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The Thue-Morse sequence appears in numerous fields and has been discov-
ered and rediscovered in different contexts. Let us begin with an arithmetical
definition. The Thue-Morse sequence is defined as the sequence u = (un)n,
which counts the sum modulo 2 of the digits of n in base 2 (un gives the parity
of the number of 1’s in the binary expansion of n). This sequence can also
be generated by an iterative process called substitution. Let A = {a, b} and
let A∗ denote the set of words defined on the alphabet A. Consider the map
σ : A → A∗ defined by σ(a) = ab and σ(b) = ba. The map σ extends to a
morphism of A∗ by concatenation. We then can iterate σ and the nested words
σn(a) converge in the product topology to the infinite sequence which begins
by σn(a), for every n. This sequence is precisely the Thue-Morse sequence.

This sequence was first discovered by Prouhet in 1851 as a solution of the
so called Prouhet-Tarry-Escott problem (Tarry and Escott re-introduced
this problem after Prouhet in the years 1910-1920): consider a finite set of
integers that can be partitioned into c classes with the same cardinality s such
that the sums of the elements, the sums of squares, ..., the sums of the k-th
powers in each class are independent of the class. If the sums of the (k + 1)-
th powers are not equal, then the solution is said to be an exact solution of
order k. The Thue-Morse sequence provides a solution of degree k exactly
(when c = 2) by considering the classes {0 ≤ n ≤ 2k+1 − 1, un = a} and
{0 ≤ n ≤ 2k+1 − 1, un = b}. Note that this partition is conjectured to be the
unique partition of the set {0, 1, . . . , 2k+1 − 1} into 2 classes providing an exact
solution of degree k. For more results on this subject, see the survey [3].

The sequence u was next rediscovered by Thue in 1912 [8]. Thue tried to
construct arbitrarily long words on a two letter alphabet without cubes, i.e.,
without factors of the form www, where w is a non-empty word. It is easily
seen that there are no infinite square-free sequences on two letters. It is then
natural to ask whether there are infinite sequences free of powers 2 + ε, for
any ε > 0. Such a sequence is called overlap-free; in other words, none of its
factors is of the form xuxux. In fact, the Thue-Morse sequence is an infinite
overlap-free word on two letters. Moreover all overlap-free words are derived
from this sequence. Furthermore, if one defines the Thue-Morse sequence on
{0, 1} (by mapping a to 1 and b to −1), then the sequence (un+1−un)n defined
on the three-letter alphabet {−1, 0, 1} is square-free. By applying the morphism
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µ(−1) = a, µ(0) = ab, µ(1) = abb, one also gets an infinite cube-free word on two
letters. These results have been extended whithin the theory of avoidable and
unavoidable patterns in strings. Note that such combinatorial properties were
used to solve various algebraic problems, as to provide a negative answer to the
Burnside problem. For more information on the subject, see the references and
results quoted in [6].

The sequence u was next introduced by Morse [7] in 1921 in order to show
the existence of non-periodic recurrent geodesics over simply connected surfaces
with constant negative curvature, by coding geodesics by an infinite sequence
of 0’s and 1’s, according to which boundary of the surface it meets. Indeed the
Thue-Morse sequence is a recurrent sequence, i.e., every factor appears in an
infinite number of places with bounded gaps. In other words, the symbolic

dynamical system generated by the Thue-Morse sequence is minimal (see
for instance [4]).

The Thue-Morse sequence is a typical example of a k-automatic sequence.
Actually, like every fixed point of a substitution of constant length, it can be
generated by a finite machine called a finite automaton as follows. A k-
automaton is given by a finite set of states S, one state being called the initial
state, by k maps from S into itself (we denote them 0, 1, . . . , k − 1) and by
an output map ϕ from S into a given set Y . Such an automaton generates a
sequence with values in Y as follows: feed the automaton with the digits of the
base-k expansion of n, by starting with the initial state; then define un as the
image under ϕ of the reached state. In the Thue-Morse case, the automaton
has two states, say {a, b}, the map 0 maps each state to itself whereas the map
1 exchanges both states, the output map is the indentity map and the state a

is the initial sate.
Automatic squences have many nice characterizations (see for instance the

survey [1])- Automatic sequences are exactly the letter-to-letter images of fixed
points of constant length substitutions. Furthermore, this is equivalent to the
fact that the following subset of subsequences (called the k-kernel) {(uktn+r)n, t ≥
0, 0 ≤ r ≤ kt − 1} is finite or to the fact that the series

∑
n

unXn is algebraic
over IFk(X), in the case k is a prime power. Note that on the other hand the
real number with dyadic expansion the Thue-Morse sequence is transcendental.
For more references and connections with physics, see [2].

Consider the following sequence v = (vn)n, which counts modulo 2 the
number of 11’s (possibly with overlap) in the base-2 expansion of n. The se-
quence v is easily seen to have a finite 2-kernel and hence to be be 2-automatic.
This sequence was introduced independently by Rudin and Shapiro (see the

references in [4]) in order to mimimize uniformly |∑N−1

n=0
aneint|, for a se-

quence (an) defined over {−1, 1}. The Rudin-Shapiro sequence hence provides

supt |
∑N−1

n=0
vneint| ≤ (2 +

√
2)
√

N.

The dynamical system generated by each of the two sequences u and v is
strictly ergodic, since both underlying substitutions are primitive (see for
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instance [4]). But although very similar in their definition, these two sequences
share very distinct spectral properties. The Morse system has a singular sim-
ple spectrum whereas the dynamical system generated by the Rudin-Shapiro
sequence provides an example of a system with finite spectral multiplicity and
a Lebesgue component in the spectrum. For more references on the ergodic,
spectral and harmonic properties of substitutive sequences, see [4].

If (almost) everything is known concerning the Thue-Morse and the Rudin-
Shapiro sequences, then the situation is completely different for the fascinating
Kolakoski sequence. The Kolakoski sequence is the self-determined sequence
defined over the alphabet {1, 2} as follows. The sequence begins with 2 and
the sequence of lengths of the consecutive strings of 2’s and 1’s is the sequence
itself. Hence this sequence is equal to 22112122122112 . . . For a survey of related
properties and conjectures, see [5].
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