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Abstract The aim of this paper is to survey some properties of analogues
of continued fraction expansions for formal power series with coefficients in a
finite field. We discuss in particular connections between equivalence relations
for continued fractions and the action of SL(2, Fq[X]).

1 Introduction

Let p be a prime, q be a power of p, and let Fq be the finite field with q
elements. By analogy with the real case, one can classically extend arithmeti-
cal results concerning the ring Z of integers to the ring Fq[x] of polynomials
with coefficients in Fq (see for instance [23]). The purpose of this paper is
to discuss properties concerning some analogues of classical continued fraction
transformations and to compare them with the real case. These transforma-
tions are defined on the set of Laurent formal power series (with coefficients
in Fq(X)) of positive 1/X-valuation: they describe continued fraction expan-
sions, with polynomials playing the rôle of the “digits”. More precisely, we
investigate three different types of continued fraction expansions: the first one,
which we call “+”-expansion, corresponds to the classical continued fraction (it
was introduced by Artin in [5]); the second one, which we call “−”-expansion,
corresponds to the real semiregular expansions, i.e., the expansion with “−”
sign; and the third one corresponds to the Lüroth series expansion, which can
be considered as an analogue of the decimal expansion. We discuss here some
classical properties (modular equivalence, metric results) of these expansions.
Most of these results are known in the “+” case. We survey the existing proofs
and offer new ones.

∗The second author was partially supported by Grant-in-Aid for Scientific Research (c)
(09640220), Ministry of Education, Science and Culture, Japan
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In the real case, we have the following situation. Two real numbers x and
y have ultimately the same “+”-continued fraction expansion (respectively the
same “−”-continued fraction expansion) if and only if x and y are equivalent
under the action of GL(2, Z) (respectively SL(2, Z)) (see for instance [84]). In
this sense, “−” expansion seems to be natural. On the other hand, the trans-
formation associated with this continued fraction does not have an absolutely
continuous finite invariant measure (but an infinite one). The situation in pos-
itive characteristic is different. The equivalence relation by the semiregular
expansion is a subrelation of the SL(2, Fq[X]) equivalence relation and is not
identical to it. The following question is thus natural. How can we characterize
the SL(2, Fq[X]) relation (or the GL(2, Fq[X]) relation) by using “−” and “+”
expansions? We answer in detail this question in Section 4. Note that the case
of the GL(2, Fq[X]) equivalence for “+” expansions was studied for instance by
de Mathan in [48], see also [71].

Furthermore, by introducing a realization of the natural extension of both
transformations associated to “+”-extensions and “−”-extensions, we give a
proof, in Section 5, of the analogue of Galois’ Theorem (originally proved by
Artin [5]): let f be a quadratic power series of negative degree and let f be
its quadratic conjugate; then the continued fraction expansion of f is purely
periodic if and only if f has positive degree.

In our situation, both transformations T+ and T− (associated to “+” and
“−” continued fraction expansions, respectively) preserve the Haar measure and
are isomorphic to the transformation L associated with the Lüroth series expan-
sion. Actually this Haar measure preserving property for the transformation
T+ is first proved in [17, 19] as a special case of the Jacobi-Perron algorithm, as
proved in [31, 36] for the transformation L. It is easy to see that these trans-
formations T+, T− and L are isomorphic to each other in the sense of ergodic
transformations, though they are certainly not in the classical case, that is, in
the case of real numbers. In Section 6 we discuss the difference between the
“+” and “−” continued fractions, and Lüroth series from a metric theoretic
point of view. We end this paper by giving in Section 7 an overview of the
abundant literature devoted to continued fraction expansions for formal power
series with coefficients in a finite field.

2 Notations

By analogy with the real case, consider the following sets. The set which plays
here the rôle of Z is the ring Fq[X] of polynomials with coefficients in Fq and
the analogue of Q is the fraction field of Fq[X], i.e., the field Fq(X) of fractions
with coefficients in Fq. Let Fq((1/X)) be the field of Laurent formal power
series:

Fq((1/X)) = {f =
∑

n≥n0

fnX−n, where fn ∈ Fq and n0 ∈ Z}.

This field is a complete metric space with respect to the valuation

v(f) = −deg(f) = inf{n ∈ Z, fn 6= 0}.
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It is thus considered as the analogue of R. We define a non-Archimedean
absolute values in Fq((1/X)) normalized by

|f | := qdeg(f), for any f ∈ Fq((1/X)).

Let C be the completion of an algebraic closure of R ; C is algebraically closed.
This field will be considered as an analogue of C.

Let X denote the valuation ideal of Fq((1/X)):

X = {f, v(f) ≥ 1} = {f =
∑

n≥1

fnX−n}.

The field Fq((1/X)) is locally compact. Let µ denote the Haar measure on
Fq((1/X)) normalized to 1 on X .

Every f ∈ Fq((1/X)) has a unique (Artin) decomposition as

f = [f ] + {f},

where the integral part [f ] of f belongs to Fq[X] and the fractional part {f} of
f belongs to X . For any a ∈ Fq((1/X)) and any r ∈ Z, let

B(a, r) = {f ∈ Fq((1/X)), v(f−a) > r} = {f ∈ Fq((1/X)), deg(f−a) ≤ −(r+1)}

be the closed disc (or cylinder) of center a and radius r We have

µ(B(a, r)) = q−r.

The set X is isomorphic to
∏

n≥1 Fq. The measure µ can be seen as the product
of the equirepartition measure on Fq.

In all that follows, F∗
q denotes the set of non-zero elements of Fq. The set

N denotes the set of natural integers greater than or equal to 0.

3 Some continued fraction expansions

Consider by analogy with the real case, the following transformations from X
onto itself defined by:

T+ : f 7→ { 1
f }, if f 6= 0 and T+(0) = 0,

T− : f 7→ −{ 1
f }, if f 6= 0 and T−(0) = 0,

L : f 7→ (c − 1)(cf − 1), where c(f) = [ 1
f ] if f 6= 0, and L(0) = 0.

The map T+ describes the regular continued fraction and has been introduced
by Artin in [5]. For a brief sketch of the continued fraction theory in this
framework, see for instance [5, 7]. The map T− = (−T+) corresponds to the
semiregular continued fraction. The map L describes the Lüroth type expansion
and has been introduced in [31, 36] for formal power series.
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3.1 Continued fraction expansion

Every f ∈ X has the following continued fraction expansion:

f =
1

a1(X) +
1

a2(X) + ...

:= [0; a1(X), a2(X), · · ·],

where the digits ai(X) are polynomials of strictly positive degree and are defined
by

∀n ≥ 1, an(X) = [
1

(T+)n−1(f)
].

For f ∈ Fq((1/X)), we put a0(X) = [f ] and have

f = a0(X) +
1

a1(X) +
1

a2(X) + ...

:= [a0(X); a1(X), a2(X), · · ·].

Such an expansion is unique (provided ∀n, deg(an) ≥ 1), even if f does not
belong to Fq(X). Furthermore, the expansion terminates after a finite number
of terms if and only if f belongs to Fq(X).

As in the real case, we do not have for such an expansion any admissibility
condition, i.e., given any sequence of polynomials of positive degree (an)n∈N,
then the series

[a0(X); a1(X), a2(X), a3(X), · · ·] := a0(X) +
1

a1(X) +
1

a2(X) + ...

,

is easily seen to converge in X to a formal power series f , say, which satisfies:
∀n ≥ 1, an(X) = [ 1

(T+)n−1(f)
].

Let (pn(X)
qn(X) )n∈N be the sequence of convergents in the expansion of f , i.e.,

pn(X)

qn(X)
= a0(X) +

1

a1(X) +
1

a2(X) + .. .
+ 1

an(X)

= [0; a1(x), · · · , an(X)].

It is easily seen as in the real case that, for every n ≥ 1

pn(X)qn−1(X) − pn−1(X)qn(X) = (−1)n−1,

i.e.,
pn(X)

qn(X)
=

pn−1(X)

qn−1(X)
+

(−1)n−1

qn−1(X)qn(X)
,

which implies that

f =

+∞∑

k=0

(−1)k

qk(X)qk+1(X)
,
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and
pn(X)

qn(X)
=

n−1∑

k=0

(−1)k

qk(X)qk+1(X)
.

Since the absolute value is non-archimedean, we have for any n ≥ 1

|qn(X)f − pn(X)| =
1

|qn+1(X)|
=

1

|an+1(X)||qn(X)|
. (1)

In the real case, we have a strict inequality: |qn(X)f −pn(X)| < 1
|an+1(X)||qn(X)|

(see for instance [26]).
As another difference, we have the following characterization of convergents

(see for example [7]): let (p(X), q(X)) ∈ (Fq[X])2;

if |q(X)f − p(X)| <
1

|q(X)|
, then

p(X)

q(X)
is a convergent of f.

The corresponding property in the real case is (see for instance [26]):

if |qf − p| <
1

2|q|
, then

p

q
is a convergent of f.

3.2 Semiregular continued fraction expansion

Consider now the semiregular continued fraction expansion corresponding to
the map T−. Every f ∈ X has the following expansion:

f =
1

b1(X) −
1

b2(X) − . . .

:= [0; b1(X), b2(X), · · ·]−

where the digits are polynomials with strictly positive degree and are defined
by

∀n ≥ 1, bn(X) = [
1

T n−1
− (f)

].

We also call this expansion “−”expansion or semiregular continued fraction.
The expansion terminates after a finite number of terms if and only if f

belongs to Fq(X). For f ∈ Fq((1/X)), we put b0(X) = [f ] and have

f = b0(X) +
1

b1(X) −
1

b2(X) − . . .

:= [b0(X); b1(X), b2(X), · · ·]−.

In the real case, such an expansion is unique provided there are infinitely many
digits i such that bi ≥ 3 (we have 1 = [0; 2, 2, 2, · · ·]−). Such a phenomenon
does not occur here: this expansion is unique in all cases.

Conversely, given any sequence (bn)n∈N of polynomials of positive degrees,
then the series

[b0(X); b1(X), · · · , bn(X), · · ·]−
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converges in X to a formal power series f , say, which satisfies: ∀n ≥ 1, bn(X) =
[ 1
T n−1

−
(f)

].

Note that the convergents pn

qn
are exactly the same as in the classical expan-

sion, but pn and qn are multiplied by (−1) for even n.

3.3 Lüroth continued fraction expansion

Consider the map (introduced in [31, 36]) defined for any f ∈ X by

L : f 7→ (c − 1)(cf − 1),

where c := [ 1
f ], if f 6= 0 and L(0) = 0. It is easily seen that L(X ) ⊂ X . Indeed

1
f − c ∈ X , hence

deg(cf − 1) < deg(f), i.e., deg[(c − 1)(cf − 1)] < 0.

Let f ∈ X . Define for n ≥ 1 the sequence

cn(X) = [
1

Ln−1(f)
].

If Ln−1(f) = 0, put ck = 0, for k ≥ n. We thus have the following “Lüroth
expansion”

f =
1

c1
+

L(f)

c1(c1 − 1)
=

1

c1
+

1

c1(c1 − 1)c2
+

L2(f)

c1(c1 − 1)c2(c2 − 1)

=
1

c1
+

1

c1(c1 − 1)c2
+

1

c1(c1 − 1)c2(c2 − 1)c3
+ . . .

Such an expansion is unique if f does not belong to Fq(X). For f ∈ Fq((1/X)),
we put c0(X) = [f ] and have

f = c0(X) +
1

c1
+

1

c1(c1 − 1)c2
+

1

c1(c1 − 1)c2(c2 − 1)c3
+ . . . .

Furthermore, the expansion terminates after a finite number of terms, or is
periodic, if and only if f belongs to Fq(X).

Given any sequence of polynomials (cn) with positive degree, the series

f =
1

c1
+

1

c1(c1 − 1)c2
+

1

c1(c1 − 1)c2(c2 − 1)c3
+ . . .

is easily seen to be convergent. Hence, as in the real case, we do not have for
such an expansion any admissibility condition.

We put for n ≥ 1

{
sn+1 = (cn − 1)cn+1sn + tn,
tn+1 = (cn − 1)cn+1tn,
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with s1 = 1 and t1 = c1. These equalities define the n-th (Lüroth series)
convergents, i.e.,

sn

tn
=

1

c1
+

1

c1(c1 − 1)c2
+ . . . +

1

c1(c1 − 1) . . . cn−1(cn−1 − 1)cn
;

however, we have to notice that sn

tn
is in general not reduced. Furthermore it is

easy to see that

|tn||f −
sn

tn
| =

1

|cn||cn+1|
= q−(deg(cn+1)+deg(cn)). (2)

For other continued-fraction-like expansions, see [33, 34].

4 Equivalence relations of continued fraction expan-

sions

The aim of this section is to give a characterization of equivalence relations for
“+” and “−” continued fraction expansions. The GL(2, Fq[X]) equivalence for
“+” continued fraction expansions has been considered in [48], see also [71],
and of course [5]. Both approaches [48, 71] are based on the following property:
if α = Aβ+B

Cβ+D , where α, β 6∈ Fq(X), deg(β) ≥ 0, A,B,C,D ∈ Fq[X], |D| < |C|,

and AD−BC is invertible, then A
C and B

D are successive convergents of α. Note
that this result holds more generally for any function field k(X). We present
here a different (yet classical in the real case) approach.

4.1 Statement of the results

Let GL(2, Fq[X]) (respectively SL(2, Fq(X))) be the set of 2 × 2 matrices of
invertible determinant (respectively of determinant 1) with Fq[X] entries. Let
Q be a matrix in GL(2, Fq[X]); in all that follows the notation g = Q.f stands
for

g =
a(X)f + b(X)

c(X)f + d(X)
,

where Q =

[
a(X) b(X)
c(X) d(X)

]

.

Consider the two equivalence relations, say ∼S and ∼G, associated with the
actions of GL(2, Fq[X]) and SL(2, Fq(X)). This means

f ∼S g (respectively f ∼G g)

if and only if there exists Q ∈ SL(2, Fq[X]) (respectively GL(2, Fq[X])) such
that g = Q.f.

On the other hand, we also define two equivalence relations, say ∼ and ≈,
associated with semiregular continued fractions:

f ∼ g, respectively f ≈ g
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if and only if there exist positive integers m,n and ν ∈ F∗
q such that

∀k ≥ 0, dm+k(X) = (ν2)(−1)k

en+k(X),

or
∀k ≥ 0, dm+k(X) = ν(−1)k

en+k(X), respectively,

where f = [d0(X); d1(X), d2(X), · · ·]− and g = [e0(X); e1(X), e2(X), · · ·]−.

Theorem 1 Let f, g ∈ Fq((1/X)). The following holds:

• f ∼ g if and only if f ∼S g,

• f ≈ g if and only if f ∼G g.

A similar result holds with the classical expansion corresponding to the map
T+. The equivalence relations become:

f ∼+ g or f ≈+ g

if and only if there exist positive integers m,n and ν ∈ F∗
q such that

∀k ≥ 0, dm+k(X) = (−ν2)(−1)k

en+k(X),

or
∀k ≥ 0, dm+k(X) = ν(−1)k

en+k(X), respectively,

where f = [d0(X); d1(X), d2(X), · · ·] and g = [e0(X); e1(X), e2(X), · · ·].

Theorem 2 Let f, g ∈ Fq((1/X)). The following holds:

• f ∼+ g if and only if f ∼S g,

• f ≈+ g if and only if f ∼G g.

We will give detailed proofs for the “−” case in the next section. The “+” case
can be handled in the same way.

4.2 Proof of Theorem 1

The sketch of the proof is the following. We will first produce a set of generators
for the group SL(2, Fq(X)) (Lemma 1), then we will see how these generators
act on the continued fraction expansion.

Lemma 1 For any Q ∈ SL(2, Fq[X]), there exists a matrix B of the form
[

η γ(X)
0 η−1

]

or

[
0 η−1

−η γ(X)

]

, with γ(X) ∈ Fq[X] and η ∈ F∗
q such that

Q = A1A2 . . . AnB,

with Ai, for 1 ≤ i ≤ n, either of the form
[

1 0
α(X) 1

]

or

[
1 β(X)
0 1

]

, (3)

where α(X), β(X) ∈ Fq[X] and deg(α(X)) ≥ 1, deg(β(X)) ≥ 1.
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Proof of Lemma 1 The proof works exactly as in the classical case SL(2, Z).

Let Q =

[
a(X) b(X)
c(X) d(X)

]

∈ SL(2, Fq[X]) and

r(Q) = min(|a(X)|, |c(X)|).

Suppose r(Q) ≥ 1. Then, using the Euclidean division in Fq[X], we can
transform the matrix Q into a matrix Q′ with r(Q′) < r(Q), by multiplying Q
by the inverse of a matrix of type (3), which is also of type (3).

More precisely, suppose deg(a(X)) < deg(c(X)), then there exists α(X) ∈
Fq[X] (with deg(α(X)) ≥ 1) such that

deg(α(X)a(X) + c(X)) < deg(a(X)).

If deg(a(X)) ≥ deg(c(X)), then there exists β(X) ∈ Fq[X] such that

deg(a(X) + β(X)c(X)) < deg(c(X)).

Hence, by iterating this process, there exist A1 . . . An of type (3) such that

Q = A1 . . . AnB, with B =

[
a′(X) b′(X)
c′(X) d′(X)

]

and r(B) = 0. We have further-

more a′(X), b′(X), c′(X), d′(X) ∈ Fq[X] and a′(X)d′(X)−b′(X)c′(X) = 1. Sup-
pose a′(X) = 0. Then b′(X) ∈ F∗

q and c′(X) = −b′(X)−1. Suppose c′(X) = 0.
Then a′(X) ∈ F∗

q and d′(X) = a′(X)−1.

Lemma 2 Let c ∈ F∗
q and f = [d0(X); d1(X), d2(X), · · ·]−. We have

1. cf = [cd0(X); c−1d1(X), cd2(X), c−1d3(X), · · ·]−;

2. −1/f = [0;−d0(X), d1(X), d2(X), d3(X), · · ·]−;

3. if furthermore d0(X) = 0, then

1

c − f
= [1/c;−c + c2d1(X), c−2d2(X), c2d3(X), c−2d4(X), · · ·]−.

Proof of Lemma 2 We have [cf ] = c[f ], which proves the first assertion by
induction. The proof of the second assertion is immediate. The third assertion
comes from

1

c − f
−

1

c
=

f

c(c − f)
=

1

c2/f − c
.

We thus apply the first assertion by noticing that deg(d1(X)) ≥ 1 and hence,
−c + c2d1(X) 6= 0.

Proof of Theorem 1 Let us first prove that the two equivalence relations ∼
and ∼S are equal. It is easily seen that if f ∼ g, then f ∼S g: suppose that
there exist positive integers m,n and η ∈ F∗

q such that

∀k ≥ 0, dm+k(X) = (η2)(−1)k

en+k(X),
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with f = [d0(X); d1(X), d2(X), · · ·]− and g = [e0(X); e1(X), e2(X), · · ·]−. Con-
sider the matrix

Q =

[
η−1 1
0 η

]

and apply Lemma 2 (1) to Tm−1
− (f − d0(X)) and T n−1

− (g − e0(X)). We have

Tm−1
− (f − d0(X)) = Q.Tn−1

− (g − e0(X))

and thus f ∼S g.
Let us prove now the converse assertion. Let

f = [d0(X); d1(X), d2(X), d3(X), · · ·]−.

Consider the action of the generators of SL(2, Fq[X]) introduced in Lemma 1
on the expansion of f . Let us check that the image g of f under the action of
any generator satisfies f ∼ g.

• Let β ∈ Fq[X]. Let g = f + β(X). These series have the same fractional
part, i.e., g = [d0(X) + β(X); d1(X), d2(X), d3(X), · · ·]−. This equality

corresponds to the action of the matrix

[
1 β(X)
0 1

]

.

• Let α ∈ Fq[X] with deg(α(X)) ≥ 1. Let

g =
f

α(X)f + 1
=

1

α(X) + 1/f
,

which corresponds to the action of

[
1 0

α(X) 1

]

.

Let us distinguish three cases according to d0(X).

– Suppose deg(d0(X)) ≥ 1. Recall that deg(α) ≥ 1. Then we see

g = [0;α(X),−d0(X), d1(X), d2(X), d3(X), . . .]−.

– Suppose d0(X) ∈ F∗
q. Put c = d0. In this case we have

g =
1

α(X) −
1

−c −
1

d1(X) ...

,

which implies, with assertion 3 of Lemma 2,

g = [0;α(X) + 1/c, c + c2d1(X), c−2d2(X), c2d3(X), c−2d4(X), . . .]−.

– Suppose d0(X) = 0. If deg(α(X) + d1(X)) ≥ 1, then

g = [0;α(X) + d1(X), d2(X), d3(X), . . .]−.

If α(X) + d1(X) = 0, then

g = [−d2(X); d3(X), d4(X), d5(X), . . .]−.

If α(X) + d1(X) = c ∈ F∗
q. By Lemma 2 (3), we have

g = [1/c;−c + c2d2(X), c−2d3(X), c2d4(X), . . .]−.
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• Let γ ∈ Fq[X] and η ∈ F∗
q. Let

g =
ηf + γ(X)

η−1

which corresponds to the action of

[
η γ(X)
0 η−1

]

. Then Lemma 2 (1)

implies

g = [η2d0(X) + ηγ(X); η−2d1(X), η2d2(X), η−2d3(X), . . .]−.

• Finally, let γ(X) ∈ Fq[X] and η ∈ F∗
q. Let

g =
η−1

−ηf + γ
=

1

−η2f + ηγ(X)

which corresponds to

[
0 η−1

−η γ(X)

]

.

Let us distinguish two cases according to d0(X).

– Suppose d0(X) = 0. If deg(γ(X)) ≥ 1, then

g = [0; ηγ(X), η−2d1(X), η2d2(X), . . .]−.

If γ(X) = 0, then

g = [−η−2d1(X); η2d2(X), η−2d3(X), . . .]−.

If γ(X) = c ∈ F∗
q, then by Lemma 2 (3)

g =
1

ηc − η2[0; d1(X), d2(X), . . .]−
= [

1

ηc
;−ηc+c2d1(X), c−2d2(X), . . .]−.

– Suppose d0(X) 6= 0. We have

g =
1

ηγ(X) − η2d0(X) − η2[0; d1(X), d2(X), d3(X), . . .]−
.

If deg(ηγ(X) − η2d0(X)) ≥ 1, then

g = [0; ηγ(X) − η2d0(X), η−2d1(X), η2d2(X), . . .]−.

If deg(ηγ(X) − η2d0(X)) = 0, then

g = [−η−2d1(X); η2d2(X), η−2d3(X)]−.

We thus have proved that if f and g are equivalent under the action of SL(2, Fq[X]),
then f ∼ g.

Suppose now that f and g are equivalent under the action of GL(2, Fq[X]).
Then there exists a matrix Q ∈ GL(2, Fq[X]) such that g = Q.f . Consider the
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matrix Q′ =

[
η−1 0
0 1

]

. Then Q′Q ∈ SL(2, Fq[X]), whenever det Q = η. Let

g′ = Q′Q.f . We thus have from above g′ ∼ f . Then

g = (Q′−1).g′ = ηg = [ηe0(X); η−1e1(X), ηe2(X), . . .]−,

where
g = [e0(X); e1(X), e2(X), . . .]−.

Then g ≈ f . Conversely, it is easily seen that if f ≈ g, then f ∼ g. Consider
indeed a matrix of the form

Q =

[
η−1 1
0 1

]

,

where η ∈ F∗
q, and apply Lemma 2 (1).

4.3 Remarks

If q = 2, 5, then two formal power series are equivalent under the action of
SL(2, Fq[X]) (respectively GL(2, Fq[X])) if and only if their “−” (or “+”) ex-
pansions are ultimately equal up to a non-zero square (respectively up to a
non-zero multiplicative constant).

Furthermore, (−1) is a non-zero square in Fq if and only if q ≡ 1 modulo 4.
In this case, the relations ∼ and ∼+ are equal.

Let us introduce a continued fraction type expansion which describes the
equivalence classes of the action of GL(2, Fq(X)) as the formal power series
which have ultimately the same expansion.

Let us write
f = [d0(X); d1(X), d2(X), · · ·]−.

For any k ≥ 0, let µk be the leading coefficient of dk(X) (i.e., the coefficient
of its term of highest degree) and let ek(X) satisfy dk(X) = µk(X)ek(X). We
thus have

f = µ0e0(X) +
1

µ1(X)e1(X) −
1

µ2(X)e2(X) − . . .

,

which yields

f = η0e0(X) +
η1

e1(X) −
η2

e2(X) − . . .

,

with η0 = µ0, η1 = µ−1
1 and ηk+1 = (µkµk+1)

−1, for every k ≥ 1. Hence every
f ∈ Fq((1/X)) can be uniquely expanded as

f = η0e0(X) +
η1

e1(X) −
η2

e2(X) − . . .

,

12



where the coefficients ηi belong to F∗
q and the digits ei(X) are polynomials of

positive degree with leading coefficient equal to 1.
Hence two formal power series f and f ′ are equivalent under the action of

GL(2, Fq[X]) if and only if the two corresponding sequences (ηk, ek(X)) and
(η′k, e

′
k(X)) are ultimately equal, i.e., if there exist m,n such that

∀k ≥ 0, ηk+m(X) = η′k+n(X) and ek+m(X) = e′k+n(X). (4)

One can similarly describe the action of SL(2, Fq[X]). Two formal power
series f and f ′ are equivalent under the action of SL(2, Fq[X]) if and only if
the two corresponding sequences (ηk, ek(X)) and (η′k, e

′
k(X)) satisfy Equation

(4), and there exists l, l′ ≥ m,n such that

∏

1≤k≤l η2k
∏

0≤k≤l′−1 η′2k+1
∏

1≤k≤l η
′
2k

∏

0≤k≤l′−1 η2k+1
is a non-zero square.

The study of the action of a homography on the continued fraction expan-
sion often appears in the literature and has many applications, in particular in
Diophantine approximation. We will review some connected works in the last
section of this paper.

As a direct consequence of Theorem 1, we obtain the following: an irrational
series is a fixed point of a non-trivial invertible homography if and only if its
continued fraction expansion is ultimately periodic. We will study in detail
the quadratic formal power series in the next section. For the corresponding
study for formal power series with coefficients in a field of positive characteristic
(not necessarily finite), see for example [71]. Periodicity is then replaced by the
notion of pseudoperiodicity or quasi-periodicity [9, 67, 27] (i.e., periodicity up to
a multiplicative constant). We will come back to the notion of quasi-periodicity
in the last section.

5 Natural extension transformation and quadratic

formal power series

The aim of this section is to prove an analogue of Galois’ Theorem. For this goal,
we will introduce a realization of the natural extension for the transformation
T−. But we first need to prove the invariance of the Haar measure.

5.1 Invariant measure

Theorem 3 The Haar measure µ is invariant for the transformations T+, T−

and L. These transformations are ergodic with respect to the Haar measure
µ. For each of these transformations, the dynamical system (X , T, µ) (T =
T+, T−, L) is conjugated to the symbolic dynamical system

(
∏

n≥1

F0
q[X], σ,m),

13



where F0
q[X] = {h(X) ∈ Fq[X], deg(h) ≥ 1}, σ denotes the unilateral shift and

m is the product of the measure m0 defined on F0
q[X] by

m0{h(X)} =

(
1

q

)2 deg(h(X))

.

This conjugation is one-to-one except for a set of measure zero.

This Haar measure preserving property is a classical one. It has been first
proved in [17, 18, 19] for the transformation associated with “+”-expansion, as
a special case of the Jacobi-Perron algorithm. See also [28] for the ergodicity
and other metric properties. The case of the transformation L is studied in
detail in [31, 36].

Proof The sketch of the proof is the same for the three transformations.
One shows that the random variables corresponding to the digit functions are
independent and identically distributed random variables relatively to the Haar
measure: the image measure is the product of the measure m0 defined on the
set of polynomials of positive degree F0

q[X].
Consider for instance the case of the transformation T+. For any non-

negative integer k, consider the map tk : F∗
q × Fk

q → F∗
q × Fk

q , (α0, . . . , αk) 7→
(β0, . . . , βk), where the quantities β0, . . . , βk are defined inductively by β0 =
1/α0 and

∑

i+j=n αiβj = 0, for 1 ≤ n ≤ k. The map tk is easily seen to be
one-to-one and onto.

We have f = α0

Xn +. . .+ αn

Xn , with α0 6= 0, if and only if [ 1
f ] = β0X

n+. . .+βn,
with (β0, . . . , βn) = tn(α0, . . . , αn).

Hence, for any fixed polynomial h(X) of non-zero degree, we have

µ{f | a1(f) = h(X)} = (1/q)2(deg(h(X)),

and for any fixed polynomials h1(X), . . . , hn(X) of non-zero degree, we prove
in the same way

µ({f | a1(f) = h1(X); . . . ; an(f) = hn(X)}) =

n∏

i=1

µ({f | ai(f) = hi(X)}) = (1/q)2(deg(h1)+...+deg(hn)).

Hence the maps f 7→ hi(X) are independent and identically distributed
random variables.

Remark Note that the transformation associated with this “−” continued
fraction expansion does not have an absolutely continuous finite invariant mea-
sure (but an infinite one) in the real case; recall that the regular continued
fraction transformation and the transformation associated with the Lüroth ex-
pansion have a finite invariant measure [29].
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5.2 A realization of the natural extension

The dynamical system (X , T−, µ) is conjugated to the symbolic dynamical sys-
tem (

∏

n≥1 F0
q[X], σ,m), where F0

q[X] = {h(X) ∈ Fq[X], deg(h) ≥ 1}. Further-

more we denote by F0
q((1/X)) the set of those f ∈ Fq((1/X)) with deg(f) >

0. We have a probability measure m0 on F0
q[X] defined by m0{h(X)} =

q−2 deg(h(X)). Next we define a probability measure ν on F0
q((1/X)) :≡ F0

q[X]×X

by ν = m0 × µ. Finally we define µ on X :≡ X × F0
q((1/X)) by µ = µ × ν.

We define a map T : X → X by

T (f, g) = (T−(f), [1/f ] − 1/g) = ([1/f ] − 1/f, [1/f ] − 1/g).

Clearly T is 1-1 and onto on X \[(X ∩Fq(X)×F0
q((1/X))], where the exceptional

set is a null set.

Theorem 4 The system (X,µ, T ) is a realization of the natural extension of
(X,µ, T−).

One can also consider the realization (X,µ, T+) of the natural extension of
(X , µ, T ) defined by

T+(f, g) = (T+(f), 1/g − [1/f ]).

Proof Let (f, g) ∈ X = X × F0
q((1/X)).

We suppose
f = [0; d1(X), d2(X), · · ·]−

and
g = e0(X) − [0; e1(X), e2(X), e3(X), · · ·]−,

i.e., 1/g = [0; e0(X), e1(X), e2(X), · · ·]−.

Then we see
T (f, g) = (f1, g1),

with {
f1 = [0; d2(X), d3(X), · · ·]−
g1 = d1(X) − [0; e0(X), e1(X), e2(X), · · ·]−

Let Ω =
∏+∞

−∞ F0
q[X] be endowed with the probability measure P =

∏+∞
−∞ m0

and σ be the shift operator on Ω. Then it is easy to see that the map

θ : (f, g) → (· · · e1(X), e0(X), d1(X), d2(X), d3(X), · · ·)

induces a conjugacy between (X,µ, T ) and (Ω, P, σ). Namely, we see that

θT (f, g) = σθ(f, g) and µ = θ−1P,

which implies the assertion of the theorem.

Remark Put (fn, gn) = T
n
(f, g). For (f, g1) and (f, g2) ∈ X, we see that

|gn
1 −gn

2 | tends to 0 exponentially fast as n goes to infinity. The same contracting
property holds in the real case. We will use it in the next section to prove an
analogue of Galois’ Theorem.
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5.3 An analogue of Galois’ Theorem

Let us deduce a characterization of the formal power series whose expansion
is purely periodic. Recall that an expansion (dn)n≥0 is said purely periodic
(respectively eventually periodic) if there exists T > 0 such that: ∀n ≥ 1, dn =
dn+T (respectively there exist T > 0, n0 ≥ 1 such that: ∀n ≥ n0, dn = dn+T ).

The following analogue of Lagrange’s Theorem is classical.

Proposition 1 Let f be an algebraic element over Fq(X). The series f is
quadratic if and only if the continued fraction expansion of f is ultimately pe-
riodic.

One can prove this result by following the proof in the real case as in [37], see
also [48, 71]. Note that Lagrange’s Theorem does not hold for any function
field k(X) [71].

Theorem 5 Suppose that f ∈ X \ Fq(X) is a quadratic power series and let f
denote its algebraic conjugate. Then the continued fraction expansion of f is
purely periodic if and only if (f, f) ∈ X , i.e., deg(f) < 0 and deg(f) > 0.

Proof Let f ∈ X be a quadratic power series and let f be its algebraic
conjugate. We have f 6= f and f 6∈ Fq(X). We can extend the definition of the
map T to a map on X × Fq((1/X)):

(f, g) 7→ ([1/f ] − 1/f, [1/f ] − 1/g).

As f 6∈ Fq(X), then it is easy to see that h = T (f) is quadratic (of algebraic
conjugate h, say) and that

T (f, f) = (h, h).

We will use the following notation:

∀n ≥ 0, T
n
(f, f) :≡ (f (n), f

(n)
).

The algebraic conjugate f
(n)

of fn equals f
(n)

.

• Suppose the continued fraction expansion of f is strictly periodic. Suppose
that f 6∈ F0

q((1/X)), i.e., deg(f) ≤ 0. We write

f = [0; a1(X), a2(X), · · ·]−

and
f = c − [0; b1(X), b2(X), b3(X), · · ·]−, where c ∈ Fq.

Let us prove that there exists n such that T
n+1

(f, f) ∈ X . Suppose c = 0.
Then we have

(f)1 = (a1(X) − b1(X)) − [0; b2(X), b3(X), · · ·]−.

If furthermore a1(X) − b1(X) = 0, we see that

(f)2 = (a2(X) − b2(X)) − [0; b3(X), b4(X), · · ·]−.
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We thus consider the smallest integer n such that an(X) 6= bn(X). (Such
an integer exists since f 6= f .) If c 6= 0, we put n = 0. We have

(f)n = (an(X) − bn(X)) − [0; bn+1(X), bn+2(X), · · ·]−.

Hence deg(f)n ≥ 0 and (f)n 6= 0.

Suppose deg(f
n
) = 0. Then we put c = an(X) − bn(X): we have

(f)n = c − [0; bn+1(X), bn+2(X), · · ·]−, c 6= 0.

We deduce from Lemma 2 (3)

(f)n+1 = an+1(X) − 1/(f )n

= an+1(X) − 1/c − [0;−c + c2bn+1(X), c−2bn+2(X), · · ·]−.

Hence we have
T

n+1
(f, f) ∈ X .

Suppose that f is strictly periodic, then there exists m > n such that

T
m

(f, f) = (f, f) 6∈ X .

On the other hand,
T

m
(f, f) ∈ X ,

whenever m > n, which is impossible.

Consequently, it turns out that if f is purely periodic, then (f, f) belongs
to X .

• Now suppose the expansion of f is not purely periodic, say,

f = [0; a1(X), a2(X), . . . , ak−1(X), ak(X),

ak+1(X), . . . , ak+n(X)
︸ ︷︷ ︸

, ak+1(X), . . . , ak+n(X)
︸ ︷︷ ︸

, . . .]−

and

[0; ak−u(X); ak−u+1(X), · · · , ak−1(X), ak(X), ak+1(X), . . . , ak+n(X),

ak+1(X), . . . , ak+n(X), . . .]−

is not purely periodic for any 0 ≤ u < k. We can define a strictly periodic
g by

g = [0; ak+1(X), . . . , ak+n(X), ak+1(X), . . . , ak+n(X), . . .]−.

We have from above
(g, g) ∈ X .

Since T kg = T kf , we see that T
k
(g, g) = T

k
(f, f). On the other hand,

T
k

is 1-1 on X \ (Fq(X) × F0
q((1/X))). Hence (f, f) cannot belong to X ,

which ends the proof.

Corollary 1 If (f, f) ∈ X and

f = [0; a1(X), a2(X), · · · , an(X), a1(X), a2(X), · · · , an(X), · · ·]−,

then
f = an(X) − [0; an−1(X), · · · , a2(X), a1(X),

an(X), an−1(X), · · · , a2(X), a1(X), an(X), · · ·]−.
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Proof The proof comes from

T
n
(f, f) = (f, f).

Remark Note the following characterization of strictly periodic quadratic
power series [56, 57]: a quadratic formal power series f of non zero integral
part is purely periodic if and only if f satisfies an equation

Af2 + Bf + C = 0,

with A,B,C ∈ Fq[X], deg(B) > deg(A) and deg(B) > deg(C).

6 Metric results

The purpose of this section is first to deduce, from the ergodicity of the trans-
formations T+, T−, L, some classical distribution properties on the digits in the
expansions, and then to compare these transformations from a metric theoret-
ical point of view.

6.1 Ergodicity

As an application of the ergodicity, we obtain easily the following results. For
what concerns the map T+, see [28]. The case of the Lüroth series expan-
sions is considered in [31]. These results can be sharpened as in [36]. For the
corresponding results in the real case, see for instance [10].

Theorem 6 The following results hold for all f ∈ X outside a set of Haar
measure 0. Let T ∈ {T−, T+, L}. Let an(f) = [ 1

T n−1(f)
], for n ≥ 1.

1. Let h(X) ∈ Fq[X] and deg(h) ≥ 1. The digit value h(X) has asymptotic
frequency q−2 deg(h(X), i.e.,

lim
N→+∞

card{1 ≤ n ≤ N ; an(f) = h(X)}

N
= q−2 deg(h(X)) a.e.;

2. there exists a Khintchine-type constant, namely q
q−1 :

lim
n→+∞

1

n
(deg(a1(f)) + · · · + deg(an(f))) =

q

q − 1
a.e.,

i.e.,

lim
n→+∞

|a1(f) . . . an(f)|1/n = q
q

q−1 a.e.;

3. the three transformations have entropy 2q
q−1 ;
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4. suppose T = T+ or T− and let pn

qn
denote the n-th convergent of f ; we

have

lim
n→+∞

1

n
logq |qn| =

q

q − 1
a.e.,

lim
n→+∞

1

n
(logq |f −

pn

qn
|) = −

2q

q − 1
a.e.;

suppose T = L and let sn

tn
denote the n-th Lüroth convergent of f ; we have

lim
n→+∞

1

n
logq |qn| =

2q

q − 1
a.e.,

lim
n→+∞

1

n
(logq |f −

sn

tn
|) = −

2q

q − 1
a.e.

Proof To prove the first assertion, we apply the ergodic theorem to the char-
acteristic function of the set a−1

1 {h(X)}. For assertion 2, we apply the ergodic
theorem to the map f 7→ deg(a1(f)).

Assertion 3 is a direct consequence of the Shannon-McMillan theorem [10].
Let us prove assertion 4. Note that

deg(qn) = deg(an(f)) + deg(qn−1) =
∑

1≤i≤n

deg(ai(f)).

Hence
1

n
logq |qn(X)| =

1

n

∑

1≤i≤n

deg(ai(f)).

We have furthermore from Equation (1)

|f −
pn(f)

qn(f)
| =

1

|qn(f)| |qn+1(f)|
.

We thus have

logq |f − pn(f)
qn(f) | = − logq(qn(f)) − logq(qn+1(f))

= −2
∑

1≤i≤n deg(ai(f)) − deg(an+1(f)),

hence the result.
Similarly,

deg(tn) = 2
∑

1≤i≤n−1

deg(ai(f)) + deg(an(f));

we get furthermore from Equation (2)

|f −
sn(f)

tn(f)
| =

1

|an(f)||an+1(f)||tn(f)|
,

i.e.,

logq |f − sn(f)
tn(f) | = − logq(tn(f)) − logq(an(f)) − logq(an+1(f))

= −2
∑

1≤i≤n deg(ai(f)) − deg(an+1(f)).
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6.2 Remarks

• We have normalized the absolute value as follows:

|f | = qdeg(f).

Consider another absolute value equivalent to the previous one on Fq((1/X)),
and defined by

||f ||C = Cdeg(f),

where C > 1. Let us compute the expectation of the random variable
||a1(f)||C . We have

µ{f ; ||a1(f)||C = Cn} =
q − 1

qn
,

E(||c1(f)||C) =

+∞∑

n=1

q − 1

qn
Cn =

(q − 1)C

q

∑

n≥0

(
C

q
)n.

Hence the expectation equals +∞ if and only if C ≥ q. This difference
of behaviour of the expectation with respect to the normalization of the
absolute value does not appear in the real case.

• We have seen (Theorem 6) that

lim
n→+∞

1

n
logq |tn| = 2 lim

n→+∞
logq |qn|, a.e.,

and
log |f −

pn

qn
| ∼ log |f −

sn

tn
|.

In this sense, the metrical constants appeared in Theorem 6 of continued
fractions (either “+” or “−” expansions) and the corresponding constants
for Lüroth series are the same. On the other hand, the next propositions
show that the error term distributions are not the same to each other.

Proposition 2 For a.e. f ∈ X , we have

lim
N→+∞

card{n; 1 ≤ n ≤ N, |qn|
2|f − pn

qn
| = 1

|q|k
}

N
=

q − 1

qk
,

for any k ≥ 1. The same holds for “−” expansions.

Proof Because
|qn|

2|f −
pn

qn
| = |an+1|

−1

and the sequence (an) is an i.i.d. sequence with distribution q−2deg(h) for any
polynomial h (with deg(h) ≥ 1), the assertion is an easy consequence of the
strong law of large numbers.

Proposition 3 For a.e. f ∈ X , we have

lim
N→+∞

card{n; 1 ≤ n ≤ N, |tn||f − sn

tn
| = 1

|q|k
}

N
= (q − 1)2

(k − 1)

qk
,

for any k ≥ 1.
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Proof This follows from the equality

|tn||f −
sn

tn
| = |an|

−1|an+1|
−1

and the i.i.d. property of (an).

Remark For the corresponding results in the real case, see [12] for the regular
continued fractions and [29, 6, 16] for the Lüroth series in the case of real
numbers. Because the absolutely continuous measure for T (in the real case) is
not a finite measure, we can not get such a property for “−” continued fraction
expansion of real numbers.

6.3 Full Schweiger systems and f-expansions

The study of f -expansions was essentially introduced by A. Renyi [70] in 1957.
In his paper, the most important examples of f -expansions were continued
fraction expansions, r-adic expansions, and β-expansions. Recently, Schweiger
summarized in his book [72] a number of results obtained by many authors until
the first half of 1990th, by introducing fibred systems. We can extend his uni-
fying treatment to non-Archimedean fields f -expansions. Following Schweiger,
we can define a full Schweiger system as follows. Let (Ω,B, µ) be a probabil-
ity space and {Ωa; a ∈ A} be a countable partition of Ω with the following
properties:

• ∀a ∈ A, Ωa ∈ B;

• µ(Ωa) > 0.

We define a transformation T of Ω onto itself by the following

Tω = Taω, if ω ∈ Ωa, a ∈ A,

where Ta : Ωa → Ω is bijective, bi-nonsingular. We assume that the following
holds

for any a ∈ A,
dTaµ

dµ
= µ(Ωa) a.e.

We call such a system a full Schweiger system. For each ω ∈ Ω, we define

ai(ω) = a, if T i−1(ω) ∈ Ωa, for i ≥ 1.

Then it is not difficult to see that if (Ω,B, µ) is a full Schweiger system, then
T is µ-preserving. Moreover, the sequence of digits (ai(.)) is an i.i.d. sequence.

7 A brief incursion into the literature

Let us end this paper by surveying some of the many works devoted to con-
tinued fraction expansions for formal power series with coefficients in a finite
field. If these works are mostly devoted to generalizations of classical results
on continued fractions (most of the basic facts in the real case have analogies
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for formal power series), numerous results illustrate the fundamental differences
between positive and zero characteristic, as for instance in Diophantine approx-
imation with the failure of Roth’s Theorem. The list of references given here
although long, is far from being exhaustive.

Let us begin by some explicit computations of continued fraction expansions.
In the real case very few explicit examples of continued fraction expansions
are known; one can mostly expand power series or roots of some particular
equations. Furthermore, it is a still open problem to determine if the set of
partial quotients in the expansion of an algebraic number of degree greater than
2 is bounded. Only a few examples of such expansions are known (for more
references see the survey [73]). The situation is drastically different here. Indeed
Baum and Sweet [7] have produced a cubic series with partial quotients of
bounded degree. We review in the next paragraph (devoted to results connected
with Diophantine approximation) some more examples of algebraic series with
bounded partial quotients issued from the Baum and Sweet series. Note also
the explicit expansions in [4, 53, 68], and Thakur’s results on the expansion of
the Carlitz analogue of the exponential [76, 77, 78].

Various unique expansions of Laurent formal power series over a field F
are introduced in [33, 34], as the sum of reciprocals of polynomials, involving
digits in F [X]. Such expansions include Lüroth expansions dealt in detail from
a metric point of view in [31, 36]. See also [35] for expansions as a product. For
a generalization of Jacobi-Perron algorithm, see [17, 18, 19, 20].

7.1 Continued fractions and Diophantine approximation

It is well known that Liouville’s Theorem holds in the context of Laurent series
with coefficients in a finite field, but that Roth’s Theorem fails, as proved by
Mahler’s counterexample [47] (see also [66]), which is of the form:

f =
a(X)fpk

+ b(X)

c(X)fpk + d(X)
, (5)

where k ∈ N, a(X), b(X), c(X), d(X) ∈ Fq[X] and a(X)d(X) − b(X)c(X) 6= 0.
In particular there are numerous works devoted to the study of such examples
of irrational algebraic series [7, 8, 38, 39, 40, 42, 48, 50, 59, 60, 71, 74, 75, 80, 81].
For a nice survey of Diophantine approximation in fields of power series, see
[41].

Recall in particular the remarkable example of Baum and Sweet [7], i.e.,
a cubic series the continued fraction expansion of which has partial quotients
with bounded degree; see also [8]. Mills and Robbins have extended Baum and
Sweet’s approach to produce in [60] explicit expansions of algebraic elements in
characteristic p > 2 for which the degrees of the partial quotients are bounded:
they construct an efficient algorithm which produces the continued fraction
expansion for a series f satisfying an equation of the form (5). For a study of
rational approximations of such series and connected results see [13, 38, 40, 42,
43, 50, 80, 81]. A description of the approximation spectrum of those algebraic
series which satisfy (5) is given in [71]. See also [79] for explicit continued
fraction expansions for algebraic series with prescribed rational approximation
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exponent (including a nice review of Diophantine approximation for Laurent
formal power series). Note the criterion in [39] for α’s to satisfy Roth’s Theorem,
especially for q = 2.

Simultaneous approximation properties are considered in [49, 74, 75] for
pairs of algebraic series, and also in [44] for a non-Archimedean analogue
of the classical Kronecker sequences. See also [65] for connections with low-
discrepancy sequences.

7.2 Continued fractions with bounded partial quotients

As in the real case (see for instance the survey [73]), there is an abundant
literature devoted to continued fraction expansions with partial quotients of
small degree, bearing an extremely close analogy to the real case.

Some classical problems (see [52] for a list of those problems in the real
case) concerning limited continued fraction expansions (i.e., the rational and the
periodic case) have been explored. Mkaouar gives an upper-bound for the period
of a quadratic formal power series [56, 58]. Grisel uses in [24] an algorithm due
to Mendès France [51] (which multiplies the continued fraction expansion of a
formal power series by a rational fraction A/B ∈ Fq(X)) in order to investigate
the length of the continued fraction expansion of αn as n tends to infinity, for
a rational fraction α. The distribution of the length of the continued fraction
expansion of a rational series and asymptotic estimates for the average degree
of the partial quotients are given in [30]. Note also [32] in connection with the
length of the Euclidean algorithm. For other results connected to the degree
(and to its distribution) of the partial quotients of a rational series, see [22], see
also [54, 62].

As an application, there are some remarkable relationships with pseudoran-
dom numbers generated by the digital multistep method [61], and with low-
discrepancy sequences [65]. Niederreiter gives a description in [65] of a general
principle for the construction of (t,m, s)-nets and (t, s)-sequences (i.e., high-
dimensional point sets or sequences extremly well distributed with respect to
special classes of subintervals), with explicit connections with continued fraction
expansions (note the problems asked at the end of [61]). Indeed the function
which associates to a rational series the value of the maximum of the degrees
of its partial quotients plays a fundamental rôle in the construction of (t,m, s)-
nets. Probabilistic theorems on the distribution of sequences constructed by
the digital method are also given in [44].

Several papers (for instance [11, 45] and also [13, 62, 45]) investigate the
notion of orthogonal multiplicity (the orthogonal multiplicity of a monic poly-
nomial g is the number of polynomials f coprime to g and of degree less than
that of g, such that all the partial quotients of f/g have degree one). The
polynomials which occur as the denominators of rational series whose partial
quotients have all degree one (i.e., the polynomials of positive orthogonal mul-
tiplicity) occur in several fields, as reviewed in [11, 45] and [46] (where more
generally families of continued fractions expansions are considered with partial
quotients all lying in a given set). In particular polynomials of positive or-
thogonal multiplicity appear in stream cipher theory as minimal polynomials
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of initial segments of sequences with perfect linear complexity profiles [63].
The linear complexity profile of a sequence (sn)n∈N with values in Fq is

defined as the sequence (LN )N∈N, where LN denotes the length of the shortest
linear recurrence satisfied by (sn)n≤N . The jumps profile, i.e., the sequence
(LN − LN−1)N∈N, (with L−1 = 0), is intimately connected with the degrees
of the partial quotients of the series

∑

n snX−n [63, 82]. Furthermore a linear
complexity profile is said perfect if the jumps have size 1 or equivalently if
the partial quotients have degree 1. See [63, 82] for a method of construction
of sequences with prescribed complexity profile and [63] for a criterion for a
sequence to have a perfect linear complexity profile.

The algebraic series with bounded partial quotients produced respectively
by Baum and Sweet [7], and by Mills and Robbins [60], have raised many
interrogations, in particular concerning the automaticity of their coefficients.
Indeed recall Christol’s criterion of algebraicity based on automata theory ([14]
and also [15]): a formal power series f with coefficients in a finite field Fq(X)
is algebraic if and only if the sequence of its coefficients is q-automatic (i.e.,
generated by a finite automaton). In the case where the partial quotients in
the continued fraction expansion of f take finitely many values, Mendès France
asked whether this sequence is itself p-automatic. A positive answer to this
question has been given in [2, 3] in the case of Mills and Robbins examples [60]
in characteristic > 2. But Mkaouar [55] (see also [83]) showed that the Baum
and Sweet series [7] provides a negative answer to the question asked by Mendès
France. Note the connection in [45] with folded continued fractions [69].

7.3 Connections with arithmetic

The theory of Laurent formal power series contains many analogues of classical
objects deeply connected with continued fractions, as for instance analogues of
the Poincaré upper half-plane, modular forms, cusp forms [23]... Explicit formu-
las for the analytic continuation of the Selberg zeta function for the “modular”
group PGL(2, Fq[X]) are given in [37] (see also [1]).

Continued fraction expansions play a natural rôle in the study of quadratic
function fields. They have been introduced for that purpose by Artin [5]. In par-
ticular continued fractions are used to give explicit formulas for class numbers of
quadratic function fields [5, 21, 25, 27]. A characterization of quasi-periodicity
(i.e., periodicity up to a non-zero multiplicative constant) for an algebraic func-
tion in a hyperelliptic function field is given in [9, 67, 27], in connection with the
Pell equation. See also [71] for an algebraic characterization of quasiperiodicity
using SL(2, Fq[X]) equivalence.

Acknoledgements We would like to thank H. Faure and T. Schmidt for their
bibliographic help. Furthermore, we are greatly indebted to Allouche for his
many useful comments.

24



References

[1] S. AKAGAWA Selberg zeta functions over function fields, Master Thesis, Tokyo Univer-
sity, Japan (1978).
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[25] C. D. GONZÁLEZ Class numbers of quadratic function fields and continued fractions, J.
Number Theory 40 (1992), 38–59.

[26] G. H. HARDY, E. M. WRIGHT An introduction to the theory of numbers, Oxford Science
Publications (1979).

[27] D. HAYES Real quadratic function fields, CMS Conf. Proc. 7, Amer. Math. Soc., Provi-
dence, R.I. (1987), 203–236.

[28] V. HOUNDONOUGBO Développement en fractions continues et répartititon modulo 1
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1979.
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