A NEW CHARACTERIZATION OF THE FIBONACCI WORD

V. BERTHÉ, S. BRLEK, AND P. CHOQUETTE

Abstract

Using the run-length encoding Δ, the Fibonacci infinite word F possesses a natural representation obtained from the iterations of Δ. This representation is the eventually periodic word $112(13)^{\omega}$ which can be extended to the shifted Fibonacci words.

1. Introduction

Let $\varphi:\{1,2\}^{*} \longrightarrow\{1,2\}^{*}$ be the morphism defined by

$$
\varphi(1)=12 \quad ; \quad \varphi(2)=1
$$

and let $F_{n}=\varphi^{n}(1)$ be the n-th iterate, also called the n-th Fibonacci word. We then have

$$
\begin{aligned}
F_{0} & =1 \\
F_{1} & =12 \\
F_{2} & =121 \\
F_{3} & =12112 \\
F_{4} & =12112121
\end{aligned}
$$

and the infinite Fibonacci word F is obtained as the fixed point of φ, that is

$$
F=\lim _{n \rightarrow \infty} F_{n}=\varphi^{\omega}(1)=1211212112112121121211211212112112 \cdots
$$

The combinatorial and arithmetic properties of F have been widely studied and it has a dominant role in the theory of Sturmian words.

The run-length encoding Δ is used in many applications as a method for compressing data. For instance, the first step in the algorithm used for compressing the data transmitted by Fax machines consists of a run-length encoding of each line of pixels. It also has been used for the enumeration of factors in the Thue-Morse sequence [2]. It is defined as follows. Let $\Sigma=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$ be a finite alphabet. Then every word $w \in \Sigma^{*}$ can be uniquely written as a product of factors as follows

$$
w=\alpha_{m_{1}}^{e_{1}} \alpha_{m_{2}}^{e_{2}} \alpha_{m_{3}}^{e_{3}} \cdots
$$

where $\alpha_{m_{j}} \in \Sigma$ and the exponents $e_{j} \geq 0$. Hence the coding is realized by a function

$$
(\Delta, \tau): \Sigma^{*} \longrightarrow \mathbb{N}^{*} \times \Sigma^{*}
$$

where the first component is the function $\Delta: \Sigma^{*} \longrightarrow \mathbb{N}^{*}$, defined by

$$
\Delta(w)=e_{1} e_{2} e_{3} \cdots=\prod_{j \geq 0} e_{j}
$$

with the support of NSERC (Canada).
and the second component is the function $\tau: \Sigma^{*} \longrightarrow \Sigma^{*}$ induced by the congruence \equiv defined by

$$
\alpha^{2} \equiv \alpha, \forall \alpha \in \Sigma
$$

Note that the alphabet Σ may be identified with a subset of \mathbb{N} and we shall denote $\mathbf{k}=\{1,2, \ldots, k\} \subset \mathbb{N}$ for a fixed integer k. The operator Δ can be iterated, provided the process is stopped when the resulting word has length 1, and can also be extended to infinite words. For instance we have

$$
\begin{aligned}
\Delta^{0}(F) & =12112121121121211212 \cdots \\
\Delta^{1}(F) & =1121112121112111 \cdots \\
\Delta^{2}(F) & =213111313 \cdots \\
\Delta^{3}(F) & =1113111 \cdots \\
\Delta^{4}(F) & =313 \cdots
\end{aligned}
$$

It is not difficult to see that the process can be reversed: $\Delta^{i}(F)$ may be retrieved from $\Delta^{i+1}(F)$ with the knowledge of $\tau\left(\Delta^{i}(F)\right)$. It turns out that in the case of the Fibonacci word F, not only the alphabet is bounded but also $\tau\left(\Delta^{i}(F)\right)$ is eventually periodic. Therefore F is completely determined by the characteristic sequence

$$
\Phi(F)=\left(\Delta^{i}(F)[0]\right)_{i=0 . . \infty}=112(13)^{\omega} .
$$

We also show that the shifted sequences of F also share this property.

2. Definitions and notation

A word over a finite alphabet of letters Σ is a finite sequence of letters

$$
w:[0, n-1] \longrightarrow \Sigma, \quad n \in \mathbb{N}
$$

of length n, and $w[i]$ or w_{i} denotes its letter of index i. The set of n-length words over Σ is denoted Σ^{n}. By convention the empty word is denoted ε and its length is 0 . The free monoid generated by Σ is defined by $\Sigma^{*}=\bigcup_{n>0} \Sigma^{n}$. The set of right infinite words is denoted by Σ^{ω} and $\Sigma^{\infty}=\Sigma^{*} \cup \Sigma^{\omega}$. Adopting a consistent notation for sequences of integers, $\mathbb{N}^{*}=\bigcup_{n \geq 0} \mathbb{N}^{n}$ is the set of finite sequences and \mathbb{N}^{ω} is those of infinite ones. Given a word $w \in \Sigma^{*}$, a factor f of w is a word $f \in \Sigma^{*}$ satisfying

$$
\exists x, y \in \Sigma^{*}, w=x f y
$$

If $x=\varepsilon$ (resp. $y=\varepsilon$) then f is called prefix (resp. suffix). The set of all factors of w, called the language of w, is denoted by $L(w)$, and those of length n is $L_{n}(w)=L(w) \cap \Sigma^{n}$. Finally $\operatorname{Pref}(w), \operatorname{Suff}(w)$ denote respectively the set of all prefixes and suffixes of w. The length of a word w is $|w|$, and the number of occurrences of a factor $f \in \Sigma^{*}$ is $|w|_{f}$. A block of length k is a factor of the particular form $f=\alpha^{k}$, with $\alpha \in \Sigma$. If $w=p u$, and $|w|=n,|p|=k$, then $p^{-1} w=w[k] \cdots w[n-1]=u$ is the word obtained by erasing p. As a special case, when $|p|=1$ we obtain the shift function defined by $s(w)=w_{1} \cdots w_{n-1}$. Clearly the shift extends to right infinite words.

The reversal (or mirror image) \widetilde{u} of $u=u_{0} u_{1} \cdots u_{n-1} \in \Sigma^{n}$ is the unique word satisfying

$$
\widetilde{u_{i}}=u_{n-1-i}, \forall i, 0 \leq i \leq n-1 .
$$

A palindrome is a word p such that $p=\widetilde{p}$, and for a language $L, \operatorname{Pal}(L)$ denotes the set of its palindromic finite factors. Over any finite alphabet $\Sigma=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$,
there is a usual length preserving morphism, defined for every permutation ρ : $\Sigma \longrightarrow \Sigma$ of the letters, which extends to words by composition

$$
[0, n-1] \xrightarrow{u} \Sigma \xrightarrow{\rho} \Sigma,
$$

defined by $\rho u=\rho u_{0} \rho u_{1} \rho u_{2} \cdots \rho u_{n-1}$.
This definition extends as usual to infinite words $\mathbb{N} \longrightarrow \Sigma$. The occurrences of factors play an important role and an infinite word w is recurrent if it satisfies the condition

$$
u \in L(w) \Longrightarrow|w|_{u}=\infty
$$

Clearly, every periodic word is recurrent, and there exist recurrent but non-periodic words, the Thue-Morse word M being one of these [15]. Finally, two words u and v are conjugate when there are words x, y such that $u=x y$ and $v=y x$. The conjugacy class of a word u is denoted by $[u]$, and the length is invariant under conjugacy so that it makes sense to define $|[u]|=|u|$.

Checking that Δ commutes with the mirror image, is stable under permutation and preserves palindromicity is straightforward:

Proposition 1. The operator Δ satisfies the conditions
(a) $\Delta(\widetilde{u})=\widetilde{\Delta(u)}$, for all $u \in \Sigma^{*}$;
(b) $\Delta(\rho u)=\Delta(u)$, for all $u \in \Sigma^{*}$ and every permutation $\rho: \Sigma \longrightarrow \Sigma$;
(c) $p \in \operatorname{Pal}\left(\Sigma^{*}\right) \Longrightarrow \Delta(p) \in \operatorname{Pal}\left(\mathbb{N}^{*}\right)$.

Note that Δ is not distributive on concatenation in general. Nevertheless

$$
\begin{equation*}
\Delta(u v)=\Delta(u) \cdot \Delta(v) \Longleftrightarrow \widetilde{u}[0] \neq v[0] \tag{1}
\end{equation*}
$$

that is to say if and only if the last letter of u differs from the first letter of v. This property can be extended to iterations and yields the following useful lemma.

Lemma 2 (Glueing Lemma). Let $u \cdot v \in \operatorname{Pref}\left(F_{n}\right)$ for some n. If there exists an index m such that, for all $i, 0 \leq i \leq m$, the last letter of $\Delta^{i}(u)$ differs from the first letter of $\Delta^{i}(v)$, and $\Delta^{i}(u) \neq 1, \Delta^{i}(v) \neq 1$, then
(i) $\Phi(u v)=\Phi(u)[0 . . m] \cdot \Phi \circ \Delta^{m+1}(u v)$;
(ii) $\Delta^{i}(u v)=\Delta^{i}(u) \Delta^{i}(v)$.

The glueing operation is denoted by \oplus :

$$
\Phi(u) \oplus_{m} \Phi(v)=\Phi(u)[0 . . m] \cdot \Phi \circ \Delta^{m+1}(u v)
$$

and observe that the glueing lemma may also be generalized (by associativity) to the concatenation of more than two words.

Example. Let $u=1211$ and $v=21211$. Iterating Δ on $u v$ yields

$$
\begin{array}{lrll}
\Delta^{0}(u v) & =1211 & 21211 \\
\Delta^{1}(u v) & =112 \cdot & 1112 \\
\Delta^{2}(u v) & = & 21 \cdot & 31 \\
\Delta^{3}(u v) & = & 11 \cdot & 11 \\
\Delta^{4}(u v) & = & 4 &
\end{array}
$$

In this case we have $m=2$ and $\Phi(1211 \cdot 21211)=112 \cdot \Phi(1111)=112 \cdot 14$.

The glueing Lemma 2 admits an extension to infinite words: let $u \in \Delta^{(*)}(\operatorname{Pref}(F))$ and $v \in \Delta^{(*)}(\operatorname{Suff}(F))$. If there exists an index m such that the last letter of $\Delta^{m}(u)$ differs from the first letter of $\Delta^{m}(v)$, then

$$
\Phi(u) \oplus_{m} \Phi(v)=\Phi(u)[0 . . m] \cdot \Phi \circ \Delta^{m+1}(u v)
$$

The glueing lemma is fundamental for establishing the claim results and most of the proofs are based on induction, use canonical factorizations of the Fibonacci finite words F_{n}, where the glueing lemma applies.

3. Results

The Fibonacci words F_{n} satisfy many characteristic properties and we state without proof the ones that will be used hereafter:

Proposition 3. For all $n \geq 0$ the following properties hold:
(a) $F_{n+3}=F_{n+2} \cdot F_{n+1}, \quad$ and $\quad F_{n+4}=F_{n+2} \cdot F_{n+1} \cdot F_{n+2}$;
(b) $2 \cdot F_{2 n+2} \cdot 1^{-1}$ and $1 \cdot F_{2 n+1} \cdot 2^{-1}$ are palindromic factors.
(c) The set $\left\{F_{n+1}, F_{n}\right\}$ is an ω-code, that is, every word in $\{1,2\}^{\omega}$ admits at most one $\left\{F_{n}, F_{n-1}\right\}$-factorization.

In the finite case we have the following property.
Proposition 4. The sequence of finite Fibonacci words satisfies for all $n \geq 0$ the conditions
(i) $\Phi\left(2 \cdot F_{2 n+2} \cdot 1^{-1}\right)=2(13)^{n+1}$;
(ii) $\Phi\left(1 \cdot F_{2 n+1} \cdot 2^{-1}\right)=12(13)^{n}$.

Proof. We proceed by induction. A straightforward verification establishes the base of the induction for $n=0,1,2,3$. Assume now the conditions hold until $n-1$. In order to establish (i) we use the recurrence relations of Proposition 3 for $2 n+2$ and obtain

$$
\begin{align*}
\Phi\left(2 \cdot F_{2 n+2} \cdot 1^{-1}\right) & =\Phi\left(2 \cdot\left(F_{2 n} F_{2 n-1} F_{2 n}\right) \cdot 1^{-1}\right) \\
& =\Phi\left(2 \cdot\left(F_{2 n} \cdot 1^{-1} 1 \cdot F_{2 n-1} \cdot 2^{-1} 2 \cdot F_{2 n}\right) \cdot 1^{-1}\right) \tag{2}
\end{align*}
$$

Recall that Δ preserves palindromicity (Proposition 1), and that $2 \cdot F_{2 n+2} \cdot 1^{-1}$ is palindromic (Proposition 3). Therefore, for every $m \leq 2 n-1$ by induction hypothesis, the Δ-iterates satisfy

$$
\begin{aligned}
\Delta^{m}\left(2 \cdot F_{2 n} \cdot 1^{-1}\right)[0] & =\Delta^{m}\left(2 \cdot F_{2 n} \cdot 1^{-1}\right)[\text { Last }] \\
& \neq \Delta^{m}\left(1 \cdot F_{2 n-1} \cdot 2^{-1}\right)[0]=\Delta^{m}\left(1 \cdot F_{2 n-1} \cdot 2^{-1}\right)[\text { Last }]
\end{aligned}
$$

where Last abusively denotes the index of the last letter of a word. We may now apply the glueing Lemma 2 to equation (2) in order to obtain

$$
\Delta^{2 n-1}\left(2 \cdot F_{2 n+2} \cdot 1^{-1}\right)=313,
$$

from which one concludes that

$$
\begin{aligned}
\Phi\left(2 \cdot F_{2 n+2} \cdot 1^{-1}\right) & =2(13)^{n-1} 1 \oplus_{2 n-1} \Phi \circ \Delta^{2 n}\left(2 \cdot F_{2 n+2} \cdot 1^{-1}\right) \\
& =2(13)^{n-1} 1 \cdot \Phi(313) \\
& =2(13)^{n+1}
\end{aligned}
$$

The proof of (ii) is similar and is left to the reader.
In a similar way one can establish the following result.

Proposition 5. The sequence of Fibonacci words satisfies for all $n \geq 2$ the conditions
(i) $\Phi\left(F_{2 n} \cdot 1^{-1}\right)=112(13)^{n-1}$;
(ii) $\Phi\left(F_{2 n+1} \cdot 2^{-1}\right)=112(13)^{n-1} \cdot 12$.

We proceed now with showing that the alphabet used in the iterations of Δ is bounded.

Proposition 6. The words

$$
F_{2 n} \cdot 1^{-1}, F_{2 n+2} \cdot 2^{-1}, 2 \cdot F_{2 n+2} \cdot 1^{-1}, 1 \cdot F_{2 n+1} \cdot 2^{-1}, n \in \mathbb{N}
$$

are words in $\Delta^{(*)}(\mathbf{3})$.
Proof. First, we prove by induction on $n \geq 1$ that there exist two uniquely and well defined words V_{n} and W_{n} such that

$$
\begin{array}{rlrl}
\Phi\left(V_{n}\right) & =(13)^{n}, & \Phi\left(W_{n}\right) & =3(13)^{n} \\
\Delta\left(V_{n}\right) & =W_{n-1}, & \Delta\left(W_{n}\right) & =V_{n} \\
V_{n} & \in\{1,3\}^{*}, \quad W_{n} \in\{1,3\}^{*}
\end{array}
$$

and two consecutive occurrences in V_{n} or in W_{n} of the letter 3 are separated by 111 or 1 .

One has $V_{1}=111, W_{1}=313, V_{2}=1113111, W_{2}=313111313$. Assume that the induction hypothesis holds for $n \geq 2$. The word V_{n+1} is uniquely determined by its first letter 1 and the fact that $\Delta\left(V_{n+1}\right)=W_{n}$. Similarly, W_{n+1} is uniquely determined. Since the $3^{\prime} s$ are separated by either 1 or 111 , then 313 always code 1113111 in V_{n+1}, whereas the word 31113 always codes 111313111 , which implies the desired property on V_{n+1}. The proof is similar for W_{n+1}.

Observe that we have proved that $V_{n} \in\{13,11\}^{*}$, that is, V_{n} can be encoded over the alphabet $\{A, B\}$, where $A=13, B=11$, and that $V_{n+1}=\phi\left(V_{n}\right)$, where ϕ is defined by $\phi: A \mapsto A B A, B \mapsto A B$ (ϕ is the square of the Fibonacci morphism up to the alphabet).

Now, we have $\Delta^{3}\left(F_{2 n} \cdot 1^{-1}\right)=V_{n-1}, \Delta^{3}\left(F_{2 n+2} \cdot 2^{-1}\right)$ is a prefix of $V_{n}, \Delta(2$. $\left.F_{2 n+2} \cdot 1^{-1}\right)=V_{n+1}$, and $\Delta^{2}\left(1 \cdot F_{2 n+1} \cdot 2^{-1}\right)=V_{n}$, so that it only remains to check that the first interations of Δ produce words over the alphabet 3 to conclude.

The infinite Fibonacci word satisfies the following property, which is a direct consequence of Proposition 5 and 6.

Proposition 7. The word F satisfies $\Phi(F)=112(13)^{\omega}$ and $\Delta^{*}(F) \subset \mathbf{3}^{\omega}$.
It is well known that the Fibonacci word F does not contain cubes, and for the Δ-iterates the following patterns are avoided.

Lemma 8. The factors 33 and 31313 never occur in $\Delta^{k}(F)$, for every $k \geq 2$. The factors 22 and 21212 never occur in $\Delta(F)$.
Proof. One checks that 33 and 22 never occur in $\Delta^{k}(F)$, for $k \leq 2$. According to the proof of Proposition 6, 33 never occurs in V_{n}, for all n and hence in F. Assume now that the factor 31313 occurs in $\Delta^{k}(F)$, for some $k \geq 2$. Since 33 does not occur in $\Delta^{k-1}(F)$ (if $k=2$, consider 22), then $\Delta(31313)=11111 \in \Delta^{k}(F)$, which implies that the letter 5 occurs in $\Delta^{k+1}(F)$, a contradiction. The same argument applies for 21212.

Let \mathcal{F} denote the Fibonacci shift, that is, the set of infinite words having exactly the same factors as the Fibonacci word F; let us recall that \mathcal{F} is the closure in $\{1,2\}^{\omega}$ of the orbit $\left\{s^{k}(F) ; k \in \mathbb{N}\right\}$ of F.

Example. $\Phi(2 \cdot F)=213 \cdot\left(s^{3} \circ \Phi\right)(F)=2(13)^{\omega}$. Indeed by applying the glueing lemma, we have the following iterations of Δ on $2 \cdot F$

$$
\left.\begin{array}{rl}
\Delta^{0}(2 F) & =2 \cdot F \\
\Delta^{1}(2 F) & =1 \cdot \Delta(F)
\end{array}\right)=1 \cdot 1211212 \cdot 112112121121211211212 \cdots \cdot 1.2111 \cdot 2121112111212111 \cdots .
$$

that is,

$$
\Phi(2 F)=2 \oplus_{0} \Phi(1 \cdot \Delta(F))=213 \oplus_{2} \Phi\left(\Delta^{3}(2 F)\right)
$$

so that $\Phi(2 \cdot F)=213 \cdot \Phi\left(\Delta^{3}(F)\right)=213 \cdot s^{3} \circ \Phi(F)$.
We know that $\Phi(F)$ is eventually periodic so that the following question is natural: does such a behaviour extend to other words in the Fibonacci shift \mathcal{F} ? More precisely is this property characteristic of the Fibonacci language or does it hold only for particular sequences of the Fibonacci shift? The next theorem answers this question:

Theorem 9. Every word $U \in \mathcal{F}$ satisfies the following properties:
(i) U is a word of 5^{ω});
(ii) for every $k \geq 2, s\left(\Delta^{k}(U)\right) \in\{1,3\}^{*}$;
(iii) every factor of $\Delta^{k}(U)$ having 3 or 111 for prefix occurs in $\Delta^{k}(F)$;
(iv) if U belongs to the two-sided orbit under the shift s of F, that is, if there exists $n \in \mathbb{N}$ such that either $U=s^{n}(F)$ or $F=s^{n}(U)$, then $\Phi(U)$ eventually ends with $(13)^{\omega}$.

Proof. The remaining of this section will be devoted to the proof of this theorem which requires several steps. We need first a preliminary lemma to state the base case of an induction property that we prove below.

Lemma 10. Let $U \in \mathcal{F}$. Then $\Delta(U) \in\{1,2\}^{\omega}$ and we have:
(i) two consecutive occurrences of the letter 2 in $\Delta(U)$ are separated by 1 or 111; 2 occurs infinitely often;
(ii) every factor having 2 or 111 for prefix occurs in $\Delta(F)$.

Proof. Since $F=\varphi(F)$ it follows that $22,111 \notin L(F)=L(U)$. Therefore two consecutive occurrences of 2 are separated by 1 or 11 in U, which implies that $\Delta(U) \in\{1,2\}^{\omega}$.
(i) Since $22 \notin U$, every occurrence of 2 in $\Delta(U)$ codes an occurrence of 11 in U. Let us prove that $11111 \notin L(\Delta(U))$. By contradiction, assume that 11111 is a factor, then 11111 would code an occurrence of either 121212 or 212121 in U, but neither word is a factor of F. Furthermore, two consecutive occurrences of 2 in $\Delta(U)$ cannot be separated by an even number of 1 's: indeed, either the first or the last 2 would code 22 in U, which ends the proof of this statement.
(ii) Let w be a factor of $\Delta(U)$ whose prefix is either the letter 2 or the factor 111. It codes uniquely a factor in U and in F, implying that it belongs to $\Delta(F)$.

Let us come back to the proof of Theorem 9 . We prove by induction the following assertions, where $x_{k}=2$ if $k=1$ and 3 otherwise;
(1) $\Delta^{k}(U)$ is well defined;
(2) $\left.\Delta^{k}(U) \in 5^{\omega} ;\left(s \circ \Delta^{k}\right)(U)\right) \in\left\{1, x_{k}\right\}^{\omega}$;
(3) two successive occurrences of x_{k} are separated either by 1 or 111 ; the letter x_{k} occurs infinitely often;
(4) every factor of $\Delta^{k}(U)$ having x_{k} or 111 for prefix occurs in $\Delta^{k}(F)$.

The induction property holds for $k=1$ by Lemma 10 . Fix now an integer $k \geq 1$ and assume that the induction property holds for both k and $k-1$. For the sake of simplicity, we assume that $k \geq 2$ and replace x_{k} by its value 3 . The proof proceeds exactly in the same way when $k=1, x_{k}=2$. We only need to use the fact that 22 does not occur in $\Delta^{0}(U)=U$.

Observe first that the factors 33 and 31313 do not occur in $\Delta^{k}(U)$, and 33 does not occur in $\Delta^{k-1}(U)$, according to Assertion 4 and Lemma 8.

- From Assertions 1, 2 and 3 above, $\Delta^{k+1}(U)$ is easily seen to be well defined.
- We have three cases to consider.
- If $\Delta^{k}(U)[0]=3$, then $\Delta^{k+1}(U) \in\{1,3\}^{\omega}$, by Assertion 3 .
- If $\Delta^{k}(U)$ has $1^{y} 3(y \geq 1)$ for prefix, then $\Delta^{k+1}(U)=y \Delta\left(s^{y} \circ \Delta^{k}(U)\right)$, and $s \circ \Delta^{k+1}(U) \in\{1,3\}^{\omega}$.
- If $\Delta^{k}(U)[0]=y \neq 1,3$, then $\Delta^{k}(U)$ has $y 1^{z}(z \geq 1)$ for prefix, since the factor 33 cannot occur in $\Delta^{k-1}(U)$. If z is even, then Assertion 2 implies that $y 1^{z} 3$ would code a factor of the form $r^{y}(3131)^{z / 2} 333$ in $\Delta^{k}(U)(r \in \mathbf{5})$, a contradiction with the fact that $33 \notin L\left(\Delta^{k}(U)\right)$. If $z \geq 5$, then $y 1^{z} 3$ would code a factor of the form $r^{y} 31313$, a contradiction with the fact that $31313 \notin L\left(\Delta^{k}(U)\right)$. We have thus proved that $y \in\{1,3\}$, which implies that $\left(s \circ \Delta^{k+1}(U)\right) \in\{1,3\}^{\omega}$.
Note that the first letter of $\Delta^{k+1}(U)$ is smaller than or equal to 5 , since 31313 does not occur in $\Delta^{k-1}(U)$. Hence, $\Delta^{k+1}(U) \in 5^{\omega}$.
- The factor $33 \notin L\left(\Delta^{k+1}(U)\right)$, otherwise 333 would occur in $\Delta^{k}(U)$. Hence every occurrence of the letter 3 in $\Delta^{k+1}(U)$ codes 111 in $\Delta^{k}(U)$. The factor $311113 \notin L\left(\Delta^{k+1}(U)\right)$, otherwise it would code 1113131333 in $\Delta^{k}(U)$, contradicting the fact that 33 does not occur in $\Delta^{k}(U)$. Similarly, the factor $311111 \notin L\left(\Delta^{k+1}(U)\right)$, otherwise it would code 11131313 in $\Delta^{k}(U)$, but 31313 does not occur in $\Delta^{k}(U)$. At last, the factor $3113 \notin L\left(\Delta^{k+1}(U)\right)$, since otherwise it would code 11131333 in $\Delta^{k}(U)$, again a contradiction.

Hence two consecutive occurrences in $\Delta^{k+1}(U)$ of 3 are separated either by 1 or 111 , and the letter 3 occurs infinitely often.

- Let w be a factor of $\Delta^{k+1}(U)$ whose prefix is either 3 or the factor 111. It codes uniquely a factor in $\Delta^{k}(U)$ also starting with either 3 or 111 , and belonging thus by Assertion 4 to $\Delta^{k}(F)$; therefore w belongs to $\Delta^{k+1}(F)$.

It remains now to prove that $\Phi(U)$ ultimately ends in $(13)^{\omega}$ if U is an image or a preimage of F under the action of the shift s to complete the proof of Theorem 9.

Assume first that U is a shifted image of the Fibonacci word F, that is, there exists $k \in \mathbb{N}$ such that $U=s^{k}(F)$. Let us now introduce a suitable factorization of $2 F$. For that purpose, let us first observe that $F=\varphi^{2 n+1}(F)$ can be uniquely decomposed over the ω-code $\left\{F_{2 n}, F_{2 n+1}\right\}$ (see Proposition 3), and even over the
ω-code $\left\{F_{2 n+2} \cdot F_{2 n+2} \cdot F_{2 n+1}, F_{2 n+2} \cdot F_{2 n+1}\right\}$. Hence we may factorize $2 F$ over

$$
\left\{2 \cdot F_{2 n+2} \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}, 2 \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}\right\}
$$

Furthermore, the first term of this factorization is easily seen by induction to be $2 \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}$, whereas its second term is $2 \cdot F_{2 n+2} \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}$. One has $U=s^{k+1}(2 F)$. Let $n \geq 2$ be large enough such that $\left|F_{2 n+3}\right|>k+1$. Let us write $2 F_{2 n+2} \cdot F_{2 n+1} 2^{-1}$ as

$$
2 \cdot F_{2 n+2} \cdot F_{2 n+1}=P_{k} \cdot Q_{k}
$$

where P_{k} is the prefix of $2 F$ of length $k+1$; hence $2 F=P_{k} \cdot U$, and

$$
U=Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 \cdot F)
$$

i.e.,

$$
U \in Q_{k} \cdot\left\{2 \cdot F_{2 n+2} \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}, 2 \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}\right\}^{\omega},
$$

the first term of this factorization being $2 \cdot F_{2 n+2} \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}$.
Let us observe that
$2 \cdot F_{2 n+2} \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}=\left(2 \cdot F_{2 n+2} \cdot 1^{-1}\right) \cdot\left(1 \cdot F_{2 n+1} \cdot 2^{-1}\right) \cdot\left(2 \cdot F_{2 n} \cdot 1^{-1}\right) \cdot\left(1 \cdot F_{2 n+1} \cdot 2^{-1}\right)$, and

$$
2 \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}=\left(2 \cdot F_{2 n+2} \cdot 1^{-1}\right) \cdot\left(1 \cdot F_{2 n+1} \cdot 2^{-1}\right)
$$

Let us first prove that $\Phi\left(s^{\left|F_{2 n+3}\right|}(2 F)\right)=2(13)^{n+1} 112(13)^{\omega}$. Following Proposition 4 and Proposition 6, the glueing lemma applies, and implies that the first terms of $\Phi\left(s^{\left|F_{2 n+3}\right|}(2 F)\right)$ are $2(13)^{n}$; let us note that $\Delta^{2 n+1}\left(2 \cdot F_{2 n+2} \cdot 1^{-1}\right)=111$, $\Delta^{2 n+1}\left(1 \cdot F_{2 n+1} \cdot 2^{-1}\right)=3, \Delta^{2 n+1}\left(2 \cdot F_{2 n} \cdot 1^{-1}\right)=1$. Hence

$$
\begin{gathered}
\Delta^{2 n+1}\left(2 \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}\right)=111 \cdot 3 . \\
\Delta^{2 n+1}\left(2 \cdot F_{2 n+2} \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}\right)=111 \cdot 3 \cdot 1 \cdot 3
\end{gathered}
$$

One concludes by considering the next values of $\Delta^{k}, 2 n+2 \leq k \leq 2 n+6$ and using the fact that $\Phi(2 F)=\Phi\left(2 \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)=2(13)^{\omega}$.

Let us prove that $\Phi\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)$ and $\Phi\left(s^{\left|F_{2 n+3}\right|}(2 F)\right)$ ulimately coincide. Let m be the smallest integer such that $\Delta^{m}\left(Q_{k}\right)=1$. One checks that $m \leq$ $2 n+5$. Let us distinguish two cases according to the parity of m, and apply the glueing lemma, by noticing that the first term of the decomposition of $s^{\left|F_{2 n+3}\right|}(2 F)$ is $2 \cdot F_{2 n+2} \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}$.

- Assume that m is even. Assume furthermore $m \leq 2 n$. Then the factor $\Delta^{m}\left(s^{\left|F_{2 n+3}\right|}(2 F)\right)$ admits 313111313 as a prefix since $\Phi\left(s^{\left|F_{2 n+3}\right|}(2 F)\right)=$ $2(13)^{n+1} 112(13)^{\omega}$. Hence $\Delta^{m+1}\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)$ admits 11113111 as a prefix, which implies that $\Delta^{m+2}\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)$ admits 413 as a prefix; one deduces that $\Phi\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)$ and $\Phi\left(s^{\left|F_{2 n+3}\right|}(2 F)\right)$ coincide for indices larger than $m+3$. If $m=2 n+2$, then $\Delta^{2 n}\left(s^{\left|F_{2 n+3}\right|}(2 F)\right)$ admits 3111313 as a prefix, and similarly one checks that $\Phi\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)$ ends in $(13)^{\omega}$ from indices larger than or equal to $2 n+5$. If $m=2 n+4$, then one checks that $\Phi\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)$ and $\Phi\left(s^{\left|F_{2 n+3}\right|}(2 F)\right)$ coincide for indices larger than $2 n+6$.
- Assume that m is odd. This implies that $\Delta^{m-1}\left(Q_{k}\right)=2$. Assume that $m \leq 2 n+1$. One checks that $\Delta^{m}\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)$ admits 11113 as a prefix, and thus $\Phi\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)$ and $\Phi\left(s^{\left|F_{2 n+3}\right|}(2 F)\right)$ coincide for indices larger than $m+2$. If $m=2 n+3, \Phi\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right)$ ends in $(13)^{\omega}$ from for indices larger than $2 n+6$. If $m=2 n+5$, one checks that

$$
\Phi\left(Q_{k} \cdot s^{\left|F_{2 n+3}\right|}(2 F)\right) \text { and } \Phi\left(s^{\left|F_{2 n+3}\right|}(2 F)\right) \text { coincide for indices larger than }
$$

$$
2 n+8
$$

One thus deduces that $\Phi(U)$ ultimately terminates in $(13)^{\omega}$.
Assume now that U is a preimage of F under an iterate of s, that is, there exists k such that $s^{k}(U)=F$. Since both $2 F$ and $1 F$ belong to \mathcal{F}, then U is either a preimage or $2 F$ or of $1 F$, that is, there exists a finite word P_{U} such that either $U=P_{U} \cdot 2 F$ or $U=P_{U} \cdot 1 F$. Using the factorizations, respectively, of $2 F$ over $\left\{2 \cdot F_{2 n+2} \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}, 2 \cdot F_{2 n+2} \cdot F_{2 n+1} \cdot 2^{-1}\right\}$ or $1 F$ over $\left\{1 \cdot F_{2 n+1} \cdot F_{2 n+1} \cdot F_{2 n} \cdot 2^{-1}, 1 \cdot F_{2 n+1} \cdot F_{2 n} \cdot 2^{-1}\right\}$ we may apply the same reasoning as above. Let us recall that $\Phi(2 F)=2(13)^{\omega}$, whereas one checks that $\Phi(1 F)=$ $12(13)^{\omega}$. One thus obtains that $\Phi\left(P_{U} \cdot 2 F\right)$ and $\Phi\left(P_{U} \cdot 1 F\right)$ ultimately coincide with respectively $\Phi(2 F)$ or $\Phi(1 F)$, which ends the proof.

We have thus proved that words that are images or preimages of F under the shift s eventually end with $(13)^{\omega}$. The next proposition states that this property does not hold for all words in \mathcal{F}, that is, there exist words U with the same set of factors as F for which $\Phi(U)$ presents a different behaviour.

Proposition 11. There exist words U in \mathcal{F} such that $\Phi(U)$ contains infinitely many occurrences of the letter 2.

Proof. Let us exhibit an example of a Sturmian word U in \mathcal{F} such that $\Phi(U)$ does not ultimately end in $(13)^{\omega}$. Let U be the limit word in $\{1,2\}^{\omega}$ of the sequence of finite words

$$
U_{n}=\left(1 \cdot\left(F_{7} \cdot F_{10}\right) \cdots\left(F_{2^{k}-1} \cdot F_{2^{k}+2}\right) \cdots\left(F_{2^{n}-1} \cdot F_{2^{n}+2}\right) \cdot 1^{-1}\right), n \geq 3
$$

This sequence of words converges for the usal topology on $\{1,2\}^{\omega}$ and for every n, U_{n} is a factor of the Fibonacci word F as we shall see now. Indeed, following [9], every finite concatenation of F_{n} 's with decreasing order of indices and where no two consecutive indices occur, is a prefix of the Fibonacci word F. Hence

$$
F_{2^{n}+2} \cdot F_{2^{n}-1} \cdots F_{10} \cdot F_{7}
$$

is a prefix of F. Since $2 F$ is also a Sturmian word in $\mathcal{F}, 2 \cdot F_{2^{n}+2} \cdot F_{2^{n}-1} \cdots F_{10} \cdot F_{7}$ is also a factor of F. But

$$
\begin{aligned}
& 2 \cdot F_{2^{n}+2} \cdot F_{2^{n}-1} \cdots F_{10} \cdot F_{7} \cdot 2^{-1}= \\
& \quad\left(2 \cdot F_{2^{n}+2} \cdot 1^{-1}\right) \cdot\left(1 \cdot F_{2^{n}-1} \cdot 2^{-1}\right) \cdots\left(2 \cdot F_{10} \cdot 1^{-1}\right) \cdot\left(1 \cdot F_{7} \cdot 2^{-1}\right)
\end{aligned}
$$

is a concatenation of palindromes by Proposition 3. The set of factors of F being stable under mirror image (see for instance [13]), we have

$$
\begin{aligned}
\left(1 \cdot F_{7} \cdot 2^{-1}\right) \cdot\left(2 \cdot F_{10} \cdot 1^{-1}\right) & \cdots \\
& \left.=1 \cdot F_{2^{n}-1} \cdot 2^{-1}\right) \cdot\left(2 \cdot F_{2^{n}+2} \cdot 1^{-1}\right) \\
& 1 \cdot\left(F_{7} \cdot F_{10}\right) \cdots\left(F_{2^{n}-1} \cdot F_{2^{n}+2}\right) \cdot 1^{-1}
\end{aligned}
$$

is a factor of F. Hence the word U belongs to \mathcal{F} since it is a limit of factors of the Fibonacci word, and admits for every n, U_{n} as a prefix. Consider now the following factorization

$$
\begin{aligned}
& \left(1 \cdot F_{2^{n}-1} \cdot 2^{-1}\right) \cdot\left(2 \cdot F_{2^{n}+2} \cdot 1^{-1}\right)= \\
& \quad\left(1 \cdot F_{2^{n}-1} \cdot 2^{-1}\right) \cdot\left(2 \cdot F_{2^{n}} \cdot 1^{-1}\right) \cdot\left(1 \cdot F_{2^{n}-1} \cdot 2^{-1}\right)\left(2 \cdot F_{2^{n}} \cdot 1^{-1}\right)
\end{aligned}
$$

Following Proposition 4 and Proposition 6, the glueing lemma applies. One has $\Delta^{2^{n}}\left(1 \cdot F_{2^{n}-1} \cdot 2^{-1}\right)=1, \Delta^{2^{n}}\left(1 \cdot F_{2^{n}+1} \cdot 2^{-1}\right)=111$, and $\Delta^{2^{n}}\left(2 \cdot F_{2^{n}} \cdot 1^{-1}\right)=3$. Hence

$$
\begin{array}{ll}
\Delta^{2^{n}}\left(1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}\right) & =1 \cdot 3 \cdot 111 \cdot 3 \\
\Delta^{2^{n}+1}\left(1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}\right) & =1 \cdot 1 \cdot 3 \cdot 1 \\
\Delta^{2^{n}+2}\left(1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}\right) & =2 \cdot 1 \cdot 1 \\
\Delta^{2^{n}+3}\left(1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}\right) & =1 \cdot 2 \\
\Delta^{2^{n}+4}\left(1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}\right) & =1 \cdot 1 \\
\Delta^{2^{n}+5}\left(1 \cdot F_{2^{n}-1} \cdot F_{2^{n}+2} \cdot 2^{-1}\right) & =2
\end{array}
$$

By applying the glueing lemma, one proves by induction that

$$
\Delta^{2^{n-1}+8}\left(U_{n}\right)=\Delta^{2^{n-1}+8}\left(\left(1 \cdot F_{2^{n}-1} \cdot 2^{-1}\right) \cdot\left(2 \cdot F_{2^{n}+2} \cdot 1^{-1}\right)\right)
$$

which implies $\Phi(U)\left[2^{n}+2\right]=2$, for all $n \geq 3$.
Remark One can in fact prove that there exist uncountably many words U in \mathcal{F} such that $\Phi(U)$ does not ultimately end in $(13)^{\omega}$.

References

[1] J. Berstel, Axel Thue's papers on repetition words: a translation, Publications du LaCIM, (1995).
[2] S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math. 24 (1989) 83-96.
[3] S. Brlek, A. Ladouceur, A note on differentiable palindromes, Theoret. Comput. Sci., 302 (2003) 167-178
[4] S. Brlek, S. Dulucq, A. Ladouceur, L. Vuillon, Combinatorial properties of smooth infinite words, MFCS'04, Prague, Czech Republic (2004) submitted.
[5] A. Carpi, Repetitions in the Kolakovski sequence, Bull. of the EATCS, 50 (1993) 194-196.
[6] E.M. Coven, G.A. Hedlund, Sequences with minimal block growth, Math. Systems Theory, 7 (1973 138-153.
[7] F. M. Dekking, On the structure of self generating sequences, Séminaire de théorie des nombres de Bordeaux, exposé 31, 1980-1981.
[8] F. M. Dekking, What is the long range order in the Kolakoski sequence, in R. V. Moody (ed.), The mathematics of Long-Range Aperiodic Order, Kluwer Academic Publishers (1997) 115-125.
[9] J.-M. Dumont, A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comp. Sci. 65 (1989), 153-169.
[10] W. Kolakoski, Self Generating Runs, Problem 5304, American Math. Monthly, 72 (1965) 674. Solution: American Math. Monthly, 73 (1966) 681-682.
[11] A. Ladouceur, Outil logiciel pour la combinatoire des mots, Mém. Maitrise en Math., UQAM, AC20U5511 M6258, 1999.
[12] P. Lamas, Contribution à l' étude de quelques mots infinis, Mém. Maitrise en Math., UQAM, AC20U5511 M4444, 1995.
[13] M. Lothaire, Algebraic Combinatorics on words, Cambridge University Press, 2002.
[14] A. de Luca, Sturmian words: structure, combinatorics, and their arithmetics, Theoret. Comput. Sci., 183 (1997) 45-82.
[15] M. Morse, Symbolic Dynamics, Amer. J. Math., 60 (1938) 815-866.
[16] M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian Trajectories, Amer. J. Math., 62 (1940) 1-42.
[17] A. Thue, Über unendliche Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl., Christiana, Nr. 7 (1906) 1-22.
[18] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat. Nat. Kl., Christiana, Nr. 1 (1912) 1-67.

LIRMM, 161 Rue Ada, 34392 Montpellier Cedex 05, FRANCE
E-mail address: berthe@lirmm.fr
LaCIM, Université du Québec à Montréal, Montréal (QC) CANADA H3C 3P8
E-mail address: brlek@lacim.uqam.ca
Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto (ON) CANADA M3J1P3

E-mail address: philcho@mathstat.yorku.ca

