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Abstract

We study a particular case of the two-dimensional Steinhaus the-

orem, giving estimates of the possible distances between points of the

form k� and k� + � on the unit circle, through an approximation

algorithm of � by the points k�. This allows us to compute covering

numbers (maximal measure of Rokhlin stacks having some prescribed

regularity properties) for the symbolic dynamical systems associated

to the rotation of argument � acting on the partition of the circle

by the points 0, �. We can then compute topological and measure-

theoretic covering numbers for exchange of three intervals; in this

way, we prove that every ergodic exchange of three intervals has sim-

ple spectrum, and build a new class of three-interval exchanges which

are not of rank one.
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This work is a sequel of [CHE]. In that paper, we proposed to �nd invari-

ants of dynamical systems which, when computed for the irrational rotation

of argument �, are explicitly linked to the arithmetic properties of �. This

aim was achieved by the covering numbers, see below, whose expression

for this rotation uses the continued fraction approximation of �. In the

present paper, we show that the covering numbers can really work as ergodic

invariants, as we use them to solve open problems of an ergodic nature;

these problems concern the exchange of three intervals, and our invariants

are reached through a detailed study of the repartition on the circle of points

of the form k� and k� + �.

The covering numbers (see precise de�nitions in Section 6, and see [FER1],

[KIN], [FER2], [FER4], [CHE]) measure the largest Rokhlin stack (that is,

the union of disjoint sets B, TB, . . . ,T

h�1

B) of arbitrarily large height h,

which we can �nd in the system for a basis B having some prescribed prop-

erties. In [CHE], we computed these quantities for the irrational rotation of

argument �, asking that B is either equal to an interval, or included in a

cylinder for the symbolic dynamics of the rotation on its Sturmian coding

(see Section 3); this gave us invariants F

I

(�) and F (�); the proof used a pre-

cise study of the repartition of the points k� on the circle for 0 � k � h� 1,

centered on the famous three distance theorem, conjectured by Steinhaus

and proved in [SOS1], [SOS2], [SUR] [SWI], see [ALE-BERT] for a recent

survey, together with an explicit expression of the distances between adja-

cent points ([SOS1], [SOS2] or more recently [BERT]).

A natural problem to study now is what happens when we look at the

symbolic dynamics of the same rotation on its coding by a partition of the

circle by 0 and by one point �, rationally independent from �; this involves

looking at the repartition on the circle of both the points k� and the points

l� + � for 0 � k � h � 1 and 0 � l � h � 1; in this case, there is a

bi-dimensional Steinhaus theorem ([GEE-SIM]), also called �ve distance

theorem (see [ALE-BERT]) but no explicit expression of these distances.

We give here a method, using the graph of words, to compute these distances,

which, together with an approximation algorithm of � by �, inspired from

[SLA], allows us, in many cases, to have precise estimates of the distances.

These estimates are used to compute the covering numbers F

C

(�; �) and

F (�; �), where we ask respectively that B is either equal to or included
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in a cylinder for the symbolic dynamics of the rotation on its coding by the

�-partition: we can give qualitative remarks on the behaviour of these invari-

ants, and their relations with the quantities F

I

(�) and F (�). In particular,

though the coding by the �-partition is intrinsically di�erent from the Stur-

mian coding, there are many nontrivial situations (that is, when � is not a

multiple of �) where F

C

(�; �) = F

I

(�), though the two quantities can also be

di�erent; as for F (�; �), it can vary between F

I

(�) and F (�), both extreme

values and some intermediate values being taken for nontrivial situations;

the di�erent � satisfying the above properties are determined through their

aproximation algorithm by �.

Now, the dynamics of a rotation of argument � on an interval of length �

are intrinsically linked to the dynamics of an exchange of three intervals

T de�ned by � and �, through a process of induction ([KAT-STE], [RAU2],

see Section 9). Such dynamical systems are simple to de�ne but their study

is quite involved: they have been suggested by Arnold ([ARNOL]) and used

in [KAT-STE] to give examples of (at that time) surprising spectral prop-

erties; they were then studied in depth by Veech ([VEE2]), who, through

far-reaching geometric arguments, proved their unique ergodicity in almost

all cases; the same result has been re-proved later using more elementary

methods, rather related to ours as they use also the graph of words, by

Boshernitzan ([BOS]). These results are closely linked to our invariants: in

[KAT-STE] it is stated (though the proof is not written) that when � has

unbounded partial quotients and � is well approximated by the convergents

of � then F

I

= 1; one by-product of Veech's theory is that F

I

= 1 for almost

all exchange of intervals. But, to our knowledge, such obvious questions as

when two exchange of three intervals are measure-theoretically isomorphic

are still unsolved. The question of whether a nontrivial exchange of three

intervals, associated to � and � as above, can be measure-theoretically iso-

morphic to a rotation has received a partial answer: the answer is negative

when � has unbounded partial quotients and � is badly approximated by

some convergents of � ([KAT-STE], see the discussion at the end of Section

9).

Here, without any Veech-type machinery, we are able to compute some

covering numbers, and, using the fact that they are ergodic invariants, to

answer some of these questions. Namely, we prove that for exchanges of

three intervals F

I

(T ) = F

I

(�); this implies that F

I

(T ) = 1 if and only if
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� has unbounded partial quotients, precising the results of Katok, Stepin

and Veech; this implies also that every ergodic exchange of three inter-

vals has simple spectrum, and cannot be measure-theoretically isomorphic

to the dynamical system associated to the Morse sequence. Then, we prove

that F

D

(T ) = F (�; �), F

D

(T ) being de�ned by asking B and its iterates

to have arbitrarily small diameter; this gives new examples of three-interval

exchanges which are induced by the same rotation but are not topologically

conjugate; this gives also a lower bound for the measure-theoretic covering

number F

?

(T ) (see precise de�nitions in Section 6), that is the measure of

the largest Rokhlin stack whose levels approximate every partition. To �nd

an upper bound for F

?

(T ) is much more di�cult, but we have been able

to �nd, for any � with bounded partial quotients, a nonempty Cantor set of

numbers � such that F

?

(T ) < 1; this implies that, for these � and �, T is not

measure-theoretically isomorphic to any three-interval exchange with an �

0

with unbounded partial quotients, nor to a rotation, and has a non-discrete

spectrum.

The authors would like to thank Michael Boshernitzan and Vera T. S�os

for the improvements they suggested to this paper.

Throughout this paper, 0 < � < 1 is an irrational number and R

�

is the

irrational rotation de�ned on the torus TT

1

by R

�

x = x+ � modulo 1.

Except otherwise stated, every quantity is considered modulo 1.

1 Codings and Rauzy graphs

We will study the combinatorics of sequences obtained as codings of irrational

rotations on the unit circle.

The coding of the orbit of a point x under the rotation of angle � with

respect to the partition in intervals I

0

; I

1

is the sequence (u

n

)

n2IN

de�ned on

the �nite alphabet f0; 1g as follows:

u

n

= k , x+ n� 2 I

k

:

A factor of length l of the sequence (u

n

)

n2IN

is any word of the form

u

p

: : : u

p+l�1

. We shall see in Section 2 that the set of factors of the se-
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quence de�ned above is independent of the point x.

The Rauzy graph �

n

of words of length n of a sequence with val-

ues in a �nite alphabet is an oriented graph (see, for instance, [RAU1] or

[ARNOU-RAU]), which is a subgraph of the de Bruijn graph of words. Its

vertices are the factors of length n of the sequence and the edges are de�ned

as follows: there is an edge from U to V if V follows U in the sequence,

i.e., more precisely, if there exists a word W and two letters x and y (not

necessarily distinct) such that U = xW , V = Wy and xWy is a factor of the

sequence (such an edge is labelled by xWy). Thus there are p(n + 1) edges

and p(n) vertices, where p(n) denotes the complexity function: p(n) is the

number of distinct factors of length n. Let us note that the graphs of words

of a sequence are always connected; furthermore, they are strongly connected

if and only if this sequence is recurrent, i.e. if every factor appears at least

two times, or equivalently if every factor appears an in�nite number of times

in this sequence. In particular, a coding of rotation is always recurrent.

We call right extension (respectively left extension) of a factor w =

w

1

: : :w

n

a factor of the sequence of the form w

2

: : :w

n

x (respectively xw

1

: : :

w

n�1

), where x denotes a letter (the extensions of a factor w have the same

length as w). A factor having more than one right (respectively left exten-

sion) is called right (respectively left) special factor. Let U be a vertex of

the graph. Let us denote by U

+

the number of edges of �

n

which have U as

origin and U

�

the number of edges of �

n

which have U as ending. In other

words, U

+

(respectively U

�

) counts the number of right (respectively left)

extensions of U . Let us note that

p(n + 1)� p(n) =

X

jU j=n

(U

+

� 1) =

X

jU j=n

(U

�

� 1):

We can deduce from the �rst-di�erences of the complexity function some

information on the topology of the graph of words. In all what follows,

a branch of the graph �

n

denotes a longest sequence of maximal length

(U

1

; : : : ; U

m

) of adjacent edges of �

n

, possibly empty, satisfying

U

+

i

= 1; for i < m; U

�

i

= 1; for i > 1:

If the sequence is recurrent, a branch begins either with a left special factor

or with an extension of a right special factor.
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Furthermore, if U and V are two vertices linked by an edge such that

U

+

= 1 and V

�

= 1, then the two factors U and V have the same frequency.

Let us recall that the frequency f(B) of a factor B of a sequence is the

limit, if it exists, of the number of occurrences of this block in the �rst k

terms of the sequence divided by k.

Indeed, let us write U = xW and V = Wy, where x and y are letters.

As U

+

= 1, U has as unique right extension Wy. Similarly, V has as unique

left extension xW . Thus f(U) = f(Uy) = f(xWy) = f(xV ) = f(V ), where

f denotes the frequency. Therefore, the edges of a branch have the same

frequency and the frequencies of factors of given length belong to the set of

frequencies of the branches of the corresponding graph.

2 The �ve distance theorem

In this section, we suppose � is not a multiple of �.

Let P

n

be the partition of the circle by the points k�, �+ l�, for �n+1 �

k; l � 0; let Q

0

n

be the partition of the circle by the points k�, � + l�,

0 � k � n � 1, 0 � l � n � 1. For such partitions, we shall speak in the

obvious sense of intervals of the partition, and of points of the partition

to denote the endpoints of the intervals; the notion of neighbours is also

unambiguous.

We consider a coding u of the orbit of a point x under the rotation R

�

for the partition f[0; �[; [�;1[g. Let I

0

= [0; �[ and I

1

= [�; 1[. A �nite word

w

1

� � �w

n

de�ned on the alphabet f0; 1g is a factor of the sequence u if and

only if there exists an integer k such that

x+ k� 2 I(w

1

; : : : ; w

n

) =

n�1

\

j=0

R

�j

�

(I

w

j+1

):

As � is irrational, the sequence (x + n�)

n2IN

is dense in the unit circle,

which implies that w

1

w

2

: : :w

n

is a factor of u if and only if I(w

1

; : : : ; w

n

) 6=

;. The connected components of these sets are bounded by the points of

P

n

. Furthermore, these sets are connected for n large enough (see [ALE]).

In all the sequel, we suppose n has been chosen large enough for all the
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I(w

1

; : : : ; w

n

) to be connected. The frequency of the factor w

1

: : : w

n

exists

and is equal to the density of the set

fk j x+ k� 2 I(w

1

; : : : ; w

n

)g;

which is equal to the length of I(w

1

; : : : ; w

n

), because of the equirepartition

of the sequence (x+ n�)

n2IN

.

For the n we have taken, the complexity function of the sequence u sat-

is�es p(n + 1) � p(n) = 2 (see for instance [ROT]). Thus there are exactly

two right special factors of length n.

Lemma 1 The two intervals corresponding to the right special factors are

the intervals of the partition P

n

containing respectively �n� or �n� + �.

The two intervals corresponding to the left special factors are the intervals of

the partition P

n

containing respectively � or �+�. The four intervals corre-

sponding to the right extensions of the right special factors are the intervals

of the partition P

n

touching respectively �(n� 1)� or �(n� 1)� + �.

Proof

Let I be an interval of the partition P

n

corresponding to the factor w. Let k be

an index of occurrence of w. We thus have x+k� 2 I and x+(k+1)� 2 R

�

I.

The factor w has two right extensions if and only if the intervalR

�

I intersects

two intervals of P

n

, hence if and only if there exists a point of P

n

in the

interior of R

�

I ; as I is an interval of P

n

, this point can only be (�n + 1)�

or (�n+ 1)� + �, hence our �rst assertion after applying R

�1

�

; and the two

right extensions must correspond to the two intervals of P

n

intersecting R

�

I.

The assertion on the left special factor comes from a symmetric reasoning.

QED

Lemma 2 The frequencies of the factors of given length n belong to the

set of frequencies of the right special factors of length n and of their right

extensions.

Proof

Let us consider the graph of words of length n. A branch can either end with

a right special factor, or begin with a right extension of a right special factor,

or begin with a left special factor.

Let s

n

be the symmetryof the circle de�ned by s

n

: x! f��(n�1)��xg.

The points of the partition P

n

are stable under s

n

. We have s

n

(R

�k

�

(I

j

)) =
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R

(�n+1+k)

�

(I

j

), for j = 0; 1; following the previous notation. The image of

I(w

1

; : : : ; w

n

) by s

n

is I(w

n

; � � � ; w

1

); thus they have the same length. Let

I be the interval containing � � n� (respectively �n�); the interval s

n

(I)

contains � (respectively �+�). The right special factors have thus the same

frequencies as the left special factors, which proves our lemma. QED

We deduce from these two lemmas, after rotating the picture by (n�1)�,

the following result:

Proposition 1 The di�erent lengths of the intervals of Q

0

n

are the lengths of

the two intervals touching 0, the lengths of the two intervals touching �, the

length of the interval containing ��, and the length of the interval containing

� � �.

Remarks

The length of the interval containing ��, is either the sum of the lengths

of the two intervals touching 0 (in the case where the frequency of the cor-

responding right special factor is the sum of the frequencies of its right ex-

tensions) or one of the lengths of the intervals touching 0 or � (when one of

the right extensions is a left special factor); and the symmetric proposition

holds for ���. Hence the possible lengths of the intervals of Q

0

n

are included

in the following set: the lengths of the two intervals touching 0, the sum of

these two lengths, the lengths of the two intervals touching �, the sum of

these two lengths. The reasoning in the proof of Lemma 3 below implies that

the length of the interval of Q

0

n

containing ��, resp. ���, is the sum of the

lengths of the two intervals touching 0, resp. �, whenever neither (n � 1)�

nor (n� 1)�+ � is a neighbour of ��, resp. � � �, in Q

0

n

.

In fact, the six lengths in Proposition 1 take at most �ve di�erent values;

this is the two-dimensional Steinhaus theorem ([GEE-SIM]), which we can

also call the �ve distance theorem; it is re-proved in [ALE-BERT], using

a more precise description of the Rauzy graphs, which may have di�erent

topologies, see [ROT] or [FER3].

3 The Sturmian coding

The particular case where � = 1 � � is already completely studied: Stur-

mian sequences are de�ned equivalently, either as sequences of complexity
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p(n) = n + 1, for every n, or as codings of an irrational rotation of angle �

on the unit circle with respect to a partition in two intervals of size � and

1� �: a sequence is Sturmian if and only if there exists � irrational in ]0; 1[

and x such that this sequence is the coding of the orbit of x under the rota-

tion of angle � with respect either to the partition f[0; 1 � �[; [1 � �; 1[g or

f]0; 1��]; ]1��; 1]g ([HED-MOR2]). Let us note that a sequence whose com-

plexity satis�es p(n) � n, for some n, is ultimately periodic ([HED-MOR1],

[COV-HED]). Sturmian sequences have thus the minimal complexity among

not ultimately periodic sequences. The reader can consult [BERS] and [LOT]

for a recent survey on Sturmian sequences.

In the Sturmian case, there is only one bispecial factor of given length;

the graph has three branches and has the following topology (see for example

[ARNOU-RAU]). The graph �

h

contains one right special factor D

h

and one

left special factor G

h

, both with two extensions; D

h

and G

h

may be the same.

There are three branches: the central branch, starting from G

h

(it can be

reduced to one point, when G

h

= D

h

), and two branches, C

h

and L

h

, starting

from each of the right extensions of D

h

.

A complete analysis of the di�erent lengths and frequencies of the branches

can be found in [BERT] and [CHE]. Let [0; a

1

; : : : ; a

n

; : : :] be the continued

fraction approximation of �; let q

n+1

= a

n+1

q

n

+ q

n�1

, p

n+1

= a

n+1

p

n

+ p

n�1

,

p

�1

= 1, p

0

= 0, q

�1

= 0, q

0

= 1. Let f

n

= (�1)

n

(q

n

� � p

n

); we have

f

n�1

= a

n+1

f

n

+ f

n+1

for all n.

For given h, let Q

h

be the partition of the circle by the points k�, 0 � k �

h � 1. The intervals of the partition Q

h

have three possible lengths: this is

the three distance theorem, see [SOS1], [SOS2], [SUR], [SWI], [ALE-BERT].

These lengths are also the three possible frequencies of the points of �

h

,

and are computed in [SOS1] (see also [BERT] or [CHE]). We shall need the

following results in Section 4.

Let n be �xed; to simplify the notation, we suppose that n is odd; let h =

q

n

�1; then the intervals of the partition Q

h

have three possible lengths, f

n�1

,

f

n�1

+ f

n

, and 2f

n�1

+ f

n

; these values are taken, in particular, respectively

by the intervals [0; f

n�1

= q

n�1

�[, [�f

n�1

� f

n

= (q

n

� q

n�1

)�; 0[, and [���

f

n�1

� f

n

;��+ f

n�1

[.

An interval of Q

h

is of length at least f

n�1

+ f

n

if and only if it is

on the circuit of �

h

beginning with the word corresponding to the inter-
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val [�f

n�1

� f

n

; 0[ (which is a right extension of D

h

) and ending with D

h

;

this circuit has length q

n�1

(see [CHE]), hence its points are the q

n�1

�1 �rst

images by T of the interval [�f

n�1

� f

n

; 0[ : an interval of Q

h

is of length

at least f

n�1

+f

n

if and only if its right endpoint is k� for some 0 � k < q

n�1

.

For the same odd n, we look now at some q

n�1

< h � q

n

; now the three

possible lengths are f

n�1

, f

n�1

+ f

n

+ c

h

f

n�1

for some 0 � c

h

� a

n+1

� 1 and

2f

n�1

+ f

n

+ c

h

f

n�1

(this last one is not taken for every value of h); these

are taken respectively by the intervals [0; f

n�1

[, [�f

n�1

� f

n

� c

h

f

n�1

; 0[,

and (when the last one is taken) [�� � f

n�1

� f

n

� c

h

f

n�1

;�� + f

n�1

[; for

h > q

n

� q

n�1

, we have c

h

= 0; in particular, the intervals of the parti-

tion Q

q

n

. have lengths f

n�1

and f

n�1

+ f

n

. An interval of Q

h

is of length

at least f

n�1

+f

n

if and only if its right endpoint is k�, for some 0 � k < q

n�1

.

In particular, let g = q

n�1

+ q

n�2

� r

n

, for some 2 < r

n

< q

n�2

. The

intervals in the partition Q

g

, have three lengths, f

n�1

, f

n�2

and f

n�1

+ f

n�2

;

the intervals of length f

n�1

+ f

n�2

are those corresponding to the central

branch of �

g

, and they are those whose right endpoint is k

1

� for q

n�1

� r

n

�

k

1

� q

n�1

� 1. The three lengths remain the same for the partition Q

g+1

,

and the intervals of length f

n�1

+ f

n�2

are those whose right endpoint is k

1

�

for q

n�1

� r

n

+ 1 � k

1

� q

n�1

� 1.

Another particular case we need is when a

n

� 3 and g = 2q

n�1

+q

n�2

�r

n

,

for some 2 < r

n

< q

n�2

. The intervals in the partition Q

g

, have three lengths,

f

n�1

, f

n�2

�f

n�1

and f

n�2

; the intervals of length f

n�2

are those whose right

endpoint is k

1

� for 2q

n�1

� r

n

� k

1

� 2q

n�1

� 1. The three lengths remain

the same for the partition Q

g+1

, and the intervals of length f

n�2

are those

whose right endpoint is k

1

� for 2q

n�1

� r

n

+ 1 � k

1

� 2q

n�1

� 1.

Obviously, similar results hold with the left endpoint, when n is odd.

4 Explicit values for the �ve distances

In this section, we suppose � is not a multiple of �.

In that case, there are no such formulas for the lengths of the intervals

of Q

0

h

; however, our Proposition 1 allows us to make explicit computations

in many cases, as we shall see in the following lemmas, which will be used
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in Sections 7 and 8. We keep the notation of Section 3; we recall (from

Section 2) that Q

0

h

is the partition of the circle by the points k�, � + l�,

0 � k � h�1, 0 � l � h�1, whereas Q

h

denotes the partition by the points

k�, 0 � k � h � 1. The following results could be formulated in a more

general form, and some of them can be deduced from [SOS3]; we state here

what we shall use in the sequel.

Lemma 3 Let n be larger than some n

0

(�; �),

� if there does not exist 0 � s < q

n�1

such that 0 < (�1)

n

(��s�) < f

n�1

,

then there exists at least one interval in Q

0

q

n

�1

of length exactly f

n�1

,

� there is always at least one interval in Q

0

q

n

�1

of length at least f

n�1

,

� if there exists 0 � s < q

n�1

such that 0 < (�1)

n

(� � s�) = g

n

< f

n�1

,

then the lengths of the intervals of Q

0

q

n

are either (strictly) greater than

f

n�1

or equal to one of the quantities fg

n

; f

n�1

�g

n

; f

n

+f

n�1

�g

n

; f

n

+

g

n

g, each of these last four values being actually taken,

� if there exists 0 � s < q

n�1

such that 0 < (�1)

n

(� � s�) = g

n

< f

n�1

,

then, if q

n�1

< h < q

n

, the lengths of the intervals of Q

0

h

are either

(strictly) greater than f

n�1

or not greater than the maximum of the

quantities fg

n

; f

n�1

� g

n

; f

n

+ f

n�1

� g

n

; f

n

+ g

n

g.

Proof

First we �x some n, odd and large enough, and take h = q

n

�1. Recall (from

Section 3) that the lengths of Q

h

are f

n�1

, f

n�1

+ f

n

, 2f

n�1

+ f

n

. Let us

consider the length of the interval of Q

h

to which � belongs.

Suppose �rst that � is in an interval of Q

h

of length f

n�1

; then � is

necessarily in the interior of this interval, as � is not a multiple of �. So

� = k

1

� + b

1

= k

2

� � b

2

, b

1

> 0, b

2

> 0, b

1

+ b

2

= f

n�1

. No k� + � can be

closer to � than f

n�1

, the nearest neighbours of � in Q

0

h

are k

1

� and k

2

�;

the lengths of the interval touching � are b

1

and b

2

, and their sum is f

n�1

.

We check now that this value f

n�1

is indeed the length of an interval of

Q

0

h

, namely the interval containing ���: we can suppose k

1

> 1 and k

2

> 1,

because, if either k

1

= 1 or k

2

= 1 for arbitrarily large n, we must have

� = �. Hence (k

1

� 1)� and (k

2

� 1)� are neighbours of � � �, closer than

10



f

n�1

; now, if � � � has a neighbour in Q

0

h

of the form l�, then (l + 1)� has

to be a neighbour of � in Q

0

h

, or else not to appear in Q

0

h

, which leaves only

l = k

1

� 1, l = k

2

� 1 or else l = q

n

� 2. But this last case cannot happen for

n large enough as � 6= �� ; as for neighbours of � � � of the form � + l�,

they are translates by � of neighbours of �� in Q

0

h

, and we know that these

are at distances f

n�1

and f

n�1

+ f

n

, since they are also the closest neigbours

of 0 in Q

q

n

. Hence [(k

1

� 1)�; (k

2

� 1)�[ is an interval of Q

0

h

of length f

n�1

.

We suppose now that � is in an interval of Q

h

of length at least f

n�1

+f

n

;

then the nearest right neighbour of � in Q

h

must be k

2

� for some 0 � k

2

<

q

n�1

(see Section 3).

If k

2

� � � > f

n�1

, then the nearest right neighbour of � in Q

0

h

is

� + q

n�1

� = � + f

n�1

, and hence [�; � + q

n�1

�[ is an interval of Q

0

h

of

length f

n�1

. This �nishes the proof of our �rst assertion.

We now have to study the case where 0 < k

2

�� � = g

n

< f

n�1

for some

0 � k

2

< q

n�1

. From Section 3, � is in an interval of Q

h

of length either

f

n�1

+ f

n

or 2f

n�1

+ f

n

; the nearest right neighbour of � in Q

0

h

is � + g

n

;

its nearest left neighbour is � � f

n�1

� f

n

+ g

n

(of the form l�) if � is in

an interval of Q

h

of length f

n�1

+ f

n

, and � � f

n�1

� f

n

(of the form l�

+�) otherwise. The sums of the two lengths around � in Q

0

h

is greater than

f

n�1

, and it is the length of the interval of Q

0

h

containing ���, by the same

reasoning as above. So we deduce our second assertion from Proposition 1.

We continue to suppose that 0 < k

2

� � � = g

n

< f

n�1

, for some

0 � k

2

< q

n�1

, and look now at k = q

n

. Then � has to be in an inter-

val of Q

k

of length f

n�1

+f

n

(see Section 3), and the nearest neighbours of �

in Q

0

k

are �+g

n

and ��f

n�1

�f

n

+g

n

. We can now compute the neighbours

of 0 in Q

0

k

, as we can exhibit (left) � + (q

n

� k

2

)� (we can suppose k

2

� 2

as � 6= �), at distance g

n

+ f

n

< f

n�1

+ f

n

; and (right) � + (q

n�1

� k

2

)�, at

distance f

n�1

�g

n

< f

n�1

. Actually, as 0 � q

n�1

�k

2

< q

n�1

, this ensures (see

Section 3) that �� is in an interval of Q

k

of length f

n�1

+ f

n

, which implies

that 0 has no nearer neighbour in Q

0

k

. Hence the intervals of Q

0

k

have lengths

g

n

, f

n�1

� g

n

, f

n

+ g

n

, f

n

+ f

n�1

� g

n

, or possibly the sum f

n

+ f

n�1

, and

each one of the �rst four possibilities does occur. This is our third assertion.

Let us look now, for the same odd n, at values q

n�1

< h � q

n

; we suppose

11



still that 0 < k

2

�� � = g

n

< f

n�1

for some 0 � k

2

< q

n�1

.

The point k

2

� is still an endpoint of Q

h

, and � is in an interval of Q

h

of length at least f

n�1

+ f

n

-namely, either f

n�1

+ f

n

or f

n�1

+ f

n

+ cf

n�1

,

c > 0. The point (q

n�1

� k

2

)� is still an endpoint of Q

h

, and �� is in

an interval of Q

h

of length at least f

n�1

+ f

n

-namely, either f

n�1

+ f

n

or

f

n�1

+ f

n

+ c

0

f

n�1

, c

0

> 0. We have still four (possibly) useful lengths which

are g

n

, f

n�1

�g

n

, f

n�1

+f

n

+cf

n�1

�g

n

, f

n�1

+f

n

+c

0

f

n�1

�(f

n�1

�g

n

). Each

one of the last two lengths either is strictly greater than f

n�1

or reduces to

one of the four lengths used in the last paragraph; hence our fourth assertion.

A similar reasoning applies for even n. QED

Lemma 4 For n large enough

� if g = q

n�1

+ q

n�2

� r

n

, for some 2 < r

n

< q

n�2

, and if for some

0 � t � r

n

� 2, we have jt� � �j < b

n

< f

n�1

+ f

n�2

, there exists an

interval of Q

0

g

, of length at least f

n�1

+ f

n�2

� b

n

, and included in an

interval of Q

g+1

of length f

n�1

+ f

n�2

.

� if a

n

� 3, g = 2q

n�1

+ q

n�2

� r

n

, for some 2 < r

n

< q

n�2

, and if for

some 0 � t � r

n

� 2, we have jt� � �j < b

n

< f

n�2

, there exists an

interval of Q

0

g

, of length at least f

n�2

� b

n

, and included in an interval

of Q

g+1

of length f

n�2

.

Proof

Let n be odd; under the hypotheses of the �rst assertion, and assuming

0 < t�� �, we take k

1

= q

n�1

� r

n

+ 1, k

2

= k

1

+ t; then � + k

2

� is between

k

1

� � b

n

and k

1

�; which guarantees (from Section 3) that � + k

2

� is in an

interval of Q

g

of length f

n�1

+ f

n�2

, and in an interval of Q

g+1

of length

f

n�1

+ f

n�2

; hence, between the nearest left neighbour of k

1

� in Q

h

, denoted

by k

3

�, and the point �+k

2

� there can be no endpoint of Q

h

; also, there can

be no other � + l� as k

2

� itself is in an interval of Q

g

of length f

n�1

+ f

n�2

.

Hence [k

3

�; � + k

2

�[ is an interval of Q

g

, with the required properties. A

similar reasoning applies for 0 < � � t�, and for even n.

The proof of the second assertion is identical. QED
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Remark

Though it will not be used in the sequel, we can show a situation where �

is not a multiple of �, but the 2q

n

intervals in Q

0

q

n

have only two possible

lengths, for in�nitely many n.

Suppose � is such that q

n

+ q

n�1

is odd for arbitrarily large odd n and

let � =

�

2

; for such odd n we take k = q

n

; one right neighbour of � in Q

k

is

k

2

� with k

2

=

q

n

+q

n�1

+1

2

> q

n�1

, k

2

� � � =

f

n�1

�f

n

2

, hence it is the nearest,

and � is in an interval of Q

k

of length f

n�1

; let k

1

� = k

2

� � f

n�1

. The two

nearest neighbours of 0 in Q

0

k

must be �+(q

n

�k

2

)� (left) and �+(q

n

�k

1

)�

(right), as they are respectively at distances

f

n�1

+f

n

2

and

f

n�1

�f

n

2

; we check

than �� is in an interval of Q

0

k

of length

f

n�1

+f

n

2

, and the same for � � �;

there are only two di�erent lengths in Q

0

k

,

f

n�1

+f

n

2

and

f

n�1

�f

n

2

, both being

smaller than f

n�1

.

5 Approximation algorithm

To be able to precise our estimates, we need to know the best approximations

of � by points s�; we shall suppose for example that � �

1

2

, and look at the

best left approximations.

Proposition 2 If we de�ne the sequence of natural integers k

i

, starting from

k

0

= 0, by the property that k

i+1

is the smallest integer s > k

i

such that

k

i

� < s� < �, then the k

i

are given by the following algorithm, where the f

n

are as above, and k

i

, n

i

, c

i

and e

i

are uniquely de�ned by: k

0

= 0;

� � k

i

� = c

i

f

n

i

+ f

n

i

+1

+ e

i

;

with 0 < e

i

� f

n

i

; 1 � c

i

� a

n

i

+1

, if n

i

> 0; and 1 � c

i

� a

1

� 1, if n

i

= 0,

k

i+1

= k

i

+ q

n

i

; if n

i

is even;

k

i+1

= k

i

� c

i

q

n

i

+ q

n

i

+1

; if n

i

is odd:

This algorithm is inspired from [SLA], where it is proved that it does give

the best left approximations of � by k� (the \gap result" in Section 4 of

[SLA] implies exactly that the k

i+1

de�ned here is the smallest integer s > k

i

13



such that k

i

� < s� < �); see also for a similar algorithm [SOS2], [SOS3] and

see alos [SOS4]. We thus have

� =

X

n

i

even

c

i

f

n

i

+

X

n

i

odd

(c

i

f

n

i

+ f

n

i

+1

);

and the sequence (k

i

�)

i

tends towards �. Note that � � k

i+1

� is equal to e

i

if n

i

is odd, and to (c

i

� 1)f

n

i

+ f

n

i

+1

+ e

i

, if n

i

is even. Hence, we may have

n

i+1

= n

i

; this happens if and only if n

i

is even and c

i

> 1; this will then

happen (c

i

� 1) times and after that the sequence n

i

continues to grow, if �

is not a positive multiple of �, so n

i

! +1.

A similar reasoning applies for � >

1

2

; and to get the right approximations,

we apply the same algorithm to approximate 1 � � to the left by multiples

of 1 � �; this de�nes sequences k

0

i

, n

0

i

, c

0

i

and e

0

i

, using the a

0

n

and f

0

n

of the

continued fraction approximation of 1 � �.

This algorithm gives the successive values k

i+1

> k

i

minimizing fk�+�g.

The same quantity is also minimized in [KOM2], but for values k < q

n

,

n 2 IN; that paper gives another approximation algorithm, and another one

still is the algorithm of Ostrowski ([OST]) which appears naturally in the

study of the codings of the rotation R

�

, see [ARNOU-FER-HUB]. For a

survey of the di�erent algorithms related to this approximation problem, see

[KOM1]. These di�erent algorithms are deeply connected and correspond

to numeration systems analogous to the Ostrowski system (see also [SOS2],

[SOS3]).

6 Covering numbers

The notions of rank and covering numbers have been very useful to er-

godicians for the last twenty years; see [FER4] for a recent survey of related

matters.

For a measure-theoretic dynamical system (X;T; �), (� being a prob-

ability invariant by T ), the (measure-theoretic) covering number F

?

(T )

([KAT-SAT], [FER1], [KIN]) is de�ned by:

De�nition 1 F

?

(T ) is the supremum of all real numbers z such that for

every measurable partition P = fP

1

; : : : ; P

r

g de X, for every � > 0, for every

14



integer h

0

, there exist a subset B of X, an integer h > h

0

and a partition

P

0

= fP

0

1

; : : : ; P

0

r

g of X such that if A = [

h�1

j=0

T

j

B:

� B, TB, . . . , T

h�1

B are disjoint,

� �(A) > z � �,

�

P

r

i=1

�((P

i

�P

0

i

) \A) < �,

� each P

0

i

\ A is a union of sets T

j

B, for some 0 � j � h� 1.

F

?

(T ) is an invariant for the notion of isomorphism for measure-theoretic

dynamical systems.

When F

?

(T ) = 1, the system is said to be of rank one ([ORN-RUD-WEI],

formalizing a notion which had �rst appeared in [CHA]); in that case, the

system can be generated by a nested sequence of Rokhlin stacks (see [KAL]

for example): we can �nd a sequence of sets B

n

and numbers h

n

! +1,

such that B

n

, TB

n

, . . . , T

h

n

�1

B

n

are disjoint, and, if we call �

n

the parti-

tion of X by the sets B

n

, TB

n

, . . . , T

h

n

�1

B

n

, X n [

h

n

�1

i=0

T

i

B

n

, the partition

�

n+1

re�nes the partition �

n

for each n, and the �-algebra generated by the

(�

n

)

n2IN

separates points on a set of measure 1.

Irrational rotations, and all systems with discrete spectrum, are of rank

one ([deJ]).

Let now (X;T ) be a topological dynamical system, de�ned on the torus

TT

1

or the interval [0; 1[ with the usual topology, minimal and uniquely

ergodic: there is a unique probability invariant by T , denoted by �. We call

interval an arc of the torus or a sub-interval of [0; 1[, open to the left and

closed to the right. The covering number by intervals F

I

(T ) ([CHE]) is

de�ned by:

De�nition 2 F

I

(T ) is the supremum of all real numbers z such that, for

every h

0

, for every � > 0, there exist h � h

0

and an interval B such that

� B, TB, . . . , T

h�1

B are disjoint intervals,

� �([

h�1

i=0

T

i

B) � z � �.
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The result will not be changed if we take open or closed intervals, or if

we ask only that the interiors of the T

j

B are disjoint. The system is said to

be of rank one by intervals whenever F

I

(T ) = 1.

F

I

depends a priori both from the topological and the measure-theoretic

structure of the system; but the measure-theoretic structure is de�ned uniquely

by the topology, and two uniquely ergodic systems de�ned on the interval or

the torus have the same F

I

when they are topologically conjugate (as such a

conjugacy also sends intervals into intervals). We say that F

I

is an invariant

of topological conjugacy in this class of systems.

A related topological invariant, for the same class of systems, is what we

may call the covering number by sets of small diameter:

De�nition 3 F

D

(T ) is the supremum of all real numbers z such that, for

every h

0

and every � > 0, there exist h � h

0

and a set B such that

� B, TB, . . . , T

h�1

B are disjoint sets of diameter not greater than �,

� �([

h�1

i=0

T

i

B) � z � �.

Note that if the T

j

B can be taken of arbitrarily small diameter, they

allow us to approximate every partition P in the sense of De�nition 1: we

approximate �rst P by a partition Q whose atoms are unions of intervals

(or, more generally, whose atoms have regular enough boundaries), choose a

Rokhlin stack with small enough diameter �, and de�ne P

0

1

as the union of

levels which intersect Q

1

, P

0

2

as the union of levels which intersect Q

2

and

not Q

1

, and so on; the points in [P

0

i

�(Q

i

\ A) have to be �-close to the

boundary of atoms of Q, and the measure of this set is smaller than � if � is

small enough. Hence

F

D

(T ) � F

?

(T ):

Also, if the T

j

B are intervals, they have to be of length not greater than

1

h

,

and then have arbitrarily small diameter, hence

F

D

(T ) � F

I

(T ):

For a uniquely ergodic topological system, and a Borelian partition P =

fP

1

; : : : ; P

r

g, we de�ne the covering number by cylindersF

C

(T; P ) ([CHE])

and the symbolic covering number F (T; P ) ([FER2], [CHE]):

16



De�nition 4 F

C

(T; P ) is the supremum of all real numbers z such that, for

every h

0

, for every � > 0, there exist h � h

0

and a sequence w

j

, 0 � j �

h� 1, 1 � w

j

� r, such that the set B = [

h�1

j=0

T

�j

P

w

j

satis�es

� B, TB, . . . , T

h�1

B are disjoint,

� �([

h�1

i=0

T

i

B) � z � �.

De�nition 5 F (T; P ) is the supremum of all real numbers z such that, for

every h

0

, for every � > 0, there exist h � h

0

, a sequence w

j

, 0 � j � h� 1,

1 � w

j

� r, and a subset B of [

h�1

j=0

T

�j

P

w

j

such that

� B, TB, . . . , T

h�1

B are disjoint,

� �([

h�1

i=0

T

i

B) � z � �.

The quantities F

C

(T; P ) and F (T; P ) are associated with the symbolic

dynamical system de�ned as the shift on the sequences PN(x) de�ned by

PN(x)

n

= i if T

n

x 2 P

i

, n 2 IN; they are both topological invariants in

the class of minimal and uniquely ergodic symbolic systems, as topological

conjugacies in that class are �nite codes.

When T is the rotation R

�

, � is the Lebesgue measure, and we have stated

above that F

?

(R

�

) = 1; the techniques in [deJ] imply also that F

D

(R

�

) = 1;

we write F

I

(�) for F

I

(R

�

). If P (�) is the partition of the torus in two

sets, P (�)

0

= [0; �[ and P (�)

1

= [�; 1[, we write F

C

(�; �) for F

C

(R

�

; P (�)),

F (�; �) for F (R

�

; P (�)) and F (�) for F (R

�

; P (1 � �)). We check that all

these quantities remain the same if we take for T the same rotation, but

de�ned on the interval [0; 1[, taken as a fundamental domain of IR=ZZ.

Let � = [0; a

1

; : : : ; a

n

; : : :]; we denote by v

n

the rational number [0; a

n

; : : : ; a

1

]

and by t

n

the irrational number [0; a

n+1

; : : :]; we denote by a(h) the smallest of

the (at most three) di�erent lengths of the intervals of Q

h

. The following re-

sults are proved in [CHE] (the partial result that F

I

(�) � lim sup

n!+1

q

n

f

n�1

�

5+

p

5

10

appears in [GUE]).

Lemma 5 For an interval B of length jBj, the following two conditions are

equivalent:

� B, R

�

B, . . . , R

h�1

�

B are disjoint,

17



� jBj � a(h).

Proposition 3 If the a

n

, t

n

, v

n

are as above, and q

n

and f

n

as in Section

3,

F

I

(�) = lim sup

h!+1

ha(h) = lim sup

n!+1

q

n

f

n�1

= lim sup

n!+1

1

1 + t

n

v

n

(1)

and consequently,

F

I

(�) �

5 +

p

5

10

for every irrational �.

The quantity F (�) is also computed completely in [CHE]. Namely, we

have the following proposition.

Proposition 4 If the a

n

, t

n

, v

n

are as above, and q

n

and f

n

as in Section

3, F (�) is given by the maximum of the four quantities

1. lim sup

n!+1

1

1+t

n

v

n

= lim sup

n!+1

q

n

f

n�1

= F

I

(�);

2. lim sup

n!+1

(1+t

n

)(1+v

n

)

2(1+t

n

v

n

)

= lim sup

n!+1

(q

n�1

+ q

n�2

)(

f

n�1

+f

n�2

2

);

3. lim sup

n!+1;a

n

=3;a

n+1

=1

3

2

1�v

n

1+t

n

v

n

= lim sup

n!+1;a

n

=3;a

n+1

=1

3

2

(2q

n�1

+ q

n�2

)f

n�1

;

4. lim sup

n!+1;a

n

�0 mod 3; a

n+1

=2

(

a

n

3

+ t

n

)

1+(2�a

n

)v

n

1+t

n

v

n

= lim sup

n!+1;a

n

�0 mod 3;a

n+1

=2

(2q

n�1

+ q

n�2

)(

a

n

3

+ t

n

)f

n�1

:

Furthermore, F (�) = 1 if and only if � has unbounded partial quotients.

In several cases, F (�) is equal to F

I

(�): this is the case when the a

n

are unbounded, but also, for example, if all the a

n

are greater or equal to 3.

F (�) is given by formula 2 for example when � is the golden ratio number,

or any [0; 1; k; 1; k; : : :] or [0; k; 1; k; 1; : : :]. Formula 4 holds for example for

[0; 2; 3; 2; 3; : : :] or [0; 3; 2; 3; 2; : : :].

Whenever F (�) is given by formula 2, the sets B realizing this quantity

are built in the following way: for any q

n�1

� h � q

n�1

+ q

n�2

� 2, in any

interval B

0

of maximum length of the partition Q

h+1

, there exists a set B,

18



included in some [

h�1

j=0

R

�j

�

(P (1��))

w

j

, such that B, . . . ,R

h�1

�

B are disjoint,

and �(B) =

f

n�1

+f

n�2

2

. So, as will be formalized in the proof of Proposition

13, if h is chosen close enough to q

n�1

+q

n�2

�2, h�(B) will be close to F (�).

Whenever F (�) is given by formula 3, the sets B realizing this quantity

are built in the following way: for any n such that a

n

= 3, for any q

n�1

+

q

n�2

� h � 2q

n�1

+ q

n�2

� 2, in any interval B

0

of maximum length of the

partition Q

h+1

, there exists a set B, included in some [

h�1

j=0

R

�j

�

(P (1��))

w

j

,

such that B, . . . ,R

h�1

�

B are disjoint, and �(B) =

3f

n�1

2

. So, if h is chosen

close enough to 2q

n�1

+ q

n�2

� 2, h�(B) will be close to F (�).

Whenever F (�) is given by formula 4, the sets B realizing this quan-

tity are built in the following way: for any n such that a

n

is a multiple

of 3, q

n�1

+ q

n�2

� h � 2q

n�1

+ q

n�2

� 2, in any interval B

0

of maxi-

mum length of the partition Q

h+1

, there exists a set B, included in some

[

h�1

j=0

R

�j

�

(P (1 � �))

w

j

, such that B, . . . ,R

h�1

�

B are disjoint, and �(B) =

(

a

n

3

+ t

n

)f

n�1

. So, if n is such that a

n

maximizes formula 4 and h is chosen

close enough to 2q

n�1

+ q

n�2

� 2, h�(B) will be close to F (�).

7 Properties of F

C

(�; �)

Proposition 5

F

C

(�; �) = lim sup

h!+1

hb(h) � F

I

(�);

where b(h) is the largest of the (at most �ve) di�erent lengths of the intervals

of Q

0

h

which is not larger than a(h).

Proof

We use Lemma 5 and the fact that, for h large enough, every cylinder is an

interval of Q

0

h

. QED

Proposition 6 If � = r� for some r 2 ZZ, F

C

(�; �) = F

I

(�).

Proof

Then, after a suitable translation, Q

0

h

is the same as Q

h+jrj

; hence, for n large

enough b(q

n

� jrj) = a(q

n

) = a(q

n

� jrj) and F

C

(�; �) � lim sup

n!+1

(q

n

�
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jrj)a(q

n

) = F

I

(�): QED

In the remainder of this section, we suppose � is not a multiple of �.

Proposition 7

F

C

(�; �) = lim sup

n!+1

q

n

b

n

where b

n

= f

n�1

if there does not exist 0 � s < q

n�1

such that 0 < (�1)

n

(��

s�) < f

n�1

and, if there exists 0 � s < q

n�1

such that 0 < (�1)

n

(� � s�) =

g

n

< f

n�1

, b

n

is the largest of the quantities fg

n

; f

n�1

�g

n

; f

n

+f

n�1

�g

n

; f

n

+

g

n

g which is not larger than f

n�1

.

Proof

Because of Lemma 3 (�rst, third and fourth assertions), b(h) is not greater

than b

n

for q

n�1

< h � q

n

, with equality either for h = q

n

� 1 or h = q

n

.

Then we use Proposition 5. QED

Our approximation algorithm, together with Proposition 7, allows us, for

any given � and �, to compute F

C

(�; �); we shall use it to derive some

explicit properties of these quantities.

Proposition 8 F

C

(�; �) = 1 if and only if � has unbounded partial quo-

tients.

Proof

If � has bounded partial quotients, F

I

(�) < 1 and F

C

(�; �) � F

I

(�).

If � has unbounded partial quotients, then a

n

! +1 on the sequence

n = s

m

, m 2 IN. From (1), we have q

n

f

n�1

�

1

1+

1

a

n

a

n+1

and hence q

n

f

n�1

tends to one on the sequences s

m

and s

m

� 1.

But, for any n, either b

n

= f

n�1

or b

n+1

= f

n

(the de�nition of b

n

is

given in Proposition 7): take n odd for example; if b

n+1

6= f

n

, then there

exists 0 � k

1

< q

n

such that 0 < � � k

1

� < f

n

, hence k

1

� is the nearest left

neighbour of � in Q

q

n+1

, but also in Q

q

n

; if also b

n

6= f

n�1

, the nearest right

neighbour of � in Q

q

n

, k

2

�, must satisfy k

2

��� < f

n�1

, with 0 � k

2

< q

n�1

.

But as k

2

< q

n�1

, then (from Section 3) the interval of Q

q

n

of right endpoint

k

2

� is of length f

n

+f

n�1

, which is a contradiction with k

2

��k

1

� < f

n

+f

n�1

;

and the same happens for even n.
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Hence F

C

(�; �) is greater than the lim sup

n!+1

q

n

f

n�1

on a sequence of

s

m

or s

m

� 1, and is equal to 1. QED

For the Sturmian coding, F

C

(�; 1 � �) = F

I

(�) ; one natural question is

to ask whether we can have F

C

(�; �) = F

I

(�) when � is not a multiple of

�; surprisingly, this may be the case, and it is nontrivial to �nd a � with

F

C

(�; �) 6= F

I

(�).

Proposition 9 There exist � and � such that F

C

(�; �) < F

I

(�).

Proof

We choose � to be periodic of period four, � = [0; d

1

; d

2

; d

3

; d

4

; d

1

; d

2

; d

3

; d

4

; : : :],

with d

i

� c � 2; then the sequence � (n) = q

n

f

n�1

=

1

1+[0;a

n

;:::;a

1

][0;a

n+1

;:::]

has a

priori four adherence values, reached for n = 4p+ j, j = 0; 1; 2; 3; we choose

the d

i

such that the highest adherence value, which is F

I

(�), is the limit of

� (4n) and is strictly greater than the limits of � (4n+ j) for j = 1; 2; 3.

We choose a � through our approximation algorithm: we ask that c

i

= 1

for every i, and that n

i

= 4(i+1) + 1 for every i; this is possible: we require

�rst that � = f

5

+ f

6

+ e

0

, 0 < e

0

< f

1

; then � � k

1

� = e

0

, and the next

requirement is that e

0

= f

9

+ f

10

+ e

1

, 0 < e

1

< f

9

so that � has to be

in the interval f

5

+ f

6

+ f

9

+ f

10

; f

5

+ f

6

+ 2f

9

+ f

10

and so on. Note that

k

i+1

= k

i

� q

n

i

+ q

n

i

+1

, hence k

i+1

� q

n

i

+2

.

We denote by C

n

the condition

\there exists 0 � s < q

n�1

such that 0 < (�1)

n

(� � s�) = g

n

< f

n�1

".

We have b

n

� f

n�1

, and hence q

n

b

n

� � (4p + j). Now, for n = 4p + j,

j = 1; 2; 3, the upper limit of this quantity is strictly smaller than F

I

(�).

We have just to look at the cases where n = 4p, or else n

i

< n = n

i

+3 <

n

i+1

. Then � � k

i+1

� < f

n�1

and k

i+1

� q

n

i

+2

= q

n�1

, hence the condition

C

n

is satis�ed, with g

n

= � � k

i+1

� = f

n+1

+ f

n+2

+ e

i+1

, 0 < e

i+1

< f

n+1

.

We apply then the formula in Proposition 7; if c is not too small, g

n

is close

enough to 0 for b(q

n

) to be equal to f

n�1

�g

n

< f

n�1

�f

n+2

�f

n+1

, and b(q

n

)

is bounded away from f

n�1

by some quantity greater than Kf

n�1

, for some

constant K depending on the d

i

. Hence q

n

b

n

� (1 �K)�

n

; the upper limit

of this quantity is strictly smaller than F

I

(�). QED
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Proposition 10 For any �, there exists � which is not a multiple of � and

for which F

C

(�; �) = F

I

(�).

Proof

We use the same technique as in last proposition. For a given �, we choose

a sequence m

k

on which � (m

k

) ! F

I

(�); we suppose that the m

k

are even

in�nitely often, and build a � with c

i

= 1 and even n

i

such that an in�nite

number of even m

k

fall at a place n = m

k

= n

i

; then the condition C

n

is not realized, as � � k

i

� � f

n

i

�1

and k

i+1

� q

n

i

�1

, so b

n

= f

n�1

, hence

F

C

(�; �) = limf

m

n

�1

q

m

n

= F

I

(�).

This � cannot be a positive multiple of � as the k

i

tend to in�nity, and

cannot be a negative multiple of � if the consecutives n

i

are far enough from

each other.

If the m

k

are odd, we build another � in the same way, but through its

sequence n

0

i

. QED

Note that numbers � such that F

C

(�; �) < F

I

(�) can be built similarly,

at least for any � such that the sequence m

k

on which � (m

k

) ! F

I

(�) does

not have too small gaps. These � form a set of measure zero as they have

bounded partial quotients.

8 Properties of F (�; �)

Proposition 11 For every �, F

I

(�) � F (�; �) � F (�).

Proof

The upper bound for F (�; �) is clear, as the cylinders for P

�

are included in

cylinders for P

1��

.

Conversely, because of the second assertion of Lemma 3, for h = q

n

� 1,

we can �nd an interval of Q

0

h

of length at least f

n�1

; any subinterval B of

length f

n�1

of this interval will be included in a cylinder of P

�

, while B,

. . . , R

h�1

�

B are disjoint. This gives our lower bound, through F (�; �) �

lim sup(q

n

� 1)f

n�1

. QED

Proposition 12 For any �, there exists � which is not a multiple of � and

such that F (�; �) = F (�).
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Proof

If F (�) = F

I

(�), every � is convenient.

Suppose then that F (�) is given by formula 2 of Proposition 4. Then

F

I

(�) = lim

n!+1;n2J

(q

n�1

+ q

n�2

)(

f

n�1

+f

n�2

2

) for some in�nite set J of inte-

gers. Suppose now that � is such that for an in�nite subset J

0

of J , there

exists 0 � t � r

n

�2 such that j�� t�j < b

n

=

f

n�1

+f

n�2

2

We choose an n 2 J

and take g = q

n�1

+ q

n�2

� r

n

, for some 2 < r

n

< q

n�2

such that

r

n

q

n�1

is small

when n is large; to �x ideas, we can take r

n

= q

[n�1�logn]

.

We apply the �rst assertion of Lemma 4 to get an interval B

0

0

of Q

0

g

of

length at least f

n�1

+ f

n�2

� b

n

, which is included in an interval B

0

of Q

g+1

of maximun length, that is f

n�1

+ f

n�2

.

Let B be a subset of B

0

, such that B, . . . ,R

h�1

�

B are disjoint, and of

measure �(B) =

f

n�1

+f

n�2

2

; the set B

0

= B\B

0

0

satis�es the same disjunction

property, is included in some [

h�1

j=0

R

�j

�

(P

�

)

w

j

and has measure at least �(B)�

b

n

.

Hence F (�; �) � lim sup

n!+1;n2J

0

(q

n�1

+ q

n�2

)(

f

n�1

+f

n�2

2

� b

n

). Because

of the hypotheses, this limit will be equal to F (�).

And to �nd � satisfying this condition, for example for r

n

= q

[n�1�logn]

and for given J and b

n

, is possible with the techniques of last section, by

choosing the n

i

widely spaced; this will guarantee also that � is not a multiple

of �.

If F (�) is given by formula 3 or 4, the same reasoning holds, with the

appropriate choice of h and �(B), through the second assertion of Lemma 4.

QED

With the techniques of last proposition, and when F (�) is given by for-

mula 2, 3 or 4, we can also �nd some � such that F

I

(�) < F (�; �) < F (�);

this is done by ensuring that � � k� is small for some k < s

n

, where s

n

is

eq

n�1

for some �xed e, and that this does not happen for k < r

n

for any

sequence r

n

which is in o(q

n�1

).

In general, we have F

C

(�; �) � F

I

(�) � F (�; �) � F (�) � 1. When one

of these quantities is equal to one, every one is equal to one, and this does

happen if and only if � has unbounded partial quotients. Among bounded

partial quotients, we have seen explicit examples of � and � with F

C

(�; �) =
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F

I

(�) < F (�; �) (for � with rather small partial quotients) or F

C

(�; �) <

F

I

(�) = F (�; �) (for � with relatively large partial quotients). It is also

possible to get F

C

(�; �) < F

I

(�) � F (�; �), by ensuring simultaneously that

F (�) is di�erent from F

I

(�) and that the sequence m

k

on which � (m

k

) !

F

I

(�) does not have too small gaps, and then chosing a � with widely spaced

n

i

.

9 Exchanges of three intervals

An exchange of s intervals is de�ned in the following way : given s real

numbers l

i

> 0, with

P

s

i=1

l

i

= 1, and a permutation � on s letters, let X be

the interval [0; 1[, partitioned into s semi-open intervals I

i

, of lengths l

1

, ...

l

s

(in that order), and also into s semi-open intervals J

i

of lengths l

�

�1

1

, ...

l

�

�1

s

(in that order); T is the piecewise a�ne map sending each I

i

onto J

�i

.

Here, we restrict ourselves to three intervals; then, if � is di�erent from

(321), T reduces to an exchange of two intervals, which is a rotation. So our

study reduces to the following transformation, depending on two parameters

0 < l < 1 and l < m < 1, and we ask that 1; l;m are rationnally independent:

� Tx = x+ 1 � l if x 2 [0; l[,

� Tx = x+ 1 � l�m if x 2 [l;m[,

� Tx = x�m if x 2 [m; 1[.

We call such T a nontrivial exchange of three intervals. T is then known

to be minimal and uniquely ergodic; the unique invariant probability is the

Lebesgue measure �.

We extend T to 1 by continuity, T1 = 1 � m. We have l = T

�1

1,

m = T

�1

0. The point l is a discontinuity: T

�1

1 has two images by T , 1 on

the left and 1 �m = T1 on the right, and if an interval B contains T

�1

1 in

its interior, TB is not an interval; the same is true for T

�1

0. T is continuous

except at the points l and m.

We de�ne the transformation S on the interval [0; 1 � l +m[ by sending

a�nely
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� [0; l[ onto [1� l; 1[,

� [l;m[ onto [1; 1� l +m[,

� [1; 1� l +m[ onto [1�m; 1� l[,

� [m; 1[ onto [0; 1�m[.

S is an exchange of two intervals, being a translation of 1� l on [0;m[ and a

translation of �m on [m; 1� l+m[; hence, it is a rotation on [0; 1� l +m[,

which we shall consider also on [0; 1[ after a homothety of ratio � =

1

1�l+m

.

Let J = [0; 1[; for a point x 2 J , let r

i

(x) be the i-th strictly positive

integerm such that S

m

x 2 J and let s

i

(x) be the i-th strictly positive integer

m

0

such that S

�m

0

x 2 J ; we have T

i

x = S

r

i

(x)

x, T

�i

x = S

�s

i

(x)

x. The map

T is called the �rst return map, or the induced map, of S on J ; for the

role of the induction in the study of interval exchanges, see [RAU2]; every

exchange of three intervals can be induced by a rotation, but this is not

the case for more than three intervals, in which case non-uniquely ergodic

examples exist ([KEA], [KEY-NEW]).

Lemma 6 Let S be any rotation de�ned on an interval I, and J a sub-

interval of length �jIj; then for every � > 0 there exists h

0

such that, with

the above notation, for every h > h

0

and every x 2 J

� � � <

h

r

h

(x)

< � + �;

� � � <

h

s

h

(x)

< � + �:

Proof

The ergodic theorem applies everywhere and uniformly to the indicator func-

tion of J ; hence for every h > h

0

and every x 2 I,

� � � <

1

h

#f0 � i � h� 1;S

i

x 2 Jg < � + �

and

� � � <

1

h

#f0 � i � h � 1;S

�i

x 2 Jg < � + �:

this implies the lemma. QED
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Proposition 13 We have

F

I

(T ) = F

I

 

1 � l

m

!

Proof

Let � =

1�l

1�l+m

, � =

1

1�l+m

; for these numbers, let Q

0

h

and Q

h

be as in Section

2 and 3; we recall that f

n�1

(de�ned in Section 3) is the smallest length of

the intervals of Q

h

, for h = q

n

� 1.

Let h = q

n

� 1. Let B be a sub-interval of [0; 1 � l +m[ of length

f

n�1

�

,

whose interior does not contain any S

�i

0 or any S

�i

1 for 0 � i � h� 1; this

is always possible by the second assertion of Lemma 3, after a multiplication

and a translation, and then B, SB, . . . ,S

h�1

B are disjoint, by Lemma 5.

Suppose �rst that B is included in J . For every i > 0, T

i

B is a subset of

[

x2J

S

r

i

(x)

B, and hence is disjoint from B as long as r

i

(x) � h� 1; hence, by

Lemma 6, if h

0

is the largest integer not greater than h(���), if (���)h > h

0

,

r

h

0

(x) < h and B, TB, . . . ,T

h

0

�1

B are disjoint. Now, T

i

B is not an inter-

val only if some discontinuity of T , namely T

�1

0 or T

�1

1, appears in the

interior of T

j

B for some 0 < j < i; this means that T

�1�j

0 = S

�s

j+1

0 or

T

�1�j

1 = S

�s

j+1

1 appears in the interior of B, and this does not happen if

s

j+1

� h � 1; but j + 1 � h

0

� 1 is enough to guarantee that this does not

happen, and all the T

i

B, for 0 � i � h

0

� 1, are intervals.

If B is not contained in J , then, because of the hypothesis, B is contained

in [0; 1� l+m[nJ , and we check that SB is a subinterval of J and the same

reasoning applies to it. Thence F

I

(T ) � lim sup

n!+1

���

�

(q

n

� 1)f

n�1

.

Conversely, let B be a subinterval of J such that B, TB, . . . , T

h�1

B are

disjoint intervals. Then S

i

B \ J does not intersect B as long as S

i

B \ J

is included in a union of T

j(x)

B such that i = r

j

(x). Hence, by Lemma

6, if h

0

is the largest integer not greater than

h

�+�

and if h > h

0

, than

h

0

< r

h

(x) for every x and B, SB, . . . , S

h

0

�1

B are disjoint. B being an

interval, this implies (by Lemma 5), that the length of B is not greater than

�a(h

0

), where a(h

0

) is the smallest length of the intervals of Q

h

0

. Hence

F

I

(T ) � lim sup

h

0

!+1

(�+�)h

0

�1

�

a(h

0

).
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Our formulas, together with Proposition 3, imply then that F

I

(T ) =

F

I

(�), which proves the proposition, as the value of F

I

(�) is not changed if

we replace � by

1

�

� p for an integer p. QED

As a by-product of the proof, we see that, in the de�nition of F

I

(T ), the

requirement \B, . . . , T

h�1

B are interval" is equivalent to the requirement \B

is an interval", if T is a rotation or an exchange of three intervals. Note that

for a more general system, to reduce the requirement to \B is an interval" in

the de�nition of F

I

(T ) would not guarantee any more that F

?

(T ) � F

I

(T ).

Corollary 1 T is of rank one by intervals if and only if

1�l

m

has unbounded

partial quotients.

This makes precise the results in [KAT-STE], where it is stated (without

a written proof), that T has good cyclic approximations (a property which

implies rank one) if

1�l

m

has unbounded partial quotients and

1�l

1�l+m

is ap-

proximated in o(

1

q

n

) by rationals

p

n

q

n

, where the q

n

are a subsequence of the

denominators of the convergents of

1

1�l+m

; the techniques of that paper imply

that rank one by intervals was known in that case. A small by-product of

Veech's theory ([VEE2]) implies that T is of rank one by intervals for almost

all l and m. No result on absence of rank one by intervals can be deduced

from these results.

Corollary 2 Every ergodic exchange of three intervals has simple spectrum

(this means that L

2

(X) is the closed linear space generated by (U

n

f

0

)

n2ZZ

, for

some function f

0

, and the operator Uf = f � T ).

Proof

Because of Propositions 3 and 13, for non-trivial exchanges of three intervals

F

?

(T ) � F

I

(T ) �

5 +

p

5

10

>

1

2

;

because of a result attributed to Katok and proved in [KIN], this relation

implies simple spectrum. Other ergodic exchanges of three intervals are iso-

morphic to irrational rotations, hence have also simple spectrum. QED
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The simple spectrum was known only in the cases described above, when

the transformation was known to be of rank one.

The following question has been asked to one of the authors by Veech:

can any interval exchange system be measure-theoretically isomorphic to

the system associated to the Morse sequence (see [FER2] or [FER4] for a

description)? The general answer is not known (in particular, even nontrivial

exchanges of three intervals may have rational eigenvalues, see the discussion

at the end of Section 9). However

Corollary 3 No exchange of three intervals can be measure-theoretically iso-

morphic to the system associated to the Morse sequence.

Proof

As above, for every nontrivial exchange of three intervals T we have F

?

(T ) �

5+

p

5

10

= 0; 7 : : :, while for the Morse system T

0

we have F

?

(T

0

) =

2

3

([FER2]).

The result is trivially true if T is not ergodic, or if T is an irrational rotation.

QED

Proposition 14 We have

F

D

(T ) = F

 

1� l

1 � l+m

;

1

1� l +m

!

Proof

We keep the notation of the proof of Proposition 13. Let B be a subset of

[0; 1�l+m[ such that B, . . . ,S

h

0

�1

B are disjoint, and such that B is included

in an interval E whose interior does not contain any S

�i

0 or any S

�i

1 for

0 � i � h

0

� 1. The de�nition of F (�; �) imply that, for h

0

arbitrarily large,

we can �nd such a B such that h

0

��(B) is close to F (�; �).

Applying Lemma 6 as in the proof of Proposition 13 (after replacing it

by SB if necessary, we can suppose B � J) we have B, . . . ,T

h�1

B disjoint,

for some h close to �h

0

, and B is included in an interval E, whose length is

arbitrarily small if h is large enough, such that no discontinuity of T appears

in the interior of T

j

E for any 0 � j < h � 1. Hence the diameter of each

T

j

B, for 0 � j � h � 1, is smaller than the length of E, and thus we can
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approximate every partition in the sense of De�nition 1. Hence, as h is arbi-

trarily large, F

D

(T ) is greater than h�(B), which gives our lower bound.

Conversely, suppose all the T

j

B have a diameter not greater than � for

0 � j � h � 1, and let E be the smallest interval containing B. If in the

interior of E there is any point of the form T

�s

e, e = 0 or 1, 1 � s � h� 1,

then T

s+1

B must contain two points which are separated by Te� e, which is

a �xed quantity, larger than � if � is small; hence the interior of E contains

no such point. Then, by Lemma 6, the interior of E does not contain any

S

�i

0 or any S

�i

1, for 0 � i � h

0

� 1, and for some h

0

close to

h

�

. Hence, for

h arbitrarily large, h�(B) must be not greater than F (�; �), which gives our

upper bound. QED

Hence the examples in Section 8 allow us to �nd examples of exchanges of

three intervals which are induced by the same rotation but are not topolog-

ically conjugate; also they give nontrivial exchanges of three intervals with

F

?

(T ) � F

D

(T ) > F

I

(T ).

To compute F

?

(T ) seems to be a di�cult problem, as it involves look-

ing at measurable sets, with no further assumptions of regularity; the last

proposition implies that

F

?

(T ) � F

 

1� l

1 � l +m

;

1

1� l +m

!

;

an upper bound is then necessary only in the case where � has bounded

partial quotients. We are able to show a partial result in this direction:

Proposition 15 Let � =

1�l

1�l+m

, � =

1

1�l+m

. If � has bounded partial quo-

tients, then there exists a nonempty Cantor set K(�), such that, if � 2 K(�),

F

?

(T ) < 1.

Proof

Suppose � has bounded partial quotients. Let C

1

and C

2

be such that

q

n+1

� C

1

q

n

for all n and the length of the smallest interval in Q

h

is greater

than

C

2

q

n

, for q

n�1

< h � q

n

(this is possible through the estimates in Sec-

tion 3). Let (for example) C

3

=

C

2

3

and r

n

be the largest integer smaller or

29



equal to

q

n

�1

2

. We then de�ne K(�) by deleting from the circle every interval

[s� �

C

3

q

n

; s� +

C

3

q

n

] for n � 1 and �r

n

� s � r

n

. The construction of K(�)

ensures the following property: there exists a constant C

4

such that for every

�, the smallest k � 0 such that either k� 2 [���; �+�] or �k� 2 [���; �+�]

is at least

C

4

�

.

Let now � 2 K(�) be �xed, and suppose F

?

(T ) = 1. Then (see Section

6) we can �nd an increasing sequence of Rokhlin stacks �

n

which ultimately

separate every points on a set X of measure one. This means that, if we

restrict ourselves to X (which we shall do in all the sequel), the diameter of

the level of �

n

containing a point x is a decreasing function of n, and has to

tend to zero; hence, for every �xed � and every h arbitrarily large, we can

�nd a set B such that B, . . . , T

h�1

B are disjoint, �([

h�1

j=0

T

j

B) > 1 � �, and

at least h(1 � �) of the levels have a diameter not greater than � (strictly

speaking, the diameter of the intersection of these levels with X). Hence,

starting from the basis B , there are h

0

levels of diameter greater than �, then

l

1

levels of diameter not greater than �, h

1

levels of diameter greater than

�, . . . ,l

k

levels of diameter not greater than �, h

k

levels of diameter greater

than �, with h

0

+ : : :+ h

k

< h�.

We choose 1 � i � k, and look at the i-th group of levels of diameter not

greater than �; we call them B

0

, . . . ,T

l

i

�1

B

0

. Let E be the smallest interval

containing B

0

(strictly speaking, B

0

\X, but this gives the same E). If in the

interior of E there is any point of the form T

�s

e, e = 0 or 1, 1 � s � l

i

� 1,

then T

s+1

B

0

must contain two points which are separated by Te�e, which is

a �xed quantity, larger than � if � is small, hence this contradicts the hypothe-

ses. Hence the interior of E contains no such point. Hence, using Lemma

6 as in the proof of Proposition 14, either l

i

is smaller than some �xed L

0

or the interior of E cannot contain S

�j

1 or S

�j

0, for 0 � i � l

0

i

where l

0

i

is close to

l

i

�

; hence, using the bound on the lengths of the intervals of Q

l

i

,

jEj <

C

5

l

i

for some constant C

5

. Also, B

0

, . . . ,T

l

i

�1

B

0

are disjoint; hence,

if l

i

> L

0

, the proof of Proposition 14, using again Lemma 6, implies that

�(B

0

) �

C

6

l

i

for l

i

large enough, for any constant C

6

> F (�; �), hence for some

C

6

< 1 because of Propositions 4 and 11, as � has bounded partial quotients.

Suppose now 1 � i � k�1; then T

l

i

B

0

has diameter greater than �, hence
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there must be T

�1

e in the interior of T

l

i

�1

E, for e = 0 or 1 (and there cannot

be both T

�1

0 and T

�1

1 because T

l

i

�1

E has diameter not greater than �). So

T

l

i

B

0

is included in ([e� jEj; e+ jEj]\ [0; 1])[ ([Te� jEj; T e+ jEj]\ [0; 1]),

with points in each of these intervals.. Now, if there are no discontinuity of T

both in the �rst h

i

images of ]e�jEj; e+ jEj[\[0; 1] and in the �rst h

i

images

of ]Te� jEj; T e+ jEj[\[0; 1], then T

l

i

+h

i

B

0

contains points at distance less

than jEj < �, respectively from T

h

i

�1

e and T

h

i

e; but for all x, Tx and x are

at least separated by a �xed distance �; hence if � is small enough, T

l

i

+h

i

B

0

cannot have diameter less than �.

Hence there is a discontinuity of T either in the �rst h

i

images of ]e �

jEj; e + jEj[\[0; 1] or in the �rst h

i

images of ]Te � jEj; T e + jEj[\[0; 1].

Hence there exists f = 0 or 1 and 1 � s � h

1

such that either T

�1�s

f is

in ]e � jEj; e + jEj[\[0; 1] or T

�1�s

f is in ]Te � jEj; T e + jEj[\[0; 1]. But

this is a matter of approximation of �, � or �� by numbers k�; for any

�, the �rst return time, positive or negative, under S, of 0 into ] � �; �[ or

of � into ]� � �; � + �[ is at least

C

7

�

, for some constant C

7

, because � has

bounded partial quotients; and the �rst return time, positive or negative,

under S, of 0 into ]��� �;��+ �[ or into ]�� �; �+ �[ is at least

C

4

2�

because

� 2 K(�). But if

1

�

is large enough, this means, by Lemma 6, that the �rst

return time, positive or negative, under T , of any f into ]e� �; e+ �[\[0; 1]

or ]Te� �; T e+ �[\[0; 1] are at least

C

8

�

.

Hence, if 1 � i � k � 1, h

i

�

C

8

jEj

, hence h

i

� C

9

l

i

(even if l

i

� L

0

if �

and hence jEj are small enough). Hence

P

k�1

i=0

l

i

is smaller than

1

C

9

h�; which

means l

k

� h(1 � C

10

�); but the �rst level B

0

of the k-th group of levels

of diameter not greater than � satis�es, as showed above, �(B

0

) <

C

6

l

k

, for

C

6

< 1; hence the total measure of the stack of height h is at most

C

6

1�C

10

�

< 1

if � is small enough, while it should be close to 1 for any �xed � and h large

enough. Hence F

?

(T ) cannot be equal to 1. QED

There are not many known examples of ergodic interval exchanges which

are not of rank one; one example appears in [OSE], with as many as thirty

intervals, and there is Example 4 in [GOO], which can be seen as an exchange

of nine intervals; both these examples do not have simple spectrum, hence

cannot be of rank one. Our examples, with � in K(�), are the only ones
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to be on three intervals, or to have simple spectrum. Note that � will be in

K(�) if our approximation algorithms for � and ��, left and right, by k�,

give n

i

, n

0

i

, etc... with bounded gaps.

In view of previous results,

Corollary 4 If � has bounded partial quotients, and � 2 K(�), T is not

measure-theoretically isomorphic to any three-interval exchange with an �

0

which has unbounded partial quotients, nor to any irrational rotation, and

has a non-discrete spectrum.

It is proved in [KAT-STE] that when � has unbounded partial quotients,

and, for a subsequence of the denominators q

n

of the convergents of �, we

have both j� �

p

n

q

n

j < o

�

1

q

2

n

�

and j� �

r

q

n

j >

c

q

n

for a constant c and every

integer r, then T is not isomorphic to a rotation, as it has a continuous

spectrum (as both this condition and the one we state after Corollary 1 are

required only on a subsequence, they are compatible, and thus Katok and

Stepin produced the �rst known systems with simple continuous spectrum);

our Corollary 4 proves that T is not isomorphic to a rotation, for completely

di�erent reasons, in a subcase of the case where � has bounded partial quo-

tients.

The general question about isomorphism between a non-trivial three-

interval exchanges and a rotation is still open; we recall the little-known

fact that there are examples, due to Veech, of non-trivial three-interval ex-

changes with non-continuous spectrum: for every � with unbounded partial

quotients and � in a continuum K

0

(�), the map taking value 1 on [0; �[

and �1 on [�; 1] is a coboundary for the rotation R

�

([VEE1]), and this

implies immediately that �1 is an eigenvalue for the induced map on [�; 1].

However, the only knwon examples have rational eigenvalues; we conjecture

that no non-trivial exchange of three intervals can be measure-theoretically

isomorphic to a rotation; in all the cases where � has bounded partial quo-

tients we suppose this could be proved through the absence of rank one of

the interval exchange, but a forthcoming paper ([BOS-NOG]) will prove that

whenever � has bounded partial quotients then the three-interval exchange

has continuous spectrum; in any case, new reasons would have to be found

for dealing with the cases where � has unbounded partial quotients and � is

well approximated by all convergents of �.
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