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1 Introduction

Free group morphisms are classical objects which prove to be very useful in many

mathematical fields (algebraic and topological geometry, combinatorial and geo-

metric group theory, hyperbolic geometry, and so on), as well as in theoretical

computer science and physics. Among them, nonnegative morphisms play an im-

portant role. A morphism of a free group is said nonnegative if the reduced words

representing the images of the letters contain no inverses of the letters; nonneg-

ative morphisms can be considered as morphisms of the underlying free monoid

and are often called substitutions. Substitutions are hence very simple combinato-

rial objects (roughly speaking, these are rules to replace a letter by a word) which

produce infinite sequences by iteration, the main simplification being here that we

have no problem of cancellations. Substitutive sequences generate symbolic dy-

namical systems which have a rich structure as shown by the natural interactions

with combinatorics on words, ergodic theory, linear algebra, spectral theory, ge-

ometry of tilings, theoretical computer science, Diophantine approximation, tran-

scendence, graph theory, and so on. See for instance the references in [7].

Notice that the notion of substitution we consider here differs from that used for

self-similar tilings (see for instance [9]); in this framework, substitutions produce

matching rules acting on a finite set of prototiles and determining the ways in

which the tiles are allowed to fit together locally; the best known example is the

Penrose tiling.

The aim of this survey is to focus on invertible substitutions (that is, substi-

tutions that are free group automorphisms) in connection with some topological

properties of tilings that are associated with substitutions with some prescribed al-

gebraic properties (we consider here the Pisot case). We will see that if invertible

substitutions over a two-letter alphabet are completely characterized, much less is

known in the higher-dimensional case.
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2 Definitions

Let us first recall some basic terminology and notions. For a detailed introduction

to the subject, see [8] and [7].

Let A denote a finite alphabet. The set of all finite words overA is denoted by

A

?. We denote by " the empty word. The set A? endowed wit the concatenation

is called the free monoid generated by A:

A substitution � is a nonerasing morphism of the free monoid A?

� f"g; it

extends to a morphism of A? and to a map over AN by concatenation. A fixed

point of the substitution � is an infinite sequence u with �(u) = u.

Substitutions are very efficient tools for producing sequences. Let � be a sub-

stitution over the alphabet A, and a be a letter such that �(a) begins with a and

j�(a)j � 2. Then there exists a unique fixed point u of � beginning with a. This

sequence is obtained as the limit in A? (when n tends toward infinity) of the se-

quence �n(a) : : : , which is easily seen to converge.

For instance, the Fibonacci sequence is the fixed point v beginning with a

of the the Fibonacci substitution � defined over the two-letter alphabet fa; bg by

�(a) = ab and �(b) = a.

The Fibonacci sequence provides the more classical example of a Sturmian se-

quence. Sturmian sequences are defined as the one-sided sequences having exactly

n+ 1 factors of length n. A factor of a sequence is a finite string of letters which

appear consecutively in this sequence. This combinatorial definition has the par-

ticularity of being equivalent to the following simple geometrical representation: a

Sturmian sequence codes the orbit of a point of the unit circle under a rotation by

irrational angle � with respect to a partition of the unit circle into two intervals of

lengths � and 1��. Sturmian sequences have thus remarkable combinatorial and

arithmetical properties and have been extensively studied (see for instance [5, 7]).

3 Invertible substitutions

Let �
d

denote the free group over d letters. A substitution over a d-letter alphabet

can be naturally extended to �

d

by defining �(s

�1

) = (�(s))

�1. It is said to be

invertible if it is an automorphism of the free group, that is, if there exists a map

� : �

d

! �

d

such that ��(a) = ��(a) = a for every a 2 �

d

.

The Fibonacci substitution is invertible: its inverse is a 7! b, b 7! b

�1

a. For

a nice introduction to the free groups and invertible substitutions, see [5]; see also

[6].

Invertible substitutions over a two-letter alphabet are completely characterized
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(see the references in [5]). In particular they are Sturmian, i.e., they preserve

Sturmian words. Furthermore, the monoid of invertible substitutions is finitely

generated. A set of generators is given by: (a 7! b, b 7! a), ( a 7! ab b 7! a), and

(a 7! ba, b 7! a). Note that similarly the set SL(2;N) of matrices with determi-

nant 1 is also finitely generated by elementary matrices (it is even a free monoid,

which can be considered as an algebraic version of the classical continued frac-

tion expansion). These two results are closely related. Indeed, one can associate

with a substitution its matrix of incidence M defined as follows: the entry M

i;j

counts the number of occurrences of the letter i in the word �(j). Every matrix in

SL(2;N) is the matrix of an invertible substitution. Note furthermore that one can

generate Sturmian sequences as a limit of the composition of the two following

substitutions (with matrix in SL(2;N)): a 7! a; b 7! ab, and a 7! ba, b 7! b.

One is far from understanding the structure of the monoid of invertible substi-

tutions over a larger size alphabet: indeed the monoid of invertible substitutions

over a d-letter alphabet is no more finitely generated, for d > 2; neither does

SL(3;N) (for more details, see [7]). However, these two results, which could be

thought nearly equivalent, are in fact completely unrelated. Indeed there are ma-

trices with nonegative entries of determinant 1 that are not matrices of invertible

substitutions for d = 3.

4 Tilings associated with substitutions

The aim of this section is to describe how to associate in a natural way with a sub-

stitution (with some prescribed algebraic properties) some periodic and autosimilar

tilings of the space with fractal boundary.

4.1 One-dimensional case

The simplest example of a self-similar non-periodic tiling is the Fibonacci tiling

of the line; it is a tiling by two intervals, one interval a, of length � =

1+

p

5

2

, and

interval b of length 1, the structure of the tiling being the unique fixed point of the

Fibonacci substitution a 7! ab, b 7! a. If we divide each interval a in an interval

a

0 of length 1, and an interval b0 of length 1=�, and rename the interval b as a0, we

obtain a new tiling (called inflation of the initial tiling) which is homothetic to the

initial one by an homothety of ratio 1=�; on the other hand, it is easy to check that

each interval b is preceded by an interval a; if we merge each pair of consecutive

intervals a; b as one interval a00, of length �

2, and rename the remaining intervals

as b00, we obtain another tiling (deflation of the initial one), homothetic to the initial
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Figure 1: The Fibonacci tiling by the “cut and project” method

one by an homothety of ratio �.

This remarkable tiling has been much studied, starting with the pioneering

work of de Bruijn [3, 4]; it can be obtained in a number of different ways, notably

by the “cut and project” method (see for instance [11]), as projection of a discrete

approximation of the line through 0 with slope 1=� (see Figure 1).

Let us note that in the general case the symbolic sequences associated with

such tilings of the lines (with an irrational slope) are the Sturmian sequences.

4.2 Higher-dimensional case

Let us try to generalize this approach in a higher-dimensional space. Let � be

a substitution defined over the alphabet f1; 2; 3g. Let M
�

denote the matrix of

incidence of the substitution �. We will suppose that this matrix is primitive (that

is, there exists a power of the matrix that is strictly positive). We can then suppose,

replacing if necessary � by a power �n and permuting letters, that �(1) begins

with 1, and that there exists an infinite word u starting with 1 such that �(u) = u.

We will assume that the substitution � is of Pisot type, that is, M
�

has a real

eigenvalue �
1

, and all other eigenvalues of M
�

have a nonzero modulus strictly

less than one (the behaviour of non-Pisot substitutions is much more complicated,

and largely unknown). This implies that the characteristic polynomial of the matrix

is irreducible. In that case, there is one expanding direction and a contracting

plane P which is the kernel of the linear form given by the left eigenvector of M
�

corresponding to �

1

. Consider for instance the Tribonacci substitution 1 7! 12,
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2 7! 12, 3 7! 1.

One associates with the infinite word u = (u

n

)

n2N

a broken line starting

from 0 in Z

3 and approximating the expanding direction as follows. Let f :

f1; 2; 3g

�

! Z

3 be defined by f(w) = jwj

1

e

1

+jwj

2

e

2

+jwj

3

e

3

;where (e
1

; e

2

; e

3

)

denotes the canonical basis of R3 and jwj
i

denotes the number of occurrences

of the letter i in the word w. Let us consider the following set of points in Z3:

ff(u

0

u

1

: : : u

n

); n 2 Ng: The broken line is defined by joining these points with

segments. (Intuitively, we start from the origin, and read the fixed point, moving

one step in direction e

i

if we read letter i.) Let � denote the projection over the

contracting plane P of the matrix along the expanding direction. We project these

points by �, and define the set X
�

as the closure of the projection:

X

�

:= f�(f(u

0

: : : u

n

)); n 2 Ng;

and for i 2 f1; 2; 3g

X

i

�

:= f�(f(u

0

: : : u

n

)); n 2 N and u
n

= ig:

The set X
�

is called the atomic surface or Rauzy fractal associated with �, follow-

ing [10]. See also [13] or [1] for similar tilings in connection with beta-numeration.

For a survey on results connected with these sets, see [7].

It is not difficult to see that the vectors f(u
0

u

1

: : : u

n

) stay within bounded

distance of the expanding direction, which is exactly the direction given by the

vector of frequencies of the letters 1; 2; 3 in the infinite word u. Furthermore, the

set X
�

is bounded, and hence compact. The translates of the atomic surface by

the vectors of the lattice L
0

:= Z�(e

1

� e

2

) +Z�(e

1

� e

3

) cover the contracting

plane P :

[

2L

0

(X

�

+ ) = P :

Note that one can also prove that X
�

is the closure of its interior.

The proof is a direct consequence of the Perron-Frobenius theorem.

4.3 Some open questions

We do not know in the general case whether the sets X
i

can overlap, although

in all known examples it has been proved that their intersection has measure 0.

The same question arises for X
�

and its tranlates by the lattice L
0

, that is, do the

translates of X
�

tile peoriodically the contracting plane? These are probably the

two more important questions in this field. If one assumes that the substitution

is unimodular (the absolute value of the determinant of the matrix equals one),

and if one adds an extra combinatorial assumption, that is, the strong coincidence
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Figure 2: The autosimilar and periodic tiling generated by the Rauzy fractal.

condition, then it can be proved that the sets X

i

�

are disjoint of each other, up

to a set of measure zero, and form a partition of X
�

. For more details, see [2].

Furthermore, the second question (the question of tiling) can be also answered

by an algorithmic condition which only depends on the substitution [12]. Indeed,

A. Siegel has produced in [12] an explicit and effective combinatorial condition

(based on a clever graph study) for the atomic surface associated with a unimod-

ular Pisot substitution over d letters to generate a regular tiling of Rd�1 . Many

questions also arise concerning the topological properties of these Rauzy fractals.

For instance, they appear to be non-connected or non-simply connected in some

examples. Let us end with the following question inspired by the two-letter case,

which is a further motivation for the study of invertible substitutions: does the fact

that the substitution is invertible imply any kind of topological property?
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