separated by 111 or 1.

One has $V_1 = 111$, $W_1 = 313$, $V_2 = 1113111$, $W_2 = 313111313$. Assume that the induction hypothesis holds for $n \ge 2$. The word V_{n+1} is uniquely determined by its first letter 1 and the fact that $\Delta(V_{n+1}) = W_n$. Similarly, W_{n+1} is uniquely determined. Since the 3's are separated by either 1 or 111, then 313 always code 1113111 in V_{n+1} , whereas the word 31113 always codes 111313111, which implies the desired property on V_{n+1} . The proof is similar for W_{n+1} .

Observe that we have proved that $V_n \in \{13, 11\}^*$, that is, V_n can be encoded over the alphabet $\{A, B\}$, where A = 13, B = 11, and that $V_{n+1} = \phi(V_n)$, where ϕ is defined by $\phi : A \mapsto ABA$, $B \mapsto AB$ (ϕ is the square of the Fibonacci morphism up to the alphabet).

Now, we have $\Delta^3(F_{2n} \cdot 1^{-1}) = V_{n-1}$, $\Delta^3(F_{2n+2} \cdot 2^{-1})$ is a prefix of V_n , $\Delta(2 \cdot F_{2n+2} \cdot 1^{-1}) = V_{n+1}$, and $\Delta^2(1 \cdot F_{2n+1} \cdot 2^{-1}) = V_n$, so that it only remains to check that the first interations of Δ produce words over the alphabet **3** to conclude. \Box

The infinite Fibonacci word satisfies the following property, which is a direct consequence of Proposition 5 and 6.

Proposition 7. The word F satisfies $\Phi(F) = 112(13)^{\omega}$ and $\Delta^*(F) \subset \mathbf{3}^{\omega}$.

It is well known that the Fibonacci word F does not contain cubes, and for the Δ -iterates the following patterns are avoided.

Lemma 8. The factors 33 and 31313 never occur in $\Delta^k(F)$, for every $k \ge 2$. The factors 22 and 21212 never occur in $\Delta(F)$.

Proof. One checks that 33 and 22 never occur in $\Delta^k(F)$, for $k \leq 2$. According to the proof of Proposition 6, 33 never occurs in V_n , for all n and hence in F. Assume now that the factor 31313 occurs in $\Delta^k(F)$, for some $k \geq 2$. Since 33 does not occur in $\Delta^{k-1}(F)$ (if k = 2, consider 22), then $\Delta(31313) = 11111 \in \Delta^k(F)$, which implies that the letter 5 occurs in $\Delta^{k+1}(F)$, a contradiction. The same argument applies for 21212.

Let \mathcal{F} denote the *Fibonacci shift*, that is, the set of infinite words having exactly the same factors as the Fibonacci word F; let us recall that \mathcal{F} is the closure in $\{1,2\}^{\omega}$ of the orbit $\{s^k(F); k \in \mathbb{N}\}$ of F.

Example. $\Phi(2 \cdot F) = 213 \cdot (s^3 \circ \Phi)(F) = 2(13)^{\omega}$. Indeed by applying the glueing lemma, we have the following iterations of Δ on $2 \cdot F$

that is,

$$\Phi(2F) = 2 \oplus_0 \Phi(1 \cdot \Delta(F)) = 213 \oplus_2 \Phi(\Delta^3(2F)),$$

so that $\Phi(2 \cdot F) = 213 \cdot \Phi(\Delta^3(F)) = 213 \cdot s^3 \circ \Phi(F).$

We know that $\Phi(F)$ is eventually periodic so that the following question is natural: does such a behaviour extend to other words in the Fibonacci shift \mathcal{F} ? More precisely is this property characteristic of the Fibonacci language or does it hold only for particular sequences of the Fibonacci shift? The next theorem answers this question:

Theorem 9. Every word $U \in \mathcal{F}$ satisfies the following properties:

- (i) U is a word of 5^{ω} ;
- (ii) for every $k \ge 2$, $s(\Delta^k(U)) \in \{1, 3\}^*$;
- (iii) every factor of $\Delta^k(U)$ having 3 or 111 for prefix occurs in $\Delta^k(F)$;
- (iv) if U belongs to the two-sided orbit under the shift s of F, that is, if there exists $n \in \mathbb{N}$ such that either $U = s^n(F)$ or $F = s^n(U)$, then $\Phi(U)$ eventually ends with $(13)^{\omega}$.

Proof. The remaining of this section will be devoted to the proof of this theorem which requires several steps. We need first a preliminary lemma to state the base case of an induction property that we prove below.

Lemma 10. Let $U \in \mathcal{F}$. Then $\Delta(U) \in \{1, 2\}^{\omega}$ and we have:

- (i) two consecutive occurrences of the letter 2 in Δ(U) are separated by 1 or 111; 2 occurs infinitely often;
- (ii) every factor having 2 or 111 for prefix occurs in $\Delta(F)$.

Proof. Since $F = \varphi(F)$ it follows that 22,111 $\notin L(F) = L(U)$. Therefore two consecutive occurrences of 2 are separated by 1 or 11 in U, which implies that $\Delta(U) \in \{1,2\}^{\omega}$.

(i) Since $22 \notin U$, every occurrence of 2 in $\Delta(U)$ codes an occurrence of 11 in U. Let us prove that $11111 \notin L(\Delta(U))$. By contradiction, assume that 11111 is a factor, then 11111 would code an occurrence of either 121212 or 212121 in U, but neither word is a factor of F. Furthermore, two consecutive occurrences of 2 in $\Delta(U)$ cannot be separated by an even number of 1's: indeed, either the first or the last 2 would code 22 in U, which ends the proof of this statement.

(ii) Let w be a factor of $\Delta(U)$ whose prefix is either the letter 2 or the factor 111. It codes uniquely a factor in U and in F, implying that it belongs to $\Delta(F)$. Let us come back to the proof of Theorem 9. We prove by induction the following assertions, where $x_k = 2$ if k = 1 and 3 otherwise;

- (1) $\Delta^k(U)$ is well defined;
- (2) $\Delta^k(U) \in \mathbf{5}^{\omega}$; $(s \circ \Delta^k)(U)) \in \{1, x_k\}^{\omega}$;
- (3) two successive occurrences of x_k are separated either by 1 or 111; the letter x_k occurs infinitely often;
- (4) every factor of $\Delta^k(U)$ having x_k or 111 for prefix occurs in $\Delta^k(F)$.

The induction property holds for k = 1 by Lemma 10. Fix now an integer $k \ge 1$ and assume that the induction property holds for both k and k-1. For the sake of simplicity, we assume that $k \ge 2$ and replace x_k by its value 3. The proof proceeds exactly in the same way when k = 1, $x_k = 2$. We only need to use the fact that 22 does not occur in $\Delta^0(U) = U$.

Observe first that the factors 33 and 31313 do not occur in $\Delta^k(U)$, and 33 does not occur in $\Delta^{k-1}(U)$, according to Assertion 4 and Lemma 8.

- From Assertions 1, 2 and 3 above, $\Delta^{k+1}(U)$ is easily seen to be well defined.
- We have three cases to consider.
 - If $\Delta^k(U)[0] = 3$, then $\Delta^{k+1}(U) \in \{1,3\}^{\omega}$, by Assertion 3.
 - If $\Delta^{k}(U)$ has $1^{y}3$ $(y \ge 1)$ for prefix, then $\Delta^{k+1}(U) = y\Delta(s^{y} \circ \Delta^{k}(U))$, and $s \circ \Delta^{k+1}(U) \in \{1,3\}^{\omega}$.
 - If $\Delta^k(U)[0] = y \neq 1, 3$, then $\Delta^k(U)$ has $y1^z$ $(z \geq 1)$ for prefix, since the factor 33 cannot occur in $\Delta^{k-1}(U)$. If z is even, then Assertion 2 implies that $y1^z3$ would code a factor of the form $r^y(3131)^{z/2}333$ in $\Delta^k(U)$ $(r \in 5)$, a contradiction with the fact that $33 \notin L(\Delta^k(U))$. If $z \geq 5$, then $y1^z3$ would code a factor of the form r^y31313 , a contradiction with the fact that $31313 \notin L(\Delta^k(U))$. We have thus proved that $y \in \{1,3\}$, which implies that $(s \circ \Delta^{k+1}(U)) \in \{1,3\}^{\omega}$.

Note that the first letter of $\Delta^{k+1}(U)$ is smaller than or equal to 5, since 31313 does not occur in $\Delta^{k-1}(U)$. Hence, $\Delta^{k+1}(U) \in \mathbf{5}^{\omega}$.

• The factor 33 $\notin L(\Delta^{k+1}(U))$, otherwise 333 would occur in $\Delta^k(U)$. Hence every occurrence of the letter 3 in $\Delta^{k+1}(U)$ codes 111 in $\Delta^k(U)$. The factor 311113 $\notin L(\Delta^{k+1}(U))$, otherwise it would code 1113131333 in $\Delta^k(U)$, contradicting the fact that 33 does not occur in $\Delta^k(U)$. Similarly, the factor 311111 $\notin L(\Delta^{k+1}(U))$, otherwise it would code 11131313 in $\Delta^k(U)$, but 31313 does not occur in $\Delta^k(U)$. At last, the factor 3113 $\notin L(\Delta^{k+1}(U))$, since otherwise it would code 11131333 in $\Delta^k(U)$, again a contradiction.

Hence two consecutive occurrences in $\Delta^{k+1}(U)$ of 3 are separated either by 1 or 111, and the letter 3 occurs infinitely often.

• Let w be a factor of $\Delta^{k+1}(U)$ whose prefix is either 3 or the factor 111. It codes uniquely a factor in $\Delta^k(U)$ also starting with either 3 or 111, and belonging thus by Assertion 4 to $\Delta^k(F)$; therefore w belongs to $\Delta^{k+1}(F)$.

It remains now to prove that $\Phi(U)$ ultimately ends in $(13)^{\omega}$ if U is an image or a preimage of F under the action of the shift s to complete the proof of Theorem 9.

Assume first that U is a shifted image of the Fibonacci word F, that is, there exists $k \in \mathbb{N}$ such that $U = s^k(F)$. Let us now introduce a suitable factorization of 2F. For that purpose, let us first observe that $F = \varphi^{2n+1}(F)$ can be uniquely decomposed over the ω -code $\{F_{2n}, F_{2n+1}\}$ (see Proposition 3), and even over the

 ω -code { $F_{2n+2} \cdot F_{2n+2} \cdot F_{2n+1}, F_{2n+2} \cdot F_{2n+1}$ }. Hence we may factorize 2F over

$$\{2 \cdot F_{2n+2} \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}, 2 \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}\}.$$

Furthermore, the first term of this factorization is easily seen by induction to be $2 \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}$, whereas its second term is $2 \cdot F_{2n+2} \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}$. One has $U = s^{k+1}(2F)$. Let $n \ge 2$ be large enough such that $|F_{2n+3}| > k+1$. Let us write $2F_{2n+2} \cdot F_{2n+1}2^{-1}$ as

$$2 \cdot F_{2n+2} \cdot F_{2n+1} = P_k \cdot Q_k$$

where P_k is the prefix of 2F of length k + 1; hence $2F = P_k \cdot U$, and

$$U = Q_k \cdot s^{|F_{2n+3}|} (2 \cdot F)$$

i.e.,

$$U \in Q_k \cdot \{2 \cdot F_{2n+2} \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}, 2 \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}\}^{\omega},\$$

the first term of this factorization being $2 \cdot F_{2n+2} \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}$. Let us observe that

 $2 \cdot F_{2n+2} \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1} = (2 \cdot F_{2n+2} \cdot 1^{-1}) \cdot (1 \cdot F_{2n+1} \cdot 2^{-1}) \cdot (2 \cdot F_{2n} \cdot 1^{-1}) \cdot (1 \cdot F_{2n+1} \cdot 2^{-1}),$ and

$$2 \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1} = (2 \cdot F_{2n+2} \cdot 1^{-1}) \cdot (1 \cdot F_{2n+1} \cdot 2^{-1})$$

Let us first prove that $\Phi(s^{|F_{2n+3}|}(2F)) = 2(13)^{n+1}112(13)^{\omega}$. Following Proposition 4 and Proposition 6, the glueing lemma applies, and implies that the first terms of $\Phi(s^{|F_{2n+3}|}(2F))$ are $2(13)^n$; let us note that $\Delta^{2n+1}(2 \cdot F_{2n+2} \cdot 1^{-1}) = 111$, $\Delta^{2n+1}(1 \cdot F_{2n+1} \cdot 2^{-1}) = 3$, $\Delta^{2n+1}(2 \cdot F_{2n} \cdot 1^{-1}) = 1$. Hence

$$\Delta^{2n+1}(2 \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}) = 111 \cdot 3.$$

$$\Delta^{2n+1}(2 \cdot F_{2n+2} \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}) = 111 \cdot 3 \cdot 1 \cdot 3.$$

One concludes by considering the next values of Δ^k , $2n+2 \leq k \leq 2n+6$ and using the fact that $\Phi(2F) = \Phi(2 \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1} \cdot s^{|F_{2n+3}|}(2F)) = 2(13)^{\omega}$.

Let us prove that $\Phi(Q_k \cdot s^{|F_{2n+3}|}(2F))$ and $\Phi(s^{|F_{2n+3}|}(2F))$ ulimately coincide. Let m be the smallest integer such that $\Delta^m(Q_k) = 1$. One checks that $m \leq 2n+5$. Let us distinguish two cases according to the parity of m, and apply the glueing lemma, by noticing that the first term of the decomposition of $s^{|F_{2n+3}|}(2F)$ is $2 \cdot F_{2n+2} \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}$.

- Assume that *m* is even. Assume furthermore $m \leq 2n$. Then the factor $\Delta^m (s^{|F_{2n+3}|}(2F))$ admits 313111313 as a prefix since $\Phi(s^{|F_{2n+3}|}(2F)) = 2(13)^{n+1}112(13)^{\omega}$. Hence $\Delta^{m+1}(Q_k \cdot s^{|F_{2n+3}|}(2F))$ admits 11113111 as a prefix, which implies that $\Delta^{m+2}(Q_k \cdot s^{|F_{2n+3}|}(2F))$ admits 413 as a prefix; one deduces that $\Phi(Q_k \cdot s^{|F_{2n+3}|}(2F))$ and $\Phi(s^{|F_{2n+3}|}(2F))$ coincide for indices larger than m + 3. If m = 2n + 2, then $\Delta^{2n}(s^{|F_{2n+3}|}(2F))$ admits 3111313 as a prefix, and similarly one checks that $\Phi(Q_k \cdot s^{|F_{2n+3}|}(2F))$ ends in (13)^{ω} from indices larger than or equal to 2n + 5. If m = 2n + 4, then one checks that $\Phi(Q_k \cdot s^{|F_{2n+3}|}(2F))$ and $\Phi(s^{|F_{2n+3}|}(2F))$ coincide for indices larger than 2n + 6.
- Assume that m is odd. This implies that $\Delta^{m-1}(Q_k) = 2$. Assume that $m \leq 2n + 1$. One checks that $\Delta^m(Q_k \cdot s^{|F_{2n+3}|}(2F))$ admits 11113 as a prefix, and thus $\Phi(Q_k \cdot s^{|F_{2n+3}|}(2F))$ and $\Phi(s^{|F_{2n+3}|}(2F))$ coincide for indices larger than m + 2. If m = 2n + 3, $\Phi(Q_k \cdot s^{|F_{2n+3}|}(2F))$ ends in $(13)^{\omega}$ from for indices larger than 2n + 6. If m = 2n + 5, one checks that

 $\Phi(Q_k \cdot s^{|F_{2n+3}|}(2F))$ and $\Phi(s^{|F_{2n+3}|}(2F))$ coincide for indices larger than 2n+8.

One thus deduces that $\Phi(U)$ ultimately terminates in $(13)^{\omega}$.

Assume now that U is a preimage of F under an iterate of s, that is, there exists k such that $s^k(U) = F$. Since both 2F and 1F belong to \mathcal{F} , then U is either a preimage or 2F or of 1F, that is, there exists a finite word P_U such that either $U = P_U \cdot 2F$ or $U = P_U \cdot 1F$. Using the factorizations, respectively, of 2F over $\{2 \cdot F_{2n+2} \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}, 2 \cdot F_{2n+2} \cdot F_{2n+1} \cdot 2^{-1}\}$ or 1F over $\{1 \cdot F_{2n+1} \cdot F_{2n} \cdot 2^{-1}, 1 \cdot F_{2n+1} \cdot F_{2n} \cdot 2^{-1}\}$ we may apply the same reasoning as above. Let us recall that $\Phi(2F) = 2(13)^{\omega}$, whereas one checks that $\Phi(1F) = 12(13)^{\omega}$. One thus obtains that $\Phi(P_U \cdot 2F)$ and $\Phi(P_U \cdot 1F)$ ultimately coincide with respectively $\Phi(2F)$ or $\Phi(1F)$, which ends the proof.

We have thus proved that words that are images or preimages of F under the shift s eventually end with $(13)^{\omega}$. The next proposition states that this property does not hold for all words in \mathcal{F} , that is, there exist words U with the same set of factors as F for which $\Phi(U)$ presents a different behaviour.

Proposition 11. There exist words U in \mathcal{F} such that $\Phi(U)$ contains infinitely many occurrences of the letter 2.

Proof. Let us exhibit an example of a Sturmian word U in \mathcal{F} such that $\Phi(U)$ does not ultimately end in $(13)^{\omega}$. Let U be the limit word in $\{1,2\}^{\omega}$ of the sequence of finite words

$$U_n = (1 \cdot (F_7 \cdot F_{10}) \cdots (F_{2^k - 1} \cdot F_{2^k + 2}) \cdots (F_{2^n - 1} \cdot F_{2^n + 2}) \cdot 1^{-1}), n \ge 3.$$

This sequence of words converges for the usal topology on $\{1,2\}^{\omega}$ and for every n, U_n is a factor of the Fibonacci word F as we shall see now. Indeed, following [9], every finite concatenation of F_n 's with decreasing order of indices and where no two consecutive indices occur, is a prefix of the Fibonacci word F. Hence

$$F_{2^n+2} \cdot F_{2^n-1} \cdots F_{10} \cdot F_7$$

is a prefix of F. Since 2F is also a Sturmian word in \mathcal{F} , $2 \cdot F_{2^n+2} \cdot F_{2^n-1} \cdots F_{10} \cdot F_7$ is also a factor of F. But

$$2 \cdot F_{2^{n}+2} \cdot F_{2^{n}-1} \cdots F_{10} \cdot F_{7} \cdot 2^{-1} = (2 \cdot F_{2^{n}+2} \cdot 1^{-1}) \cdot (1 \cdot F_{2^{n}-1} \cdot 2^{-1}) \cdots (2 \cdot F_{10} \cdot 1^{-1}) \cdot (1 \cdot F_{7} \cdot 2^{-1})$$

is a concatenation of palindromes by Proposition 3. The set of factors of F being stable under mirror image (see for instance [13]), we have

$$(1 \cdot F_7 \cdot 2^{-1}) \cdot (2 \cdot F_{10} \cdot 1^{-1}) \quad \cdots \quad (1 \cdot F_{2^n - 1} \cdot 2^{-1}) \cdot (2 \cdot F_{2^n + 2} \cdot 1^{-1}) \\ = \quad 1 \cdot (F_7 \cdot F_{10}) \cdots (F_{2^n - 1} \cdot F_{2^n + 2}) \cdot 1^{-1}$$

is a factor of F. Hence the word U belongs to \mathcal{F} since it is a limit of factors of the Fibonacci word, and admits for every n, U_n as a prefix. Consider now the following factorization

$$(1 \cdot F_{2^n - 1} \cdot 2^{-1}) \cdot (2 \cdot F_{2^n + 2} \cdot 1^{-1}) = (1 \cdot F_{2^n - 1} \cdot 2^{-1}) \cdot (2 \cdot F_{2^n} \cdot 1^{-1}) \cdot (1 \cdot F_{2^n - 1} \cdot 2^{-1})(2 \cdot F_{2^n} \cdot 1^{-1})$$

Following Proposition 4 and Proposition 6, the glueing lemma applies. One has $\Delta^{2^n}(1 \cdot F_{2^n-1} \cdot 2^{-1}) = 1$, $\Delta^{2^n}(1 \cdot F_{2^n+1} \cdot 2^{-1}) = 111$, and $\Delta^{2^n}(2 \cdot F_{2^n} \cdot 1^{-1}) = 3$. Hence

$$\begin{split} \Delta^{2^{n}} (1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}) &= 1 \cdot 3 \cdot 111 \cdot 3, \\ \Delta^{2^{n}+1} (1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}) &= 1 \cdot 1 \cdot 3 \cdot 1, \\ \Delta^{2^{n}+2} (1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}) &= 2 \cdot 1 \cdot 1 \\ \Delta^{2^{n}+3} (1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}) &= 1 \cdot 2 \\ \Delta^{2^{n}+4} (1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}) &= 1 \cdot 1 \\ \Delta^{2^{n}+5} (1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}) &= 2. \end{split}$$

By applying the glueing lemma, one proves by induction that

 $\Delta^{2^{n-1}+8}(U_n) = \Delta^{2^{n-1}+8}((1 \cdot F_{2^n-1} \cdot 2^{-1}) \cdot (2 \cdot F_{2^n+2} \cdot 1^{-1})),$

which implies $\Phi(U)[2^n + 2] = 2$, for all $n \ge 3$.

Remark One can in fact prove that there exist uncountably many words U in \mathcal{F} such that $\Phi(U)$ does not ultimately end in $(13)^{\omega}$.

References

- J. Berstel, Axel Thue's papers on repetition words: a translation, *Publications du LaCIM*, (1995).
- [2] S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math. 24 (1989) 83-96.
- [3] S. Brlek, A. Ladouceur, A note on differentiable palindromes, Theoret. Comput. Sci., 302 (2003) 167-178
- [4] S. Brlek, S. Dulucq, A. Ladouceur, L. Vuillon, Combinatorial properties of smooth infinite words, MFCS'04, Prague, Czech Republic (2004) submitted.
- [5] A. Carpi, Repetitions in the Kolakovski sequence, Bull. of the EATCS, 50 (1993) 194–196.
- [6] E.M. Coven, G.A. Hedlund, Sequences with minimal block growth, Math. Systems Theory, 7 (1973 138-153.
- [7] F. M. Dekking, On the structure of self generating sequences, Séminaire de théorie des nombres de Bordeaux, exposé 31, 1980-1981.
- [8] F. M. Dekking, What is the long range order in the Kolakoski sequence, in R. V. Moody (ed.), The mathematics of Long-Range Aperiodic Order, Kluwer Academic Publishers (1997) 115-125.
- [9] J.-M. Dumont, A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, *Theoret. Comp. Sci.* 65 (1989), 153-169.
- [10] W. Kolakoski, Self Generating Runs, Problem 5304, American Math. Monthly, 72 (1965) 674. Solution: American Math. Monthly, 73 (1966) 681-682.
- [11] A. Ladouceur, Outil logiciel pour la combinatoire des mots, Mém. Maitrise en Math., UQAM, AC20U5511 M6258, 1999.
- [12] P. Lamas, Contribution à l'étude de quelques mots infinis, Mém. Maitrise en Math., UQAM, AC20U5511 M4444, 1995.
- [13] M. Lothaire, Algebraic Combinatorics on words, Cambridge University Press, 2002.
- [14] A. de Luca, Sturmian words: structure, combinatorics, and their arithmetics, Theoret. Comput. Sci., 183 (1997) 45-82.
- [15] M. Morse, Symbolic Dynamics, Amer. J. Math., 60 (1938) 815-866.
- [16] M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian Trajectories, Amer. J. Math., 62 (1940) 1-42.
- [17] A. Thue, Über unendliche Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl., Christiana, Nr. 7 (1906) 1-22.
- [18] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl., Christiana, Nr. 1 (1912) 1-67.

LIRMM, 161 RUE ADA, 34392 MONTPELLIER CEDEX 05, FRANCE E-mail address: berthe@lirmm.fr

LACIM, UNIVERSITÉ DU QUÉBEC À MONTRÉAL, MONTRÉAL (QC) CANADA H3C 3P8 $E\text{-}mail\ address:\ brlek@lacim.uqam.ca$

DEPARTMENT OF MATHEMATICS AND STATISTICS, YORK UNIVERSITY, 4700 KEELE STREET, TORONTO (ON) CANADA M3J1P3 *E-mail address*: philcho@mathstat.yorku.ca