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Abstrat. Using the run-length enoding �, the Fibonai in�nite word F

possesses a natural representation obtained from the iterations of �. This

representation is the eventually periodi word 112(13)

!

whih an be extended

to the shifted Fibonai words.

1. Introdution

Let ' : f1; 2g

�

�! f1; 2g

�

be the morphism de�ned by

'(1) = 12 ; '(2) = 1;

and let F

n

= '

n

(1) be the n-th iterate, also alled the n-th Fibonai word. We

then have

F

0

= 1;

F

1

= 12;

F

2

= 121;

F

3

= 12112;

F

4

= 12112121;

and the in�nite Fibonai word F is obtained as the �xed point of ', that is

F = lim

n!1

F

n

= '

!

(1) = 1211212112112121121211211212112112 � � � :

The ombinatorial and arithmeti properties of F have been widely studied and it

has a dominant role in the theory of Sturmian words.

The run-length enoding � is used in many appliations as a method for om-

pressing data. For instane, the �rst step in the algorithm used for ompressing the

data transmitted by Fax mahines onsists of a run-length enoding of eah line

of pixels. It also has been used for the enumeration of fators in the Thue-Morse

sequene [2℄. It is de�ned as follows. Let � = f�

1

; �

2

; : : : ; �

k

g be a �nite alphabet.

Then every word w 2 �

�

an be uniquely written as a produt of fators as follows

w = �

e

1

m

1

�

e

2

m

2

�

e

3

m

3

� � �

where �

m

j

2 � and the exponents e

j

� 0: Hene the oding is realized by a funtion

(�; �) : �

�

�! N

�

� �

�

where the �rst omponent is the funtion � : �

�

�! N

�

; de�ned by

�(w) = e

1

e

2

e

3

� � � =

Y

j�0

e

j

;
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and the seond omponent is the funtion � : �

�

�! �

�

indued by the ongruene

� de�ned by

�

2

� �; 8� 2 �:

Note that the alphabet � may be identi�ed with a subset of N and we shall denote

k = f1; 2; : : : ; kg � N for a �xed integer k. The operator � an be iterated,

provided the proess is stopped when the resulting word has length 1, and an also

be extended to in�nite words. For instane we have

�

0

(F ) = 12112121121121211212 � � � ;

�

1

(F ) = 1121112121112111 � � � ;

�

2

(F ) = 213111313 � � � ;

�

3

(F ) = 1113111 � � � ;

�

4

(F ) = 313 � � � :

It is not diÆult to see that the proess an be reversed: �

i

(F ) may be retrieved

from �

i+1

(F ) with the knowledge of �(�

i

(F )). It turns out that in the ase of the

Fibonai word F , not only the alphabet is bounded but also �(�

i

(F )) is eventually

periodi. Therefore F is ompletely determined by the harateristi sequene

�(F ) = (�

i

(F )[0℄)

i=0::1

= 112(13)

!

:

We also show that the shifted sequenes of F also share this property.

2. Definitions and notation

A word over a �nite alphabet of letters � is a �nite sequene of letters

w : [0; n� 1℄ �! � ; n 2 N;

of length n, and w[i℄ or w

i

denotes its letter of index i. The set of n-length words

over � is denoted �

n

. By onvention the empty word is denoted " and its length

is 0: The free monoid generated by � is de�ned by �

�

=

S

n�0

�

n

. The set of

right in�nite words is denoted by �

!

and �

1

= �

�

[ �

!

. Adopting a onsistent

notation for sequenes of integers, N

�

=

S

n�0

N

n

is the set of �nite sequenes and

N

!

is those of in�nite ones. Given a word w 2 �

�

; a fator f of w is a word f 2 �

�

satisfying

9x; y 2 �

�

; w = xfy:

If x = " (resp. y = " ) then f is alled pre�x (resp. suÆx). The set of all

fators of w, alled the language of w, is denoted by L(w); and those of length

n is L

n

(w) = L(w) \ �

n

: Finally Pref(w); Su�(w) denote respetively the set of

all pre�xes and suÆxes of w. The length of a word w is jwj, and the number

of ourrenes of a fator f 2 �

�

is jwj

f

. A blok of length k is a fator of the

partiular form f = �

k

, with � 2 �. If w = pu, and jwj = n; jpj = k, then

p

�1

w = w[k℄ � � �w[n � 1℄ = u is the word obtained by erasing p. As a speial ase,

when jpj = 1 we obtain the shift funtion de�ned by s(w) = w

1

� � �w

n�1

. Clearly

the shift extends to right in�nite words.

The reversal (or mirror image) eu of u = u

0

u

1

� � �u

n�1

2 �

n

is the unique word

satisfying

fu

i

= u

n�1�i

; 8 i; 0 � i � n� 1:

A palindrome is a word p suh that p = ep , and for a language L, Pal(L) denotes the

set of its palindromi �nite fators. Over any �nite alphabet � = f�

1

; �

2

; : : : ; �

k

g,
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there is a usual length preserving morphism, de�ned for every permutation � :

� �! � of the letters, whih extends to words by omposition

[0; n� 1℄

u

�! �

�

�! � ;

de�ned by �u = �u

0

�u

1

�u

2

� � � �u

n�1

:

This de�nition extends as usual to in�nite words N �! �. The ourrenes of

fators play an important role and an in�nite word w is reurrent if it satis�es the

ondition

u 2 L(w) =) jwj

u

=1 :

Clearly, every periodi word is reurrent, and there exist reurrent but non-periodi

words, the Thue-Morse word M being one of these [15℄. Finally, two words u and

v are onjugate when there are words x; y suh that u = xy and v = yx. The

onjugay lass of a word u is denoted by [u℄, and the length is invariant under

onjugay so that it makes sense to de�ne j[u℄j = juj:

Cheking that � ommutes with the mirror image, is stable under permutation

and preserves palindromiity is straightforward:

Proposition 1. The operator � satis�es the onditions

(a) �(eu) =

℄

�(u); for all u 2 �

�

;

(b) �(�u) = �(u); for all u 2 �

�

and every permutation � : � �! �;

() p 2 Pal(�

�

) =) �(p) 2 Pal(N

�

) :

Note that � is not distributive on onatenation in general. Nevertheless

(1) �(uv) = �(u) ��(v) () eu[0℄ 6= v[0℄;

that is to say if and only if the last letter of u di�ers from the �rst letter of v. This

property an be extended to iterations and yields the following useful lemma.

Lemma 2 (Glueing Lemma). Let u � v 2 Pref(F

n

) for some n. If there exists an

index m suh that, for all i; 0 � i � m; the last letter of �

i

(u) di�ers from the �rst

letter of �

i

(v), and �

i

(u) 6= 1, �

i

(v) 6= 1, then

(i) �(uv) = �(u)[0::m℄ � � Æ�

m+1

(uv);

(ii) �

i

(uv) = �

i

(u)�

i

(v):

The glueing operation is denoted by �:

�(u)�

m

�(v) = �(u)[0::m℄ �� Æ�

m+1

(uv);

and observe that the glueing lemma may also be generalized (by assoiativity) to

the onatenation of more than two words.

Example. Let u = 1211 and v = 21211. Iterating � on uv yields

�

0

(uv) = 1211 � 21211

�

1

(uv) = 112 � 1112

�

2

(uv) = 21 � 31

�

3

(uv) = 11 � 11

�

4

(uv) = 4

In this ase we have m = 2 and �(1211 � 21211) = 112 � �(1111) = 112 � 14:
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The glueing Lemma 2 admits an extension to in�nite words: let u 2 �

(�)

(Pref(F ))

and v 2 �

(�)

(Su�(F )). If there exists an index m suh that the last letter of �

m

(u)

di�ers from the �rst letter of �

m

(v), then

�(u)�

m

�(v) = �(u)[0::m℄ �� Æ�

m+1

(uv):

The glueing lemma is fundamental for establishing the laim results and most of the

proofs are based on indution, use anonial fatorizations of the Fibonai �nite

words F

n

, where the glueing lemma applies.

3. Results

The Fibonai words F

n

satisfy many harateristi properties and we state

without proof the ones that will be used hereafter:

Proposition 3. For all n � 0 the following properties hold:

(a) F

n+3

= F

n+2

� F

n+1

; and F

n+4

= F

n+2

� F

n+1

� F

n+2

;

(b) 2 � F

2n+2

� 1

�1

and 1 � F

2n+1

� 2

�1

are palindromi fators.

() The set fF

n+1

; F

n

g is an !-ode, that is, every word in f1; 2g

!

admits at

most one fF

n

; F

n�1

g-fatorization.

In the �nite ase we have the following property.

Proposition 4. The sequene of �nite Fibonai words satis�es for all n � 0 the

onditions

(i) �(2 � F

2n+2

� 1

�1

) = 2(13)

n+1

;

(ii) �(1 � F

2n+1

� 2

�1

) = 12(13)

n

:

Proof. We proeed by indution. A straightforward veri�ation establishes the base

of the indution for n = 0; 1; 2; 3. Assume now the onditions hold until n� 1. In

order to establish (i) we use the reurrene relations of Proposition 3 for 2n+2 and

obtain

�(2 � F

2n+2

� 1

�1

) = �(2 � (F

2n

F

2n�1

F

2n

) � 1

�1

)

= �(2 � (F

2n

� 1

�1

1 � F

2n�1

� 2

�1

2 � F

2n

) � 1

�1

)(2)

Reall that � preserves palindromiity (Proposition 1), and that 2 � F

2n+2

� 1

�1

is palindromi (Proposition 3). Therefore, for every m � 2n � 1 by indution

hypothesis, the �-iterates satisfy

�

m

(2 � F

2n

� 1

�1

)[0℄ = �

m

(2 � F

2n

� 1

�1

)[Last ℄

6= �

m

(1 � F

2n�1

� 2

�1

)[0℄ = �

m

(1 � F

2n�1

� 2

�1

)[Last ℄;

where Last abusively denotes the index of the last letter of a word. We may now

apply the glueing Lemma 2 to equation (2) in order to obtain

�

2n�1

(2 � F

2n+2

� 1

�1

) = 313 ;

from whih one onludes that

�(2 � F

2n+2

� 1

�1

) = 2(13)

n�1

1�

2n�1

� Æ�

2n

(2 � F

2n+2

� 1

�1

)

= 2(13)

n�1

1 ��(313)

= 2(13)

n+1

:

The proof of (ii) is similar and is left to the reader. �

In a similar way one an establish the following result.
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Proposition 5. The sequene of Fibonai words satis�es for all n � 2 the ondi-

tions

(i) �(F

2n

� 1

�1

) = 112(13)

n�1

;

(ii) �(F

2n+1

� 2

�1

) = 112(13)

n�1

� 12.

We proeed now with showing that the alphabet used in the iterations of � is

bounded.

Proposition 6. The words

F

2n

� 1

�1

; F

2n+2

� 2

�1

; 2 � F

2n+2

� 1

�1

; 1 � F

2n+1

� 2

�1

; n 2 N;

are words in �

(�)

(3):

Proof. First, we prove by indution on n � 1 that there exist two uniquely and well

de�ned words V

n

and W

n

suh that

�(V

n

) = (13)

n

; �(W

n

) = 3(13)

n

;

�(V

n

) = W

n�1

; �(W

n

) = V

n

;

V

n

2 f1; 3g

�

; W

n

2 f1; 3g

�

;

and two onseutive ourrenes in V

n

or in W

n

of the letter 3 are separated by 111

or 1.

One has V

1

= 111, W

1

= 313, V

2

= 1113111, W

2

= 313111313. Assume that

the indution hypothesis holds for n � 2. The word V

n+1

is uniquely determined

by its �rst letter 1 and the fat that �(V

n+1

) = W

n

. Similarly, W

n+1

is uniquely

determined. Sine the 3

0

s are separated by either 1 or 111, then 313 always ode

1113111 in V

n+1

, whereas the word 31113 always odes 111313111, whih implies

the desired property on V

n+1

. The proof is similar for W

n+1

.

Observe that we have proved that V

n

2 f13; 11g

�

, that is, V

n

an be enoded

over the alphabet fA;Bg, where A = 13, B = 11, and that V

n+1

= �(V

n

), where �

is de�ned by � : A 7! ABA, B 7! AB (� is the square of the Fibonai morphism

up to the alphabet).

Now, we have �

3

(F

2n

� 1

�1

) = V

n�1

; �

3

(F

2n+2

� 2

�1

) is a pre�x of V

n

, �(2 �

F

2n+2

� 1

�1

) = V

n+1

, and �

2

(1 �F

2n+1

� 2

�1

) = V

n

, so that it only remains to hek

that the �rst interations of � produe words over the alphabet 3 to onlude. �

The in�nite Fibonai word satis�es the following property, whih is a diret

onsequene of Proposition 5 and 6.

Proposition 7. The word F satis�es �(F ) = 112(13)

!

and �

�

(F ) � 3

!

.

It is well known that the Fibonai word F does not ontain ubes, and for the

�-iterates the following patterns are avoided.

Lemma 8. The fators 33 and 31313 never our in �

k

(F ), for every k � 2. The

fators 22 and 21212 never our in �(F ).

Proof. One heks that 33 and 22 never our in �

k

(F ), for k � 2. Aording to

the proof of Proposition 6, 33 never ours in V

n

, for all n and hene in F . Assume

now that the fator 31313 ours in �

k

(F ), for some k � 2. Sine 33 does not

our in �

k�1

(F ) (if k = 2, onsider 22), then �(31313) = 11111 2 �

k

(F ), whih

implies that the letter 5 ours in �

k+1

(F ), a ontradition. The same argument

applies for 21212. �
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Let F denote the Fibonai shift, that is, the set of in�nite words having exatly

the same fators as the Fibonai word F ; let us reall that F is the losure in

f1; 2g

!

of the orbit fs

k

(F ); k 2 Ng of F .

Example. �(2 � F ) = 213 � (s

3

Æ �)(F ) = 2(13)

!

. Indeed by applying the glueing

lemma, we have the following iterations of � on 2 � F

�

0

(2F ) = 2 � F = 2 � 1211212 � 112112121121211211212 � � �

�

1

(2F ) = 1 ��(F ) = 1 � 11 � 2111 � 2121112111212111 � � �

�

2

(2F ) = 3 ��(s

2

(�(F ))) = 3 � 13 � 1113131113111 � � �

�

3

(2F ) = �

3

(F ) = 1113111313 � � �

that is,

�(2F ) = 2�

0

�(1 ��(F )) = 213�

2

�(�

3

(2F ));

so that �(2 � F ) = 213 � �(�

3

(F )) = 213 � s

3

Æ�(F ).

We know that �(F ) is eventually periodi so that the following question is nat-

ural: does suh a behaviour extend to other words in the Fibonai shift F? More

preisely is this property harateristi of the Fibonai language or does it hold

only for partiular sequenes of the Fibonai shift? The next theorem answers this

question:

Theorem 9. Every word U 2 F satis�es the following properties:

(i) U is a word of 5

!

);

(ii) for every k � 2, s(�

k

(U)) 2 f1; 3g

�

;

(iii) every fator of �

k

(U) having 3 or 111 for pre�x ours in �

k

(F );

(iv) if U belongs to the two-sided orbit under the shift s of F , that is, if there ex-

ists n 2 N suh that either U = s

n

(F ) or F = s

n

(U), then �(U) eventually

ends with (13)

!

.

Proof. The remaining of this setion will be devoted to the proof of this theorem

whih requires several steps. We need �rst a preliminary lemma to state the base

ase of an indution property that we prove below.

Lemma 10. Let U 2 F . Then �(U) 2 f1; 2g

!

and we have:

(i) two onseutive ourrenes of the letter 2 in �(U) are separated by 1 or

111; 2 ours in�nitely often;

(ii) every fator having 2 or 111 for pre�x ours in �(F ).

Proof. Sine F = '(F ) it follows that 22; 111 62 L(F ) = L(U). Therefore two

onseutive ourrenes of 2 are separated by 1 or 11 in U , whih implies that

�(U) 2 f1; 2g

!

.

(i) Sine 22 62 U , every ourrene of 2 in �(U) odes an ourrene of 11 in

U . Let us prove that 11111 62 L(�(U)). By ontradition, assume that 11111 is a

fator, then 11111 would ode an ourrene of either 121212 or 212121 in U , but

neither word is a fator of F . Furthermore, two onseutive ourrenes of 2 in

�(U) annot be separated by an even number of 1's: indeed, either the �rst or the

last 2 would ode 22 in U , whih ends the proof of this statement.

(ii) Let w be a fator of �(U) whose pre�x is either the letter 2 or the fator 111.

It odes uniquely a fator in U and in F , implying that it belongs to �(F ). �
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Let us ome bak to the proof of Theorem 9. We prove by indution the following

assertions, where x

k

= 2 if k = 1 and 3 otherwise;

(1) �

k

(U) is well de�ned;

(2) �

k

(U) 2 5

!

; (s Æ�

k

)(U)) 2 f1; x

k

g

!

;

(3) two suessive ourrenes of x

k

are separated either by 1 or 111; the letter

x

k

ours in�nitely often;

(4) every fator of �

k

(U) having x

k

or 111 for pre�x ours in �

k

(F ).

The indution property holds for k = 1 by Lemma 10. Fix now an integer k � 1

and assume that the indution property holds for both k and k� 1. For the sake of

simpliity, we assume that k � 2 and replae x

k

by its value 3. The proof proeeds

exatly in the same way when k = 1, x

k

= 2. We only need to use the fat that 22

does not our in �

0

(U) = U .

Observe �rst that the fators 33 and 31313 do not our in �

k

(U), and 33 does

not our in �

k�1

(U), aording to Assertion 4 and Lemma 8.

� From Assertions 1, 2 and 3 above, �

k+1

(U) is easily seen to be well de�ned.

� We have three ases to onsider.

{ If �

k

(U)[0℄ = 3, then �

k+1

(U) 2 f1; 3g

!

, by Assertion 3.

{ If �

k

(U) has 1

y

3 (y � 1) for pre�x, then �

k+1

(U) = y�(s

y

Æ�

k

(U)),

and s Æ�

k+1

(U) 2 f1; 3g

!

.

{ If �

k

(U)[0℄ = y 6= 1; 3, then �

k

(U) has y1

z

(z � 1) for pre�x, sine

the fator 33 annot our in �

k�1

(U). If z is even, then Assertion 2

implies that y1

z

3 would ode a fator of the form r

y

(3131)

z=2

333 in

�

k

(U) (r 2 5), a ontradition with the fat that 33 62 L(�

k

(U)). If

z � 5, then y1

z

3 would ode a fator of the form r

y

31313, a ontradi-

tion with the fat that 31313 62 L(�

k

(U)). We have thus proved that

y 2 f1; 3g, whih implies that (s Æ�

k+1

(U)) 2 f1; 3g

!

.

Note that the �rst letter of �

k+1

(U) is smaller than or equal to 5, sine

31313 does not our in �

k�1

(U). Hene, �

k+1

(U) 2 5

!

.

� The fator 33 62 L(�

k+1

(U)), otherwise 333 would our in �

k

(U). Hene

every ourrene of the letter 3 in �

k+1

(U) odes 111 in �

k

(U). The

fator 311113 62 L(�

k+1

(U)); otherwise it would ode 1113131333 in �

k

(U),

ontraditing the fat that 33 does not our in �

k

(U). Similarly, the fator

311111 62 L(�

k+1

(U)); otherwise it would ode 11131313 in �

k

(U), but

31313 does not our in �

k

(U). At last, the fator 3113 62 L(�

k+1

(U));

sine otherwise it would ode 11131333 in �

k

(U), again a ontradition.

Hene two onseutive ourrenes in �

k+1

(U) of 3 are separated either

by 1 or 111, and the letter 3 ours in�nitely often.

� Let w be a fator of �

k+1

(U) whose pre�x is either 3 or the fator 111. It

odes uniquely a fator in �

k

(U) also starting with either 3 or 111, and

belonging thus by Assertion 4 to �

k

(F ); therefore w belongs to �

k+1

(F ).

It remains now to prove that �(U) ultimately ends in (13)

!

if U is an image or a

preimage of F under the ation of the shift s to omplete the proof of Theorem 9.

Assume �rst that U is a shifted image of the Fibonai word F , that is, there

exists k 2 N suh that U = s

k

(F ). Let us now introdue a suitable fatorization

of 2F . For that purpose, let us �rst observe that F = '

2n+1

(F ) an be uniquely

deomposed over the !-ode fF

2n

; F

2n+1

g (see Proposition 3), and even over the
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!-ode fF

2n+2

� F

2n+2

� F

2n+1

; F

2n+2

� F

2n+1

g: Hene we may fatorize 2F over

f2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

; 2 � F

2n+2

� F

2n+1

� 2

�1

g:

Furthermore, the �rst term of this fatorization is easily seen by indution to be

2 �F

2n+2

�F

2n+1

� 2

�1

, whereas its seond term is 2 �F

2n+2

�F

2n+2

�F

2n+1

� 2

�1

. One

has U = s

k+1

(2F ). Let n � 2 be large enough suh that jF

2n+3

j > k + 1. Let us

write 2F

2n+2

� F

2n+1

2

�1

as

2 � F

2n+2

� F

2n+1

= P

k

�Q

k

;

where P

k

is the pre�x of 2F of length k + 1; hene 2F = P

k

� U , and

U = Q

k

� s

jF

2n+3

j

(2 � F );

i.e.,

U 2 Q

k

� f2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

; 2 � F

2n+2

� F

2n+1

� 2

�1

g

!

;

the �rst term of this fatorization being 2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

.

Let us observe that

2�F

2n+2

�F

2n+2

�F

2n+1

�2

�1

= (2�F

2n+2

�1

�1

)�(1�F

2n+1

�2

�1

)�(2�F

2n

�1

�1

)�(1�F

2n+1

�2

�1

);

and

2 � F

2n+2

� F

2n+1

� 2

�1

= (2 � F

2n+2

� 1

�1

) � (1 � F

2n+1

� 2

�1

):

Let us �rst prove that �(s

jF

2n+3

j

(2F )) = 2(13)

n+1

112(13)

!

: Following Propo-

sition 4 and Proposition 6, the glueing lemma applies, and implies that the �rst

terms of �(s

jF

2n+3

j

(2F )) are 2(13)

n

; let us note that �

2n+1

(2 � F

2n+2

� 1

�1

) = 111,

�

2n+1

(1 � F

2n+1

� 2

�1

) = 3, �

2n+1

(2 � F

2n

� 1

�1

) = 1. Hene

�

2n+1

(2 � F

2n+2

� F

2n+1

� 2

�1

) = 111 � 3:

�

2n+1

(2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

) = 111 � 3 � 1 � 3:

One onludes by onsidering the next values of �

k

, 2n+2 � k � 2n+6 and using

the fat that �(2F ) = �(2 � F

2n+2

� F

2n+1

� 2

�1

� s

jF

2n+3

j

(2F )) = 2(13)

!

.

Let us prove that �(Q

k

� s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) ulimately oinide.

Let m be the smallest integer suh that �

m

(Q

k

) = 1. One heks that m �

2n + 5. Let us distinguish two ases aording to the parity of m, and apply the

glueing lemma, by notiing that the �rst term of the deomposition of s

jF

2n+3

j

(2F )

is 2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

.

� Assume that m is even. Assume furthermore m � 2n. Then the fator

�

m

(s

jF

2n+3

j

(2F )) admits 313111313 as a pre�x sine �(s

jF

2n+3

j

(2F )) =

2(13)

n+1

112(13)

!

: Hene �

m+1

(Q

k

� s

jF

2n+3

j

(2F )) admits 11113111 as a

pre�x, whih implies that �

m+2

(Q

k

� s

jF

2n+3

j

(2F )) admits 413 as a pre�x;

one dedues that �(Q

k

� s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) oinide for in-

dies larger than m + 3. If m = 2n + 2, then �

2n

(s

jF

2n+3

j

(2F )) admits

3111313 as a pre�x, and similarly one heks that �(Q

k

�s

jF

2n+3

j

(2F )) ends

in (13)

!

from indies larger than or equal to 2n + 5. If m = 2n + 4, then

one heks that �(Q

k

�s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) oinide for indies

larger than 2n+ 6.

� Assume that m is odd. This implies that �

m�1

(Q

k

) = 2. Assume that

m � 2n + 1. One heks that �

m

(Q

k

� s

jF

2n+3

j

(2F )) admits 11113 as

a pre�x, and thus �(Q

k

� s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) oinide for

indies larger than m + 2. If m = 2n + 3, �(Q

k

� s

jF

2n+3

j

(2F )) ends in

(13)

!

from for indies larger than 2n+ 6. If m = 2n+ 5, one heks that
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�(Q

k

� s

jF

2n+3

j

(2F )) and �(s

jF

2n+3

j

(2F )) oinide for indies larger than

2n+ 8.

One thus dedues that �(U) ultimately terminates in (13)

!

.

Assume now that U is a preimage of F under an iterate of s, that is, there

exists k suh that s

k

(U) = F . Sine both 2F and 1F belong to F , then U is

either a preimage or 2F or of 1F , that is, there exists a �nite word P

U

suh

that either U = P

U

� 2F or U = P

U

� 1F . Using the fatorizations, respetively,

of 2F over f2 � F

2n+2

� F

2n+2

� F

2n+1

� 2

�1

; 2 � F

2n+2

� F

2n+1

� 2

�1

g or 1F over

f1 �F

2n+1

�F

2n+1

�F

2n

� 2

�1

; 1 �F

2n+1

�F

2n

� 2

�1

g we may apply the same reasoning

as above. Let us reall that �(2F ) = 2(13)

!

, whereas one heks that �(1F ) =

12(13)

!

. One thus obtains that �(P

U

�2F ) and �(P

U

�1F ) ultimately oinide with

respetively �(2F ) or �(1F ), whih ends the proof. �

We have thus proved that words that are images or preimages of F under the

shift s eventually end with (13)

!

. The next proposition states that this property

does not hold for all words in F , that is, there exist words U with the same set of

fators as F for whih �(U) presents a di�erent behaviour.

Proposition 11. There exist words U in F suh that �(U) ontains in�nitely

many ourrenes of the letter 2.

Proof. Let us exhibit an example of a Sturmian word U in F suh that �(U) does

not ultimately end in (13)

!

. Let U be the limit word in f1; 2g

!

of the sequene of

�nite words

U

n

= (1 � (F

7

� F

10

) � � � (F

2

k

�1

� F

2

k

+2

) � � � (F

2

n

�1

� F

2

n

+2

) � 1

�1

); n � 3:

This sequene of words onverges for the usal topology on f1; 2g

!

and for every

n, U

n

is a fator of the Fibonai word F as we shall see now. Indeed, following

[9℄, every �nite onatenation of F

n

's with dereasing order of indies and where

no two onseutive indies our, is a pre�x of the Fibonai word F . Hene

F

2

n

+2

� F

2

n

�1

� � �F

10

� F

7

is a pre�x of F . Sine 2F is also a Sturmian word in F , 2 �F

2

n

+2

�F

2

n

�1

� � �F

10

�F

7

is also a fator of F . But

2 � F

2

n

+2

� F

2

n

�1

� � �F

10

� F

7

� 2

�1

=

(2 � F

2

n

+2

� 1

�1

) � (1 � F

2

n

�1

� 2

�1

) � � � (2 � F

10

� 1

�1

) � (1 � F

7

� 2

�1

)

is a onatenation of palindromes by Proposition 3. The set of fators of F being

stable under mirror image (see for instane [13℄), we have

(1 � F

7

� 2

�1

) � (2 � F

10

� 1

�1

) � � � (1 � F

2

n

�1

� 2

�1

) � (2 � F

2

n

+2

� 1

�1

)

= 1 � (F

7

� F

10

) � � � (F

2

n

�1

� F

2

n

+2

) � 1

�1

is a fator of F . Hene the word U belongs to F sine it is a limit of fators of the

Fibonai word, and admits for every n, U

n

as a pre�x. Consider now the following

fatorization

(1 � F

2

n

�1

� 2

�1

) � (2 � F

2

n

+2

� 1

�1

) =

(1 � F

2

n

�1

� 2

�1

) � (2 � F

2

n

� 1

�1

) � (1 � F

2

n

�1

� 2

�1

)(2 � F

2

n

� 1

�1

):
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Following Proposition 4 and Proposition 6, the glueing lemma applies. One has

�

2

n

(1 � F

2

n

�1

� 2

�1

) = 1, �

2

n

(1 � F

2

n

+1

� 2

�1

) = 111, and �

2

n

(2 � F

2

n

� 1

�1

) = 3.

Hene

�

2

n

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 1 � 3 � 111 � 3;

�

2

n

+1

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 1 � 1 � 3 � 1;

�

2

n

+2

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 2 � 1 � 1

�

2

n

+3

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 1 � 2

�

2

n

+4

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 1 � 1

�

2

n

+5

(1 � F

2

n

�1

� F

2

n

+2

� 2

�1

) = 2:

By applying the glueing lemma, one proves by indution that

�

2

n�1

+8

(U

n

) = �

2

n�1

+8

((1 � F

2

n

�1

� 2

�1

) � (2 � F

2

n

+2

� 1

�1

));

whih implies �(U)[2

n

+ 2℄ = 2, for all n � 3. �

Remark One an in fat prove that there exist unountably many words U in F

suh that �(U) does not ultimately end in (13)

!

.
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