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S-adic expansions related to continued fractions

By

Valérie Berthé∗

Abstract

We consider S-adic expansions associated with continued fraction algorithms, where an

S-adic expansion corresponds to an infinite composition of substitutions. Recall that a substi-

tution is a morphism of the free monoid. We focus in particular on the substitutions associated

with regular continued fractions (Sturmian substitutions), and with Arnoux–Rauzy, Brun, and

Jacobi–Perron (multidimensional) continued fraction algorithms. We also discuss the spectral

properties of the associated symbolic dynamical systems under a Pisot type assumption.

§ 1. Introduction

We consider in this paper S-adic expansions associated with substitutions pro-

vided by (multidimensional) continued fraction algorithms, in the continuation of [23].

We focus in particular on the substitutions associated with regular continued fractions

(Sturmian substitutions), and with Arnoux–Rauzy, Brun, and Jacobi–Perron (multidi-

mensional) continued fraction algorithms. As new contributions with respect to [23],

the present paper presents spectral results related to the existence of rotation factors

for Pisot type S-adic systems.

We recall that an S-adic expansion corresponds to an infinite composition of sub-

stitutions. More precisely, an infinite word u is said to admit an S-adic expansion

if

u = lim
n→∞

σ0σ1 · · ·σn−1(an),

where σn : A∗n+1 → A∗n is a sequence of substitutions that belong to the set S, and

(an)n∈N a sequence of letters with an ∈ An for all n. Without reference to the set of

2000 Mathematics Subject Classification(s): 2000 Mathematics Subject Classification(s):
Key Words: S-adic expansions, substitutions, symbolic dynamical systems, Lyapunov exponents,
continued fractions, pure discrete spectrum, toral translations, Pisot substitution conjecture.

∗IRIF, Université Paris Diderot Paris 7 - Case 7014 F-75205 Paris Cedex 13, France.
e-mail: berthe@liafa.univ-paris-diderot.fr

c© 201x Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



S-adic expansions related to continued fractions 1

substitutions, we use the generic term S-adic expansion. If the substitutions are known

to belong to some set S, we use the term S-adic expansion. There is a deep paral-

lelism between subshifts associated with such expansions (under natural assumptions

like primitivity, see Section 2.2) and Bratteli–Vershik systems endowed with adic trans-

formations, hence the terminology ‘adic’, with the letter S referring to ‘substitution’.

Indeed, substitutive symbolic dynamical systems correspond to stationary Bratteli dia-

grams, S-adic symbolic dynamical systems to non-stationary ones, and S-adic dynamical

systems having a finite set of substitutions {σn}, assumed furthermore to be positive,

correspond to finite (topological) rank systems. This connection between adic models

and substitutions has been widely investigated; see e.g. [49], or [26] and the references

therein. As an example, explicit constructions of adding machines associated with sub-

stitutions for Denjoy systems in the framework of continued fractions are given in [76].

The main difference with the usual Bratteli–Vershik viewpoint is that we work here with

measure-preserving dynamical systems and not in a topological dynamics framework.

Recall that it was shown in [70] that the Vershik adic construction provides a one-

to-one correspondence between minimal Cantor systems and properly ordered Bratteli

diagrams: any Cantor minimal system admits a Bratteli–Vershik representation (via

topological conjugacy).

The S-adic systems considered here are associated with continued fraction algo-

rithms that produce matrices with nonnegative entries: we consider these matrices as

incidence matrices of substitutions. We consider mostly algorithms under an additive

form: it makes it easier to associate with them substitutions. Indeed the produced

matrices have entries that belong to {0, 1}. For more details on this approach, see e.g.

[22]. We focus here on algorithms such as considered in [74] having exponential conver-

gence (their second Lyapunov exponent is negative). We are in a so-called S-adic Pisot

framework. We thus consider spectral properties of the associated symbolic dynamical

systems.

Let us briefly sketch the contents of this paper. Section 2 is devoted to the basic

notions on substitutions and S-adic systems that will be needed here. Section 3 in-

troduces the substitutions and S-adic systems associated with continued fractions. We

focus on Pisot S-adic systems in Section 4, and on their spectral properties.

§ 2. First definitions

§ 2.1. Words and substitutions

Let A be finite set of letters, called alphabet. A finite word is an element of the free

monoid A∗ generated by A. We will work here both with one-sided words and two-sided

words (it is easier from a combinatorial viewpoint to generate one-sided words in an
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S-adic way but working with two-sided words makes the shift invertible).

A substitution σ over the alphabet A is a non-erasing endomorphism of the free

monoid A∗ (the image of a letter is never equal to the empty word, it contains at least

one letter).

For i ∈ A and for w ∈ A∗, |w|i stands for the number of occurrences of the letter

i in the word w. Let us denote by d the cardinality of A. Let σ be a substitution.

Its incidence matrix Mσ = (mi,j)1≤i,j≤d is defined as the square matrix with entries

mi,j = |σ(j)|i for all i, j. A substitution is said primitive if there exists a power of

its incidence matrix whose entries are all positive. We say that σ is unimodular if

det(Mσ) = ±1. The following notion is natural in the framework of Bratteli diagrams:

a substitution over A is said proper if there exist two letters b, e ∈ A such that for all

a ∈ A, σ(a) begins with b and ends with e.

The set AZ is equipped with the product topology of the discrete topology on

each copy of A, it is a compact space. This topology is defined by the usual distance:

for u 6= v ∈ AZ, d(u, v) = 2−min{n∈N; u|n| 6=v|n|}. The same holds analogously for AN.

A word w1 · · ·w` is a factor of the word u if there exists k such that uk · · ·uk+`−1 =

w1 · · ·w`. A word u = (un)n ∈ AN (or in AZ) is uniformly recurrent if every word

occurring in u occurs in an infinite number of positions with bounded gaps, that is, if

for every factor w, there exists s such that for every n, w is a factor of un . . . un+s−1.

The set of factors Lu of an infinite word u is called its language. A word u is said to

be linearly recurrent if there exists a constant C such that every factor of length Cn

contains every factor of length n. The (factor) complexity function of an infinite word u

counts the number of distinct factors of a given length. We recall that linearly recurrent

words have at most linear factor complexity [49].

Let Σ stand for the (left) shift acting on AZ (or on AN), that is, Σ((un)n) = (un+1).

One associates with any infinite word in AZ (or in AN) the symbolic dynamical system

(Xu,Σ), where Xu is the closure of the orbit of u under the shift. We also associate such

a symbolic system (Xσ,Σ) with a primitive substitution σ by considering the symbolic

system Xu associated with any periodic word u (that is, a word u fixed by some power of

σ): Xσ := Xu. By primitivity, Xσ does not depend on the choice of u. For more details,

see e.g. [86]. More generally a subshift (also called shift) (X,Σ) of AN (respectively AZ)

is a closed shift invariant subset of AN (respectively AZ). Its language LX is the set of

its factors, that is, the set of factors of words in X.

Let u be a word in AN. The frequency of a letter i in u is defined as the limit when

n tends towards infinity, if it exists, of the number of occurrences of i in u0u1 · · ·un−1

divided by n. The vector f whose components are given by the frequencies of the letters

(if they exist) is called the letter frequency vector of u. The word u has uniform letter

frequencies if, for every letter i of u, the number of occurrences of i in uk · · ·uk+n−1
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divided by n has a limit when n tends to infinity, uniformly in k. Similarly, we can define

the frequency and the uniform frequency of a factor, and we say that u has uniform

frequencies if all its factors have uniform frequency. This extends in a natural way to

two-sided words and shifts.

A probability measure µ on Xu is said invariant if µ(Σ−1A) = µ(A) for every

measurable set A ⊂ Xu. An invariant probability measure on Xu is ergodic if any shift-

invariant measurable set has either measure 0 or 1. The property of having uniform

factor frequencies for a shift is equivalent to unique ergodicity. For more details on

invariant measures and ergodicity, we refer to [86] and [26, Chap. 7].

Recall that if σ is a primitive substitution, then (Xσ,Σ) is minimal, linearly recur-

rent, uniquely ergodic. Hence, any of its elements has at most linear factor complexity.

For more details, see [86, 53].

Let u ∈ AN and assume that each letter i has frequency fi in u. The discrepancy

of u is ∆(u) = lim supi∈A, n∈N ||u0u1 . . . un−1|i − nfi|. The quantity ∆(u) is considered

e.g. in [1, 2]. A word u ∈ AN is said to be C-balanced if for any pair v, w of factors

of the same length of u, and for any letter i ∈ A, one has ||v|i − |w|i| ≤ C. It is said

balanced if there exists C > 0 such that it is C-balanced. If u has letter frequencies,

then u is balanced if and only if its discrepancy ∆(u) is finite. It is also said to have

bounded deviation (the term ‘deviation’ refers here to the ergodic averages, that is, the

Birkhoff sums associated with the indicator function of the cylinders associated with

letters).

Let us recall that an algebraic integer α > 1 is a Pisot–Vijayaraghavan number

or a Pisot number if all its algebraic conjugates λ other than α itself satisfy |λ| < 1.

According to Perron–Frobenius’ theorem (see e.g. [92]), if a substitution is primitive,

then its incidence matrix admits a dominant eigenvalue (it dominates strictly in mod-

ulus the other eigenvalues) that is (strictly) positive. It is called its Perron–Frobenius

eigenvalue, or else its expansion factor. A primitive substitution is said to be Pisot if its

expansion number is a Pisot number. A primitive substitution is said Pisot irreducible

if the characteristic polynomial of its incidence matrix is the minimal polynomial of a

Pisot number. Recall that primitive Pisot substitutions are balanced, and have finite

discrepancy (see e.g. [1, 2]). See also [41, 89] for similar results for primitive tiling

spaces.

§ 2.2. S-adic shifts

Let S be a set of substitutions. Let s = (σn)n∈N ∈ SN, with σn : A∗n+1 → A∗n, be

a sequence of substitutions, and let (an)n∈N be a sequence of letters with an ∈ An for
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all n. The infinite word u ∈ AN is said to admit (σn, an)n as an S-adic expansion1 if

u = lim
n→∞

σ0σ1 · · ·σn−1(an).

The sequence s is called the directive sequence. We work here under the assumption

that all substitutions in S are defined on the same alphabet A.

Let us stress the fact that any word admits many possible S-adic expansions, such

as illustrated by the now classical example by J. Cassaigne (see [23, Remark 3] and

Section 3.6). We now introduce several properties of S-adic expansions that induce

relevant properties for the generated words.

An S-adic expansion with directive sequence (σn)n is said weakly primitive if, for

each n, there exists r such that the substitution σn · · · σn+r is positive. It is said

strongly primitive if the set of substitutions {σn} is finite, and if there exists r such that

the substitution σn · · · σn+r is positive, for each n.

Assume we are given a (weakly) primitive directive sequence s = (σn)n∈N. Let u

be an infinite word of the form u =
⋂
n σ0 · · ·σn(AN), where the substitutions σn of the

directive s are defined on the alphabet A. According to [11], such a word is called a

limit word of the directive sequence s (the intersection which defines u is reduced to a

unique infinite word by primitivity of s). We define the shift (X(s),Σ) generated by s as

X(s) := Xu, for u limit word of s, and its language L(s) as L(s) := Lu. One checks that

these definitions do not depend on u by Theorem 2.1 below. For a discussion on the

way (two-sided) subshifts can be associated with directive sequences of substitutions

(without any primitivity assumption), see [13] where the notions of global (one can

desubstitute infinitely often) and local S-adic subshifts (defined in terms of language)

are developed.

Theorem 2.1 ([53]). If an infinite word u admits a weakly primitive S-adic ex-

pansion, then u is uniformly recurrent and the shift (Xu,Σ) is minimal. If moreover u

admits a strongly primitive S-adic expansion, then (Xu, T ) is also uniquely ergodic and

it has at most linear factor complexity.

Furthermore, an infinite word is linearly recurrent if and only if it admits a strongly

primitive and proper S-adic expansion, where an S-adic expansion is said to be proper

if the substitutions in S are proper.

Analogous results exists in the framework of Vershik adic maps; see e.g. [48] for

the case of strongly primitive systems: Cantor minimal systems with topological finite

rank are either expansive or topologically conjugate to an odometer.

Recall that for a primitive matrix M (with non-negative entries), the cones MnRd+
nest down to a single line directed by the Perron–Frobenius eigendirection at an expo-

1We recall that, without reference to the set of substitutions, we use the generic term S-adic expan-
sion. If the substitutions are known to belong to some set S, we use the term S-adic expansion.
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nential convergence speed (see e.g. [92]). Recall also that the situation for invariant

measures for S-adic systems is not as simple as it can be for substitutive dynamical

systems, for which primitivity implies unique ergodicity. This is well understood since

Keane’s counterexample for unique ergodicity for 4-interval exchanges [71]: weak prim-

itivity does not imply unique ergodicity.

We recall here a handy characterization of unique ergodicity (see [23, Theorem

5.7]). Let X(s) be an S-adic shift with directive sequence s = (σn)n. Denote by

(Mn)n the associated sequence of incidence matrices. We assume that the directive

sequence s is everywhere growing, that is, for any sequence of letters (an)n, one has

limn→+∞ |σ0 · · ·σn−1|(an) = +∞. The S-adic dynamical system (X(s),Σ) is uniquely

ergodic if and only if, for each k, the limit cone

C(k) =
⋂
n→∞

Mk · · ·MnRd+

is one-dimensional. Here d stands for the cardinality of the alphabet A on which the

substitutions are defined. See also [34, 56, 101] for analogous rests for Bratteli–Vershik

adic maps.

The following condition is then a sufficient condition for the sequence of cones

M0 · · ·MnRd+ to nest down to a single line as n tends to infinity (for square matrices

with non-negative entries).

Theorem 2.2 ([59, pp. 91–95]). Let (Mn)n be a sequence of non-negative inte-

ger matrices of size d. Assume that there exist a strictly positive matrix B and indices

j1 < k1 ≤ j2 < k2 ≤ · · · such that B = Mj1 · · ·Mk1−1 = Mj2 · · ·Mk2−1 = · · · . Then,⋂
n∈N

M0 · · ·Mn−1Rd+ = R+f for some positive vector f ∈ Rd+.

This vector f , when normalized so that the sum of its coordinates equals 1, is

called the generalized right eigenvector associated with the S-adic expansion of u =

limn→∞ σ0σ1 · · ·σn−1(an). In fact, this vector f is the letter frequency vector of u. The

above condition of Theorem 2.2 implies that u admits uniform letter frequencies (by [23,

Theorem 5.7]), and even unique ergodicity (in other words, uniform factor frequencies).

We now introduce further dynamics acting on the set of directive sequences. Let

S be a finite set of substitutions, and let (D,Σ, µ) with D ⊂ SN be an ergodic shift

equipped with a probability measure µ. Here Σ stands for the shift acting on D. We

will assume D to have positive entropy, and it will be here a sofic shift or a shift of finite

type. We call such a shift an S-adic system. Since we will work with continued fraction

algorithms, it might prove useful also to work with countable sets of substitutions S, and

thus with shifts (D,Σ, µ) defined on a countable alphabet S (we then loose compactness

for SN). This formalism is inspired by the study of interval exchanges in connection
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with the Teichmüller flow, see e.g. [98, 102]. The main difference here is that the second

Lyapunov exponent is negative [103].

§ 3. Continued fractions

We introduce in this section the continued fraction algorithms we will work with

and associated sets of substitutions.

§ 3.1. General definitions

We consider here unimodular continued fraction algorithms by following the for-

malism introduced in [74] which covers most classical unimodular types of algorithms,

such as discussed in [95, 36, 91].

Let d ≥ 1. A d-dimensional unimodular continued fraction algorithm associates

with α = (α1, · · · , αd−1) ∈ [0, 1]d−1 a sequence of matrices (A(n))n∈N with values in

GL(d,Z). Matrices A(n) play the role of partial quotients and the matrices A(1) · · ·A(n)

produce convergents. These latter products provide Diophantine approximations (via

their column vectors) of the direction (α, 1) by points of the lattice Zd. The rational

approximations are obtained by using the following projection2

π : Rd \ {(x1, · · · , xd) | xd = 0} → Rd−1, (x1, · · · , xd) 7→ (x1/xd, · · · , xd−1/xd).

The last element of each column of A(1) · · ·A(n) is a denominator for the associated

simultaneous rational approximations.

Such an algorithm producing a sequence of matrices (A(n))n∈N is usually defined

in dynamical terms. We will have here mostly a measure-theoretical viewpoint: the

algorithms will be defined a.e. with respect to the Lebesgue measure on [0, 1]d−1.

Let X ⊂ [0, 1]d−1. (Usually X is [0, 1]d−1 but some algorithms can also be defined

on sets of the form {x = (x1, · · · , xd−1) ∈ [0, 1]d−1 | 0 ≤ x1 ≤ · · · ≤ xd−1 ≤ 1}.) A

d-dimensional continued fraction map over X is given by measurable maps

T : X → X, A : X → GL(d,Z), θ : X → R+

that satisfy the following: for a.e. x ∈ X, one has[
x

1

]
= θ(x)A(x)

[
T (x)

1

]
.

The associated continued fraction algorithm consists in iteratively applying the map

T on a vector x ∈ X which yields the matrices A(n) := A(Tn(x)) for n ≥ 1.

2Note one can also choose to work directly on the projective space P(Rd) by associating with each
element [y1 : y2 : · · · : yd−1 : yd] the representative defined by max yi = 1 and by working with
projectivizations of matrices in GL(d,Z).
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Let

An(x) = A(x)A(T (x)) . . . A(Tn−1(x)), θn(x) = θ(x)θ(T (x)) . . . θ(Tn−1(x)).

One has [
x

1

]
= θn(x)An(x)

[
Tn(x)

1

]
.

The map A : X → GL(d,Z) is a matrix cocycle. Indeed one has the following cocycle

type relation

Am+n(x) = Am(x)An(Tmx).

The map θ can be considered as an arithmetic uniformization map. In the regu-

lar continued fraction case (see Section 3.2), one has θn(x) = xTG(x) · · ·Tn−1
G (x) =

|qn−1x − pn−1|, where pn/qn stands for the n-th convergent of x, and TG : [0, 1] →
[0, 1], x 7→ {1/x}, if x 6= 0, with TG(0) = 0. More generally, if ln(x) stands for the

vector provided by the last line of An(x)−1, then θn(x) = 〈ln(x), (x, 1)〉.
Such an algorithm is said Markovian or ‘without memory’. Indeed, the (n + 1)th

step of the algorithm only depends on the map T and on the value Tn(α), contrary for

example to lattice reduction or LLL algorithms, such as developed e.g. in [55, 54, 73,

68, 35].

An algorithm is said to be positive if the linear cocyle A takes its values in the set of

matrices with nonnegative entries. The algorithm thus produces a sequence of basis of

Rd that all determine a homogeneous cone in Rd that contains the ray {λ(α, 1) | λ ≥ 0}.
The convergence (weak or strong) has to do with the fact that the vectors of the basis

have to converge (in angle or in distance) to the ray (α, 1).

An algorithm is said to be additive in [74] if all the matrices belong to a finite set.

We even consider here positive algorithms whose matrices have coefficients that belong

to {0, 1}: the linear cocyle A takes its values in the set matrices with entries in {0, 1}.
The associated maps are assumed to be measurable piecewise continuous maps.

Usually T is piecewisely an homography, and is called linear simplex-splitting algorithm

in [74]: if the algorithm is assumed to be positive, the homogeneous cone {(y1, · · · , yd) ∈
Rd+ | yd = max yi} is partitioned into a countable number of homogeneous integral sub-

cones (via the matrices produced by A) and the corresponding maps are fractional linear

transformations provided (via a ‘projectivization’ step) by the inverses of the matrices

produced by A. For the existence of an absolutely continuous invariant measure, see

e.g. [15, Lemma 2.1].

We then can associate with the matrices produced by a positive algorithm substi-

tutions whose incidence matrices coincide with them. In other words, the continued

fraction algorithm produces directive sequences, and thus S-adic words and shifts. The

connection between continued fraction algorithms and S-adic shifts then goes through
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frequencies: an expansion of the continued fraction algorithm produces an S-adic shift

which is such that its letter frequency vector (under suitable assumptions that provide

its existence) admits this particular expansion. The continued fraction algorithm can

be seen as a renormalization process that acts on the frequencies of words.

Observe also that the interest of this measure-theroretical dynamical approach is

that under rather mild assumption, Kingman’s subadditive ergodic theorem [72] or Os-

eledet’s multiplicative ergodic theorem [83] can be applied. Ergodic invariant measures

of the continued fraction algorithm can then be transported to the set of directive se-

quences.

§ 3.2. Sturmian words

The first example of continued fraction substitutions, namely Sturmian substitu-

tions, is provided by the regular continued fraction algorithm. Recall that the Gauss

map

TG : [0, 1]→ [0, 1], x 7→ {1/x}, if x 6= 0, and TG(0) = 0

produces the digits in the continued fraction algorithm. Consider the continued fraction

expansion of x ∈ (0, 1), i.e., x =
1

a1 +
1

a2 + · · ·

; one has an =
[

1
Tn−1(x)

]
for n ≥ 1.

Matricially, this can be written as[
x

1

]
= x

[
0 1

1
[

1
x

]] [ T (x)

1

]
.

The Gauss map produces infinitely many matrices ([1/x] takes generically infinitely

many values), this will thus prove to be more convenient to work with its additive

version, the Farey map TF , is defined on [0, 1] as

TF (x) =
x

1− x
if x ≤ 1/2, TF (x) =

1− x
x

if x ≥ 1/2.

Its linear form is defined on the cone R2
+ \ {0} as follows

T
(L)
F :

 (A,B) 7→ (A−B,B), if A ≥ B
(A,B) 7→ (A,B −A), if A ≤ B.

Let

M1 =

[
1 1

0 1

]
, M2 =

[
1 0

1 1

]
.
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Let (A1, B1) = T
(L)
F (A,B). One has[

A

B

]
= M1

[
A1

B1

]
if A ≥ B,

[
A

B

]
= M2

[
A1

B1

]
if A ≤ B.

If one works directly with the Farey map TF , things are more complicated to

describe matricially than when one works with the linear form: this is why we favor

linear descriptions of algorithms in the following. Indeed, let x = inf(A,B)/max(A,B).

If A ≥ B, one has x = B/A, and[
1

x

]
=

1

1 + TF (x)
M1

[
1

TF (x)

]
if x ≤ 1/2,

[
1

x

]
= xM1

[
TF (x)

1

]
if x ≥ 1/2,

and if A ≤ B, then x = A/B, and[
x

1

]
=

1

1 + TF (x)
M2

[
TF (x)

1

]
if x ≤ 1/2,

[
x

1

]
= xM2

[
1

TF (x)

]
if x ≥ 1/2.

Let us thus come back to the linear form. Consider the substitutions µ1 and µ2

defined over the alphabet A2 = {1, 2} as

µ1 : 1 7→ 1, 2 7→ 21 µ2 : 1 7→ 12, 2 7→ 2.

They have respectively as incidence matrices M1 and M2. Let (in) be a sequence in

{1, 2}N (it will provide the directive sequence (µin)n).One checks that the following limit

u = lim
n→∞

µi0µi1 · · ·µin−1
(1)

exists. Furthermore, if the sequence (in)n≥0 is not ultimately constant, then the direc-

tive sequence (µin)n is weakly primitive. A Sturmian word is an infinite word whose set

of factors coincides with the set of factors of an infinite word of the previous form, with

the sequence (in)n≥0 being not ultimately constant, that is, an element of a minimal

symbolic dynamical system (Xu,Σ) generated by a word u of the previous form, with

(in)n not constant. For more on Sturmian words, see e.g. [75, 79, 85].

A Sturmian substitution is a substitution such that the image of any Sturmian word

is a Sturmian word. Sturmian substitutions are known to be exactly the substitutions

that belong to the monoid generated by µ1 and µ̃1 : 1 7→ 1, 2 7→ 12, together with the

permutation that exchanges the letters (one checks that µ̃2 : 1 7→ 21, 2 7→ 2 also belongs

to this monoid). Moreover, any fixed point of a Sturmian substitution is a Sturmian

word. For more details, see for instance [75, Section 2.3].

As an example the fixed point u = limn→∞ σn(1) of the Fibonacci substitution σ

defined by σ(1) = 21 and σ(2) = 1 is a Sturmian word. Consider indeed the square of

σ. One has σ2 = µ̃1µ̃2. Hence u = limn→∞(µ̃1µ̃2)n(1).
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Consider a Sturmian word of the form u = limn→∞ µi0µi1 · · ·µin−1
(1) with direc-

tive sequence s = (µin)n. If the sequence (in)n is not ultimately constant, then one

checks that the conditions of Theorem 2.2 apply, and that the frequencies of letters

exist for u and for the (uniquely ergodic) shift symbolic system (Xu,Σ) it generates.

Let f = (f1, f2) be the letter frequency vector of u (that is, the generalized right eigen-

vector provided by
⋂
n∈NMi0 · · ·Min−1Rd+.) One recovers the sequence (in)n from the

continued fraction expansion of f1/f2. This allows one to deduce numerous proper-

ties of Sturmian words from the continued fraction expansion of f1/f2. For instance,

a Sturmian word is linearly recurrent if and only if its partial quotients are bounded

[79, 53].

§ 3.3. Arnoux–Rauzy words

Arnoux and Rauzy introduced in [9] a generalization of Sturmian words to higher

size alphabets: these words are now called Arnoux–Rauzy words, or else, strict epis-

turmian words (see e.g. the survey [61]). Arnoux–Rauzy words are particular codings

of interval exchanges. In particular, they have factor complexity (d − 1)n + 1 when

defined on an alphabet of cardinality d. Nevertheless, they do not behave like generic

interval exchanges. Some Arnoux–Rauzy words might have bounded deviation, other

not. However, when d = 2, Sturmian words are known to be 1-balanced [75] (they have

bounded deviation); they even are exactly the 1-balanced infinite words that are not

eventually periodic. The combinatorial and spectral behaviors of Arnoux–Rauzy words

have been described very accurately in [43, 42]. In particular, there exist Arnoux–Rauzy

words that are (measure-theoretically) weak mixing. Note that Arnoux–Rauzy words

are widely studied, in the word combinatorics community, but also in the interval ex-

change community, for their connections with systems of isometries of thin type such

as introduced by Dynnikov in [45]. Systems of isometries [60] are a natural general-

ization of interval exchange transformations and interval translation mappings. The

Arnoux–Rauzy continued fraction algorithm that will be described below has moreover

the particularity to be defined on a set of zero mesure for d = 3, called Rauzy gasket;

see [10, 45, 44] and the references therein; see also [17] which proves that the Hausdorff

dimension of the Rauzy gasket is less than 2, and [18] which constructs a natural in-

variant measure for the Rauzy gasket (an invariant measure of maximal entropy) using

thermodynamical formalism.

Let A = {1, 2, . . . , d}. The set of elementary Arnoux–Rauzy substitutions is defined

as SAR = {µi | i ∈ A} where

µi : i 7→ i, j 7→ ji for j ∈ A \ {i} .

One recovers Sturmian words in the case d = 2. An Arnoux–Rauzy word [9] is an infinite

word in AN whose set of factors coincides with the set of factors of a sequence of the
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form

lim
n→∞

µi0µi1 · · ·µin(1),

where the sequence (in)n≥0 ∈ AN is such that every letter in A occurs infinitely often

in (in)n≥0. Under this latter assumption, the directive sequence (µin)n is weakly prim-

itive. Note that the sequence (in) associated with an Arnoux-Rauzy word u is uniquely

determined. The sequence (µin)n is called the directive sequence of u.

The symbolic dynamical systems generated by Arnoux–Rauzy words for which the

directive sequence (µin)n≥0 ∈ AN is such that every letter in A occurs infinitely often

in (in)n≥0 are minimal and uniquely ergodic. Minimality comes from Theorem 2.1, and

unique ergodicity comes from Theorem 2.2. We can thus consider the letter frequency

vector f associated with the shift generated by the directive sequence (µin)n.

Let f (n) stand for the letter frequency vector f associated with the shift generated

by the directive sequence Σn((ik)k) = (in+k)k≥0. For all n, there exist λn ∈ R+ such

that

λnf = Mi1 · · ·Minf
(n).

The coefficient λn can be expressed in terms of the coefficients of the matrix (Mi1 · · ·Min)−1;

indeed one has 1/λn = 〈(Mi1 · · ·Min)−1f, (1, · · · , 1)〉.
The Rauzy gasket discussed above is defined as the set of frequencies of Arnoux–

Rauzy words. We recall that this set has zero measure for d = 3.

The continued fraction algorithm which acts as a renormalisation map is thus de-

fined in its linear version on the cone R3
+ \ {0} as follows for the d = 3 case (see e.g.

[9]): 
(A,B,C) 7→ (A−B − C,B,C) if A > B + C

(A,B,C) 7→ (A,B −A− C,C) if B > A+ C

(A,B,C) 7→ (A,B,C −A−B) if C > A+B.

The algorithm is not defined if one has equality between a coordinate and the sum of

two other coordinates, but we only consider these algorithms in a measure-theoretical

sense.

Note that if one considers transposes of the substitutions, then one gets the so-

called fully subtractive algorithm (see e.g. [91]), which can be described as follows:

one subtracts the smallest entry to the other ones. For more on this algorithm and on

variations, see [57].

There is a simple characterization of primitivity for finite products of Arnoux–

Rauzy substitutions.

Theorem 3.1. [14] Let A = Ai1 · · ·Ain be a product of incidence matrices of

Arnoux–Rauzy substitutions in dimension d. The matrix A is primitive if and only if
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all letters in {1, · · · , d} occur in (i1, · · · , in). Moreover, if the matrix is primitive, then

it is Pisot irreducible.

Here again there is a simple characterization of linearly recurrent Arnoux–Rauzy

words. A directive sequence (µin)n ∈ {1, 2, · · · , n}N that contains each µi infinitely

often is said to have bounded strong partial quotients if every substitution in (µin)n

occurs with bounded gaps.

Proposition 3.2. An Arnoux–Rauzy word is linearly recurrent if and only if it

has bounded strong partial quotients.

Proof. This proof comes from [29]. Let u be an Arnoux–Rauzy word with directive

sequence (µin)n. It is easy to check that strong partial quotients have to be bounded for

an Arnoux–Rauzy word u to be linearly recurrent. Conversely, we cannot apply directly

Theorem 2.1 since the substitutions are not proper. Nevertheless, one can deduce linear

recurrence from [53] by noticing that the largest difference between two consecutive

occurrences of a word of length 2 in u(k) is uniformly bounded (with respect to k),

where u(k) is associated with (µin)n≥k.

§ 3.4. Brun substitutions

We now consider an algorithm, namely Brun algorithm, that is defined for every

vector of frequencies, contrarily to the Arnoux–Rauzy algorithm. Together with Jacobi–

Perron algorithm, it is one of the most classical algorithms studied in this framework.

Brun algorithm is closely related to the modified Jacobi–Perron algorithm, introduced

in [84]: this latter algorithm is a two-point extension of Brun algorithm.

One efficient way to describe Brun algorithm is to consider its linear version (see

e.g. [40]): it consists in subtracting the second largest entry to the largest. We focus

here on the two-dimensional case for the sake of simplicity. Its 3-dimensional linear and

additive form is thus given as follows on the cone R3
+ \ {0}:

(A,B,C) 7→ (A,B,C −B) , if B ≤ C −B,
(A,B,C) 7→ (A,C −B,B) , if A ≤ C −B ≤ C,
(A,B,C) 7→ (C −B,A,B) , if C −B ≤ A.

Its projectivized additive form TB is defined on the set ∆2 := {(x1, x2) ∈ R2 : 0 ≤
x1 ≤ x2 ≤ 1} as follows

TB :


(x1, x2) 7→

(
x1

1−x2
, x2

1−x2

)
, for x2 ≤ 1

2 ,

(x1, x2) 7→
(
x1

x2
, 1−x2

x2

)
, for 1

2 ≤ x2 ≤ 1− x1,

(x1, x2) 7→
(

1−x2

x2
, x1

x2

)
, for 1− x1 ≤ x2.
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The Brun matrices are 1 0 0

0 1 0

0 1 1

 ,

1 0 0

0 0 1

0 1 1

 ,

0 1 0

0 0 1

1 0 1

 .

The set of Brun substitutions SBR is defined on the alphabet A3 = {1, 2, 3} as

SBR = {β1, β2, β3} with

β1 :


1 7→ 1

2 7→ 23

3 7→ 3

β2 :


1 7→ 1

2 7→ 3

3 7→ 23

β3 :


1 7→ 3

2 7→ 1

3 7→ 23

Their incidence matrices coincide with the three Brun matrices above.

There is again a simple characterization of primitivity for finite products of Brun

matrices (see [14]). Let B = Bi1 · · ·Bin be a product of Brun matrices of size 3. Then,

B is primitive if and only if the matrix B3 occurs in the product. If B is primitive, then

it is Pisot irreducible.

There is no canonical choice for Brun substitutions. In particular one could choose

to flip the letters in the definition of the βi’s by mapping letters on 32 instead of mapping

them on 23. Experimental studies have confirmed that consistency in the ordering of

letters yields better approximation results (see e.g. [25] for a discussion on experimental

studies that have been conducted). There exist also in the literature various sets of Brun

substitutions according to the fact that one wants to use substitutions or so-called dual

substitutions: the differences one can encounter among these substitutions comes from

the fact that the substitutions might be defined with respect to the Brun matrices or

with respect to their transposes. Some choices are given e.g. in [14, 24, 30, 46].

§ 3.5. Jacobi–Perron substitutions

The Jacobi–Perron algorithm is not defined in terms of ordered positions. We focus

here also on the two-dimensional case for the sake of simplicity. It is defined on the

cone {(A,B,C) ∈ R3
+ \ {0} | 0 ≤ A,B ≤ C} as follows:

(A,B,C) 7→ (B − [B/A]A,C − [C/A]A,A) if A 6= 0.

Its projectivized form is defined on [0, 1]2 as

TJP : (x1, x2) 7→ ({x2/x1}, {1/x1}).

The Jacobi–Perron matrices are of the form
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Ma,b =

0 0 1

1 0 a

0 1 b


for non-negative integers a and b, and a ≤ b, b ≥ 1.

The set of Jacobi–Perron substitutions SJP is defined on the alphabet A3 = {1, 2, 3}
as SJP = {σa,b} with

σa,b : 1 7→ 2, 2 7→ 3, 3 7→ 12a3b.

This algorithm is not complete but nevertheless Markovian. Let (x
(n)
1 , x

(n)
2 ) =

TnJP (x1, x2), an =

[
x
(n−1)
2

x
(n−1)
1

]
, bn =

[
1

x
(n−1)
1

]
, for all n. The sequence (an, bn)n≥1 is the

Jacobi–Perron expansion of some vector (x1, x2) if only if for every n ≥ 1, we have

0 ≤ an ≤ bn, bn 6= 0, and an = bn implies an+1 6= 0 (see e.g. [82, 91]).

By [52], every finite product of Jacobi–Perron substitutions is primitive and Pisot

irreducible if 0 ≤ an ≤ bn and bn 6= 0 for all n ≥ 1.

Here again there exist also Jacobi–Perron substitutions associated with the trans-

pose matrices Ma,b such as considered in [31, 30]. This depends on the chosen applica-

tion. Note also that we can decompose Jacobi–Perron algorithm into additive steps.

§ 3.6. Elementary substitutions

We work here with continued fractions algorithms which can be decomposed, under

their linear form, as successions of steps that consist in subtracting an element to another

one, together with permutations of entries. Their associated matrices (more precisely

the non-negative ones produced by the linear cocyle A) can thus be decomposed as

products of elementary matrices together with permutation matrices.

We consider elementary matricesMij defined as follows for i 6= j (i, j ∈ {1, 2, · · · , d}):
the entries of index (i, j) or (k, k) (k ∈ {1, 2, · · · , d}) are equal to 1, and Mij has zero

entries elsewhere. The image by Mij of the column vector (a1, · · · , ad) is the vector

whose ith entry is equal to ai + ak, and whose other coordinates are unchanged. The

inverse matrix M−1
ij thus performs the following: the ith entry is replaced by ai − aj

and the other ones are unchanged. We now introduce the substitutions that have as

incidence matrices the elementary matrices Mij , for i, j ∈ {1, 2, · · · , d}, with i 6= j:

σij : j 7→ ij, k 7→ k for k 6= j σ̃ij : j 7→ ji, k 7→ k for k 6= j.

We consider the set Se = {σij | i 6= j, 1 ≤ i, j ≤ d} ∪ {σ̃ij | i 6= j, 1 ≤ i, j ≤ d} of

elementary substitutions. We also consider the set P of substitutions whose incidence

matrices are permutations. For instance, for d = 2, the substitutions in P are

1 7→ 1, 2 7→ 2 and 1 7→ 2, 2 7→ 1.
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These substitutions are free group automorphisms: when extended to morphisms

of the free group generated by A, they are invertible. They are furthermore positive

free group automorphisms since they map letters in A on words that contain only

occurrences of positive letters.

We say that a positive automorphism of the free group on A is tame if it belongs

to the submonoid generated by the set of permutations P of A together with the set of

elementary substitutions Se of A. Recall that the group of all automorphisms (positive

or not) is generated by the elementary Nielsen automorphisms [81].

Sturmian substitutions are known to be tame: they are generated by elementary

substitutions together with permutations. Every two-letter positive automorphism is

also a product of permutations and elementary substitutions [100]. In other words, a

2-letter substitution generates a Sturmian word if and only if it is a free group auto-

morphism (for more detail, see e.g. [75] and the references therein). The connections

between invertible substitutions, products of elementary substitutions (and permuta-

tions) and generalized Sturmian words does not hold anymore on a larger size alphabet.

The monoid of positive automorphisms is not finitely generated as soon as the alphabet

has at least three generators. Recall indeed that there exist three-letter invertible sub-

stitutions that cannot be decomposed as products of invertible substitutions, according

to [96].

More generally, S-adic expansions that are produced by elementary substitutions

on an alphabet of size at least 3 do not behave like in the Sturmian case, in particular

with respect to factor complexity. Recall that an S-adic expansion defined by the

directive sequence (σn)n∈N is said to be everywhere growing if for any sequence of letters

(an)n, one has limn→+∞ |σ0 · · ·σn−1|(an) = +∞. According to [23, Theorem 4.3], any

everywhere growing S-adic word u whose directive sequence takes its values in a finite

set S of substitutions has zero entropy, that is, limn→∞
log pu(n)

n = 0, where pu stands

for the factor complexity of u. In particular, any everywhere growing S ′e-adic word u

(e.g., any weakly primitive S ′e-adic word) whose directive sequence takes its values in

the set of elementary substitutions and permutations S ′e = Se ∪ P has zero entropy.

Nevertheless, we will see below how to get high factor complexity (among zero entropy

words and shifts).

Recall that for any word u ∈ {1, 2}N, the word 3u admits an S ′e-adic representation

whose directive sequence takes its values in the set S ′e = Se ∪ P on a three-letter

alphabet, according to the following construction due to J. Cassaigne. Take the two

tame substitutions

σ̃13 : 1 7→ 1, 2 7→ 2, 3 7→ 31

σ̃23 : 1 7→ 1, 2 7→ 2, 3 7→ 32.

One has 3u = limn→∞ σ̃u0
· · · σ̃un(3). Note however that the word 3u is not recurrent.
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The following construction is due to J. Cassaigne and J. Leroy. This construction

is inspired by similar constructions in [47, 50]. For any word v in {1, 2}∗, let

αv : 1 7→ 3v1, 2 7→ 3v2, 3 7→ 3v.

One checks that αv is tame. Its incidence matrix is primitive as soon as v contains

the letters 1 and 2. We fix an increasing sequence of positive integers (kn)n. Let

(vn)n be a sequence of words such that, for all n, vn contains all the words of length

kn over the alphabet {1, 2}. We consider the uniformly recurrent S ′e-adic word u =

limn→∞ αv0 · · ·αvn(3). Note that |αv0 · · ·αvn(1)| = |αv0 · · ·αvn(2)|, for all n. Set `n :=

|αv0 · · ·αvn(1)| = |αv0 · · ·αvn(2)|. Take j with 1 ≤ j ≤ kn+1. The number of factors of

u of length j`n is at least 2j . Indeed, all the words of length j occur in vn+1 and their

respective images by αv1 · · ·αvn all have the same length and are distinct.

For any d, it remains to choose the sequence (kn)n with a sufficiently large growth

satisfying 2kn+1 > (kn+1 `n)d, for n large enough, to get a uniformly recurrent S ′e-adic

word limn→∞ αv0 · · ·αvn(3) which admits an everywhere growing S ′e-adic representation

and which has a factor complexity that is not of polynomial order d. These examples

illustrate the fact that S ′e-adic words, with substitutions in the directive sequence being

tame, can have various combinatorial behaviors. As examples of such S ′e-adic words, see

the family of tree words such as developed in [33]. This family includes Arnoux-Rauzy

words and codings of interval exchanges.

Note that the S-adic expansions produced by continued fraction algorithms ben-

eficiate from their ergodic properties. Both algorithms (Brun and Jacobi–Perron) are

known to have an invariant ergodic probability measure equivalent to the Lebesgue

measure (see for instance [91]). However, this measure is not known explicitly for

Jacobi–Perron (the density of the measure is shown to be a piecewise analytical func-

tion in [38]), whereas it is known explicitly for Brun [8, 58, 63]. Brun algorithm is a

space-ordering algorithm according to the terminology introduced in [64]. (Note that

it is called ordered Jacobi–Perron in [63].) Furthermore, each step of Brun algorithm

produces only one partial quotient. This helps in computing the natural extension and

the invariant measure of Brun algorithm (see e.g. [8] which shows in a very efficient

way how to determine the invariant measure of Brun algorithm thanks to the natural

extension). Contrary to Brun algorithm, the role played by the first two entries is not

determined by a comparison between both parameters in Jacobi–Perron case; this might

explain the fact that an explicit realization of the natural extension of this algorithm is

still not known.



S-adic expansions related to continued fractions 17

§ 4. Pisot case

We introduce in this section an S-adic counterpart to Pisot substitutions via the

notion of Pisot S-adic systems and we discuss their spectral properties.

§ 4.1. S-adic systems and Lyapunov exponents

Consider a positive continued fraction algorithm (T,A, θ). We associate with it an

S-adic system as follows. Let S be the set of substitutions produced by the algorithm.

These substitutions have as incidence matrices the matrices that lie in the image of the

matrix cocycle A. We define D as the closure in SN of the set of directive sequences

associated with orbits under the map A, that is, D is the closure of the set of sequences

(γn)n for which there exists x such that γn has for incidence matrix A(Tnx), for all n.

We also consider an ergodic shift invariant measure µ on D. We get an ergodic shift

(D,Σ, µ), with D ⊂ SN. Recall that Σ stands for the shift.

We now introduce Lyapunov exponents associated with the linear cocyle map A.

For simplicity we also use the notation A for the following map

A : D → GL(d,Z), γ = (γn)n∈N 7→Mγ0

where Mγ0 is the incidence matrix of γ0. We assume that the map A is log-integrable3,

that is, ∫
X

log max(‖A(γ)‖, ‖A(γ)−1‖)dµ(γ) <∞.

If the matrices A(γ) are bounded (e.g. if the set S is finite) and unimodular, then

this condition is automatically satisfied. We then define the Lyapunov exponents

θµ1 , θ
µ
2 , . . . , θ

µ
d (d stands for the cardinality of the alphabet on which the substitutions

in S are defined) as the µ-a.e. limit of

θµ1 + θµ2 + · · ·+ θµk = lim
n→∞

1

n
log ‖ ∧k

(
A(γ)A(Σγ) · · ·A(Σn−1γ)

)
‖

for 1 ≤ k ≤ d, where ∧k denotes the k-fold wedge product. In particular, the first

Lyapunov exponent θµ1 is the µ-a.e. limit

θµ1 = lim
n→∞

log ‖An(γ)‖
n

,

with An(γ) := Mγ0 · · ·Mγn−1
.

Remark that we get a (forward) random dynamical system according to the ter-

minology of [6]: T (the continued fraction map) is the base transformation (it is not

3We also say that (D,µ) is log-integrable.
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invertible here) and A is the generator; we consider S-adic systems for which direc-

tive sequences are one-sided (D is one-sided, Σ is not invertible). Oseledet’s theorem

[83] yields in this one-sided framework a filtration, and not a splitting. If we need a

splitting of the space, we need to consider an invertible shift, hence a natural extension

for T . This is the approach developed in [12] where Markov partitions are associated

with ‘Pisot’ non-stationary biinfinite sequences of toral automorphisms (these are the

linear Anosov families of [7]) associated with multidimensional continued fraction al-

gorithms, such as Brun. The S-adic Pisot assumption (such as defined below) yields

non-stationary hyperbolic dynamics.

§ 4.2. S-adic Pisot systems and shifts

We introduce in this section the notion of S-adic Pisot systems. We first recall the

following result from [23]. A finite product of substitutions γ0 . . . γk−1 is said positive if

the associated matrix Mγ0 . . .Mγk−1
is positive. Recall that if γ = (γn), then An(γ) :=

Mγ0 · · ·Mγn−1
for positive integer n. Recall also that if the finite word w is a factor of

the subshift D, then the cylinder [w] is the set of infinite sequences in D having w as a

prefix.

Theorem 4.1. Let S be a set of substitutions with invertible incidence matrices,

and let (D,Σ, µ), with D ⊂ SN, be an ergodic shift with respect to the shift invariant

probability measure µ. Let A stand for the alphabet of the substitutions in S, and d stand

for its cardinality. Assume that there exists a finite word in S∗ such that the matrix

of the associated product of substitutions is positive and whose associated cylinder has

positive measure for µ. Then, for µ-almost every sequence γ ∈ D, the corresponding

S-adic subshift XD(γ) is uniquely ergodic. Furthermore, one has θµ1 > 0 and θµ1 > θµ2 .

Let us denote by f(γ) = (fi(γ))i∈A the generalized right eigenvector of a µ-generic

sequence γ. For µ-almost every S-adic sequence in D, XD(γ) is weakly convergent:

lim
n→∞

max
i∈A

1

n
log d

(
An(γ)ei
‖An(γ)ei‖1

, f(γ)

)
= θµ2 − θ

µ
1 ,

where (e1, · · · , ed) stands for the canonical basis of Rd.

Moreover, if θµ2 < 0, then, for µ-almost every S-adic sequence in D, XD(γ) is

strongly convergent:

lim
n→∞

max
i∈A

1

n
log d(An(γ)ei, f(γ)) = θµ2 ,

and for µ-almost all γ in D, XD(γ) has bounded deviation, that is, there exists a constant

C = C(γ) such that for every letter i ∈ A, every word u in XD(γ) and every n, we have

||u0 . . . un−1|i − nfi(γ)| ≤ C.

In particular, each word in XD(γ) is C-balanced.
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The positivity condition of Theorem 4.1 is in the flavour of condition H5 in [74];

see also [14]. The quantity 1 − θµ2
θµ1

= 1
θµ1

(θµ1 − θ
µ
2 ) is expressed in [74] as the uniform

approximation exponent for unimodular continued fractions algorithms; see also [19,

20]. For a thorough study of the Lyapounov exponents of the Jacobi–Perron algorithm

(which also applies to Brun algorithm), see [38, 39]. Note that the log-integrability for

the accelerated (i.e., multiplicative) version comes from the the comparability of the

invariant measure with respect to Lebesgue measure (see e.g. [74, Theorem 1.1]). This

yields in particular the a.e. exponential (strong) convergence of Brun [58, 78, 90] and

of Jacobi–Perron algorithm [39] (see also [74]): there exists δ > 0 s.t. for a.e. (α, β),

there exists n0 = n0(α, β) s.t. for all n ≥ n0

|α− pn/qn| <
1

q1+δ
n

, |β − rn/qn| <
1

q1+δ
n

,

where pn, qn, rn are given by the algorithm. For a criterium for the simplicity of the

Lyapunov spectrum, see [16, 77].

We now can introduce the S-adic counterpart of the notion of Pisot irreducible

substitution following [14, 23]. Recall that a substitution is said Pisot irreducible if the

characteristic polynomial of its incidence matrix is the minimal polynomial of a Pisot

number.

Definition 4.2 (S-adic Pisot system). Let S be a set of substitutions with in-

vertible incidence matrices over the alphabet A, and let (D,Σ, µ) with D ⊂ SN be an

ergodic, shift equipped with the probability measure µ. We also assume log-integrability

for (D,µ). Let (θµi )i∈A stand for its Lyapunov exponents. We say that (D,Σ, µ) satisfies

the Pisot condition if

θµ1 > 0 > θµ2 .

According to Theorem 4.1, for a.e. γ, (XD(γ)) is uniquely ergodic, minimal, and

C-balanced.

The analog of algebraic irreducibility is then the following. According to [29],

the directive sequence γ is said to be algebraically irreducible if, for each k ∈ N, the

characteristic polynomial of Mγk · · ·Mγ` is irreducible for all sufficiently large `. Recall

that the the sequence γ is said to be (weakly) primitive if, for each k ∈ N, Mγk · · ·Mγ`

is a positive matrix for some ` > k.

As examples of Pisot irreducible systems, one has Arnoux–Rauzy (in any dimen-

sion), and Brun S-adic systems, when d = 3, by [14], for a large choice of measures

µ.
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§ 4.3. Rotation factors and the Pisot condition

We now consider spectral properties of S-adic Pisot shifts. Recall that Pisot irre-

ducible substitutions are assumed to have pure discrete spectrum: this is the so-called

Pisot substitution conjecture. For more details, see e.g. [3].

We first recall a classical statement in topological dynamics relating bounded de-

viation for ergodic averages associated with a continuous function f , that is, bounded

sums
∑N
n=0 f(Tnx), and the fact that f is a coboundary. This will allow us to exhibit

(topological) eigenfunctions. For more on the connections between this statement and

bounded remainder sets, see the survey [69].

Theorem 4.3 (Gottschalk–Hedlund [62]). Let X be a compact metric space and

T : X → X be a minimal homeomorphism. Let f : X → R be a continuous function.

Then f is a coboundary, that is,

f = g − g ◦ T

for a continuous function g if and only if there exists C > 0 such that

|
N∑
n=0

f(Tn(x))| < C

for all N and all x.

We will apply it here to the shift Σ acting on the two-sided shift spaces XD(γ).

Recall that the directive sequence of substitutions γ is said to be algebraically irre-

ducible if, for each k ∈ N, the characteristic polynomial of Mγk···γ` is irreducible for all

sufficiently large `.

Theorem 4.4. Let S be a set of substitutions with invertible incidence matrices

on an alphabet A of cardinality d, and let (D,Σ, µ), with D ⊂ SN, be an ergodic shift

with respect to the shift invariant probability measure µ. We assume that (D,Σ, µ)

satisfies the Pisot condition. Let θµ1 > 0 stand for its first Lyapunov exponent. Then,

for µ almost every γ, if γ is moreover algebraically irreducible, then (XD(γ),Σ) admits

as a topological factor a minimal translation on the torus Td−1. In particular, it is not

weakly mixing.

Proof. Let (X,Σ) be a topological dynamical system. Recall that a non-zero

complex-valued continuous function in C(X) is an eigenfunction for S if there exists

λ ∈ C such that ∀x ∈ X, f(Sx) = λf(x). The system (X,Σ) is said to have topological

discrete spectrum if the eigenfunctions span C(X).
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According to Theorem 4.1, for µ a.e. γ ∈ D, the shift space XD(γ) is minimal.

We consider the two-sided version of XD(γ), that is, the set of two-sided words in AZ

whose language is equal to the language of XD(γ). We keep the same notation for the

two-sided version of XD(γ). The shift Σ acting on the two-sided shift (XD(γ),Σ) is

thus a minimal homeomorphism acting on it.

Let γ be a generic point such that two-sided space XD(γ) is minimal and C-

balanced, for some C (that depends on γ). Let a be a letter of the alphabet A on which

the substitutions of S are defined. Consider the continuous map f = 1[a](x) − fa1

defined onXD(γ), where 1[a] is the characteristic function of the cylinder set of sequences

(un)n∈Z ∈ XD(γ) such that u0 = a, and where 1 stands for the constant function taking

value 1. Since f has bounded deviation by C-balancedness, we can apply Theorem 4.3:

there exists a continuous function g such that f = g − g ◦ Σ. Note that e2iπ1[a](v) = 1

for any v ∈ XD(γ). This yields

exp2iπg◦Σ = exp2iπfa exp2iπg,

where fa stands for the frequency of the letter a. Hence exp2iπg is a continuous eigen-

function associated with the eigenvalue exp2iπfa .

We assume γ algebraically irreducible. The proof follows [29]. Let us prove that

the coordinates of the letter frequency vector f = (fa)a∈A are rationally indepen-

dent. Let z ∈ Zd \ {0} such that 〈f, z〉 = 0. Recall that An(γ) := Mγ0 · · ·Mγn−1
.

One has 〈tAn(γ) z, ei〉 = 〈z,An(γ) ei〉 is bounded (uniformly in n) for each i ∈ A.

Indeed, by strong convergence, one has limn→∞
log d(An(γ)ei,Rf(γ))

n = θµ2 < 0 and

〈f, z〉 = 0. The vectors tAn(γ) f take furthermore integer values. The values taken

by ||tAn(γ) f || are thus bounded. Hence, there exist k and infinitely many ` > k such

that tAk(γ) f = tA`(γ) f. One has tAk(γ) f 6= 0 by algebraic irreducibility. Hence, it is

an eigenvector of t(Mk · · ·M`−1) associated with the eigenvalue 1. This contradicts the

fact that Mk · · ·M`−1 has irreducible characteristic polynomial for large `.

LetA = {1, 2, · · · , d}. We consider the toral translation Rf by the vector = (f1, . . . ,

fd−1) on the d-dimensional torus Td−1 = Rd−1/Zd−1:

Rf (x1, · · · , xd−1) = (x1 + f1, · · · , xd−1 + fd−1) modulo 1.

This translation is minimal since the coordinates of the letter frequency vector f =

(fa)a∈A are rationally independent. Since its spectrum, i.e., exp(2iπ
∑
a∈A Zfa), is

included in the continuous spectrum of XD(γ), this translation is a topological factor

of XD(γ).

If we drop the algebraic irreducibility condition in Theorem 4.3, there still exists a

non-trivial rotation factor but it is not necessarily defined on Td−1.
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Note that more can be said on the two-letter case: the Pisot conjecture in this

two-letter S-adic setting has been proved in [32]. Recall that the two-letter substitutive

case has been solved in [65] together with [21], and in [66].

§ 4.4. Arnoux–Rauzy and Brun words

We now end the present paper by recalling results from [29]: in dimension d = 3,

we even have (measure-theoretical) pure discrete spectrum for a.e. Arnoux–Rauzy and

Brun S-adic shifts.

Theorem 4.5 ([29]). Let SAR be the set of Arnoux–Rauzy substitutions over

three letters and consider the shift (SNAR,Σ, µ) for some shift invariant ergodic probability

measure µ that assigns positive measure to each cylinder. Then (SNAR,Σ, µ) satisfies the

Pisot condition. Moreover, for µ-almost all sequences γ ∈ SNAR, the SAR-adic shift

(Xγ ,Σ) is (measure-theoretically) isomorphic to a translation on the two-dimensional

torus T2, that is, (Xγ ,Σ) has (measure-theoretically) pure discrete spectrum.

Let SBR be the set of Brun substitutions over three letters, and consider the shift

(SNBR,Σ, µ) for some shift invariant ergodic probability measure µ that assigns positive

measure to each cylinder. Then (SNBR,Σ, µ) satisfies the Pisot condition. Moreover,

for µ-almost all sequences γ ∈ SNBR, the SBR-adic shift (Xγ ,Σ) is measure-theoretically

isomorphic to a translation on the torus T2.

As an example of a measure satisfying the assumptions of Theorem 4.5 for Arnoux-

Rauzy shifts, consider the measure of maximal entropy for the suspension flow of the

Rauzy gasket constructed in [18]. The suspension flow is a renormalization flow obtained

analogously as for the Teichmüller flow in the classical case of interval exchanges [97]:

it is based on a roof function associated with the cocyle which is the first return time to

some subsimplex of the parameter space and on the accelerated version of the Arnoux-

rauzy algorithm (which is proved to be log-integrable in [18]). Hence, with respect to

this Gibbs measure, a.e. Arnoux-Rauzy word has pure discrete spectrum.

Let us conclude with the case of Brun shifts. Consider the measure µ := m ◦ φ−1

on SNBR: here m is the (ergodic) invariant measure absolutely continuous with respect

to Lebesgue measure of the additive version of Brun algorithm (it is a finite measure),

φ is the natural measure-theoretic isomorphism between (∆2, TB ,m) and (SNBR,Σ, ν),

where ∆2 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1}, and TB is the projectivized additive

form of Brun algorithm introduced in Section 3.4. The measure µ is shift-invariant,

ergodic and gives positive measure to each cylinder. For more details, see [29, Proof of

Theorem 8]. In other words, by Theorem 4.5, the SBR-adic shifts associated with Brun

algorithm provide natural symbolic codings of almost all rotations on the torus T2.
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[3] S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel, On the Pisot substitution

conjecture, Mathematics of Aperiodic Order, J. Kellendonk, D. Lenz, J. Savinien (Eds),

Progress in Mathematics (Birkhuser), Vol. 309 (2015) 33–72.

[4] J. Aliste-Prieto, D. Coronel, J.-M. Gambaudo, Rapid convergence to frequency for sub-

stitution tilings of the plane, Comm. Math. Phys. 306 (2011), 365–380.

[5] J. Aliste-Prieto, D. Coronel, J.-M. Gambaudo, Linearly repetitive Delone sets are rectifi-

able, Ann. Inst. H. Poincar Anal. Non Linaire 30 (2013), 275–290.

[6] L. Arnold, Random dynamical systems, Springer Monographs in Mathematics, Springer-

Verlag, Berlin, 1998.

[7] P. Arnoux and A. M. Fisher, Anosov families, renormalization and non-stationary sub-

shifts, Ergodic Theory Dynam. Systems 25 (2005), 661–709.

[8] P. Arnoux and A. Nogueira, Mesures de Gauss pour des algorithmes de fractions continues
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Soc. Math. France 119 (1991), 199–215.
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[30] V. Berthé, J. Bourdon, T. Jolivet, A. Siegel, A combinatorial approach to products of

Pisot substitutions, Ergodic Theory Dynam. Systems, to appear.
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