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Abstract. The theorem of factorisation forests shows the existence of
nested factorisations — a la Ramsey — for finite words. This theorem
has important applications in semigroup theory, and beyond.
We provide two improvements to the standard result. First we improve
on all previously known bounds for the standard theorem. Second, we
extend it to every ‘complete linear ordering’. We use this variant in a
simplified proof of complementation of automata over words of countable
scattered domain.
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1 Introduction

Factorisation forests were introduced by Simon [15]. The associated theorem
— which we call the theorem of factorisation forests below — states that for
every semigroup morphism from words to a finite semigroup S, every word has
a Ramseyan factorisation tree of height linearly bounded by |S| (see below).
An alternative presentation states that for every morphism ϕ from A+ to some
finite semigroup S, there exists a regular expression evaluating to A+ in which
the Kleene star L∗ is allowed only when ϕ(L) = {e} for some e = e2 ∈ S; i.e. the
Kleene star is allowed only if it produces a Ramseyan factorisation of the word.

The theorem of factorisation forests provides a very deep insight on the struc-
ture of finite semigroups, and has therefore many applications. Let us cite some
of them. Distance automata are nondeterministic finite automata mapping words
to naturals. An important question concerning them is the limitedness problem:
decide whether this mapping is bounded or not. It has been shown decidable by
Simon using the theorem of factorisation forests [15]. This theorem also allows
a constructive proof of Brown’s lemma on locally finite semigroups [2]. It is also
used in the characterisation of subfamilies of the regular languages, for instance
the polynomial closure of varieties in [11]. Or to give general characterisations
of finite semigroups [10]. In the context of languages of infinite words indexed
by ω, it has also been used in a complementation procedure [1] extending Buchi’s
lemma [4]. In [7], a deterministic variant of the theorem of factorisation forest
is used for proving that every monadic second-order interpretation is equiva-
lent over trees to the composition of a first-order interpretation and a monadic



second-order marking. This itself provides new result in the theory of finitely
presentable infinite structures.

The present paper aims first at advertising the theorem of factorisation forest
which, though already used in many papers, is in fact known only to a quite lim-
ited community. The reason for this is that its proofs rely on the use of Green’s
relations: Green’s relations form an important tool in semigroup theory, but are
technical and uncomfortable to work with. The merit of the factorisation forest
theorem is that it is usable without any significant knowledge of semigroup the-
ory, while it encapsulates nontrivial parts of this theory. Furthermore, as briefly
mentioned above, this theorem has natural applications in automata theory.

This paper contains three contributions. First, we provide a new proof of
the original theorem improving on all previously known bounds in [15] and [6].
Second, we extend the result to the infinite case (i.e., to infinite words, though
we use a different presentation). Third, we use this last extension in a simplified
proof of complementation of automata on countable scattered linear orderings,
a result known from Carton and Rispal [5].

The content of the paper is organised as follows. Section 2 is dedicated to
definitions. Section 3 presents the original theorem of factorisation forests as well
as a variant in terms of Ramseyan splits and its extension to the infinite case.
In Section 4 we apply this last extension to the complementation of automata
over countable scattered linear orderings.

2 Definitions

In this section, we successively present linear orderings, words indexed by them,
semigroups and additive labellings.

2.1 Linear orderings

A linear ordering α = (L, <) is a set L equipped with a total ordering relation <;
i.e., an irreflexive, antisymmetric and transitive relation such that for every dis-
tinct elements x, y in L, either x < y or y < x. Two linear orderings α = (L, <)
and β = (L′, <′) have same order type if there exists a bijection f from L onto L′

such that for every x, y in L, x < y iff f(x) <′ f(y). We denote by ω,−ω, ζ the
order types of respectively (N, <), (−N, <) and (Z, <). Below, we do not distin-
guish between a linear ordering and its order type unless necessary. This is safe
since all the constructions we perform are defined up to similar order type.

A subordering β of α is a subset of L equipped with the same ordering
relation; i.e., β = (L′, <) with L′ ⊆ L. We write β ⊆ α. A convex subset of α
is a subset S of α such that for all x, y ∈ S and x < z < y, z ∈ S. We use
the notations [x, y], [x, y[, ]x, y], ]x, y[, ]−∞, y], ]−∞, y[, [x, +∞[ and ]x, +∞[ for
denoting the usual intervals. Intervals are convex, but the converse does not
hold in general if α is not complete (see below). Given two subsets X, Y of a
linear ordering, X < Y holds if for all x ∈ X and y ∈ Y , x < y.



The sum of two linear orderings α1 = (L1, <1) and α2 = (L2, <2) (up to
renaming, assume L1 and L2 disjoint), denoted α1 + α2, is the linear order-
ing (L1 ∪ L2, <) with < coinciding with <1 on L1, with <2 on L2 and such
that L1 < L2. More generally, given a linear ordering α = (L, <) and for
each x ∈ L a linear ordering βx = (Kx, <x) (the Kx are assumed disjoint),
we denote by

∑
x∈α βx the linear (∪x∈LKx, <′) with x′ <′ y′ if x < y or x = y

and x′ <x y′, where x′ ∈ Kx and y′ ∈ Ky.

A linear ordering α is complete if every nonempty subset of α with an upper
bound has a least upper bound in α, and every nonempty subset of α with a
lower bound has a greatest lower bound in α.

A (Dedekind) cut of a linear ordering α = (L, <) is a couple (E, F ) where
{E, F} is a partition of L, and E < F . Cuts are totally ordered by (E, F ) <
(E′, F ′) if E ( E′. This order has a minimal element ⊥ = (∅, L) and a maximal
element ⊤ = (L, ∅). We denote by α the set of cuts of α, and we abbreviate by
α[], α[[, α]], α][ the sets α, α\{⊤}, α\{⊥}, α\{⊥,⊤} respectively. An important
remark is that α is a complete linear ordering. Cuts can be thought as new ele-
ments located between the elements of α: given x ∈ α, x− = (]−∞, x[, [x, +∞[)
represents the cut placed just before x, while x+ = (]−∞, x], ]x, +∞[) is the cut
placed just after x. We say in this case that x+ is the successor of x− through x.
But not all cuts are successors or predecessors of another cut. A cut c is a right
limit (resp. a left limit) if it is not the minimal element and not of the form x+

for some x in α (resp. not the maximal element and not of the form x−).

A linear ordering α is dense if for every x < y in α, there exists z in ]x, y[. A
linear ordering is scattered if none of its subordering is dense. For instance (Q, <)
and (R, <) are dense, while (N, <) and (Z, <) are scattered. Being scattered is
preserved under taking a subordering. A scattered sum of scattered linear order-
ings also yields a scattered linear ordering. Every ordinal is scattered. Further-
more, if α is scattered, then α is scattered. And if α is countable and scattered,
then α is also countable and scattered.

Additional material on linear orderings can be found in [13].

2.2 Words, languages

We use a generalised version of words: words indexed by linear orderings. Given
a linear ordering α = (L, <) and a finite alphabet A, an α-word u over the
alphabet A is a mapping from L to A. We also say that α is the domain of the
word u, or that u is a word indexed by α. Below we always consider word up
to isomorphism of the domain, unless a specific presentation of the domain is
required. Standard finite words are simply the words indexed by finite linear
orderings. Given a word u of domain α and β ⊆ α, we denote by u|β the word u
restricted to its positions in β. Given an α-word u and a β-word v, uv represents
the (α + β)-word defined by (uv)(x) is u(x) if x belongs to α and v(x) if x
belongs to β. The product is extended to languages of words in a natural way. The
product of words is naturally generalised to the infinite product

∏
i∈α ui, where α

is an order type and ui are linear βi-words; the resulting being a (
∑

i∈α βi)-word.



For a language W and a linear ordering α, one defines Wα to be the language
containing all the words

∏
i∈α ui, where ui ∈ W for all i ∈ α.

Given an alphabet A, we denote by A⋄ the set of words indexed by a countable
scattered linear ordering.

2.3 Semigroups and additive labellings

For a thorough introduction to semigroups, we refer the reader to [8, 9]. A semi-
group (S, .) is a set S equipped with an associative binary operator written
multiplicatively. Groups and monoids are particular instances of semigroups.
The set of nonempty finite words A+ over an alphabet A is a semigroup – it is
the semigroup freely generated by A. A morphism of semigroups from a semi-
group (S, .) to a semigroup (S′, .′) is a mapping ϕ from S to S′ such that for
all x, y in S, ϕ(x.y) = ϕ(x).′ϕ(y). An idempotent in a semigroup is an element e
such that e2 = e.

Let α be a linear ordering and (S, .) be a semigroup. A mapping σ from
couples (x, y) with x, y ∈ α and x < y to S is called an additive labelling if for
every x < y < z in α, σ(x, y).σ(y, z) = σ(x, z).

Given a semigroup morphism ϕ from (A⋄, .) to some semigroup (S, .) and
a word u in A⋄ of domain α, there is a natural way to construct an additive
labelling ϕu from α to (S, .): for every two cuts x < y in α, set ϕu(x, y) to
be ϕ(ux,y), where ux,y is the word u restricted to its positions between x and y;
i.e., ux,y = u|F∩E′ for x = (E, F ) and y = (E′, F ′).

3 Factorisation forest theorems

In this section, we present various theorems of factorisation forest. We first give
the original statement in Section 3.1. In Section 3.2, we introduce the notion of a
split, and use it in a different presentation of the result. In Section 3.3, we state
the extension to every complete linear ordering.

3.1 Factorisation forest theorem

2 1 0 2 3 2 3 0 0 3 2 2 0 0 0 2

Fig. 1. A factorisation tree



Fix an alphabet A and a semigroup morphism ϕ from A+ to a finite semi-
group (S, .). A factorisation tree is an ordered unranked tree in which each node
is either a leaf labelled by a letter, or an internal node. The value of a node is
the word obtained by reading the leaves below from left to right. A factorisa-
tion tree of a word u ∈ A+ is a factorisation tree of value u. The height of the
tree is defined as usual, with the convention that the height of a single leaf is
0. A factorisation tree is Ramseyan (for ϕ) if every node 1) is a leaf, or 2) has
two children, or, 3) the values of its children are all mapped by ϕ to the same
idempotent of S.

Example 1. Fix A = {0, 1, 2, 3, 4}, (S, .) = (Z/5Z, +) and ϕ to be the only
semigroup morphism from A+ to (S, .) mapping each letter to its value. Figure 1
presents a Ramseyan factorisation tree for the word u = 210232300322002. In
this drawing, internal nodes appear as horizontal lines. Double lines correspond
to case 3 in the description of Ramseyanity.

The theorem of factorisation forests is then the following.

Theorem 1 (factorisation forests, Simon [15]). For every alphabet A, finite
semigroup (S, .), semigroup morphism ϕ from A+ to S and word u in A+, u has
a Ramseyan factorisation tree of height at most 3|S|.

The original theorem is due to Simon [15], with a bound of 9|S|. An improved
bound of 7|S| is provided by Chalopin and Leung [6]. The value of 3|S| is a
byproduct of the present work (see Theorem 2 below and subsequent comments).

3.2 A variant via Ramseyan splits

The variant presented here of the factorisation forest theorem uses the notion of
splits. We reuse this framework later on.

A split of height N of a linear ordering α is a mapping s from α to [1, N ].
Given a split, two elements x and y in α such that s(x) = s(y) = k are k-
neighbours if s(z) ≥ k for all z ∈ [x, y]. k-neighbourhood is an equivalence
relation over s−1(k). Fix an additive labelling from α to some finite semigroup S.
A split of α is Ramseyan for σ — we also say a Ramseyan split for (α, σ) — if
for every k ∈ [1, N ], every x < y and x′ < y′ such that all the elements x, y, x′, y′

are k-neighbours, then σ(x, y) = σ(x′, y′) = (σ(x, y))2; Equivalently, for all k,
every class of k-neighbourhood is mapped by σ to a single idempotent.

Example 2. Let S be Z/5Z equipped with the addition +. Consider the linear
ordering of 17 elements and the additive labelling σ defined by:

| 3 | 1 | 0 | 2 | 3 | 2 | 3 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 2 |

Each symbol ‘|’ represents an element, the elements being ordered from left
to right. Between two consecutive elements x and y is represented the value
of σ(x, y) ∈ S. In this situation, the value of σ(x, y) for every x < y is uniquely



defined according to the additivity of σ: it is obtained by summing all the values
between x and y modulo 5.

A split s of height 3 is the following, where we have written above each
element x the value of s(x):

1 3 2 2 1 2 1 2 2 2 3 2 1 1 1 1 2
| 2 | 1 | 0 | 2 | 3 | 2 | 3 | 0 | 0 | 3 | 2 | 2 | 0 | 0 | 0 | 2 |

In particular, if you choose x < y such that s(x) = s(y) = 1, then the sum
of elements between them is 0 modulo 5. If you choose x < y such that s(x) =
s(y) = 2 but there is no element z in between with s(z) = 1 — i.e., x and y are 2-
neighbours — the sum of values separating them is also 0 modulo 5. Finally, it
is impossible to find two distinct 3-neighbours in our example.

Theorem 2. For every finite linear ordering α, every finite semigroup (S, .) and
additive labelling σ from α to S, there exists a Ramseyan split for (α, σ) of height
at most |S|.

Let us state the link between Ramseyan splits and factorisation trees. Fix an
alphabet A, a semigroup S, a morphism ϕ from A+ to S and a word u ∈ A+ of
finite domain α. The following is easy to establish:

– every Ramseyan factorisation tree of height k of u can be turned into a
Ramseyan split of height at most k of (α][, ϕu),

– every Ramseyan split of height k of (α][, ϕu) can be turned into a factorisation
tree of height at most 3k of u.

Using this last argument and Theorem 2, we directly obtain a proof of Theorem 1
with the announced bound of 3|S|.

3.3 Ramseyan splits for complete linear orderings

We generalise Theorem 2 to complete linear orderings as follows.

Theorem 3. For every complete linear ordering α, every finite semigroup (S, .)
and additive labelling σ from α to S, there exists a Ramseyan split for (α, σ) of
height at most 3|S| (|S| if α is an ordinal).

Compared to Theorem 2, we trade the finiteness — which is replaced by the
completeness — for a bound of 3|S| — which replaces a bound of |S|. The
special case of α being a finite ordinal yields Theorem 2.

The proof by itself follows the lines of [6]. This means using three different
arguments according to three different situations arising in the decomposition
of the semigroup by Green’s relations. The first situation amounts to treat the
case of S being a group. The second case is the one of a single J -class (J is one
of the Green’s relation). And finally one performs an induction on the number
of J -classes. Examples 1 and 2 do only involve the first situation.

This rough sketch contains certain technicalities when the proof need be
formalised. In particular one performs many gluing and nesting of splits. An



explanation of the improvement of the bound in the finite case is that splits
are more versatile in handling those details. E.g., the use of the ‘border types’
[[, ][, ]], [] allow to glue more easily pieces of Ramseyan splits together, while
Ramseyan factorisation trees do correspond only to the case ][.

4 Application to countable scattered linear orderings

In this section, we present the automata theoretic approach to regularity of lan-
guages over words of countable scattered domain. This notion has been developed
in [3], in which a suitable family of automata is proposed. These automata are
easily shown closed under union, intersection and projection, and their emptiness
is decidable. The closure under complementation is more involved and is due to
Carton and Rispal [5]. In this section we give a simplified proof to this result.

The properties of these automata result directly in the decidability of the
monadic (second-order) theory of countable scattered linear orderings. This de-
cidability result can be independently established using the famous theorem of
Rabin [12] (see [16] for a modern presentation), and its consequence, the decid-
ability of the monadic theory of (Q, <). But this technique is less informative and
is not totally satisfying. More precisely, using the theorem of Rabin signifies the
use of infinite trees, and also has to do with the theory of Müller/parity games
and their determinacy. We believe that these subtle issues are not relevant when
considering the theory of linear orderings, and thus are worth being avoided.
Furthermore the approach using the theorem of Rabin does not help much for
understanding the notions of regularity over linear orderings.

Another application of Theorem 3 – to some extent a variant of the appli-
cation proposed here – is to give a compositional proof for the decidability of
the monadic theory of countable scattered linear orderings. Generally speaking,
the compositional method allows to devise automata-free proofs of decidability
of monadic theories (or other logics). It was used by Shelah [14] in his seminal
work on the monadic theory of linear orderings. But so far it could not be used
in situations like scattered orderings by lack of the correct combinatorial result.
Theorem 3 bridges this gap.

In this section we concentrate ourselves solely on the technical core of the
theory: the closure under complementation of automata over countable scat-
tered linear orderings. We present the suitable family of automata, then the
corresponding semigroup, and finally the complementation proof itself.

4.1 Automata over countable scattered linear orderings

In this section, we define priority automata and show how they accept words in-
dexed by countable scattered linear orderings. Those automaton were introduced
in [3], but in their ‘Muller’ form, while here we adopt the ‘parity-like’ approach
(to this respect, the results given below are new).

Definition 1. A priority automaton A = (Q, A, I, F, p, δ) consists of a finite set
of states Q, a finite alphabet A, a set of initial states I, a set of final states F ,



a priority mapping p : Q 7→ [1, N ] (N being a natural) and a transition relation
δ ⊆ (Q × A × Q) ⊎ ([1, N ] × Q) ⊎ (Q × [1, N ]).

A run of the automaton A over an α-word u is a mapping ρ from α to Q
such that for all cuts c, c′:

– if c′ is the successor of c through x, then (ρ(c), u(x), ρ(c′)) ∈ δ,
– if c is a right limit, then (k, ρ(c)) ∈ δ where k = max

⋂
c′<c

p(ρ(]c′, c[)),

– if c is a left limit, then (ρ(c), k) ∈ δ where k = max
⋂

c′>c

p(ρ(]c, c′[)).

The first case corresponds to standard automata on finite words: a transition
links one state to another while reading a single letter in the word. The second
case verifies that the highest priority appearing infinitely close to the left of c
corresponds to a transition. The third case is symmetric. An α-word u is accepted
by A if there is a run ρ of A over u such that ρ(⊥) ∈ I and ρ(⊤) ∈ F .

Example 3. Consider the automaton with states {q, r}, alphabet {a}, initial
states {q, r}, final state q, priority mapping constant equal to 0 and transi-
tions {(q, a, q), (q, a, r), (0, q), (r, 0)}). It accepts those words in {a}⋄ which have
a complete domain. For this, note that a linear ordering is complete iff no cut is
simultaneously a left and a right limit.

Consider a word u ∈ {a}⋄ which has a complete domain α. For c ∈ α, set ρ(c)
to be q if c is ⊤ or if c has a successor, else ρ(c) is r. Under the hypothesis of
completeness, it is simple to verify that ρ is a run witnessing the acceptance of
the word. Conversely, assume that there is a run ρ over the α-word u with α
not complete. There is a cut c ∈ α which is both a left and a right limit. If ρ(c)
is r, then, as c is a left limit, there is no corresponding transition; else if ρ(c)
is q the same argument can be applied to the right of c. In both cases there is a
contradiction.

It is easy to prove that the languages of ⋄-words accepted by priority au-
tomata are closed under union, intersection, and projection [5]. It is also easy to
establish the decidability of their emptiness problem. Below, after introducing
the necessary semigroup, we show the more difficult closure under complemen-
tation.

4.2 Semigroup structure

In order to use Theorem 3, we have to relate automata with semigroups. Let us
fix ourselves an automaton of states Q and priorities [1, N ]. One equips

S = 2Q×[1,N ]×Q

of a semigroup structure as usual with

for a, b ∈ S, a.b = {(p, max{m, n}, r) : (p, m, q) ∈ a, (q, n, r) ∈ b} .



This definitions naturally comes together with a semigroup morphism ϕ from
⋄-words to S such that for every word u, ϕ(u) contains (p, n, q) iff there exists
a run of the automaton reading u, starting from state p, finishing with state q,
and of maximal priority n.

The semigroup defined so far does not entirely capture the semantic of the
automaton. In particular it contains no limit passing features. We resolve this
issue by defining the exponentiations under ω and −ω of idempotents of the
semigroup. One defines eω (and symmetrically e−ω) for an idempotent e by:

eω = e.{(q, m, r) : (q, m, q) ∈ e, (max(m, p(q)), r) ∈ δ} ,

and e−ω = {(r, m, q) : (q, m, q) ∈ e, (r, max(m, p(q))) ∈ δ}.e .

One also defines eζ as e−ω.eω.
The essential property of these exponentiations is the following. Given a

sequence of words (ui)β indexed by β = ω,−ω, ζ, and such that for all i in β,
ϕ(ui) = e, then

ϕ(
∏

i∈β

ui) = eβ .

4.3 Complementation

We sketch now a short proof of the following theorem.

Theorem 4 (Carton and Rispal [5]). Languages of countable scattered words
accepted by priority automata are closed under complement.

Let k be a natural number, a be in S, and ι among [], [[, ]], ][, set S ι
k(a) to be

the set of ⋄-words u such that ϕ(u) = a and (αι, ϕu) admits a Ramseyan split

of height k (by convention, ε does not belong to S
][
k (a)). We prove by induction

on k that for every a in S and ι = [], [[, ]], ][, S ι
k(a) is accepted by a priority

automaton. Since by Theorem 3, ϕ−1(a) = S
[]
3|S|(a), we deduce that ϕ−1(a)

would be accepted by a priority automaton. As the complement language we
are aiming at is a finite union of such languages, it would also be accepted by
a priority automaton. This argument concludes the proof. What remains to be
done is to establish the induction.

The base case is obtained by remarking that the following languages are
accepted by priority automata:

S
][
0 (a) = ϕ−1(a) ∩ A , S

[[
0 (a) = S

]]
0 (a) = ϕ−1(a) ∩ {ε} , and S

[]
0 (a) = ∅ .

For all k ≥ 1 and idempotent e, let Ce,k be the set of ⋄-words u of domain α
such that ϕ(u) = e, and there exists a split s of height k of α such that s(⊥) =
s(⊤) = 1.

Our first step is to show how to construct an automaton accepting Ce,k+1

from automata accepting the languages S ι
k(a). For this, consider the following



languages:

Me,k = S
][
k (e) , M←

e,k =
∑

ae−ω=e

S
]]
k (a),

M→
e,k =

∑

eωa=e

S
[[
k (a), and M→←

e,k =
∑

eωae−ω=e

S
[]
k (a).

By induction hypothesis, those languages are accepted by priority automata.
Wlog, we choose them to use distinct priorities, and we set n − 1 to be the
maximal priority involved in those automata. We use them in the construction
of the automaton Ae,k+1 depicted Fig. 2.

p : n r : n

q : n

M→e,k M←e,k

Me,k

M→←e,k

ε ε

ε ε

ε ε

ε ε

n n

Fig. 2. The automaton Ae,k+1

This construction makes use of ε-transitions. This is just a commodity of
notation and can be removed using standard techniques. The automaton itself
is made of disjoint copies of the automata accepting Me,k, M→←

e,k , M→
e,k, and

M←
e,k, together with three new states p, q, r. Each ε-transition entering one of the

subautomata represents in fact all possible ε-transitions with an initial state as
destination; similarly, every ε-transition exiting a subautomaton represents all
possible ε-transitions with as origin any of the final states of the automaton. The
priority of the new state q is n, a priority unused elsewhere by construction. One
chooses also p and r to have priority n (this is not of real importance since it is
impossible to see infinitely often p or r in a run without seeing infinitely often q:
the priority of q only matters). The two dashed arrows represent the two limit
transitions (n, p) and (r, n).

Let Le,k+1[q1, q2] be the language accepted by this automaton with initial
state q1 and final state q2 for q1, q2 among p, q, r.

The core of the proof is embedded in the following lemma.

Lemma 1. For every idempotent e, Le,k+1[q, q] = Ce,k+1.

Proof. (sketch of the difficult inclusion: Le,k+1[q, q] ⊆ Ce,k+1)

Let u be in Le,k+1[q, q], we have to construct a Ramseyan split s of height k+1

of ϕ
[]
u with s(⊥) = s(⊤) = 1. Since u ∈ Le,k[q, q], there exists a corresponding



run ρ of the automaton Ae,k+1 from state q to state q. Let I be the set of cuts c
such that ρ(c) = q.

Set s(c) = 1 for all c in I. Let now J ⊆ α be a maximal interval not inter-
secting I. Let us define s over J . Let x be inf J and y be sup J , J is either [x, y],
[x, y[, ]x, y] or ]x, y[. Assume J = [x, y[. In this case, since y 6∈ J , y ∈ I and
hence ρ(y) = q. Furthermore, since x ∈ J , there exists an infinite sequence
x1 < x2 < . . . of length ω and limit x in I. As the priority of ρ(xi) = q is the
maximal one, namely n, the only possible state for ρ(x) compatible with limit
transitions is p. Furthermore the state q is never visited by ρ in [x, y[ (by defini-
tion of J). By inspecting the automaton, we conclude that the only possibility is
that ρ restricted to [x, y] is in fact a run of the subautomaton M→

e,k. By induction

hypothesis, since M→
e,k is a union of languages S

[[
k , this means that there exists a

split sJ of height k of J , Ramseyan for σ. We set s to coincide with sJ +1 over J .
For the other possibilities for J , runs of the automata M→

e,k, M←
e,k and M→←

e,k are
involved in a similar way.

Proving the correctness of this construction requires some more arguments.
Let us come back to the case J = [x, y[ above. The run ρ over [x, y] together with
the definition of M→

e,k witnesses that eωσ(x, y) = e. This is a local correctness
property for the construction. What we have to prove is that σ(x, y) = e for
every x < y in I; i.e., a global correctness conclusion. This propagation of the
local equalities to the global level is achieved using topological arguments. In
particular, it uses the scatteredness hypothesis over α as well as the countability
hypothesis. It also involves the use the countable axiom of choice. ⊓⊔

We can derive from the last lemma the following.

Corollary 1. Le,k[q, p] = Cω
e,k, Le,k[r, q] = C−ω

e,k , and Le,k[r, p] = C ζ
e,k.

And we terminate by remarking that, for ι = [], [[, ]], ][ and a ∈ S, the language
S ι

k(a) can be written in terms of the Sk−1 and the Ce,k languages using finite
sums, concatenation and ω,−ω and ζ exponentiations.

Conclusion and future work

We believe that the factorisation forest theorem cannot be improved further in
the directions presented here. In particular, the bounds in Theorem 2 cannot be
improved in general. And in Theorem 3, removing the completeness hypothesis
makes the result fail.

Concerning automata over countable scattered linear orderings, our comple-
mentation proof has the advantage – with respect to the original one in [5] – to
isolate the combinatorial part from the problems related to scatteredness itself.
Our proof is in fact very resemblant to the original one of Buchi for ω-words [4] in
which the theorem of Ramsey would be replaced by Theorem 3. Along the same
lines, Theorem 3 can also be used in a compositional proof of the decidability of
the monadic theory of countable scattered linear orderings.



The question is whether there are other applications for Theorem 3 since
(R, <) does not have a decidable monadic theory [14]. We believe that it is the
case, for instance for tackling the conjecture of Rabin that the monadic theory
of (R, <) is decidable when monadic variables are interpreted over Borelian sets
(let us remark that the theory of (R, <) with quantification over boolean com-
binations of opens sets is already known to be decidable from Rabin [12]). We
are working in this direction.
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1. M. Bojańczyk and T. Colcombet. Bounds in omega-regularity. In IEEE Symposium

on Logic In Computer Science, pages 285–296, 2006.
2. T. C. Brown. An interesting combinatorial method in the theory of locally finite

semigroups. Pacific Journal of Mathematics, 36(2):277–294, 1971.
3. V. Bruyère and O. Carton. Automata on linear orderings. In MFCS, volume 2136,

pages 236–247, 2001.
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